Front. Vet. Sci. Frontiers in Veterinary Science Front. Vet. Sci. 2297-1769 Frontiers Media S.A. 10.3389/fvets.2019.00196 Veterinary Science Original Research Risk Attitudes Affect Livestock Biosecurity Decisions With Ramifications for Disease Control in a Simulated Production System Bucini Gabriela 1 * Merrill Scott C. 1 Clark Eric 2 Moegenburg Susan M. 1 Zia Asim 3 Koliba Christopher J. 3 Wiltshire Serge 4 Trinity Luke 5 Smith Julia M. 6 1Department of Plant and Soil Science, University of Vermont, Burlington, VT, United States 2The Vermont Complex Systems Center, University of Vermont, Burlington, VT, United States 3Department of Community Development and Applied Economics, University of Vermont, Burlington, VT, United States 4Department of Food Systems, University of Vermont, Burlington, VT, United States 5Department of Mathematics and Statistics, University of Vermont, Burlington, VT, United States 6Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States

Edited by: Didier Raboisson, Ecole Nationale Vétérinaire de Toulouse, France

Reviewed by: Mitsuaki Ohta, Tokyo University of Agriculture, Japan; Malathi Raghavan, Purdue University, United States

*Correspondence: Gabriela Bucini gbucini@uvm.edu

This article was submitted to Veterinary Humanities and Social Sciences, a section of the journal Frontiers in Veterinary Science

25 06 2019 2019 6 196 31 01 2019 31 05 2019 Copyright © 2019 Bucini, Merrill, Clark, Moegenburg, Zia, Koliba, Wiltshire, Trinity and Smith. 2019 Bucini, Merrill, Clark, Moegenburg, Zia, Koliba, Wiltshire, Trinity and Smith

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Hog producers' operational decisions can be informed by an awareness of risks associated with emergent and endemic diseases. Outbreaks of porcine epidemic diarrhea virus (PEDv) have been re-occurring every year since the first onset in 2013 with substantial losses across the hog production supply chain. Interestingly, a decreasing trend in PEDv incidence is visible. We assert that changes in human behaviors may underlie this trend. Disease prevention using biosecurity practices is used to minimize risk of infection but its efficacy is conditional on human behavior and risk attitude. Standard epidemiological models bring important insights into disease dynamics but have limited predictive ability. Since research shows that human behavior plays a driving role in the disease spread process, the explicit inclusion of human behavior into models adds an important dimension to understanding disease spread. Here we analyze PEDv incidence emerging from an agent-based model (ABM) that uses both epidemiological dynamics and algorithms that incorporate heterogeneous human decisions. We investigate the effects of shifting fractions of hog producers between risk tolerant and risk averse positions. These shifts affect the dynamics describing willingness to increase biosecurity as a response to disease threats and, indirectly, change infection probabilities and the resultant intensity and impact of the disease outbreak. Our ABM generates empirically verifiable patterns of PEDv transmission. Scenario results show that relatively small shifts (10% of the producer agents) toward a risk averse position can lead to a significant decrease in total incidence. For significantly steeper decreases in disease incidence, the model's hog producer population needed at least 37.5% of risk averse. Our study provides insight into the link between risk attitude, decisions related to biosecurity, and consequent spread of disease within a livestock production system. We suggest that it is possible to create positive, lasting changes in animal health by nudging the population of livestock producers toward more risk averse behaviors. We make a case for integrating social and epidemiological aspects in disease spread models to test intervention strategies intended to improve biosecurity and animal health at the system scale.

agent-based models disease transmission biosecurity risk attitude human behavior porcine epidemic diarrhea virus (PEDv) hog production U.S. Department of Agriculture10.13039/100000199

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      In recent years, the hog production industry has been subjected to incursions of both endemic and new diseases. In 2013, the first outbreak of porcine epidemic diarrhea virus (PEDv) in the U.S. shook the industry both economically and socially, and required us to rethink effective disease-prevention strategies (1, 2). PEDv is now an endemic disease and it is one of the most severe infectious diseases in the hog industry with ~80–100% morbidity and 50–90% mortality in suckling piglets (3, 4). The virus can spread via direct, indirect and possibly airborne transmission mechanisms (512). Direct transmission involves animal-to-animal contact while indirect transmission implies exposure to contaminated fomites. Furthermore, both animal and environment can be reservoirs of the virus for long periods, making it difficult to predict the time and place of new outbreaks (13). There is no single successful control strategy for PEDv, in part because of the complexity and large size of the swine population, but also because of poorly-understood transmission vectors, including inconsistent, and occasionally-irrational behavior by humans in the industry. Thus, one aspect of the problem has become clear: livestock disease spread is not only epidemiological but also a matter of human behavior, specifically the choices producers make to implement biosecurity protocols or not (14).

      Observed data published by the United States Department of Agriculture (Swine Enteric Coronavirus Disease Situation report—Mar 20181) show a high PEDv incidence in the winter of 2014 followed by a significant decreasing trend over each subsequent year (Figure 1). The data also exhibit seasonal cycles with winter seasons generally carrying higher PEDv incidence. While there are likely a number of factors influencing the variability in the data, we became interested in the steady decreasing trend. Since the pathways of virus transmission have stayed the same through time, why has incidence decreased? Likely, this is evidence of a change in the response to disease within the production system. We therefore investigate how shifts in human behaviors and risk mitigation strategies longitudinally affect contagion dynamics.

      Time series of the number of confirmed new PEDv positive premises by week. Gray bars report data for the U.S. and green bars for the state of North Carolina (NC). The data are available for the period 06/01/2014 to 02/25/2018. Issued on June 5, 2014, a Federal Order required the reporting of swine enteric coronavirus diseases including PEDv (https://www.aasv.org/aasv%20website/Resources/Diseases/PorcineEpidemicDiarrhea.php). On March 6, 2018, USDA rescinded the Federal Order (https://www.aphis.usda.gov/aphis/newsroom/news/sa_by_date/sa-2018/secd-reporting). The dark green line traces the decreasing trend in incidence in NC with a slope m = −0.02. This is equivalent to an average decrease from about 20 new cases in the month June, 2014 down to eight new cases in the same month in 2017.

      Biosecurity has been considered the most important prevention strategy for PEDv (14). Biosecurity practices such as disinfecting footwear, showering and wearing clean clothes before entering production premises, vehicle washing and disinfecting can be employed to mitigate PEDv transmission both within and between farms (1517). Although producers have access to biosecurity information and implementation instructions, their risk attitude can influence the willingness to comply with biosecurity protocols (18, 19). Hereafter, we refer to this operational willingness to obey the rules as “compliance” with biosecurity protocols. Failure to comply with biosecurity practices can lead to infection, increased mortality of pigs of all ages and economic losses for the farm. A second aspect of biosecurity is the willingness by managers and owners to invest in biosecurity, for example purchasing truck-washing equipment or installing air-filtration systems. For this reason, human decision-making factors, in addition to epidemiological factors, are essential pieces needed to understand disease dynamics and their associated economic repercussions (20).

      From an applied perspective, clarifying the mechanisms that link human risk attitude to biosecurity adoption and compliance will aid in understanding long-term disease risks and help to develop strategies for controlling disease incurrence (21). At the forefront of disease prevention are people involved with daily on-farm practices or decisions regarding the biosecurity standards on a farm. However, not everybody perceives disease risk in the same way (20, 22) and biosecurity practices are not applied homogenously and at the same level across farms (23, 24). Critical research on human decision-making shows that behaviors are not immutable and can be nudged toward standards that are more beneficial both for the individual and the larger community (25). In the case of disease for example, both the producer and the production system can benefit from improved disease control by shifting individual producers' behaviors toward higher biosecurity engagement (20). The integration of epidemiological and social disciplines can provide insights (26) on the effect of shifts in human behavior directed at protecting farms from disease incursions.

      A useful approach for studying the mechanisms by which both epidemiological and human-behavioral factors affect disease spread is in a simulated environment where factors can be varied and tested for their effects. Epidemiological models describe the biological and environmental components of disease transmission and evolution (5, 10, 2730) but do not address the role of human behavior in the process of spreading disease between animal production facilities (19). Melding epidemiology with human behavioral science acknowledges that people play a role in maintaining animal health and offers a potentially richer framework to understand the dynamics of disease and inform prevention strategies (18, 26).

      Agent-Based Models (ABMs) have been applied to study social phenomena and analyze macroscopic patterns that emerge from the interaction of a number of agents programmed to behave according to specified rules (31, 32). ABMs are computational models that attempt to capture the behavior of autonomous agents within their environment. An ABM usually consists of: (1) Agents, which represent actors characterized by attributes and behaviors; (2) Agent relationships and functions for their interactions and; (3) an environment in which the agents are embedded and with which they can interact. Sometimes agents can be part of a population and share characteristics and/or behaviors. Agents can receive information and/or learn and therefore have adaptive capabilities. The strength of ABMs is the ability to model complex systems from the bottom up with agents that have believable and realistic behaviors (33, 34). In situations characterized by risk as in the onset of a disease outbreak, the heterogeneity of human responses can lead to complex and dynamic outcomes challenging to foresee. Therefore, modeling agents with human-like characteristics including the ability to appraise and respond to events also with non-rational behaviors, is essential for social-ecological studies (18, 35). An example of the potential of ABMs for epidemiological applications came from the Models of Infectious Disease Agent Studies (MIDAS2). In this collaborative effort, a set of ABMs was developed to investigate avian flu transmission incorporating epidemiological, environmental and social aspects and has been used to analyze outbreaks, model outcomes of interventions involving human behaviors and shape policies to help reduce the impact of avian influenza (34). Because ABMs allow explicit modeling of decision-making processes, interactions and networks, they represent an effective approach for simulating the system structure of the swine industry, specifically by incorporating both disease dynamics emerging from virus transmission with animal and feed movement, and human decision processes influencing biosecurity and movement interactions.

      To form a better view of PEDv disease dynamics with the role of human behavior, we built an ABM at the scale of a regional hog production system. We modeled disease spread among a variety of different agents: (1) producers with different holding types (farrow-to-finish, farrow-to-wean, wean-to-feeder…), (2) feed mills, and (3) slaughter plants. The modeled hog supply chain includes both single- and multi-site production with networks of pig movement and feed deliveries. The other two main ABM components are the epidemiological and human decision-making components. The epidemiological component contains the mechanisms of PEDv transmission (direct and indirect), while the human behavioral component accounts for risk attitude and decision-making that influence biosecurity in the system. The elements of human decision-making and behavior were selected to reflect patterns observed by industry professionals to have major effects on farm biosecurity: (1) psychological distancing (36) that leads to a relaxation of compliance with biosecurity protocols as time passes without experiencing disease; (2) responsiveness to disease presence and; (3) the willingness of farm managers/owners to invest in biosecurity. The explicit inclusion of human behavior into the ABM provides a dimension for accounting for both the willingness to implement preventive biosecurity measures and to comply with them. Thus, with agent-based modeling we can represent the influence of responsiveness, heterogeneity, information exchange, psychological distancing, and interactions of humans and the environment.

      This paper presents and compares the disease-spread consequences of human decision-making simulated using an ABM of a swine production system. To this end, we design agent populations with proportionately varied risk attitudes observed from an online digital field experiment. These range from risk averse strategies that allocate more preventative biosecurity during outbreaks to risk tolerant attitudes that gamble with very little biosecurity investment. As the risk attitude influences the agent behavior in our ABM, we analyzed temporal patterns of disease incidence emerging from the simulated scenarios of heterogeneity in risk attitudes within the population of producer agents.

      Methods

      The agent-based model (ABM) used in this study was built off a previous ABM called “Regional U.S. Hog Production Network Biosecurity Model” (RUSHPNBM) originally created by Wiltshire et al. (37) and Wiltshire (38). The purpose of these ABMs has been the study of PEDv transmission in swine production systems. The ABMs are developed in AnyLogic3 software with all functions written in Java4. The main developments of the model for the current study include the addition of: (1) seasonal disease cycles; (2) environmental infection events simulating persistence of PEDv in the environment which allowed for reoccurrence of the disease at previously infected sites; (3) on-farm infections from visitor vehicles other than hog or feed trucks; (4) agent adaptive functionalities (e.g., human behavioral processes such as willingness to adopt biosecurity and psychological distancing); (5) risk attitude categories derived from digital field experiments and; (6) webDb database for data input and output. The model's design and implementation relevant for the current study are provided here and further details can be found in the Supplementary Material and in Wiltshire (38) and Wiltshire et al. (37). The main idea of the current ABM is to model both forward and feedback processes that describe the influence of (1) human risk attitude on biosecurity choices, (2) biosecurity on the probability of disease transmission, and (3) disease status on human decisions around biosecurity mediated by risk attitude. The ABM's process flow can be divided into a structural, an epidemiological and a human behavioral component (Figure 2), described in the following sections. The values of the model parameters are given in the (Supplementary Material).

      Agent-based model (ABM) process flow. It highlights the ABM's main components and processes of how the Porcine Epidemic Diarrhea virus (PEDv) can spread through the network structure of the swine industry and is influenced by human behavior. The ABM structural component mimics the swine industry with three types of agents: P, producer; FM, feed mill; and SP, slaughter plant. Agents interact via networks of hog and feed movement. The ABM epidemiological component simulates the risk of PEDv transmission associated with movement through these network connections disease spreads. Human decisions on biosecurity also influence infection risk. Disease spread depends on the probability of disease transmission on the networks and influences the biosecurity level on farms.

      Structural Component: ABM Representation of the Swine Industry

      The structural component simulates a hog production system with agents representing production premises, feed mills and slaughter plants. The hog production chain simulated for this study is a system mirroring the density, operation types and sizes of production units found in North Carolina with data provided by the Farm Location and Agricultural Production Simulator (FLAPS) tool which draws from the USDA Census of Agriculture and aerial images (39). Feed mills and slaughter plants were initialized at random locations with numbers obtained from public data and expert advising. Hog production in the U.S. is increasing, which has resulted in increased vertical integration. Multiple sites are used in the production flow with specialized sites for sows, weanlings, growers and finishing pigs, or any combination of these growth stages. The ABM production agents are therefore also characterized by one of six holding types (farrow-to-wean, wean-to-feeder, feeder-to-finish, farrow-to-finish, wean-to-finish, and feeder-to-finish), size (total number of animals), and number of pig batches (groups of pigs of the same age). Other structural parameters include the basic functions of the hog production system such as the process of birth and growth. Birth, growth and movements of pigs are modeled at the group level using batches of pigs of the same age. The production system of the hog industry requires transfer of hogs from one holding type to the next and in the end to the slaughter plant. For instance, in a three-site production system a pig batch moves from farrow-to-wean to wean-to-feeder to feeder-to-finish sites before finally being sent to the slaughter plant. Pig batch movement as well as feed deliveries generate heterogeneous interactions among agents and are included in the ABM using networks of transportation (Supplementary Figure 1). These networks are modeled with agents having set trading and service areas according to their industry role and characterized by neighborhood structures.

      Epidemiological Component: ABM Representation of Disease Transmission

      The ABM epidemiological component is network-based and spatially explicit in that it simulates disease spread via both direct and indirect mechanisms related to the movement of animals and feed across the production network. It is coupled with a stochastic state transition model including Susceptible (S) and Infectious (I) states. Probability functions regulate the transmission of disease in single agent interactions while the network structure of animal and feed movement determine the ultimate pattern of disease spread. Each simulated agent (hog producers, slaughter plants, and feed mills) may become infected (state I) during an interaction with another agent with a probability that depends on the type of interaction, the agent's biosecurity and a seasonality factor. Specifically, each type of movement interaction is associated with an independent probability of infection calculated using a logistic function. The logistic functions describe the infection probability's dependence on the agent's biosecurity with coefficients derived from the estimates provided using expert opinion. The seasonal variability in PEDv infectivity is modeled as a sinusoidal adjustment on the logistic probability function that varies with time and ultimately generates higher infection probabilities in winter and lower in summer. Explicit representation of disease spread mechanisms and functions for our ABM are detailed in the Supplementary Material section titled The agent-based model's epidemiological sub-model.

      Aside from the movement of contaminated pigs and feed, two additional sources of infection are implemented: (1) from visitors arriving at the production site and (2) from PEDv surviving in the environment within or around a production site (5, 13, 40). In our ABM, we account for the first infection source by simulating events of visitors on the production sites associated with a logistic infection probability function dependent on the producer agent's biosecurity (Supplementary Tables 1, 3). To account for the environmental infection, 0.3% of producers are randomly infected during an event scheduled once a year on a day selected from a triangular distribution defined on the range from mid-September to mid-December with mode the first week of November.

      Human Behavioral Component: ABM Representation of Biosecurity Decision-Making

      We explicitly investigated the importance of capturing human behavior with interaction and feedbacks between humans and the environment. The producer agents in our ABM have adaptive capabilities and are reactive in that they do not learn but simply respond to signals from other agents and the environment. In the model, a population of veterinarian agents is encoded, each with its own network of hog producers. Within the network, the veterinarian tracks the number of hog producers affected by disease and reports it back weekly. The producer agents are encoded with a set of rules to simulate decisions to alter biosecurity at their facility in response to the disease status in their veterinarian network. Our goal was to explore the influence of reactive behaviors on biosecurity and ultimately disease incidence.

      To reflect heterogeneity of human risk attitude and allow the evaluation of a variety of human behaviors, the ABM has underlying human processes with parameters for risk attitude, biosecurity investment, responsiveness to disease, and psychological distancing. In particular, the agents' risk-attitude is directly linked to their response to disease by determining the threshold number of neighboring infected production premises necessary for an agent to react and increase its biosecurity with a probability >0.9. We associate risk aversion with higher propensity to adopt biosecurity. For example, risk averse agents almost always increase biosecurity as soon as there are three production premises infected in their veterinarian network. On the opposite side of the risk spectrum, risk tolerant agents increase their biosecurity quasi certainly only when they know that there are nine or more infected production premises in their veterinarian network. In summary, the ABM agent behavior originates from a risk attitude distribution with four categories (risk averse, risk opportunists, risk neutral, and risk tolerant); four forms of disease response, one for each risk attitude category are used to simulate biosecurity response-to-disease strategies; and a utility function for psychological distancing, which simulates the waning of biosecurity compliance since an infection event. The detailed description of parameters and methods for the ABM human behavioral component are provided in the Supplementary Material section The agent-based model's human behavioral component.

      Risk-Attitude Scenarios Analysis

      The goal of this study was to better understand the extent to which shifts in the composition of risk attitudes in the agent population change the incidence of PEDv outbreaks. To this end, we ran a scenario analysis where we shifted fractions of the producer population between risk tolerant and risk averse categories and then evaluated the resulting PEDv incidence. Six model scenarios were compared to a reference baseline scenario (Table 1), assigned to the case where the producer population is evenly distributed across all risk attitude categories upon model initialization. The populations of feed mill and slaughter plant agents were kept at even percentages of agents across the four risk attitude groups in all seven scenarios. The baseline scenario in particular was the reference for being the model that we calibrated against observed data. The ABM calibration was performed using AnyLogic software with the built-in genetic algorithm by matching the observed (Figure 1) and the simulated PEDv incidence. More information about the calibration methods and results can be found in the Supplementary Material, section Calibration of ABM's human behavioral component. For the six alternative scenarios (Table 1), all the model parameters were kept fixed at the calibrated values (Supplementary Table 1), while the initial proportion of population in the risk attitude groups were varied. For this analysis, the ABM was run over the time period spanning from 12/27/2009 to 02/25/2018. The first part of this period until 05/31/2014 was used to stabilize to model. The period 06/01/2014 to 02/25/2018 overlapping the observations' time series (Figure 1) produced the data for the analysis. We executed Monte Carlo experiments with 800 replicates for the seven separate scenarios and collected disease incidence data.

      Risk attitude scenarios.

      Scenario % risk averse producers % risk tolerant producers
      Baseline 25 25
      12.5% averse 12.5 37.5
      17.5% averse 17.5 32.5
      22.5% averse 22.5 27.5
      27.5% averse 27.5 22.5
      32.5% averse 32.5 17.5
      37.5% averse 37.5 12.5

      Each scenario represents a different initial condition in the model representing the configuration of risk attitudes in the producer agent population. Columns 2 to 3 report the relative percent of producer agents in each risk attitude group for the seven scenarios. The baseline is the scenario used to calibrate the model. The percentages of producers assigned to the risk neutral and risk averse categories are maintained fixed at 25% in all the scenarios. The increase of risk averse percentage across scenarios aligns with a larger section of the producer population adopting biosecurity with relatively higher probability as a response to disease presence.

      Statistical analyses on incidence outputs from each scenario were performed using R (41) software. We calculated summary indicators such as total incidence and linear trend coefficients, to characterize the output time series of PEDv incidence and then applied non-parametric statistical tests to compare the indicators across scenarios. Specifically we proceeded in the following ways for each summary indicator:

      Total incidence: It is defined as the sum of incidence over the simulated time period. We built distributions of total incidence from the 800 Monte Carlo replicates for each scenario. We then compared the distributions across scenarios both visually with box-plots and statistically with non-parametric tests. We applied non-parametric tests because the data did not meet either the assumption of normality (p > 0.0001 in Shapiro-Wilk test) or the assumption of equal variances (p > 0.0001 in both Brown-Forsythe test and Fligner-Killeen test). We first applied the k-sample Anderson-Darling test with all the distributions of total incidence and then compared the distributions pairwise with the two-sample Kolmogorov-Smirnov test. Box-plots were used to show the median, minimum, and maximum values and quantiles of the simulated incidence totals for each scenario.

      Linear trend coefficients: A linear regression model was fit to each of the 800 simulation runs for all scenarios and the values for the coefficients intercept and slope were collected. Box plots of intercept and slope showed the characteristics of the underlying distribution of coefficients' datasets. The non-parametric k-sample Anderson-Darling test followed by the two-sample Kolmogorov-Smirnov test were applied to compare distributions across scenarios because the data did not meet either the assumption of normality (p-value > 0.0001 in Shapiro-Wilk test) or the assumption of equal variances (p-value > 0.0001 in Brown-Forsythe test and Fligner-Killeen test). The Monte Carlo averages of both the simulated incidence and trend coefficients were calculated to display temporal patterns and trends for each scenario.

      In all post hoc multiple pairwise comparisons with the Kolmogorov-Smirnov test, a Bonferroni adjustment was applied by testing individual hypotheses at the level α* = 0.05/21 (where 21 is the number of tests).

      Results

      The scenario analysis performed in the study addressed the sensitivity of PEDv incidence outputs given changes in the proportions of producer agents assigned to the risk averse and risk tolerant categories in the ABM. We performed statistical tests to measure the effect of seven distributions of risk attitudes (Table 1) on the spread of PEDv within the hog production system simulated in our ABM. The results of the non-parametric tests comparing the distributions of total incidence, linear trend's intercept and slope are shown by the compact letters above the box-plots in Figures 35. Box-plots are presented to show overall patterns of three indicators and visualize their distribution characteristics across scenarios. The 12.5 and 37.5% averse represent the two extreme scenarios. The baseline is the scenario with an equal percentage (25%) of producers in both the risk averse and risk tolerant categories.

      Box-plot of the distributions of total PEDv incidence (sum of new infection cases over the simulated time period) for each scenario. Each scenario represents a different distribution of risk attitudes within the population of producer agents in our ABM. The baseline-scenario population has equal proportions of producer agents in the all four groups (risk averse, risk opportunistic, risk neutral, risk tolerant). Three scenarios (12.5, 17.5, and 22.5% averse) tested the effect of reducing the number of risk averse producers by shifting a fraction (10, 30, or 50%) of producer agents from the risk averse to the risk tolerant category and are color coded with red shades. The other three scenarios (27.5, 32.5, and 37.5% averse) tested the effect of increasing the number of risk averse producers by shifting a fraction (10, 30, or 50%) of producer agents from the risk tolerant to the risk averse category and are color coded with blue shades. Each scenario distribution is drawn from a Monte Carlo experiment with 800 replicates. The compact letter display indicates significance from pairwise comparison. For the scenarios sharing a letter there is no evidence of a difference for that pair of distributions at adjusted α* = 0.002 level (Bonferroni adjustment for 21 comparisons). The black dashed line marks the total incidence in the observed data.

      Total Incidence Indicator

      The compact letters in Figure 3 show that there are some significant differences in the distributions of incidence totals across scenarios. All scenarios except for the “22.5% averse” one, which was only 10% less risk averse than the baseline scenario, have distributions significantly different from the baseline scenario. Generally, the scenarios with lower percentage of risk averse producer agents (12.5%, 17.5% averse; compact letter “a”) had more simulation runs that produced relatively high incidence totals (larger interquartile ranges) compared to the other scenarios. In contrast, scenario runs with higher proportions of risk averse producer agents (32.5 and 37.5% averse; compact letter “d”) lead to significantly different distributions of incidence totals characterized by lower medians and narrower ranges. All the scenarios appear to be right-skewed with some outlying values indicating that in all Monte Carlo experiments there were simulations where the system became very vulnerable to high PEDv infection. This is particularly evident for scenarios 12.5 and 17.5% averse. Overall, the scenarios indicate that the ABM is significantly sensitive to risk attitude shifts as small as 10% producer agents moving from being risk tolerant to being risk averse. Therefore, the total incidence indicator responds to the risk attitude distribution within the population.

      The comparative box-plots provided an unexpected result when analyzed in relation to the observed total incidence (Figure 3, dashed black line). The ABM tends to underestimate the total incidence. While all scenarios produced some realizations with total incidence close to the observed one, none had the median aligned around the observed total incidence. The scenario with the most risk tolerant producers (12.5% averse) provided the highest number of simulation runs close to the observations in terms of total incidence. These results may suggest that we need to adopt a baseline model that is calibrated on an initial population of producers with relatively higher percentage of risk tolerant. Alternatively, the current baseline model could be correct and the observed data could represent a rare case that happened to be actualized in reality. Only independent data on risk attitude collected from a sample of producers can help answer this question.

      Trend Intercept and Slope Indicators

      The linear regressions fit on the incidence data in relations to time provided significant trends (Table 2). The R-squared of the linear models are <0.2 ± 0.14 reflecting the high variability in the data mostly due to the seasonal cycles. Even with the high variability, the data provide significant trends and information about disease incidence change with time. The median p-values show significant trend for most of the simulation runs. The average p-values further indicate the presence of outlier regressions with non-significant trends. Overall, the data support the existence of significant changes in the incidence with time.

      Regression model fitness indicators.

      Scenario Model R-squared Model p-values
      Mean Std. dev. Median Mean Std. dev. Median
      Baseline 0.2 0.14 0.18 0.03 0.12 6.40E-10
      12.5% averse 0.18 0.14 0.15 0.04 0.13 1.87E-08
      17.5% averse 0.19 0.14 0.18 0.03 0.13 4.14E-10
      22.5% averse 0.2 0.14 0.19 0.04 0.15 1.85E-10
      27.5% averse 0.2 0.14 0.18 0.02 0.11 3.65E-10
      32.5% averse 0.2 0.14 0.18 0.03 0.12 8.75E-10
      37.5% averse 0.2 0.14 0.19 0.03 0.13 2.34E-10

      Summary statistics of p-values and R-squares of the linear regression models (trends) of disease incidence vs. time. For each scenario, 800 regression models were fit.

      We found significant effects of risk attitude shifts in the coefficients describing the linear trends of incidence through time (Figures 4, 5). In general, the two extreme scenarios (12.5 and 37.5% averse) showed significantly different distributions compared to the baseline scenario. For example, a shift of risk averse agents from 25% (baseline) to 37.5% (more risk averse population) results in a steeper median trend (20% more negative), in other words, disease spread decreases faster. When we look at intercepts, an initial producer population with 37.5% risk averse agents created a situation where the PEDv virus had less infectivity since the simulation start with a median intercept of disease incidence 22% smaller than the intercept of the baseline scenario. We could not claim statistical support for a difference in the distribution of intercepts and slopes between the baseline scenario and the close scenarios (17.5, 22.5, 27.5, and 32.5% averse) except for the case of the intercept distribution for the 17.5% averse scenario (same compact letters in Figure 4).

      Box-plot of the intercept distributions derived from the PEDv incidence trends for each scenario. Description details as in Figure 3.

      Box-plot of the slope distributions derived from the PEDv incidence trends for each scenario. Description details as in Figure 3.

      In all scenarios, more than 75% of the simulation runs provided a linear trend with negative slope and positive intercept capturing the same linear trend shown in the observed historical PEDv incidence. This means that most of the simulations reproduced a situation where the disease incidence was higher at start (June 2014) and decreased with time. Fewer runs (<25%) in each scenario showed instead a positive trend indicating some model realizations in which the PEDv outbreak led to a growing incidence through time. These positive-trend cases emerge in the stochastic approach of Monte Carlo experiments where, by the law of large numbers (of simulations) more rare outcomes may also be realized. These cases accentuate and call the attention to the stochastic nature of disease spread dynamics indicating that there can be unexpected outcomes of disease spread even when the system is calibrated to contain and reduce infection.

      The observed intercept and slope falls either outside or at the edge of the inter-quartile range for all the scenarios indicating that most of the model simulations realized a weaker decreasing trend compared to the observed one. This means that the ABM parameterization tends to create dynamics of disease spread with overall lower incidence across time than what occurred in reality. The graphs in Figure 6 display the time series of PEDv incidence for the observation data and for the scenario averages, calculated across the 800 Monte Carlo runs, along with their trends. Our outputs demonstrate that the mechanisms and parameterization of the ABM are capable of reproducing decreasing PEDv incidence through time thanks to the dynamics of human behavior where agents could respond to PEDv presence by increasing biosecurity. In other words, the human behavioral assumptions built into our ABM influencing biosecurity and disease transmission probabilities, allowed the realizations of negative incidence trends. Furthermore, the higher propensity to increase biosecurity assigned to risk averse agents did result in lower incidence when there was a sufficient number of risk averse agents in the population. Despite the fact that most of the simulations missed the observed initial high peak of incidence, the shaded areas displaying the averaged Monte Carlo outputs plus and minus one standard deviation demonstrate that the ABM did realize disease outbreaks with high peaks of incidence.

      Model results for PEDv incidence for the seven risk attitude scenarios (Table 1). Observed PEDv Incidence and its linear trend are overlaid in green. (A) Time series of averaged simulated PEDv incidence (lines) and one-standard-deviation bands derived from the 800 Monte Carlo runs for each scenario. (B) Zoom on simulated outputs with overlaid trends obtained from averaged linear regressions on each simulation run. The green line represents the linear trend of the observed data. The other colors are the same as described in the legend of the top panel.

      Discussion

      The epidemiological data on PEDv available for the period of June 1st, 2014 to February 25th, 2018 shows a decreasing trend in PEDv incidence. Because the characteristic pathways of infection of the virus have not changed over time, we deduced that something has been changing in the hog production system that has improved the control of the virus. Both the literature and collaborating stakeholders refer to human behaviors with respect to both in compliance with and investment in biosecurity as critical for disease-protection management. This implies a key role of humans in the processes of controlling virus transmission. To better understand how changes in behavioral patterns could reflect changes in PEDv incidence, we developed an agent-based model (ABM) able to examine the role of human risk attitude to PEDv incidence within a simulated production system. Our model outputs reproduced a significant decrease in PEDv incidence through time. An important finding from our scenario analysis was that the average decreasing trend is significantly affected by the model's initial state, defining the proportion of the producer agents assigned to two risk categories, risk averse and risk tolerant. An increase as small as 10% more risk averse producer agents resulted in a 19% decrease in the median total PEDv incidence, which is equivalent to 36 fewer PEDv cases over the course of the analysis period (~4 years). To observe a significantly steeper decrease in incidence requires that more than 37.5% of the population be in the risk averse category. The implication is that biosecurity adoption and influencing factors of adoption (for example risk attitude) are a critical consideration when creating strategic plans or policies for disease control. Our modeling analysis reinforces the message found not only in field-specific papers but also in general papers such as in (42) who calls for developing more effective approaches for integrating social dynamics of epidemics to build more realistic models.

      PEDv incidence data are highly variable and reflect the complex social-ecological structure of the swine industry. While the Monte Carlo results capture much of the system variability, different parameter sets appear to more closely align with the observed PEDv data (Figures 36), i.e., the initial conditions allowed us to calculate the fraction of simulation runs whose patterns are statistically close to the recorded incidence patterns. An interesting finding is that a producer-agent population with only 12.5% agents in the risk averse category resulted in statistical indicators where the median is closer to the observed value. In considering potential adjustments for our model, this result suggests to use the risk-attitude distribution from 12.5% averse scenario as a model set-up for realizations closer to the observed PEDv pattern.

      An aspect of complexity present in the observed data is their variability at several time scales including weekly, seasonal, and inter-annual variability. The inter-annual variability for example is visible in the timing of the observed incidence peaks (Figure 6 top panel, example: the 2015–2016 winter peak occurred earlier than in 2014–2015). Our ABM uses a sinusoidal function calibrated to peak in January and therefore produces incidence oscillations that are more regular with time. A variety of reasons can be postulated to explain the complex variability in the observations including weather variability, changes in production components and/or routes and stochastic factors affecting disease spread. Our model simulates a closed production system where all the hog and feed movements are bounded within the region. Even if designed around the North Carolina configuration of production premises, the model does not include the complex network system that extends beyond the state boundary into other U.S. states. These out-of-state movements add potential for disease transmission and may contribute to the higher observed incidence compared to the averaged simulated one.

      Human behavior and decision making represent a challenge in the animal production industry because of their complex interconnectedness with protection from disease (18, 19, 23, 43, 44). By weaving human behavioral components into epidemiological processes, our ABM is a unique tool for evaluating the effects and efficacy of disease control strategies compared to more traditional epidemiological models that lack social dynamics. Our ABM was equipped with two behavioral processes that act in opposition: (1) responsiveness to regional disease incidence with consequent increase in biosecurity and (2) psychological distancing with consequent decrease in biosecurity as time increases since an infection. Model calibration provided the appropriate tension between the two processes to match the observed decreasing trend in PEDv incidence. With these two behavioral processes we were able to capture important features of the PEDv dynamics as shown in our results. We recognize however that there is a variety of interplaying socio-psychological factors that influence decisions, as skillfully illustrated by Mankad (18). Yet our ABM is a simplified but progressive effort toward more realistic representation of epidemics.

      PEDv is highly contagious and lethal in piglets that has resulted in substantial losses for the North America's swine industry. All industry actors are aware of the devastating consequences of disease incursion. The regular reemergence of PEDv indicates that there is still work to do on the epidemiology and microbiology of the virus but also on the role of humans, which necessitates the investigation of practices carried out in the industry and behaviors that allow the virus to survive and become active. Intensive research efforts in the past 5 years have brought new information about the viability of the virus (5, 7, 12, 30, 40, 4547), and vaccines have been researched in various countries around the world. Vaccine efficacy has shown to be low (48) although a recent study had promising results with a new vaccine that was immunogenic and effective in growing pigs (49). Prevention of the virus therefore relies on good biosecurity practices with active participation of producers and all industry stakeholders in this complex supply chain network. Crucial for biosecurity to work is the proper training of staff and a culture of compliance with the protocols.

      Human risk attitude is a driver when examining the role of human behavior as a factor in disease transmission. Our study suggests that shifting producer attitudes toward risk aversion is beneficial for the whole production system because it will result in reduced disease incidence. In balancing cost and benefits of biosecurity, our modeling outputs show that an engaged effort from the population of producers toward more risk averse, biosecure behaviors (e.g., readiness to enhance biosecurity and limiting psychological distancing) is effective in the control and reduction of PEDv spread. Our study points at the substantial opportunity provided by shifting behavior; however, from a production system perspective, altering a substantial proportion of a population's behavior represents a significant challenge. Yet, significant progress has been shown in other industries, for example when we alter choice architecture and provide behavioral nudges (25, 50).

      Here we demonstrated the need to better understand the cognitive processes underlying decision-making about biosecurity, and highlight possible realizations of the impact of changing behavior on the spread of disease in the swine industry. However, in this research we coded biosecurity investment decisions based on the risk of acquiring a disease. Obviously, disease risk is an important factor when considering biosecurity, but it is not the only factor. A complex array of factors exists that influence biosecurity decisions that differ by individual and further depend upon the objectives of the organization, regional policies, logistical factors, and the array of behaviors by other actors in the swine network (e.g., feed mills, truck drivers, veterinarians, slaughter plants, processors, auction houses, etc.). Yet, research has shown that risk attitude can be an important decision-making factor. Like all models, our “model is wrong, but hopefully it is useful” (attributed to George Box 1976) because it provides a quantitative approximation for how human behavior and decisions can influence the spread of disease.

      Conclusion

      The onset of PEDv in the U.S. hog industry was a singular experience for all stakeholders because of its high infectivity and rapid spread. Data show however that in 4 years, PEDv's potent spread appeared constrained with overall incidence reduced. Social dimensions can play a significant role in the biosecurity decisions of swine producers. We geared our epidemiological model with human behavioral processes connected to biosecurity and disease, and demonstrated the opportunity and impact associated with changing biosecurity behavior on PEDv incidence or, with a more positive spin, a healthier animal production systems. If on one side, targeted interventions to critical nodes of a production system may prove important to inhibit disease “super-spreaders,” on the other, our study shows that shifts in the overall industry toward a more risk averse culture can yield more biosecure facilities along with consistent and long-term industry-wide protection from disease.

      Author Contributions

      GB, SW, EC, and SCM assisted with design and conceptualization of the agent-based model. EC helped with data collection. GB, SCM, EC, and SMM worked on data analysis. Project funding was generated with the help of JS, SCM, CK, and AZ. Experiments were conducted by GB and EC. Software development was primarily led by GB, SW, and EC. Initial manuscript drafts were created by GB. Subsequent manuscript editing was completed by all authors.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to acknowledge Hord Family Farms for providing pig movement data in order to calibrate the model.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fvets.2019.00196/full#supplementary-material

      References Paarlberg PL. Updated Estimated Economic Welfare Impacts of Porcine Epidemic Diarrhea Virus (PEDV). West Lafayette, IN: Department of Agricultural Economics, Purdue University (2014). Pudenz C Schulz L Tonsor G. Biosecurity and Health Management by U.S. Pork Producers-2017 Survey Summary. Ames, IA: Iowa State University Extension and Outreach (2017). Geiger JO Connor JF. Porcine Epidemic Diarrhea, Diagnosis and Elimination. (2013). Available online at: https://www.aasv.org/aasv%20website/Resources/Diseases/PED/13-05-29PEDWhitePaper.pdf (accessed 29 May, 2013). Stevenson GW Hoang H Schwartz KJ Burrough ER Sun D Madson D . Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Investig. (2013) 25:64954. 10.1177/104063871350167523963154 Alonso C Goede DP Morrison RB Davies PR Rovira A Marthaler DG . Evidence of infectivity of airborne porcine epidemic diarrhea virus and detection of airborne viral RNA at long distances from infected herds. Vet Res. (2014) 45:73. 10.1186/s13567-014-0073-z25017790 Dee S Clement T Schelkopf A Nerem J Knudsen D Christopher-Hennings J . An evaluation of contaminated complete feed as a vehicle for porcine epidemic diarrhea virus infection of naïve pigs following consumption via natural feeding behavior: proof of concept. BMC Vet Res. (2014) 10:176. 10.1186/s12917-014-0176-925091641 Lowe J Gauger P Harmon K Zhang J Connor J Yeske P . Role of transportation in spread of porcine epidemic diarrhea virus infection, United States. Emerging Infect Dis. (2014) 20:8724. 10.3201/eid2005.13162824750785 Bowman AS Krogwold RA Price T Davis M Moeller SJ. Investigating the introduction of porcine epidemic diarrhea virus into an Ohio swine operation. BMC Vet Res. (2015) 11:38. 10.1186/s12917-015-0348-225881144 Dee S Neill C Clement T Singrey A Christopher-Hennings J Nelson E. An evaluation of porcine epidemic diarrhea virus survival in individual feed ingredients in the presence or absence of a liquid antimicrobial. Porcine Health Manage. (2015) 1:9. 10.1186/s40813-015-0003-028405416 Alvarez J Goede D Morrison R Perez A. Spatial and temporal epidemiology of porcine epidemic diarrhea (PED) in the Midwest and Southeast regions of the United States. Prev Vet Med. (2016) 123:15560. 10.1016/j.prevetmed.2015.11.00326586344 Lachapelle V Letellier A Fravalo P Brassard J L'Homme Y. Dynamics of virus distribution in a defined swine production network using enteric viruses as molecular markers. Appl Environ Microbiol. (2017) 83:e0318716. 10.1128/AEM.03187-1627940545 Kim Y Krishna V Torremorell M Goyal S Cheeran M. Stability of porcine epidemic diarrhea virus on fomite materials at different temperatures. Vet Sci. (2018) 5:21. 10.3390/vetsci501002129438310 Murai K Moriguchi S Hayama Y Kobayashi S Miyazaki A Tsutsui T . Mathematical modeling of porcine epidemic diarrhea virus dynamics within a farrow-to-finish swine farm to investigate the effects of control measures. Prev Vet Med. (2018) 149:11524. 10.1016/j.prevetmed.2017.11.01929290292 Niederwerder MC Hesse RA. Swine enteric coronavirus disease: a review of 4 years with porcine epidemic diarrhoea virus and porcine deltacoronavirus in the United States and Canada. Transbound Emerg Dis. (2018) 65:66075. 10.1111/tbed.1282329392870 Zentkovich MM Nelson SW Stull JW Nolting JM Bowman AS. Inactivation of porcine epidemic diarrhea virus using heated water. Vet Anim Sci. (2016) 1–2:13. 10.1016/j.vas.2016.09.001 Trudeau MP Verma H Urriola PE Sampedro F Shurson GC Goyal SM. Survival of porcine epidemic diarrhea virus (PEDV) in thermally treated feed ingredients and on surfaces. Porc Health Manag. (2017) 3:1717. 10.1186/s40813-017-0064-328932412 Gebhardt JT Cochrane RA Woodworth JC Jones CK Niederwerder MC Muckey MB . Evaluation of the effects of flushing feed manufacturing equipment with chemically treated rice hulls on porcine epidemic diarrhea virus cross-contamination during feed manufacturing. J Anim Sci. (2018) 96:414958. 10.1093/jas/sky29530052979 Mankad A. Psychological influences on biosecurity control and farmer decision-making. Rev Agron Sust Dev. (2016) 36:40. 10.1007/s13593-016-0375-9 Hidano A Enticott G Christley RM Gates MC. Modeling dynamic human behavioral changes in animal disease models: challenges and opportunities for addressing bias. Front Vet Sci. (2018) 5:137. 10.3389/fvets.2018.0013729977897 Ritter C Jansen J Roche S Kelton DF Adams CL Orsel K . Invited review: determinants of farmers' adoption of management-based strategies for infectious disease prevention and control. J Dairy Sci. (2017) 100:332947. 10.3168/jds.2016-1197728237585 Edwards-Jones G. Modelling farmer decision-making: concepts, progress, and challenges. Anim Sci. (2007) 82:78390. 10.1017/ASC2006112 Merrill SC Koliba CJ Moegenburg SM Zia A Parker J Sellnow T . Decision-making in livestock biosecurity practices amidst environmental and social uncertainty: evidence from an experimental game. PLoS ONE. (2019) 14:e0214500. 10.1371/journal.pone.021450030995253 Casal J Manuel A Mateu E Martin M. Biosecurity measures on swine farms in Spain: perceptions by farmers and their relationship to current on-farm measures. Prev Vet Med. (2007) 82:13850. 10.1016/j.prevetmed.2007.05.01217590460 Jin Y Elbakidze L McCarl BA. Risk assessment and management of animal disease related biosecurity. Int J Risk Assess Manag. (2009) 12:186203 10.1504/IJRAM.2009.025918 Thaler RH Sunstein CR Balz JP. Choice Architecture. In: Shafir E, editor. The Behavioral Foundations of Public Policy. Princeton, NJ: Princeton University Press (2014). p. 42839. Funk S Bansal S Bauch CT Eames KTD Edmunds WJ Galvani AP . Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics. (2015) 10:215. 10.1016/j.epidem.2014.09.00525843377 Beam A Goede D Fox A McCool MJ Wall G Haley C . A porcine epidemic diarrhea virus outbreak in one geographic region of the united states: descriptive epidemiology and investigation of the possibility of airborne virus spread. PLoS ONE. (2015) 10:e0144818. 10.1371/journal.pone.014481826709512 O'Dea EB Snelson H Bansal S. Using heterogeneity in the population structure of U.S. swine farms to compare transmission models for porcine epidemic diarrhoea. Sci Rep. (2016) 6:22248. 10.1038/srep2224826947420 Dee S Neill C Singrey A Clement T Cochrane R Jones C . Modeling the transboundary risk of feed ingredients contaminated with porcine epidemic diarrhea virus. BMC Vet Res. (2016) 12:51. 10.1186/s12917-016-0674-z26968372 VanderWaal K Perez A Torremorrell M Morrison RM Craft M. Role of animal movement and indirect contact among farms in transmission of porcine epidemic diarrhea virus. Epidemics. (2018) 24:6775. 10.1016/j.epidem.2018.04.00129673815 Verelst F Willem L Beutels P. Behavioural change models for infectious disease transmission: a systematic review (2010–2015). J Royal Soc Interface. (2016) 13:20160820. 10.1098/rsif.2016.082028003528 Badham J Chattoe-Brown E Gilbert N Chalabi Z Kee F Hunter RF. Developing agent-based models of complex health behaviour. Health Place. (2018) 54:1707. 10.1016/j.healthplace.2018.08.02230290315 Smith ER Conrey FR. Agent-based modeling: a new approach for theory building in social psychology. Personal Soc Psychol Rev. (2007) 11:87104. 10.1177/108886830629478918453457 Epstein JM. Modelling to contain pandemics. Nature. (2009) 460:687. 10.1038/460687a19661897 Bruch E Atwell J. Agent-based models in empirical social research. Sociol Methods Res. (2015) 44:186221. 10.1177/004912411350640525983351 Yi R Gatchalian KM Bickel WK. Discounting of past outcomes. Exp Clin Psychopharmacol. (2006) 14:3117. 10.1037/1064-1297.14.3.31116893274 Wiltshire S Zia A Koliba C Bucini G Clark E Merrill S . Network metametrics: using evolutionary computation to identify effective indicators of epidemiological vulnerability in a livestock production system model. J Artif Soc Soc Simul. (2019) 22:8. 10.18564/jasss.3991 Wiltshire SW. Using an agent-based model to evaluate the effect of producer specialization on the epidemiological resilience of livestock production networks. PLoS ONE. (2018) 13:e0194013. 10.1371/journal.pone.019401329522574 Burdett CL Kraus BR Garza SJ Miller RS Bjork KE. Simulating the distribution of individual livestock farms and their populations in the united states: an example using domestic swine (sus scrofa domesticus) farms. PLoS ONE. (2015) 10:e0140338. 10.1371/journal.pone.014033826571497 Tun HM Cai Z Khafipour E. Monitoring survivability and infectivity of porcine epidemic diarrhea virus (PEDv) in the infected on-farm earthen manure storages (EMS). Front Microbiol. (2016) 7:265. 10.3389/fmicb.2016.0026527014197 R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing (2016). Avaliable online at: https://www.R-project.org/30628467 Ferguson N. (2007). Capturing human behaviour. Nature. 446:733. 10.1038/446733a17429381 Brennan ML Christley RM. Cattle producers' perceptions of biosecurity. BMC Vet Res. (2013) 9:71. 10.1186/1746-6148-9-7123574789 Dewey C Bottoms K Carter N. A qualitative study to identify potential biosecurity risks associated with feed delivery. J Swine Health Product. (2014) 22:23243. Available online at: https://www.aasv.org/shap/issues/v22n5/v22n5p232.html Kim Y Yang M Goyal SM Cheeran MC-J Torremorell M. Evaluation of biosecurity measures to prevent indirect transmission of porcine epidemic diarrhea virus. BMC Vet Res. (2017) 13:89. 10.1186/s12917-017-1017-428381304 Schumacher LL Huss AR Cochrane RA Stark CR Woodworth JC Bai J . Characterizing the rapid spread of porcine epidemic diarrhea virus (PEDV) through an animal food manufacturing facility. PLoS ONE. (2017) 12:e0187309. 10.1371/journal.pone.018730929095859 Vitosh-Sillman S Loy JD Brodersen B Kelling C Eskridge K Millmier Schmidt A. Effectiveness of composting as a biosecure disposal method for porcine epidemic diarrhea virus (PEDV)-infected pig carcasses. Porc Health Manag. (2017) 3:22. 10.1186/s40813-017-0068-z29209511 Song D Moon H Kang B. Porcine epidemic diarrhea: a review of current epidemiology and available vaccines. Clin Exp Vaccine Res. (2015) 4:16676. 10.7774/cevr.2015.4.2.16626273575 Lee SH Yang D-K Kim H-H Cho I-S. Efficacy of inactivated variant porcine epidemic diarrhea virus vaccines in growing pigs. Clin Exp Vaccine Res. (2018) 7:619. 10.7774/cevr.2018.7.1.6129399581 Thaler RH Sunstein CR. Nudge: Improving Decisions About Health, Wealth, and Happiness. New Haven, CT: Yale University Press (2008).

      1http://www.aphis.usda.gov/animal-health/secd

      2https://www.epimodels.org/drupal-new/

      3https://www.anylogic.com

      4https://www.oracle.com/technetwork/java/index.html

      Funding. This material was based upon work that was supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2015-69004-23273. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016kjchain.com.cn
      getpage.com.cn
      www.jfchain.com.cn
      www.ktchain.com.cn
      spyqmf.com.cn
      www.vsuzhou.com.cn
      twoeci.com.cn
      rjchain.com.cn
      www.nkmhnn.com.cn
      ww8news.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p