Front. Sustain. Food Syst. Frontiers in Sustainable Food Systems Front. Sustain. Food Syst. 2571-581X Frontiers Media S.A. 10.3389/fsufs.2021.666718 Sustainable Food Systems Original Research Efficacy of Biostimulants Formulated With Pseudomonas putida and Clay, Peat, Clay-Peat Binders on Maize Productivity in a Farming Environment in Southern Benin Agbodjato Nadège Adoukè 1 2 Adoko Marcel Yévèdo 2 Babalola Olubukola Oluranti 1 * Amogou Olaréwadjou 2 Badé Farid T. 2 Noumavo Pacôme A. 2 3 Adjanohoun Adolphe 4 Baba-Moussa Lamine 2 1Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa 2Laboratoire de Biologie et Typage de Moléculaire en Microbiologie, Département de Biochimie et de Biologie Cellulaire, Université d'Abomey-Calavi, Abomey-Calavi, Benin 3Laboratoire de Microbiologie et de Technologie Alimentaires, Département de Biologie Végétale, Université d'Abomey-Calavi, Cotonou, Benin 4Institut National des Recherches Agricoles du Bénin, Direction Générale, Abomey-Calavi, Cotonou, Benin

Edited by: Everlon Cid Rigobelo, Universidade Estadual Paulista, Brazil

Reviewed by: Maria Giordano, University of Naples Federico II, Italy; Arup Ghosh, Council of Scientific and Industrial Research (CSIR), India; Gianluca Caruso, University of Naples Federico II, Italy

*Correspondence: Olubukola Oluranti Babalola olubukola.babalola@nwu.ac.za

This article was submitted to Crop Biology and Sustainability, a section of the journal Frontiers in Sustainable Food Systems

14 04 2021 2021 5 666718 10 02 2021 16 03 2021 Copyright © 2021 Agbodjato, Adoko, Babalola, Amogou, Badé, Noumavo, Adjanohoun and Baba-Moussa. 2021 Agbodjato, Adoko, Babalola, Amogou, Badé, Noumavo, Adjanohoun and Baba-Moussa

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Maize plays a vital role in Benin's agricultural production systems. However, at the producer-level, yields are still low, although the production of this cereal is necessary for food security. The aims of this study were to assess the efficacy of solid biostimulants formulated from the rhizobacteria Pseudomonas putida and different binders on maize cultivation in the farming environment in three (03) study areas in South Benin. For this purpose, three (03) biostimulants were formulated based on Pseudomonas putida and the clay, peat and clay-peat combinations binders. The experimental design was a randomized block of four (04) treatments with 11 replicates per study area. Each replicate represented one producer. The trials were set up at 33 producers in the study areas of Adakplamè, Hayakpa and Zouzouvou in Southern Benin. The results obtained show that the best height, stem diameter, leaf area as obtained by applying biostimulants based on P. putida and half dose of NPK and Urea with respective increases of 15.75, 15.93, and 15.57% as compared to the full dose of NPK and Urea. Regarding maize yield, there was no significant difference between treatments and the different study areas. Taken together, the different biostimulants formulations were observed to be better than the farmers' practice in all the zones and for all the parameters evaluated, with the formulation involving Pseudomonas putida on the clay binder, and the half-dose of NPK and Urea showing the best result. The biostimulant formulated based on clay + Pseudomonas putida could be used in agriculture for a more sustainable and environmentally friendly maize production in Benin.

biostimulants clay formulations peat PGPR Zea mays L. North-West University10.13039/501100005274

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      In most West African countries, particularly in Benin, maize (Zea mays L.) is emerging as a staple food for food security. It is one the major cereal crops that undergoes more than a hundred different modes of processing (Adjadi et al., 2015). In terms of production, high nutritional value has been attributed to its grains. The grains have been reported to be a notable source of protein, lipids, fiber and sugar (Ignjatovic-Micic et al., 2015). Maize is the most traded cereal on the domestic and subregional market (Gandonou et al., 2019). Despite the importance of this speculation and its increasing demand, its productivity faces many constraints, including the constant decline in the fertility of cultivated soils due to their degradation (Igué et al., 2013). The land is subjected to severe degradation as a result of poor farming practices that destroy the flora, organic matter and soil fauna and microfauna. Cultivated land is being depleted at an accelerating rate, and crop yields are continually declining, thereby dangerously compromising the productivity and sustainability of the entire agricultural system (Alamri et al., 2016). In modern agricultural systems, thousands of millions of synthetic agrochemicals are used to achieve high crop yields. After application, these synthetic chemicals are not entirely used by plants, but persist in the soil in different forms. In addition, excessive use of synthetic agrochemicals, declining soil nutrients, and water-use issues, amongst others, are threats to the ecosystem (Omomowo and Babalola, 2019). These chemicals seep into the soil, and thus disrupt the diversity and performance of the rhizosphere (Ai et al., 2012) and human health via the food chain (Ayala and Rao, 2002). The use of synthetic fertilizers is therefore not considered as good practice because of the high costs and acute environmental risks (López-Bellido et al., 2013). In order to reduce the use of toxic chemicals, one of the safe management options is the use of environmentally friendly solutions (Adesemoye et al., 2009). These alternatives include microbial biostimulants. Biostimulants are substances or microorganisms applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrients content (du Jardin, 2015). Those containing microorganism's sus as those containing Plant Growth Promoting Rhizobacteria (PGPR) can directly stimulate plant growth through the production of phytohormones (Kang et al., 2019; Ahmed et al., 2020), biological nitrogen fixation (Glick, 2014; Kumar et al., 2020), production of siderophores (Glick, 2014) and phosphate solubilization (Alori et al., 2017; Agbodjato et al., 2018). As biocontrol agents, PGPRs suppress plant pathogens (Bajracharya, 2019). Some rhizobacteria play an important role in improving soil fertility and plant growth by providing various unavailable nutrients. Rhizobacteria secrete organic acids that reduce the pH of the rhizosphere and thus freely produce phosphate available to plants (Kashyap et al., 2020). Alori and Babalola (2018) mentioned that the use of microbial inoculants is a reliable alternative to the use of chemical inputs because these microbial inoculants can act as biofertilizers, bioherbicides, biopesticides and biocontrol agents. The development of plant biostimulants has become the focus of much research interest. Plant biostimulants are diverse substances and microorganisms used to enhance plant growth. Plant biostimulants also designate commercial products containing mixtures of such substances and/or microorganisms (du Jardin, 2015). In recent years, there has been increasing use of biostimulants (Schisler et al., 2004; Viswanathan and Samiyappan, 2008; Gu et al., 2014). In Benin, several studies have been carried out on microbial biostimulants based on native PGPRs from rhizospheric soils (Adjanohoun et al., 2012; Noumavo et al., 2013; Agbodjato et al., 2015; Amogou et al., 2019; Adoko et al., 2020). Most of this work was carried out with PGPR-based biostimulant suspensions. The work carried out with solid biostimulants formulated based on different binders in Benin has proved the effectiveness of the biostimulant clay + P. putida in greenhouse conditions on ferralitic and ferruginous soil. The aim of the study was to evaluate the efficacy of solid biostimulants formulated from the rhizobacteria Pseudomonas putida and different binders on maize cultivation in the farming environment of South Benin.

      Materials and Methods Study Areas

      The trials were set up with 33 producers in three zones of South Benin: 11 producers in Adaplamè (Kétou), 11 producers in Zouzouvou (Djakotomey) and 11 producers in Hayakpa (Torri Bossito) (Figure 1). The sites were flat land with a maximum 2% slope, not flooded, and declining soil fertility is a priority constraint (source). The producers were at least 500 m apart from each other.

      Map showing the different study areas.

      Characteristics of the Bacterial Inoculant and Maize Seeds

      - The rhizobacteria Pseudomonas putida used was isolated and characterized from the maize rhizosphere in southern Benin by Adjanohoun et al. (2011) and preserved at −85°C in Muller Hinton broth with added glycerol (10%) at the Laboratoire de Biologie et de Typape Moléculaire en Microbiologie (LBTMM) of the Université d'Abomey-Calavi (UAC). It is recognized as a producer of indole acetic acid and capable of solubilizing phosphate (Noumavo et al., 2015).

      - Maize seeds of the variety 2000 SYN EE W were used during the study. They are provided by the Center de Recherche Agricole Nord (CRA-Nord) of the Intstitut National de Recherches Agricoles du Bénin (INRAB). It is an extra-precocious variety with a vegetative cycle of 80 days. It is resistant to breakage, streak, American rust and blight. It is moderately resistant to drought (MAEP, 2016).

      Preparation of the Inoculum and of the Various Formulationts Preparation of the Inoculum

      The inoculum was obtained by culture in a nutrient medium (liquid MH) for 24 h at 30°C. The concentration of the bacterial culture was adjusted to about 108 CFU/ml (OD 0.45 at 610 nm) with a spectrophotometer according to the method described by Govindappa et al. (2011).

      Preparation of the Various Formulations

      The modified method of Connick et al. (1991) was used for the preparation of the formulation. Clay, peat and maize flour were separately sterilized for 15 min at 120°C. Thirty-two gram maize flour, 6 g binder (clay, peat and clay- peat), 2 g sucrose and 30 ml bacterial suspension (108 CFU/ml) of Pseudomonas putida were considered as a ratio for the preparation of the biostimulant. After cooling, the appropriate amounts of each component were mixed with gloved hands under aseptic conditions until a soft paste was obtained. The latter was spread on aluminum foil for 2 days at room temperature (25°C). After 2 days of drying, the paste was crushed in mortar then sieved.

      Soil Sampling and Analysis Prior to Installation of the Tests

      Thirty-three (33) composite soil samples were taken at a depth of 0–20 cm from the fields of the various producers. These samples were sent to the Laboratoire des Sciences du Sol Eau et Environnement (LSSEE) of the INRAB for the determination of chemical characteristics. The analyses consisted of the determination of organic carbon by the method of Walkley and Black (1934); total nitrogen by the Kjeldahl (1883) method; pH water and pH KCl using a pH meter with (1/2.5) as a soil-water ratio; Assimilable phosphorus, by the Bray and Kurtz method (1945); Exchangeable cations (Ca, Mg, K and Na), by the ammonium acetate method using atomic absorption spectrophotometry (Thomas, 1982).

      Installation of the Trials in a Farming Environment and Fertilization Experimental Design

      The experimental design was a randomized block of four (04) treatments with eleven (11) replicates per study area. In a study area, each replicate represented one producer. Each elementary plot had a surface area of 40 m2 and was made up of 5 lines of 10 m long with 0.80 m spacing. The distance separating each plot was 5 m. Sowing was done at a spacing of 0.80 × 0.40 m, i.e., a density of 31,250 plants/ha (Yallou et al., 2010a). The treatments defined as follows:

      T0: peasant practice (100% NPK and Urea);

      T1: clay + P. putida + ½ NPK and Urea;

      T2: peat + P. putida + ½ NPK and Urea;

      T3: clay-peat + P. putida + ½ NPK and Urea.

      With: 100% NPK and Urea is recommended dose of mineral fertilizer, and ½ NPK and Urea is half of recommended dose of mineral fertilizer.

      Seed Sowing and Application of the Formulated Biostimulant and Mineral Fertilizer

      Three (03) seed holes of about 5 cm of depth and 2 cm apart were realized and 2 maize seeds were put in the central hole. Then, 5 g of formulated biostimulant and half a dose of NPK were applied separately in the other two holes on the day of sowing and the holes were immediately closed. The urea doses were applied on the 46th day after sowing according to each treatment. For the T0 treatment, application of the recommended dose of NPK was made according to the practice popularized to the producers on the 15th day after sowing. Note that the recommended dose of mineral fertilizer (NPK and Urea) for maize cultivation in Benin is 200 kg/ha of NPK and 100 kg of Urea (INRAB, 1995). Note that the NPK used in our study is of formula is N13P17K17. As for urea, it contains 46% of nitrogen (N).

      Data Collection

      At 60 days after sowing, the height was measured with a tape measure. The diameter at the collar of the plants was measured using a caliper, and the leaf area was estimated by multiplying the length and width of the leaves by a coefficient of 0.75 (Ruget et al., 1996). At harvest (80 days after sowing), the ears of the maize plants were harvested. After shelling, the total weight of the maize grains was measured with a precision balance (Highland HCB 3001, Max: 3000 × 0.1 g), and the moisture content was taken with a moisture meter (LDS-1F). Maize grain yield values were obtained using the formula (Valdés et al., 2013):

      R=P×10.000S×1.000×14%H

      Where: R is the maize yield, expressed in T/ha; P is the maize mass per calculated elemental area, expressed in kg; S is the useful parcel area in m2; H is the grain moisture rate, in %.

      Statistical Analysis

      The various tests were carried out using R 4. 0. 2 software (R Core Team, 2020). These analyses required the use of the dplyr and DescTools packages for the calculation of descriptive statistics, the ggplot2 and ggpur packages for the creation of mustache boxes, the stats package for the shapiro-Wilk and levene tests, the car package for the ANOVA and the multcomp package for the post-hoc pair comparison test. The effect of the experimental area and the treatments applied on the growth and yield performance of the plants was assessed by means of a two-factor.

      ANOVA Test

      The normality and the homogeneity of the data variances were verified (Glèlè Kakaï et al., 2006). As the experimental design was unbalanced, the type III ANOVA test was adopted. Once the ANOVA test was significant, a pair-wise comparison post hoc test using the Tuckey post hoc test (Douglas and Michael, 1991) was carried out to assess statistical differences in the means. Besides, descriptive statistics were calculated for each measured parameter. The significance threshold used was 5%.

      Results Chemical Characteristics of Soil

      Soil chemical properties of the sites before the tests were set up (Table 1) generally showed that the soils at the different sites in South Benin were slightly acidic (5.7 ≤ pH ≤ 6.4). All soils had low fertility 12.46 ≤ C/N ≤ 15.61 characterized by high C/N ratios. The soils had low levels of organic carbon (8.9 ≤ C ≤ 10.6) (g/Kg), total nitrogen (0.57 ≤ N ≤ 0.72) (g/Kg), exchangeable bases (3.3 ≤ Ca2+ ≤ 5.14 (g/Kg); 2.3 ≤ Mg2+ ≤ 3.72 (cmol/Kg) and 0.7 ≤ K+ ≤ 1.9) (cmol/Kg). Generally speaking, assimilable phosphorus (28.38 ≤ P ≤ 36.8) (mg/Kg), was lower in the soils of the different sites.

      Chemical characteristics of soils in different localities.

      Sites Villages pH (water) C-org (g/Kg) N-total (g/Kg) C/N Pass-Bray1 (mg/Kg) B.E (cmol/kg)
      Ca2+ Mg2+ K+
      Kétou Adakplamè 6.4 8.10 0.65 12.46 36.8 33.3 2.3 1.9
      Tori Hayakpa 5.9 10.6 0.72 14.72 33.92 5.14 3.72 0.7
      Djakotomey Zouzouvou 5.7 8.9 0.57 15.61 28.38 5.02 3.39 1.08

      C-org, organic carbon; N-total, Azote total; P-Bray1, Phosphorus available; B.E, Base Exchangeable.

      Effect of Biostimulants on Maize Plant Height

      The histogram in Figure 2 illustrates the variation in average maize plant height as a function of treatments at DAS 60 in the different study areas. In the Hayakpa and Zouzouvou zones, the biostimulant clay + P. putida + ½ NPK and Urea gave the best result with respective increases of 4.18 and 12.41% compared to the peasant practice (100% NPK and Urea). In the Adakplamè area, the peat biostimulant + P. putida + ½ NPK and Urea was the highest with an increase of 15.75% compared to 100% NPK and Urea. The results of the analysis of variance showed a significant difference in the effects of the treatments (p = 0.01) and the experimental area (p < 0.001) on maize plant height. Plants in the Adakplamè zone induced the best performance (15.75% increase) for most treatments than plants in the other zones (Figure 3). Moreover, the interaction between the different treatments and the study areas was significant (p < 0.05).

      Height of maize plants as a function of treatments by zone. T0:100% NPK + urea; T1: clay + P. putida + ½ NPK + Urea, T2: peat + P. putida + ½ NPK + Urea, T3: clay-peat +P. putida + ½ NPK + Urea.

      Height of maize plants as a function of treatment and area. T0:100% NPK + Urea; T1: clay + P. putida + ½ NPK + Urea, T2: peat + P. putida + ½ NPK + Urea, T3: clay-peat +P. putida + ½ NPK + Urea.

      Effect of Biostimulants on the Stem Diameter of Maize Plants

      The histogram in Figure 4 shows the variation in the stem diameter of maize plants as a function of the treatments at 60th DAS in the different study areas. In the Hayakpa and Adakplamè zones, the biostimulant clay + P. putida + ½ NPK and Urea were in the lead, with an overrun of 0.78 and 9.32%, respectively, compared to the recommended dose of NPK and Urea. In the Zouzouvou area, the peat biofertilizer + P. putida + ½ NPK and Urea resulted in a better collar diameter. This better treatment exceeded the recommended dose of NPK and Urea by 15.93%. The results of the analysis of variance showed a significant difference in the effects of the treatments (p = 0.01). On the other hand, no difference was recorded between the experimental areas (p = 0.12) on the stem diameter of the maize plants. It was also noted that the interaction between treatment and area was also non-significant (p = 0.20), indicating that the variation in maize plant crown diameter per treatment does not depend on the experimental site. From the analysis of Figure 4, it appears that the plants in the Adakplamè area performed best. The Tukey test carried out confirmed the trend (Figure 5). Thus, the clay + P. putida + ½ NPK and Urea treatment in the experimental areas gave the best performance in terms of diameter at the crown, with an increase of 15.93% compared to the extended practice.

      Stem diameter of maize plants as a function of zone treatments. T0:100% NPK + urea; T1: clay + P. putida + ½ NPK + Urea, T2: peat + P. putida + ½ NPK + Urea, T3: clay-peat +P. putida + ½ NPK + Urea.

      Stem diameter of maize plants as a function of treatments. T0:100% NPK + urea; T1: clay + P. putida + ½ NPK + Urea, T2: peat + P. putida + ½ NPK + Urea, T3: clay-peat +P. putida + ½ NPK + Urea.

      Effect of Biostimulants on the Leaf Area of Maize Plants

      The effect of biostimulants on the leaf surface as a function of the treatments and by zone was illustrated by the histogram in Figure 6. In the Hayakpa zone, the biostimulants clay + P. putida + ½ NPK and Urea induced a large leaf area. This application resulted in a 5.77% growth rate in relation to the popularized dose of NPK and Urea. In the Zouzouvou area, the same treatment was better, with an increase of 18.31% in relation to the recommended dose of NPK and Urea. In Adakplamè, with the biostimulants formulated with peat + P. putida + ½ NPK and Urea, an increase of 15.57% in relation to the recommended dose of NPK and Urea was recorded. The results of the analysis of variance indicated a non-significant difference in the effects of the treatments (p = 0.051) in the same locality. However, a highly significant difference between experimental areas (p < 0.001) was observed. It is noted that the treatment-area interaction was non-significant (p = 0.08), indicating that the variation in the leaf area of maize plants does not depend on the treatments but on the experimental area. From the analysis in Figure 6, it appears that the plants in the Zouzouvou area performed best. The Tukey test carried out confirms the trend (Figure 7). Thus, the Zouzouvou zone comes first, followed by Hayakpa and Adakplamè.

      Leaf area of maize plants as a function of treatments by zone. T0:100% NPK + urea; T1: clay + P. putida + ½ NPK + Urea, T2: peat + P. putida + ½ NPK + Urea, T3: clay-peat +P. putida + ½ NPK + Urea.

      Leaf area of maize plants according to zones.

      Effect of Biostimulants on Maize Grain Yield

      Maize grain yields as a function of treatment and area were illustrated by the histogram in Figure 8. In the Hayakpa zone, the biostimulants clay-peat + P. putida + ½ NPK and Urea performed better in maize grain yield. This treatment has an increase of 2.17% compared to the recommended dose of NPK and Urea. In the Zouzouvou area, the peat + P. putida + ½ NPK and Urea application was better with an increase of 3.24% concerning the recommended dose of NPK and Urea. In Adakplamè it is the biofertilizer clay + P. putida + ½ dose of NPK and Urea was better with an increase of 10.96% in relation to the recommended dose of NPK and Urea. The results of the analysis of variance revealed that there were no significant differences in the effects of the treatments (p = 0.92) and between the experimental areas (p = 0.14) on maize grain yield. Treatment and zone interactions were also non-significant (p = 0.81), indicating that maize grain yield variations do not depend on treatments and experimental zones.

      Maize grain yield as a function of treatment and area. T0:100% NPK + Urea; T1: clay + P. putida + ½ NPK + Urea, T2: peat + P. putida + ½ NPK + Urea, T3: clay-peat +P. putida + ½ NPK + Urea.

      Correlation Between Growth and Yield Parameters

      Principal Component Analysis (PCA) on the different maize plant growth and yield parameters showed that the first two axes retain 80.01% of the total variance (Figure 9). Height and grain yield were positively correlated with axis 1, while the area was negatively correlated with the same axis. The collar diameter is strongly associated with axis 2 as shown by the projection of the variables in the first two axes.

      Classification of different growth and yield parameters based on their performance. T0:100% NPK + Urea; T1: clay + P. putida + ½ NPK + Urea, T2: peat + P. putida + ½ NPK + Urea, T3: clay-peat +P. putida + ½ NPK + Urea.

      Classification of Treatments According to Their Performance

      The analysis of the projection of the individuals indicates three classes of grouping of treatments (Figure 10) discriminated by the variable's height, stem diameter, leaf area, grain yield. The first class (C1) is made up of three practical peasant treatments (100% NPK and Urea); clay + P. putida + ½ NPK and Urea; peat-clay + P. putida + ½ NPK and Urea from the Zouzouvou zone. The plants maintained under these treatments are characterized by an average height of 171.91 cm ± 10.68 and an average grain yield of 2.14 T/ha ± 0.04. The second class (C2) is made up of five treatments, including the four (04) treatments of Hayakpa, a 100% NPK and urea peasant practice; clay + P. putida + ½ NPK and Urea; peat + P. putida + ½ NPK and Urea; clay-peat + P. putida + ½ NPK and Urea and the peat + P. putida + ½ NPK and Urea treatment of Zouzouvou. The plants having benefited from the treatments of this class (C2) have an average height of 167.30 cm ± 6.09 and an average grain yield of 2.27 T/ha ± 0.06. The third class (C3) consisted of the four treatments of Adakplamè 100% NPK and Urea; clay + P. putida + ½ NPK and Urea; peat + P. putida + ½ NPK and Urea; clay-peat + P. putida + ½ NPK and Urea. The plants subjected to these treatments have an average height of 197.95 cm ± 14.01 and an average grain yield of 2.38 T/ha ± 0.12. The class (C3) gave the best performance in both height and grain yield of maize.

      Dendrogram of classes obtained and projection of treatments in the first two dimensions of PCA. T0:100% NPK + Urea; T1: clay + P. putida + ½ NPK + Urea, T2: peat + P. putida + ½ NPK + Urea, T3: clay-peat +P. putida + ½ NPK + Urea.

      Discussion

      The biostimulants are substances and or microorganisms that contain living microorganisms and have no toxic effects on the soil. Their use would be inexpensive compared to mineral fertilizers (Amutha et al., 2014). The application of mineral fertilizers in combination with biostimulants could be an effective strategy to improve soil health and nutrient availability for crops. The aim of the study is to test solid biostimulants formulated with the rhizobacteria P. putida and various binders in a farming environment in southern Benin. The trials were set up in three different areas in southern Benin on ferrallitic soils.

      Analysis of the initial chemical properties of the test soils shows that the soils at the three sites are slightly acidic. The C/N ratio (12.46–15.61) was high in the topsoil. The level of assimilable phosphorus was lower. In general, in the soils of the study areas, the sum of exchangeable bases and the cation exchange capacity are low, which reflects their low fertility (Adjanohoun et al., 2011). In the soils of the three study zones, potassium was globally deficient in relation to calcium and magnesium. Better still, imbalances between calcium, magnesium and phosphorus were noted. These results, which were in line with those reported by Igué et al. (2013), showed that it was necessary to provide nutrients to the soil because these quantities are insufficient to meet maize's nutritional requirements (Yallou et al., 2010b). Regarding the growth parameters of maize plants on ferrallitic soil, the formulated biofertilizers were expressed differently.

      In all three zones, the best height and stem diameter were obtained with biostimulants formulated with clay and peat supports. Significant differences were recorded between these applications and the farming practice on these growth parameters. The same observations were made by different authors in Benin when they combined liquid microbial biostimulants with mineral fertilizers (Agbodjato et al., 2015; Amogou et al., 2019; Adoko et al., 2020). These increases can be explained by the growth stimulating effect of the rhizobacteria P. putida (Noumavo et al., 2015) under study, on the one hand, and, on the other hand, the effect of conservation binders (clay and peat) which maintain the bacterial concentration for a long time and which would better protect the PGPR strains against abiotic factors (Brar et al., 2012).

      In the same locality, there was no significant difference between treatments for the leaf area of the maize. However, from one area to another, it was highly significant, with the Zouzouvou area leading the way. The best leaf area was obtained with the application of biostimulants T1: peat-clay + P. putida + ½ NPK and Urea. This could be explained by the lack of variability in the chemical composition of the soils of the different producers that hosted the trials in the same area. In the same way, the farming practices of a locality remain similar. But from one area to another, the soils do not have exactly the same chemical properties. Similar findings were made by Adoko et al. (2020) in their studies of the liquid biostimulants P. putida in a farming environment in Benin.

      Maize grain yields obtained in this study from all treatments and in all areas were similar. The results of the statistical analysis did not reveal any significant differences between the various treatments and between the different zones. The formulated biostimulants combined with the half dose of NPK and Urea had comparable effects with the full dose of NPK and Urea in all study zones on maize grain yield. The same findings have been made by several authors who have applied liquid PGPR biostimulants in research stations (Noumavo et al., 2013; Agbodjato et al., 2015; Amogou et al., 2019) and then in farmers' fields (Adoko et al., 2020) in Benin and other countries (Amutha et al., 2014; Sagay et al., 2020). The rhizobacteria P. putida contained in these formulated solid biostimulants was thus able to provide the plants with nutrients from the environment to increase their yield (Kashyap et al., 2020). This rhizobacteria was able to provide maize plants with the maximum nitrogen (N), phosphorus (P) and potassium (K) supplied or available in the soil, necessary for plant growth and yield (Ahmed et al., 2020). Ojuederie et al. (2019) also mentioned that multifaceted PGPRs are potential candidates for biofertilizer production to lessen the detrimental effects of drought stress on crops cultivated in arid regions.

      In the present study, the correlation between growth and yield parameters showed that the biostimulant T1: clay + P. putida + ½ NPK and Urea expressed itself better than all the others. This biostimulant clay + P. putida was, therefore, the best in the farming environment. This result can be explained in part by the capacity of the preservative binder used for the bioformulation to maintain a good bacterial concentration in the rhizosphere for a long time. According to the work of Brar et al. (2012), the clay binder makes it possible to maintain a high population of PGPR for several months, which is favorable to the promotion of plant growth and yield. Earlier work by Noumavo et al. (2015) stated that P. putida used in this study is capable of producing growth phytohormones and solubilizing phosphate. The best growth and yield parameters recorded during this study can be explained by the combined effects of P. putida and the binder clay. Some strains of rhizobacteria of the genus pseudomonas are capable of producing ammonia, indole acetic acid (IAA), HCN, siderophores, solubilizing potassium (Verma and Pal, 2020), phosphate, zinc and increasing the bioavailability of nutrients for good plant development (Marra et al., 2012; Verma et al., 2015; Shahid et al., 2017; Singh and Jha, 2017; Ullah and Yusuf, 2019; Zaheer et al., 2019). The rhizobacteria P. fluorescens have also been reported to colonize the rhizosphere of wheat and sugarcane and stimulate plant growth (Verma et al., 2015). Oteino et al. (2015) attributed the efficacy of P. fluorescens on onion yield to its ability to produce indole acetic acid. Similarly, the biocontrol properties of this genus are well documented (Reetha et al., 2014; Khanghahi et al., 2018). PGPRs also secrete several growth phytohormones such as auxins, cytokinins, gibberellins and ethylene which improve both root growth and whole plant growth (Lugtenberg and Kamilova, 2009; Dodd et al., 2010; Wani et al., 2013). Furthermore, work carried out in Senegal by Diagne et al. (2020) has also shown that inoculation with PGPR and/or Arbuscular Mycorrhizal Fungi (AMF) can improve the salinity resistance of Casuarina obesa plants by increasing their growth parameters. The use of biologically active natural products and microbial extracts could be an important means of increasing soil nutritional status, absorption and improving the efficiency of nutrient use (NPK) by plants (De Pascale et al., 2017). Phosphorus, potassium and magnesium have been reported to improve root growth, resulting in improved water supply and drought tolerance. Cassán and Diaz-Zorita (2016) showed that the increase in crop yield was due to the ability of Azospirillum sp to provide the plant with nutrients. According to Zeffa et al. (2019) inoculation of maize seed with Azospirillum brasilense intensified plant growth and yield by improving nitrogen use in the event of nitrogen deficiency. It is in this same context that Fadiji and Babalola (2020) mentioned that the major benefit of embracing the beneficial microorganisms in the field of agriculture is to bring about a reduction in the use of different agrochemicals such as pesticides, chemical fertilizers, other artificial chemicals and this would make agriculture more productive and sustainable.

      Conclusion

      The results of the experiment show that Pseudomonas putida-based biostimulants combined with the half dose of NPK and Urea recommended (100 kg/ha NPK and 50 kg/ha) for maize cultivation in Benin gave the best performance both in terms of growth parameters and maize grain yield. The effects of these microbial biostimulants vary from region to region and according to the type of binder. The application of biostimulants formulated on the basis of clay or peat in combination with the half-dose of NPK and Urea in the different study areas is more favorable to corn plants than the recommended full dose (100% NPK and Urea). The Pseudomonas putida strain could be used as biofertilizers for environmentally friendly sustainable agriculture. It would be interesting to continue this study by repeating the trial on a larger area to assess the performance of this rhizobacteria to improve maize growth through the formulations made.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Author Contributions

      NA, MA, OA, and FB carried out the experimental work and analysis. NA, MA, PN, AA, OB, and LB-M contributed to the design, supervision, and interpretation of the results. NA, MA, and OB revised the final draft. OB reviewed the final draft. All authors participated equally in the work and approved the final submission.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The authors gratefully acknowledge the Institut National des Recherches Agricoles du Bénin (INRAB), the Laboratoire de Biologie et de Typage Moléculaire en Microbiologie (LBTMM) and the National Research Foundation, South Africa Grants (UID123634) to OB. NA is grateful for North-West University Postdoctoral support.

      References Adesemoye A. Torbert H. Kloepper J. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb. Ecol. 58, 921929. 10.1007/s00248-009-9531-y19466478 Adjadi O. Lokossou C. Azelokonou O. G. Bankole C. D. Djinadou A. K. Ahoyo Adjovi R. N. . (2015). Recueil de Mets et de Boissons à Base de Maïs Consommés au Bénin. Document Technique et d'Informations (DT&I). Dépôt légal N° 7931 du 04 juin 2015, 2ème Trimestre Bibliothèque Nationale (BN) du Bénin. Adjanohoun A. Baba-Moussa L. Glèlè kakaï R. Allagbé M. Yèhouénou B. Gotoechan-Hodonou H. . (2011). Caractérisation des rhizobactéries potentiellement promotrices de la croissance végétative du maïs dans différents agrosystèmes du Sud-Bénin. Int. J. Biol. Chem. Sci. 5, 433444. 10.4314/ijbcs.v5i2.72073 Adjanohoun A. Noumavo P. A. Sikirou R. Allagbé M. Gotoechan-Hodonou H. Dossa K. K. . (2012). Effets des rhizobactéries PGPR sur le rendement et les teneurs en macroéléments du maïs sur sol ferrallitique non dégradé au Sud-Bénin. Int. J. Biol. Chem. Sci. 6, 279288. 10.4314/ijbcs.v6i1.24 Adoko M. Y. Agbodjato N. A. Ouikoun G. C. Amogou O. Noumavo P. A. Sina H. . (2020). Inoculation of Pseudomonas putida in farmer environment to improve growth and yield: maize (Zea mays L.) trial in Sothern, Central and Northern (Benin). IJPSS 32, 921. 10.9734/ijpss/2020/v32i630288 Agbodjato N. A. Amogou O. Noumavo P. A. Dagbénonbakin G. Salami H. A. Karimou R. . (2018). Biofertilising, plant-stimulating and biocontrol potentials of maize plant growth promoting Rhizobacteria isolated in central and northern Benin. Afr. J. Microbiol. Res. 12, 664672. 10.5897/AJMR2018.8916 Agbodjato N. A. Noumavo P. A. Adjanohoun A. Dagbénonbakin G. Atta M. Falcon Rodriguez A. . (2015). Response of maize (Zea mays L.) crop to biofertilisation with plant growth promoting rhizobacteria and chitosan under field conditions. JEBAS 3, 566574. 10.18006/2015.3(6).566.574 Ahmed A. Sultan T. Qadir G. Afzal O. Ahmed M. Shah S. . (2020). Impact assessment of plant growth promoting rhizobacteria on growth and nutrient uptake of maize (Zea mays). Pak. J. Agri. Res. 33, 234246. 10.17582/journal.pjar/2020/33.2.234.246 Ai C. Liang G. Sun J. Wang X. Zhou W. (2012). Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 17, 33303338. 10.1016/j.geoderma.2011.07.020 Alamri R. Ben Abdallah M. Ben Hamza A. Labidi S. (2016). Installation d'une unité de production de biofertilisants. Institut National Agronomique de Tunisie. Rapport de séminaire II. Availale onlime at: http://www.memoireonline.com/01/16/9399/ (accessed December 30, 2020). Alori E. T. Babalola O. O. (2018). Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 9:2213. 10.3389/fmicb.2018.0221330283427 Alori E. T. Glick B. R. Babalola O. O. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8:971. 10.3389/fmicb.2017.0097128626450 Amogou O. Dagbénonbakin G. Agbodjato A. N. Noumavo A. P. Salako K. V. Adoko Y. M. . (2019). Applying rhizobacteria on maize cultivation in northern benin: effect on growth and yield. Agric. Sci. 10, 763782. 10.4236/as.2019.106059 Amutha R. Karunakaran S. Dhanasekaran S. Hemalatha K. Monika R. Shanmugapriya P. . (2014). Isolation and mass production of biofertilizer (azotobacter and phosphobacter). IJLRST 3, 7980. Available online at: https://www.mnkjournals.com/journal/ijlrst/pdf/Volume_3_1_2014/10259pdf Ayala S. Rao E. V. S. (2002). Perspectives of soil fertility management with a focus on fertilizer use for crop productivity. Curr. Sci. 82, 797807. Available online at: https://www.researchgate.net/publication/228770046 Bajracharya A. M. (2019). Plant growth promoting rhizobacteria (PGPR): biofertilizer and biocontrol agent–review article. J. Balkumari Col. 8, 4245. 10.3126/jbkc.v8i0.29304 Brar S. K. Sarma S. J. Chaabouni E. (2012). Shelf-life of biofertilizers: an accord between formulations and genetics. J. Biofertil. Biopestici. 3:e109. 10.4172/2155-62021000e109 Bray R. H. Kurtz L. T. (1945). Determination of total organic and available forms of phosphorus in soils. Soil Sci. 59, 3945. 10.1097/00010694-194501000-00006 Cassán F. Diaz-Zorita M. (2016). Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol. Biochem. 103, 117130. 10.1016/j.soilbio.2016.08.020 Connick W. J. Jr. Boyette C. D. McAlpine J. R. (1991). Formulation mycoherbicides using a pasta-like process. Biol Control 1, 281287. 10.1016/1049-9644(91)90079-F De Pascale S. Rouphael Y. Colla G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 82, 277285. 10.17660/eJHS.2017/82.6.2 Diagne N. Ndour M. Djighaly P.I. Ngom D. Ngom M. C. N. Ndong G. . (2020). Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Front. Sustain. Food Syst. 4:601004. 10.3389/fsufs.2020.601004 Dodd I. Zinovkina N. Safronova V. Belimov A. (2010). Rhizobacterial mediation of planthormone status. Ann. Appl. Biol. 157, 361379. 10.1111/j.1744-7348.2010.00439.x Douglas C. E. Michael F. A. (1991). On distribution-free multiple comparisons in the one-way analysis of variance. Commun. Statist. Theory Methods. 20, 127139. 10.1080/03610929108830487 du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 314. 10.1016/j.scienta.2015.09.021 Fadiji A. E. Babalola O. O. (2020). Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front. Bioeng. Biotechnol. 8:467. 10.3389/fbioe.2020.00467 Gandonou E. A. Kpènavoun C. S. Adegbidi A. B. E. A. Fafeh A. E. K. (2019). Contrats agricoles informels et performance de la production vivrière : cas du maïs au sud du Bénin. Tropicultura. 37, 113. 10.25518/2295-8010264 Glèlè Kakaï R. Sodjinou E. Fonton H. N. (2006). Conditions d'Application des Méthodes Statistiques Paramétriques: Application sur Ordinateur. Bibliothèque Nationale, Bénin, 86. Dépôt légal : N 378 du 8/09/006, 3ème trimestre. Glick B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169, 3039. 10.1016/j.micres.2013.09.00924095256 Govindappa M. Ravishankar R. V. Lokesh S. (2011). Screening of Pseudomonas fluorescens isolates for biological control of Macrophomina phaseolina root-rot of safflower. Afr. J. Agric. Res. 6, 62566266. 10.5897/AJAR10.1017 Gu D.-Y. Wang X.-F. Ding F.-J. (2014). Plant biostimulants: a review on categories, effects and application, in Conference: Chinese Society of Plant Nutrition and Fertilizer Science 2014 Academic Annual Conference At: Harbin, Heilongjiang Province, China. Available online at: https://www.researchgate.net/publication/290019169_Plant_biostimulants_a_review_on_categories_effects_and_application (accessed February 02, 2021). Ignjatovic-Micic D. Vancetovic J. Trbovic D. Dumanovic Z. Kostadinovic M. Bozinovic S. (2015). Grain nutrient composition of maize (Zea mays L.) drought-tolerant populations. J. Agric. Food Chem. 63, 12511260. 10.1021/jf504301u25575186 Igué A. M. Saidou A. Adjanohoun A. Ezui G. Attiogbe P. Kpagbin Gotoechan H. . (2013). Evaluation de la fertilité des sols au sud et centre du Bénin. Bull. Rech. Agron. Bénin: Numéro Spécial, Fertilisation du maïs, 1223. Available online at: http://www.slire.net/download/1798/igue_et_al._evaluation_fertilit_.pdf (accessed February 05, 2021). INRAB (1995). Fiche Technique sur les Cultures Vivrières. Bénin: INRAB/MAEP; Institut National des Recherches du Bénin, 75. Kang S. M. Khan A. L. Waqas M. Asaf S. Lee K. E. Park Y. G. . (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J. Plant. Interact. 14, 416423. 10.1080/17429145.2019.1640294 Kashyap A. S. Singh D. Kesharwani A. K. Singh R. P. (2020). Characterization of plant growth-promoting rhizobacteria isolated from chilli rhizosphere of Southern Plateau and Hills Region. Int. J. Curr. Microbiol. App. Sci, 9, 34733483. 10.20546/ijcmas.2020.908.402 Khanghahi M. Y. Ricciuti P. Allegretta I. Terzano R. Crecchio C. (2018). Solubilization of insoluble zinc compounds by different microbial isolates in vitro condition. Environ. Sci. Pollut. Res. Int. 25, 2586225868. 10.1007/s11356-018-2638-2 Kjeldahl J. (1883). A new method for the determination of nitrogen in organic matter. Z. Anal. Chem. 22, 366382. 10.1007/BF01338151 Kumar A. Kumar R. Kumari M. Goldar S. (2020). Enhancement of plant growth by using PGPR for a sustainable agriculture: a review. Int. J. Curr. Microbiol. App. Sci. 9, 152165. 10.20546/ijcmas.2020.902.019 López-Bellido L. Muñoz-Romero V. López-Bellido R. J. (2013). Nitrate accumulation in the soil profile: long-term effects of tillage, rotation and N rate in a Mediterranean Vertisol. Soil Till. Res. 130, 1823. 10.1016/j.still.2013.02.002 Lugtenberg B. Kamilova F. (2009). Plant-growthpromoting rhizobacteria. Annu. Rev. Microbiol. 63, 541556. 10.1146/annurev.micro.62.081307.162918 MAEP (2016). Catalogue Béninois des Espèces et Variétés végétales (CaBEV), 2ème Edn. Ministère de l'Agriculture de l'Elevage et de la Peche; INRAB/DPVPPAAO/ProCAD/MAEP & CORAF/WAAPP, Dépôt légal N° 8982 du 21 octobre 2016, Bibliothèque Nationale du Bénin, 4ème trimestre. Available online at: http://inrab.org/wp-content/uploads/2018/01/CaBEV-interactif-2.pdf (accessed January 25, 2021). Marra L. M. Soares C. R. F. S. Oliveira S. M. Ferreira P. A. A. Soares B. L. Carvalho R. F. . (2012). Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant Soil 357, 289307. 10.1007/s11104-012-1157-z Noumavo A. P. Agbodjato A. N. Gachomo E. W. Salami H. A. Baba-Moussa F. Adjanohoun A. . (2015). Metabolic and biofungicidal properties of maize rhizobacteria for growth promotion and plant disease resistance. Afr. J. Biotechnol. 14, 811819. 10.5897/AJB2014.14132 Noumavo A. P. Kochoni E. Didagbé Y.O. Adjanohoun A. Allagbé M. Sikirou R. . (2013). Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. Am. J. Plant Sci. 4, 10131021. 10.4236/ajps.2013.45125 Ojuederie O. B. Olanrewaju O. S. Babalola O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy. 9:712. 10.3390/agronomy9110712 Omomowo O. I. Babalola O. O. (2019). Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microrganisms 7:481. 10.3390/microorganisms711048131652843 Oteino N. Lally R.D. Kiwanuka S. Lloyd A. Ryan D. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 6:745. 10.3389/fmicb.2015.0074526257721 R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: https://www.R-project.org (accessed January 25, 2021). Reetha S. Bhuvaneswari G. Thamizhiniyan P. Ravi Mycin T. (2014). Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa L). Int. J. Curr. Microbiol. App. Sci. 3, 568574. Available online at: https://www.ijcmas.com/vol-3-2/S.Reetha,%20et%20al.pdf Ruget F. Bonhomme R. Chartier M. (1996). Estimation simple de la surface foliaire de plantes de maïs en croissance. Agronomie 16, 553562. 10.1051/agro:19960903 Sagay K. Siahaan P. Mambu S. (2020). Vegetative Growth Response of Mustard Greens (Brassica rapa l. Var. Tosakan) due to PGPR (plant growth promoting rhizobacteria) combined with compost and NPK fertilizer. J Bios Logos. 10, 7985. 10.35799/jbl.11.2.2020.29017 Schisler D. A. Slininger P. J. Behle R. W. Jackson M. A. (2004). Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94, 12671271. 10.1094/PHYTO.2004.94.11.126718944465 Shahid I. Rizwan M. Baig D. N. Saleem R. S. Malik K. A. Mehnaz S. (2017). Secondary metabolites production and plant growth promotion by Pseudomonas chlororaphis subsp. aurantiaca strains isolated from cotton, cactus and para grass. J. Microbiol. Biotechnol. 27, 480491. 10.4014/jmb.1601.01021 Singh R. P. Jha P. N. (2017). The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front. Microbiol. 8, 115 10.3389/fmicb.2017.0194529062306 Thomas G. W. (1982). Exchangeable cations. Agronomy. 9, 154157. 10.2134/agronmonogr922ed.c9 Ullah M. A. Yusuf F. (2019). Biofertilizer/biopesticide potentiality of zinc solubilizing Pseudomonas aeruginosa FA-9 and Enterobacter sp. FA-11 isolated from the wheat rhizosphere grown in arid zone. Access Microbiol. 1:1. 10.1099/acmi.ac2019.po0127 Valdés E. M. F. González E. C. Serrano M. M. Labrada H. R. Báez E. M. Hernández F. G. . (2013). Experiencias obtenidas en el desarrollo participativo de híbridos lineales simples de maíz (zea mays, L.) en condiciónes de bajos insumos agrícolas. Cult Tropicales. 34, 6169. Available online at: http://scielo.sld.cu/pdf/ctr/v34n2/ctr10213.pdf Verma P. Yadav A. N. Khannam K. S. Panjiar N. Kumar S. Saxena A. K. . (2015). Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum L.) from the northern hills zone of India. Ann. Microbiol. 65, 18851899. 10.1007/s13213-014-1027-4 Verma T. Pal P. (2020). Isolation and screening of rhizobacteria for various plant growth promoting attributes. J Pharmacogn Phytochem. 9, 15141517. 10.22271/phyto.2020v9i1z.10678 Viswanathan R. Samiyappan R. (2008). Bio-formulation of fluorescent Pseudomonas spp. induces systemic resistance against red rot disease and enhances commercial sugar yield in sugarcane. Arch. Phytopathol. Plant Prot. 41, 377388. 10.1080/03235400600796737 Walkley A. Black I.A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 2938. 10.1097/00010694-193401000-00003 Wani S. A. Chand S. Tahir A. (2013). Potential use of Azotobacter chroococcum in crop production: an overview. Curr. Agric. Res. J. 1, 3538. 10.12944/CARJ.1.1.04 Yallou C. G. Aihou K. Adjanohoun A. Baco M.N. Sanni O.A. Amadou L. (2010b). Répertoire des Variétés de Maïs Vulgarisées au Bénin: Document Technique d'Information et de Vulgarisation. Dépôt légal N° 4920, 4e Trimestre, Bibliothèque Nationale du Bénin, 19. Yallou C. G. Aïhou K. Adjanohoun A. Toukourou M. Sanni O.A. Ali D. (2010a). Itinéraires Techniques de Production de Maïs au Bénin. Fiche technique. Dépôt légal N° 4922 du 3 Décembre, Bibliothèque Nationale du Bénin, 18. Zaheer A. Malik A. Sher A. Mansoor Qaisrani M. Mehmood A. Khan S. U. . (2019). Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J. Biol. Sci. 26, 10611067. 10.1016/j.sjbs.2019.04.00431303841 Zeffa D. M. Perini L. J. Silva M. B. de Sousa N. V. Scapim C. A. de Oliveira A. L. M. . (2019). Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS ONE 14:e0215332. 10.1371/journal.pone.0215332
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.hbstkjyxgs.com.cn
      fushipifa.net.cn
      www.jjhgamc.com.cn
      ksldfjk.com.cn
      www.lygckjd.com.cn
      www.t3z75.com.cn
      www.rnoebh.com.cn
      www.shbc118.com.cn
      www.wcnzne.com.cn
      www.xgchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p