Front. Sustain. Food Syst. Frontiers in Sustainable Food Systems Front. Sustain. Food Syst. 2571-581X Frontiers Media S.A. 10.3389/fsufs.2021.617783 Sustainable Food Systems Review Adoption and Promotion of Resilient Crops for Climate Risk Mitigation and Import Substitution: A Case Analysis of Cassava for South African Agriculture Amelework Assefa B. 1 * Bairu Michael W. 1 Maema Obakeng 2 Venter Sonja L. 1 Laing Mark 3 1Agricultural Research Council, Vegetable and Ornamental Plants, Pretoria, South Africa 2Technology Innovation Agency, Pretoria, South Africa 3African Centre for Crop Improvement, University of KwaZulu-Natal, Durban, South Africa

Edited by: Victor Owusu, Kwame Nkrumah University of Science and Technology, Ghana

Reviewed by: Kristal Jones, University of Maryland, College Park, United States; Godwin Horlu, Tafila Technical University, Jordan; Robert Aidoo, Kwame Nkrumah University of Science and Technology, Ghana

*Correspondence: Assefa B. Amelework assefaa@arc.agric.za

This article was submitted to Climate-Smart Food Systems, a section of the journal Frontiers in Sustainable Food Systems

15 04 2021 2021 5 617783 15 10 2020 17 03 2021 Copyright © 2021 Amelework, Bairu, Maema, Venter and Laing. 2021 Amelework, Bairu, Maema, Venter and Laing

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Cassava is an important starchy root crop grown globally in tropical and subtropical regions. The ability of cassava to withstand difficult growing conditions and long-term storability underground makes it a resilient crop, contributing to food security. Historically, small-scale farmers have grown cassava as a minor crop in the far north-eastern part of the country. However, there is an initiative to scale up cassava production, with two discrete areas of interest: large-scale production for industrial starch, and expanding its footprint as a food security crop for small-scale farmers, especially in the context of climate change. In this scoping study, production, processing and marketing data for cassava were accessed from the FAO and US Commercial trade databases. Other domestic market and demand analysis case studies were also explored. There is no cassava data available for South Africa. The study indicated that South Africa imports more than 66,000 tons of starch annually, of which 33% is cassava starch, showing the availability of a local market. The potential of cassava for the South African economy is discussed. Significant industrial opportunities exist for the production and use of cassava in South Africa. However, the realization of these opportunities will depend on the reliable supply of good quality cassava roots. However, the lack of a well-established cassava research program, and a lack of an existing value chain for the industrial scale cassava production and processing are barriers to the development of cassava industry in South Africa. As the initial step to the development of a successful cassava industry, high potential germplasm is imported, characterized and bred for local conditions to ensure the sustainable primary production of cassava. Subsequently, industrial value chains will need to be developed as the optimization of the breeding and agronomy of the crop are completed, and yield potentials are quantified in the different regions of the country.

cassava breeding climate change import substitute industrial application value chain

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Southern African Development Community (SADC) has recognized cassava as one of the potential industrial crops for SADC farmers (SADC Trade information Service). Cassava plays a key role in rural livelihoods in Africa especially in the tropics where the environment is both hot and dry. However, cassava is not among the traditional commodity crop in South Africa. South Africa's interest in cassava cultivation is mainly on high quality industrial starch production. Conversely, cassava is a versatile crop that offers immense opportunity as a food, feed, and industrial crop. In South Africa, the most suitable areas for cassava production are northern KwaZulu-Natal, the eastern parts of Limpopo and Mpumalanga. These areas all together have two million hectares of arable land, which is below 800 m elevation and an annual rainfall of 500 mm that is suitable for cassava production. However, currently smallholders in the far north-eastern region in South Africa have grown cassava as a minor crop.

      The National Industrial Policy facilitates crop diversification beyond the country's current reliance on traditional crop commodities to promote non-traditional commodities that compete in export markets and reduce imports. This opens windows to promote cassava production in South Africa. Moreover, water scarcity presents difficulty in cropping maize, wheat and potato. Cassava has the ability to grow in a wider range of climatic conditions and soil types than other tropical staple crops. Relative to grain crops, cassava is more tolerant of low soil fertility and is more resistant to drought. Hence, cassava can provide South Africa with options for adaptation, whilst other major staples crops like maize and wheat face challenges. In addition, cassava has the potential to produce and store more carbohydrate than any other major grain or root crops (El-Sharkawy and De Tafur, 2010). It can provides an option for the development of a novel industrial crop, with more than 300 industrial products including the manufacture of tire, adhesives, ethanol, pharmaceuticals, livestock feeds, biofuels, cold meats, and alcohol.

      Characteristics such as low input requirements, tolerance to drought, the ability to grow in marginal soils and long-term storability of the roots in the ground make cassava a resilient crop for food and nutritional security (Jarvis et al., 2012). Cassava roots can be stored underground for as long as 24 months after maturity, and these can be harvested at any time of the year when a household needs food (Sanchez et al., 2013). Farmers can plant and harvest cassava without significant inputs, using marginal lands where other crops cannot be produced. Cassava typically yields 8–10 tons ha-1 of fresh storage roots with zero inputs. Consequently, cassava is widely produced in tropical regions by small-scale resource-limited farmers, who cannot afford to buy agro-chemicals or install irrigation systems (Costa and Delgado, 2019). Cassava provides an opportunity to improve smallholder farmers' income and food security by opening up marginal lands for cultivation.

      Despite cassava's importance as a food security crop in Africa, and its industrial potential, relatively little research and development has been invested in cassava in southern Africa, compared to other root crops such as potato and sweet potato. There was a commercial starch processing plant that ran for several years in Mpumalanga but it has ceased to operate due to lack of raw material supply. Because, cassava production is dominated by disease-prone varieties with long maturation periods and low yield potential. Designing of a well-coordinated and well-structured cassava breeding program in the country is essential to create improved cassava cultivars with enhanced tuber yields and starch content as the basis for a cassava industry in South Africa. The increase in yield will lead to an increase in raw material supply to the industrial sector, which, in turn, will lead to an increase in income for the resource-poor farmers. In this desktop study, the importance of cassava as food, feed, and industrial crop has been reviewed. The study deals with the potential of cassava in the South African starch industry, the significance of crafting a sustainable R&D strategy to support the industry, the development of the full value chain, and the importance of a national cassava breeding program. It is envisaged that this document will serve as a guide to develop the right technologies and appropriate approaches for integrating cassava into the farming system and to deliver economic benefits to both commercial and smallholder farmers.

      Cassava Production in the World

      The total worldwide cassava production in 1961 was 78.5 million tons grown on 9.6 million hectares, of which Africa contributed about 44% (FAOSTAT, 2019). By 2017, world cassava production had increased to 322 million tons grown on 26 million ha of land (FAOSTAT, 2019). Although Africa accounts for more than 58% of cassava production and more than 75% of land area cultivated for cassava, the average fresh root yield of cassava is 8.9 t ha−1, which is far lower than the world average (11.9 t ha−1) and the yield observed in Asia (13.3 t ha−1) (FAOSTAT, 2019). Cassava is grown in more than 105 counties; Nigeria, Democratic Republic of the Congo, Brazil, and Indonesia are the leading cassava producers. Cassava fresh root yields under smallholder farmer conditions have been estimated about 1–10 t ha−1. However, fresh root yields can potentially reach 75–80 t ha−1 through the use of high yielding, best adapted cultivars and improved crop management practices (Anikwe and Ikenganyia, 2017).

      Cassava production has shown a steady growth for the last six decades. The most dramatic increase in Africa and Asia were observed from 1996 to 2017 (Figure 1A). Cassava production in Latin America, on the other hand, showed more moderate increases. The large increase in cassava production can be attributed partly to an increase in area harvested in Africa as farmers recognize the economic importance of the crop (Figure 1B) and partly due to a substantial yield gains in Asia due to new improved cultivars and improved agronomic practices (Figure 1C) (Aye and Howeler, 2017). Cassava production and the demand for cassava are expected to grow largely because of the crop's ability to withstand drought and provide reasonable yields on marginal and low-fertility soils. Many countries have realized the economic potential of the crop as a food, feed, and industrial crop. In Africa, the demand for cassava production has been driven by its food applications, while in Asia the demand has been driven by its industrial applications for starch, livestock feed and biofuel production.

      Cassava production (A) area harvest (B) and yield (C) trend from 1961 to 2017 (Source: FAOSTAT, 2019).

      Although cassava has had a long history in the rest of Africa, its production in South Africa is a recent development, arising with the advent of production of high-quality industrial starch from cassava on an industrial scale. In South Africa, cassava is produced on a few commercial farms of <5,000 hectares and in small fragmented areas, with limited technologies and under low input farming system (Bunce, 2019). It is grown as a secondary crop by smallholder farmers and is utilized for the production of commercial and food grade starch. The sub-sector is dominated by disease-prone varieties with long maturation periods of more than 18 months, and low yield potential. However, cassava farming is becoming more attractive due to the diverse use of cassava products in the country and the diminishing potential of other crops such as sugar cane.

      Cassava Utilization Cassava as Food Security Crop

      Cassava is an important root crop and is a source of dietary energy to over 700 million people in the tropical and subtropical Africa (Prochnik et al., 2012). Cassava is the fourth most important source of calories in the developing world after wheat, maize, and rice. More than 40% of Africa's population consume cassava as a staple food, and it is the second most important crop after maize (FAOSTAT, 2019). The roots and leaves are the two most valuable parts of the mature cassava plant that can be used as a food source (Morgan and Choct, 2016). Cassava is grown primarily for its enlarged storage roots, which are consumed as food for humans in various forms (Chandrasekara and Kumar, 2016). Cassava roots are rich in carbohydrates and are a good source of energy, a moderate source of minerals and vitamins, and a poor source of proteins (Montagnac et al., 2009). In particular, cassava is a good source of Vitamin C, thiamine, riboflavin, and niacin (Montagnac et al., 2009). Cassava has the potential to produce and store more carbohydrate per unit area under production than any other major grain and root crops (El-Sharkawy and De Tafur, 2010). Cassava roots can be converted into many food products, such as chips, pellets, pasta, flour and starch, with good storability and relatively low postharvest losses (Adelekan, 2010). The nutritious leaves can also be harvested for human consumption as a green vegetable (Montagnac et al., 2009) and for animal feed (Lukuyu et al., 2014). The leaves are rich in iron, calcium, vitamins, and a good source of proteins (Montagnac et al., 2009).

      Cassava storage roots can be stored in the ground for up to 2 years after maturity, and can be harvested at any time of the year when a farmer needs food (Sanchez et al., 2013). The natural high storability of cassava compared to other root crops provide farmers the opportunity to capitalize on the best market opportunities (Hershey et al., 2012). Farmers can plant and harvest cassava without any capital input on marginal lands where other crops cannot be produced. Cassava is grown predominantly by small-scale farmers with limited resources on marginally fertile soils (Kintché et al., 2017). The low input land use systems (also commonly referred as small-scale agriculture), which they operate on a sustainable basis is of great benefit to resource poor farmers and to the eco-system (Altieri et al., 2012). Consequently, cassava is considered as an excellent food security crop and a household food bank that can be drawn anytime when adverse climatic conditions limit the production of other crops (Nakabonge et al., 2018).

      However, high cyanide content, poor protein, and micronutrient content, and pest and disease issues are the major problems in using cassava as a food crop. Serious malnutrition problems have been reported in countries that rely primarily on cassava food products, with little or no protein supplements (Akinola et al., 2020). Micronutrient deficiencies present in some staple food crops have been improved via bio-fortification (Bouis and Saltzman, 2017). Cassava has been targeted for bio-fortification because of its unique geographical distribution (Talsma et al., 2016). There is considerable potential for enhancing the nutritional value of cassava through breeding. Variation in cassava for carotene content (Ceballos et al., 2017), protein content (Carvalho et al., 2019), and micronutrient content (Burns et al., 2012) have been reported in the available cassava germplasm collections.

      Although South Africa is often characterized by food self-sufficiency at national level, about 20% of the households' experience food insecurity, malnutrition, unemployment and poverty (Abdu-Raheem and Worth, 2011). The fact that cassava's ability to grow and provide reasonable yield in areas where environmental conditions and per capita resource levels are declining makes it an ideal candidate to be a food security crop. In addition, most South Africans have a relatively monotonous dietary system, mainly based on maize and bread starch, and protein such as chicken and milk. Diversification of the crop base that require low agricultural input such as cassava will improve food and nutrient security at a rural household level. Hence, cassava can stabilize food security by providing food for many households and serving as a cash crop as a source of industrial starch in South Africa. In South Africa, the role of cassava as food security crop needs to be viewed from dual perspectives; first through its direct contribution to household food security and second indirectly by being cash crop through raw material sold to the starch industry. Hence, discussing the industrial application is unavoidable while elaborating the role of the crop on food security.

      Cassava as Climate Smart Crop

      Global climate change and its impacts have been observed and reported (Miller, 2008). Changes in precipitation amount and patterns, temperature, atmospheric carbon dioxide level and water availability are indicators of climate change (World Bank, 2008). The global mean temperature has increased by ~0.74°C over the last century (Miller, 2008) and 1.1°C by 2020. In some locations, an increase in the number of extreme hot days and a decrease in the number of extreme cold days have been observed (Singh and Singh, 2012). Likewise, changes in the intensity and patterns of precipitation have been witnessed as the Mediterranean region, southern Africa, and southern Asia had a decline in precipitation, whereas northern Europe, northern and central Asia, and the eastern portions of North and South America had an increase in precipitation (IPCC, 2007). These affect the length of crop growing period, development and yield (Cai et al., 2009). The climate change impacts on agriculture are unavoidable, hence implementing climate adaptation strategies are crucial to mitigate the negative impacts of climate change.

      South Africa is a water scarce country where only 12% of its land are suitable for crop production (Donnenfeld et al., 2018). Most of South Africa's land surface (69%) is suitable for grazing and livestock farming. South Africa uses about 60% of its scarce water resources on irrigation to grow crops such as maize, potato, wheat, sugar cane, and sunflower (Baleta and Pegram, 2014). Climate change poses a significant risk to South Africa's water resources, food security, health, infrastructure, ecosystem functions, and biodiversity (Ziervogel et al., 2014). In South Africa, climate change projections have suggested that by 2050 mean national temperatures will increase by 5–8°C, with much reduced rainfall in the west and south of the country, and an increased risk of heavy rainfall events in the eastern parts of the country (Calzadilla et al., 2014). These will result in changes in rainfall patterns, evaporation rates, temperature ranges, reduced crop yields, and the emergence novel pests and diseases of crops and livestock (Calzadilla et al., 2014).

      In addition to climate change, a decline in land quality due to soil degradation, soil acidification and land competition has dramatically increased the challenge of achieving national food security. Expanding the area of available arable land is not possible due to demographic pressure, urbanization and expansion of industries (Naab et al., 2013). Agricultural intensification has often been considered as the primary approach to meet the rising food demand. Enormous gains in agricultural production have been achieved due to agricultural intensification through rigorous utilization of fertilizers, pesticides, and irrigation (Mateo-Sagasta et al., 2017). The widespread application of synthetic fertilizers has generated varying degrees of soil acidification, groundwater contamination, and ecological degradation of the available arable land (Khan et al., 2018). Similarly, the worldwide chronic illness such as reproductive and birth defects, neurotoxicity, kidney and liver damage, high prevalence of cancer, and the emergence of more virulent strains of diseases and pests are related to excessive use of synthetic agrochemicals (Mossa et al., 2018). In South Africa, the commercial sector relies heavily on the use of irrigation, fuel, synthetic fertilizers, pesticides, and herbicides. Moreover, relatively few crops have occupied the major production areas and grown repeatedly year after year.

      Climate change coupled with ecological degradation and water scarcity has curtailed food productivity, availability, accessibility, and quality at the national level. The above factors also aggravate the emergence of novel pests and diseases (Jones and Barbetti, 2012). The contemporary arrival of the fall army worm, which has destroyed maize, wheat and potato crops across Africa and Asia, is one of the negative impacts of climate change observed in South Africa (Amusan and Olawuyi, 2018). To ensure that the agricultural sector continues to play an important role in the economy, sustainable agro-ecological solutions should be implemented (Wezel et al., 2018). The implementation of eco-system-friendly, sustainable agricultural practices such as crop rotation and sequencing, integrated pest management, efficient water management, crop and varietal diversification and the use of well-adapted improved varieties are obligatory. Cassava is drought resistant and resilient to climatic changes, high temperatures, and poor soils, which makes it an important crop for the twenty-first century (Mupakati and Tanyanyiwa, 2017).

      Cassava as Potential Bio-Fuel Feedstock

      More than 90% of South Africa's primary energy is derived from fossil fuels that constitute 80% of the country's greenhouse gas (GHG) emissions (STATS-SA, 2018). About 77% of South Africa's energy needs are directly derived from coal, and 92% of coal consumption on the African continent is produced in South Africa (Baker, 2017). The heavy dependence on coal in South Africa is not only because coal is a relatively cheap source of energy, but also because South Africa has abundant reserves (STATS-SA, 2017). Fossil-based transportation fuels have been recognized as the largest contributor toward GHG emissions (Perera, 2018). Many countries ratified the Paris Agreement to reduce annual global greenhouse gas (GHG) emissions to between 30 and 50% by 2030 to prevent a global temperature rise (Shepherd and Knox, 2016). South Africa has also endorsed the Paris Agreement, and committed to reduce the contribution of coal-generated power from 82% in 2016 to 31% in 2050, as outlined in the Integrated Resource Plan (IRP) of 2016. Further, much of the national budget is spent on fossil fuel; hence, there is a growing commitment to explore alternative energy sources such as the use of renewable energy and the conversion of biomass to bioenergy (Petrie, 2014). The increase in the price of fossil fuel, coupled with the need to reduce greenhouse gases emissions, have driven the search for renewable sources of fuels.

      Bioethanol production requires a highly productive, sustainable supply of feedstock, and appropriate processing technology. Cassava, apart from its traditional role as a food crop, is recognized as a potential feedstock crop for the production of bioethanol (Marx, 2019). Cassava is an excellent feedstock for ethanol production: it is adapted to a wide range of growing conditions, especially to marginal environments; it can be planted and harvested all year round; and cassava can be stored as dried chips before processing (Nguyen, 2007). Bioethanol can be produced from cassava either from storage roots or the cassava waste stream. Cassava storage roots, on average contain about 35% dry matter content, with a starch content of between 70 and 85% (Benvenga et al., 2016). Wang (2002), in his studies of bioethanol production potential of six energy crops, reported that the annual yield of bioethanol from cassava is significantly higher than from other crops (Table 1). Yang et al. (2017) achieved an ethanol yield of 0.9 g ethanol/L/h through a combination of aerobic and anaerobic fermentation processes, while Wang et al. (2017) reported an ethanol yield of 11.43% (v/v). Marx and Nquma (2013) achieved a final ethanol yield of 530 L of ethanol per ton of unpeeled cassava roots, which translated into 2,400 L/ha.

      Comparison of bioethanol production from different energy crops.

      Crop Yield (tons/ha/year) Bioethanol conversion rate (L/ton) Bioethanol yield (L/ha/year)
      Sugarcane 70 70 4,900
      Cassava 40 150 6,000
      Sweet sorghum 35 80 2,800
      Maize 5 410 2,050
      Wheat 4 390 1,560
      Rice 5 540 2,250

      Source: Wang (2002).

      Cassava wastes are also a potential source of bioethanol and organic fertilizer (Ekop et al., 2019). Cassava waste includes leaves, stems, pulp, fiber peels and sub-standard tubers that can be used as ethanol feedstock. The peels and stems comprise of 28% of the total dry matter and can generate more than 60% ethanol, indicating the potential use of cassava wastes for ethanol production (Nuwamanya et al., 2012). Elemike et al. (2015) also reported that, depending on the starch-to-ethanol process, cassava wastes can have a starch content as high as 60% (w/w).

      Cassava as a Potential Industrial Crop

      Cassava is the fourth most important source of plant-based starch in the world after wheat, maize, and potato (Sharma et al., 2016). The global demand for cassava starch is projected to be over 10 million tons by 2024 (Business wire, 2019). Technological advancements in the starch industry makes cassava an attractive source of modified starch such as food grade starch, and adhesive, paper, and textile grade starches (Adelekan, 2010). Cassava is thus considered to be a highly valuable industrial crop for the world today and in the future.

      In South Africa, maize is currently the main crop used for food (37.4%), feed (39.8%), exports (17.9%), and industrial purposes (4.8%). It constitutes two-third of the commercial area planted in field crops, with an average annual production of ~10–12 million tons (Greyling and Pardey, 2019). Maize is the source of about 95% of the local starch produced in South Africa. Competition between industries utilizing maize products has resulted in the failure of the local starch industries to meet the starch demand of the country. Hence, South Africa imports around 66,000 tons of starch products annually, of which more than 33% is cassava (tapioca) starch (UN Comtrade, 2019). Although South Africa's starch import volumes experienced positive and negative growth patterns during the period 2008–2017, cassava starch import volumes have consistently been higher than those of maize, wheat and potato (Figure 2). If cassava can be used as an alternative starch source to satisfy the domestic starch demands, this will reduce competition among staple food commodities and reduce the volumes of imported starch.

      (A) Starch import volumes into South Africa and (B) South Africa's import volumes of various starches (Source: Commodity Trade Statistics Database, United Nations Statistics Division, 2020).

      Cassava storage roots contain a starch content that is about 40% higher than rice and 25% more than maize (Tonukari, 2004). Cassava starch is the cheapest and preferred known form of industrial starch, including in South Africa (Figure 2). The estimated demand for cassava starch alone in 2004 was 20,000 tons per annum; this demand would require more than 300,000 tons of cassava for milling and about 26,000 hectares of land under cassava production. Grasping the industrial potential of cassava in the starch industries and setting up rural cassava producers will create sustainable income sources and improve the livelihoods of rural community. Cassava starch also fetches a higher price on the market than maize, potato, and wheat starch. South Africa spends more than R40 million annually to import various starches, of which 17% is for cassava starch (UN Comtrade, 2019). The country imports most of the cassava starch from Asia and a small portion from the USA (IDC, 2017). Producing industrial starch from cassava locally will satisfy local starch demands, avoid competition among staple food commodities, relieve the country's economy from foreign currency strains, and reduce import volumes.

      The largest exporters of cassava are not necessarily the largest producers. Although Africa is the leading cassava producer globally, most of the cassava crop is consumed domestically and considered as a non-trade commodity. Nigeria, the DRC, Brazil and Indonesia are the top producers of cassava globally. Despite attempts to promote cassava as a commercial crop in Africa, low international prices for maize starch has made cassava starch production in Africa unattractive. Asia is driving the world trade in cassava starch, with Thailand at the top of the ladder, followed by Vietnam, Germany, and China (Table 2). At the beginning, European countries were the only cassava importers. However, imports of cassava products by non-European countries expanded in the mid-1980's mainly because other markets were developed in Asia (Otekunrin and Sawicka, 2019). Presently, China, USA, France, and Germany are the top cassava importers (Table 3). Two-sample t-test analysis was made to compare the differences between the changes estimated over the categorical times. There was a significant change (p = 0.05) in export volume between the period 2010–15 and 2015–17. South Africa sources its cassava supplies mainly from South East Asia. However, with appropriate investment, planning and policy support, this situation could be reversed.

      World top leading starch exporters (in ton).

      Country 2000 2005 2010 2015 2017 Changes (%)
      2000–05 2005–10 2010–15 2015–17
      Thailand 980,300 1,560,423 1,873,686 3,185,130 3,136,244 37 17 41 −2
      Vietnam 89,436 344,747 1,080,648 2,200,250 682,702 74 68 51 −222
      Germany 535,745 473,129 208,737 535,676 552,285 −13 −127 61 3
      China 74,934 179,911 422,509 87,716 285,972 58 57 −382 69
      Netherlands 391,108 317,126 306,249 168,756 151,015 −23 −4 −81 −12
      Spain 73,154 37,618 127,324 153,538 150,906 −94 70 17 −2
      USA 234,480 222,405 201,706 108,644 131,306 −5 −10 −86 17
      France 95,551 129,496 102,350 77,270 79,713 26 −27 −32 3
      Korea 68,802 62,067 104,292 63,597 49,728 −11 40 −64 −28
      South Africa 44,996 38,492 35,919 32,847 30,248 −17 −7 −9 −9

      Sources: FAOSTAT (2019).

      World leading starch importers (in ton).

      Country 2000 2005 2010 2015 2017 Changes (%)
      2000–05 2005–10 2010–15* 2015–17*
      China 151,520 609,576 979,658 2,081,646 2,572,161 75 38 53 19
      USA 145,702 165,885 196,854 317,213 337,441 12 16 38 6
      France 167,104 155,503 180,621 187,753 264,783 −7 14 4 29
      Germany 186,969 282,068 346,557 413,702 258,495 34 19 16 −60
      Netherlands 87,728 109,305 172,681 226,338 255,908 20 37 24 12
      UK 168,083 177,042 224,162 238,037 254,524 5 21 6 6
      Poland 6,169 38,822 110,897 177,642 160,129 84 65 38 −11
      Indonesia 162,607 623,328 921,862 686,561 136,201 74 32 −34 −404
      Malaysia 136,201 187,332 298,305 291,064 91,632 27 37 −2 −218
      Belgium 96,373 126,758 98,212 120,065 59,318 24 −29 18 −102
      South Africa 11,776 32,296 32,087 35,484 28,163 64 −1 10 −26

      Sources: FAOSTAT (2019).

      Significant different at 5%.

      Role of Cassava in the Development of Smallholder Farmer Community

      Agriculture in South Africa has a dual character (Gwebu and Matthews, 2018), which comprises of relatively few well-developed commercial farms and a large number of small scale, subsistence farms. The commercial sector is mainly based on capital intensive, export oriented and large-scale production. They produce about 90% of the total agricultural production and their farms cover about 86% of the country's cropland. Subsistence farming, on the other hand, relies on traditional production methods and is labor intensive, employing about 86% of the total farm labor (Pienaar and Traub, 2015). Small-scale farmers mainly produce for household subsistence. Cassava provides an opportunity to improve smallholder farmers' income and food security by unlocking economic value, by opening up marginal lands for cultivation and pooling communal resources in addition to commercial operation by organized farmers groups to enable mechanization.

      Cassava is a labor-intensive crop that requires lots of labor from planting to processing. Hence, it can provide employment opportunities to unskilled labor in rural areas. Moreover, cassava is a bulky and highly perishable crop that needs to be processed before it is transported, which opens up opportunities for small-scale farmers to be involved in producing semi-processed materials and simple value-added products, for greater economic gains derived from marginalized or nutrient poor land. Developing the cassava industry in South Africa could play a role in transforming smallholder sector into small- and medium- sized enterprises by engaging them in distributing better quality planting materials, implementing intensive cassava production and establishing community-based primary processing systems. Establishment of small-scale farmer development programs will ensure sustainable productivity and profitability of cassava production for small scale and emerging farmers. These initiatives could be used to drive the economic empowerment of small scale and emerging farmers through meaningful integration with the secondary processing industries. This will be achieved through partnerships that create an enabling environment by closing all gaps in the value chain. The source of the innovative technologies for technology diffusion and deployment will be the developmental funding institutions as well as research councils.

      The National Cassava R&D Strategy: Background on Strategic Imperatives

      In South Africa, the agricultural sector is expected to play a vital role in alleviating food insecurity, poverty, malnutrition, and unemployment, while protecting the ecology. Agricultural R&D strategy has serious implications on the way agricultural research is designed, implemented, evaluated, disseminated, and utilized to generate innovations. In the twenty-first century, agriculture remains fundamental for poverty reduction, economic growth, and environmental sustainability in developing countries (World Bank, 2008). Although the scientific methods of doing research have not been changed substantially since the nineteenth century, the environment within which the discovery and innovation occurs changes constantly. Rapid changes have been taking place in the institutional landscape, global economy, farming sector, social structures, and the global and local food industries (Anandajayasekeram, 2011). That is why a constant revision of the R&D strategy of the ARC and that of the country will remain imperative, with respect to emerging challenges and societal needs, and integrating the R&D with the value chain. By taking the below key considerations into account, the ARC, in consultation with role players, developed a cassava R&D strategy. The components of the cassava R&D strategy include; germplasm acquisition, evaluation, conservation and breeding, agronomy, crop protection, socioeconomics, food science, postharvest and storage, mechanization, and agro-processing thematic areas.

      Important Considerations in the Crafting of the R&D Strategy Agricultural Sector

      South Africa has ~35,000 largely white, highly capitalized commercial farmers and around 2.9 million black subsistence farmers (Aliber and Hart, 2009). The commercial sector is producing around 95% of the country's agricultural produce on 86% of total agricultural land, while the smallholder sector is farming on 14% of agricultural land (Aliber and Hart, 2009). The smallholder sector is characterized by low productivity, labor-intensive cultural practices, use of traditional production techniques, and poor institutional support, largely (Louw, 2013). The smallholder sector has been neglected in terms of the distribution of economic assets, support services, market access, infrastructure, and income (Pienaar and Traub, 2015). The development of an appropriate R&D strategy that addresses food security, malnutrition, inclusion of smallholder farmer sector and unemployment has been given the highest priority within the ARC.

      Climate Change

      Climate change and agriculture have significant impact on each other. Climate change has a massive impact on all forms of agriculture. Agriculture contributes to climate change through greenhouse gas emissions and changes in land use such as deforestation. There is an urgent need to recognize the risk posed by climate change in agriculture and vice versa. In case of subsistence farmers, the risks are high: due to their high exposure and vulnerability to natural hazards; their dependence on rain-fed agricultural production systems; and their limited capacity to ameliorate stresses induced by climate change. As a result, climate change will increase their vulnerability, and exacerbate levels of food insecurity and malnutrition. Several climate adaptation strategies have been suggested to address the gradual impact and risk of climate change. Adoption of climate smart agricultural techniques and job creation in rural communities to increase resilience and to contribute to more sustainable food systems have been given top priorities among the adaptation strategies. To this effect, a holistic and comprehensive R&D strategy, cutting across various disciplines, is necessary to harmonize the relationship between climate challenge and agriculture.

      Organizational Structure

      According to the United Nations estimates, the current global population is 7.7 billion, and this is expected to reach 10 billion by 2050. Consequently, it has led to increases in food demand and consumption, and will keep undermining food insecurity in Africa. Both national and international agricultural research institutions should be strengthened and capacitated to leverage the global demand for food and nutrition. Suitable approaches should be designed to increase the efficiency, productivity and profitability of the agricultural sector. Many studies in the past indicated that a combination of institutional reorganizations and other productivity enhancing strategies, such as the use of improved inputs, mechanized production techniques and improved management practices, are required to increase production efficiency (Abass et al., 2013). Market and credit access, meaningful linkage between producers and processers, diversification of use in various manufacturing sectors, practical training, and high market information flow to relevant stakeholders will help move the sector toward true commercialization.

      Market

      Agricultural commodity and input prices are likely to increase substantially, resulting in changes to the structure and behavior of the agricultural global market and its competitiveness. Future developments in South African agriculture lie primarily on greater technical efficiency, exploring niche markets and value-addition within the established commercial sector, together with improving the productivity of the smallholder sector. Some countries have develop their cassava value chain exclusively for food consumption, and others exclusively for industrial applications. For example, cassava production in Africa and Latin America is mainly driven by food security motives, whilst in Asia it is driven by industrial application, as the primary feedstock for starch and ethanol production. Although cassava has huge potential in Southern Africa, the major challenge for cassava cultivation is access to markets and creating interest in new market opportunities. However, the existing market for cassava products in Southern Africa signals the high potential for growth in industrial starch production locally. Market signals serve as an incentive for investment by the private sector (Abass et al., 2013). There are some encouraging and positive initiatives on the utilization of cassava by the starch industry. Some concrete examples are given below.

      Mondi South Africa is an enterprise that aims to encourage long-term economic empowerment and job creation by developing small businesses in Mondi's forestry value chain and surrounding communities. The company has identified the potential for planting cassava on a commercial basis, which would create an employment opportunity for people within the rural communities of the Mondi Forests area. They currently producing 15 000 tons of cassava starch annually, with the industry usage sitting at 25,000 tons (Maema Obakeng, personal communication).

      Tongaat Hulett Starch is Africa's largest producer of high-quality starch, glucose and related products. They produce starch for local and international markets across Africa and around the world using maize as a raw material. They are interested in exploring cassava starch as a raw material to exploit potential cost saving benefits due to cassava starch's unique functional properties. They have also expressed their interest by funding cassava research projects conducted at WITS University.

      Some of the world's largest alcohol beverage making companies are finding ways of tapping into the potential of cassava. Both SABMiller and Diageo have launched commercially made cassava-based beers in Africa over the past 2 years. SABMiller PLC (now called AB InBev) has launched two cassava beers in Africa, Eagle (Ghana), and Impala (Mozambique). The main objective is to source raw materials from local farmers mainly to reduce costs whilst contributing to rural economic development. They are committed to expand the initiative, the business and financial models developed for the rollout of the brewing facilities in other African countries. Similarly, National Starch is a global ingredient solution company aiming to deliver the high-quality ingredients that give sweetness, texture and nutrition for the food, beverage and brewing industry. Their local subsidiary has shown interest in sourcing cassava starch for their multinational client base.

      PhilAfrica foods was established to transform the lives of millions of Africans economically and socially through food processing in Africa. Dadtco PhilAfrica, a Pan-African cassava processor, is a mobile starch processing company that produce high-quality wet and dry starch flour for primary use in the baking and brewing industries. They source raw materials directly from smallholder farmers in rural regions of sub-Saharan Africa, thereby significantly impacting the lives of thousands of farmers and their families.

      Unilever, the Anglo-Dutch consumer goods company, is targeting cassava root to make sorbitol, a key ingredient in toothpaste and other products. Their target is to improve their local procurement content by sourcing the sorbitol locally.

      The potential of cassava in animal feed has been studied extensively by researchers worldwide. Most parts of the cassava plant such as roots, stems and leaves can be used for animal feed. The major problems of cassava roots restricting its use in animal feeds are its low amylose content and protein content (0.5–1.7%), compared to other starch crops. However, the high-energy value of cassava makes it an attractive carbohydrate ingredient in animal diet (Morgan and Choct, 2016). There should be a market for cassava products in the existing domestic market for animal feeds in South Africa. The leaves are high in carbohydrate and protein (17%), and thus they can be used as a potential substitute for soybean cake, alfalfa, or maize.

      The Roles of Private and Public Sectors

      The role of private and public sector needs to be well-defined and this will facilitate commercialization of crop technologies from public sector research. The ARC initiated a process to coordinate the cassava R&D in South Africa in light of the growing importance of the crop, and the lack of coordination among the various stakeholders. Several stakeholder engagements have been made, aimed at mapping the way forward for cassava R&D and commercialization of the crop in South Africa. During the various stakeholder meetings, aspects such as the opportunity and challenges of cassava research, available resources in terms of manpower and research funds, promotion and adoption of the crop and policy issues that need to be addressed were raised and discussed. The stakeholder forum discussed the need for an integrated approach with strategic partnership between the public and private sectors. This can be realized through close linkage between producers, starch-processing industries, farmer support programs, financial institutions and agricultural research institutions along the cassava value chain. Similarly, collaboration among governmental organizations would aim to share resources and to make an enhanced impact on food and nutrition security, and to increase production, productivity, profitability, and environmental stability, and to stimulate job creation.

      The ARC was given the assignment to assess the current research capacity for supplying high-quality planting material and farmer-based small-scale production of cassava tubers for commercialization of the crop. The ARC was also tasked to drive the policy initiative to develop an evidence-based policy that will facilitate the equitable economic exploitation of the crop. The Technology Innovation Agency (TIA) agreed to explore the industrial potential of the crop and to assess the availability of financial resources to support essential cassava research programmes. It is envisaged that these initiatives will produce the required result in developing a viable starch industry underpinned by sustainable primary production supported by strong R&D. Previous studies had been undertaken with the objective of establishing cassava as a source of industrial starch, most of which failed. The TIA- led initiative was constructed to mitigate the shortfalls of these prior studies, namely to access diverse, disease-free cassava material germplasm; to screen the germplasm in multiple geographic regions over multiple seasons and using the data from these cultivar assessments to determine the feasibility of adopting suitable cultivars by small scale or emerging farmers in a pooled communal set-up. The study will provide the starting point for a local breeding program to develop superior cassava cultivars for South Africa.

      Alignment With Regional and International Research Community

      Globally, cassava is recognized as an important food and industrial crop. The International Institute of Tropical Agriculture (IITA), International Center for Tropical Agriculture (CIAT), National Agricultural Research Institutes (NARs), and Universities in Africa have played leading roles in cassava improvement. The production, characterization and product development from cassava is at its infancy in South Africa compared to other African countries. It is vital that South Africa taps into the skills and advanced R&D programs of these institutions by establishing strong collaborative links. Capacity building can be done through fellowships, grants schemes, exchange and partnership programmes. Collaborative research in terms of information access, germplasm exchange and genotyping of elite germplasm should be imperative. In addition, to enhance the local knowledge base of cassava, formal training through postgraduate studies and informal trainings such as awareness creation among stakeholders and field days would be important.

      Drivers of the Cassava Industry in South Africa Farmer Production System Training

      The UN Conference on Trade and Development released a Policy Brief in 2010 suggesting that: “In the Twenty-first century, transforming the existing industrial-agricultural systems into knowledge- and labor-intensive rather than agro-chemical and energy-input-intensive is necessary” (Trade Development Report, 2010). The transformation should consider integration of local knowledge with modern agricultural techniques, giving strong emphasis to the available biodiversity and resources. A Trade Information Brief (TIB) for the Southern Africa Development Community (SADC) (2015) proposed cassava as a potential industrial crop for SADC's farmers. Although cassava has not been a traditional commodity in South Africa, exploiting cassava's potential for food, industrial starch and renewable energy will improve the livelihood of many farmers at a household level. Training is an integral part of any development activity and a process by which acquiring new knowledge, skills, practices, and attitude in the context of preparing farmers for improving agricultural productivity (Pandey et al., 2015). Training plays a key role in human capacity development, to equip farmers with skills, knowledge and competencies for sustainable crop production, resource utilization, and income generation (Yaseen et al., 2015). Therefore, adequate training on cassava production, processing and marketing is essential for farmers to acquire the necessary knowledge and skills to exploit the full economic potential of the crop. Accredited training modules in cassava production and processing, as well as financial and business management, will be developed. Production enterprises will have to be established and supported to enable farmers to produce and partially process products for the starch processing market.

      Awareness Creation and Promotion of the Crop

      The local production of the staple commodities such as maize, wheat and potato is affected by recurrent and severe droughts. Exploring alternative climate resilient solutions have become a priority. Awareness creation of the prevailing environmental conditions and the available mitigation strategies are imperative. As part of awareness creation, organization of symposia, conferences and workshops, at which researchers from local and international institutes can present their research findings on cassava should have a significant impact. These conferences can serve as essential forums to inform key policy makers, farmers, growers and processors to access first-hand information from experts in countries where cassava is a major crop. Funds should be accessed from national and international institutions. Furthermore, the use of a promotional hub is vital to introduce various cassava products to researchers, policy makers, producers, and processors to appreciate the economic importance of the crop.

      Development of Suitable Business Model

      The social enterprise model is a corporate model that addresses the social, environmental and economic aspects of any commodity development. In this model, the farmers are organized in a way that they play a key role in leading the primary production aspect, but are also stakeholders of downstream processing. The primary objective of the social enterprise model is to make farmers involved beneficiaries across the entire value chain. It is critical to develop the whole value chain in such a way it sustains itself and empowers farmers. One of the merits of this model is that it is socially viable as the majority of the society around the production area benefits from an environmentally sustainable production system. Second, cassava, being a multi-purpose crop, has production, processing and marketing components that provide job opportunity to the smallholder farmers across all the value chain. However, there is no example of feasible and successful agricultural social enterprise in South Africa that can be used as a model. However, it has been used successfully in other sectors such as education and training, according to a study done by the Gordon Institute of Business Sciences at the University of Pretoria (GIBS, 2018).

      The Role of Commodity Organization

      A commodity-based organization represents the entire value chain such as growers, consumers, processors, traders, importers, exporters, input distributers, and transporters. These types of organizations can play important role in promoting the particular interests of their members and advocating policy and regulatory changes. The South Africa cassava industry association (CIASA) was established under the Department of Trade, Industry and Competition (DTIC) to address and coordinate all aspects of the cassava value chain (IDC, 2017). Presently, even though CIASA attempts to be proactive, it was not be able to coordinate cassava research or the development of a cassava value chain in South Africa. The association was probably established too soon, when there was a lack of critical mass and political support. CIASA should be revived and strengthened to represent the cassava value chain in SA and the full spectrum of stakeholders. It was suggested, during a workshop with R&D stakeholders, that the constitution of CIASA should be revisited and its role should be redefined to support the cassava industry in SA as a whole, including researchers, which were not considered by the DTIC. DTIC included cassava starch in the 2016/2017 Industrial Policy action plan (IPAP) to promote trade activities in the industrialization of cassava, which was informed by the consultations leading to the establishment of CAISA.

      Market Creation and Product Diversification

      Although the current demand for food cassava is small in South Africa, there is the potential to develop cassava products that are affordable and attractive to consumers in South Africa. Brazil has developed a wide range of cassava food products, and benefits from a strong domestic market (Demiate and Kotovicz, 2011). High-quality cassava flour can be used as a wheat flour substitute in bread, pastries, cookies, and biscuits and as a source of food starch. Because of cassava's huge potential in the global starch market, the focus should be on the production of high-quality food starch, as well as lower value industrial products.

      Investment in Processing and Product Development Enterprises

      The cassava value chain starts with the production of certified planting materials, followed by primary production, and on-farm processing for the production of semi-processed products, prior to industrial processing. The development of the cassava industry can contribute to food and income security, job creation and revitalization of the rural sector. It can help address the challenges of the high starch demand and provide an avenue for import substitution. The processing industries have a key role in driving cassava development and to engage small and large starch processing enterprises in South Africa. Investment in cassava processing and product development should rely on systematic analysis of opportunities and constraints of cassava at each stage of the commodity development cycle. This can be done by stakeholders that are engaged in the development of the cassava industry that involves producers, processors and consumers, as well as associated national, international and non-governmental organizations. Research and development support is essential to assist to overcome important problems within the production-processing-marketing continuum.

      Risk Factors Frost

      Cassava being a tropical crop, it is highly sensitive to low temperatures below 18°C (Huang et al., 2005). Low temperature causes delayed sprouting of stem cuttings, reduced leaf expansion, low biomass accumulation and decrease storage root yield (Phoncharoen et al., 2019). In South Africa, the growing season is characterized by a hot rainy summer followed by a cold and dry winter. Frost is a major obstacle for cassava production and propagation in South Africa. There are two approaches used by researcher to cope with frost, namely the use of early bulking germplasm or pruning. All the varieties currently in the system are old cultivars that take more than 18 months to mature. Therefore, early bulking cultivars that fit into the growing season (i.e., matures within 7–9 MAP) or cold-tolerant cultivars that can grow in a prolonged growth period are in demand. The Brazilian climatic condition is similar to South Africa. In the higher altitude and moisture prone areas of Brazil, farmers grow cassava in October/November and prune the cassava plant in June to avoid the cold winter. There is variation in cultivars response to pruning in terms of root yield, starch and dry matter content. Some cultivars show a reduction in root fresh yield, dry matter and starch content due to the fact that cassava plants consumed the reserve starch to overcome vegetative bud dormancy during the winter and shoot regrowth during the summer, while other continued the starch accumulation from where it stops with no reduction in yield and starch related traits (Curcelli et al., 2014). These materials are considered to be frost tolerant.

      Viral Disease

      Cassava production in Africa is curtailed by cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) (Legg et al., 2015). CMD is a severe cassava disease prevalent in all cassava growing regions of Africa and India (Legg et al., 2011). However, variation in overall prevalence and in the severity of losses caused by the disease has been reported among regions (Ntawuruhunga et al., 2007). CMD is caused by a complex of diverse whitefly-transmitted cassava mosaic geminiviruses (CMGs) (Patil and Fauquet, 2009). The cassava geminivirus family is composed of at least 11 distinct viruses that have been characterized worldwide, of which seven have an African origin (Kuria et al., 2017). Generally, in Africa the estimated yield losses caused by CMD were reported at 15–24%, representing 15–28 million tons of cassava production (Masinde et al., 2016). The estimated annual economic losses in East and Central Africa are estimated to be between $1.9 and $2.7 billion USD (Patil and Fauquet, 2009).

      Cassava brown streak disease (CBSD) was restricted to the lowland coastal areas of eastern Africa (Patil et al., 2015). Recent surveys have shown that CBSD is highly prevalent in Central, Eastern and Southern parts of Africa (Mulenga et al., 2018). It has been reported in Mozambique, Kenya, Uganda, Zambia, and Malawi (Tomlinson et al., 2018). The study by Mbewe et al. (2017) indicated the presence of two distinct virus species. CBSD does not have an obvious effect on the growth of cassava; however, the root necrosis produced by CBSD has caused a reduction in both qualitative and quantitative yield (Alicai et al., 2007) and affects maintenance of planting materials (Ndyetabula et al., 2016). Most of the yield loss from the disease is thought to be the consequence of the loss of root storability resulting from severe root rot (Hillocks et al., 2008). Gondwe et al. (2003) reported 18–25% yield loss by CBSD, while Hillocks et al. (2001) published a yield loss estimate of 70% from the most susceptible variety. Much less attention has been given to the disease compared to CMD, partly due to its restricted geographic distribution. However, recently the high prevalence and distribution of the disease has been reported due to presence of high population of whitefly vector B. tabaci.

      Market Access

      In South Africa, market access remains one of the key limiting factors for the development of emerging commercial and smallholder farmers; some institutional and technical constraints to market access in SA are well-documented (Van Schalkwyk et al., 2012). The Market for agricultural produce is largely controlled by a handful of corporate companies with excessive regulatory and compliance requirements that are beyond the means of emerging farmers. To exploit the socio-economic potential of cassava, unlocking market access and developing the entire value chain are critical. Work must start on the following key aspects to ensure the creation of sustainable market;

      Promoting the crop and ensure buy-in for primary production for food and industry,

      Understand the socioeconomic and technical production barriers,

      Organize critical mass of primary producers capable of sustainably supplying cassava raw material for starch processing industry

      Ensure farmers have access to improved varieties and production technologies that provide competitive advantage against other starch crops

      Ensure the processing industry is developed simultaneously and there exists a mutually beneficial off-take agreement and

      Introduce legislative mechanisms that favor local production and import substitution.

      The ARC has already embarked in some of the aspects described above. It should be noted that there are encouraging signs that there are farmers and farmer groups ready to embark on cassava production and beneficiation. The Authors of this article have received request for production support in the form of variety choice and agronomic support in Limpopo, KwaZulu-Natal province and Mpumalanga provinces. However, ensuring market access has paramount importance before large-scale production is resumed.

      Conclusion

      Cassava can grow and produce reasonable yields in areas where cereals and other crops are not viable. It can tolerate drought and can be grown on soils with low soil fertility, but responds well to irrigation and fertilizers. Cassava is highly flexible in its management requirements and has the potential to produce more calories per unit area of land than other crops. It is relatively resistant to major pests and diseases that affects major staple crop and be bred to tolerate the two major viral diseases with little or no yield loss. Cassava yields can be as high as 70–80 t ha−1 at research stations, although national yields are well below these levels and the global cassava yield is <12 t ha−1. The harvesting of cassava can be delayed for months, with the result that it has been used in developing countries as a famine reserve and food security crop. Delayed harvesting allows farmers to access markets when supply is low and prices peak. Although cassava has been considered as a poor man food crop, it has the potential to develop as a major industrial crop in Africa. Cassava starch has some unique characteristics that favor its use in specialized market niches.

      Exploiting the industrial potential of cassava in South Africa will improve rural livelihoods through income generation and job creation. Furthermore, the national economy should benefit indirectly from job creation, and directly from foreign exchange savings originating from replacing imported products and raw materials.

      The key to exploiting the full potential of cassava largely lies in establishment of national R&D strategy that focus on satisfying the local starch demand in the short term and export oriented starch production in the long ran.

      A demand-driven approach should be implemented in research and development programmes to support the production and processing of cassava. Hence, it is critical that a long-term, multidisciplinary R&D programme should be established to support all facets of the cassava industry.

      Development of strong value chains is vital in order to integrate cassava into the current production system; this however, should ensure primary producers remain as part of the value chain to incentivise production as opposed to the mere producers of raw material.

      Implementing intensive out growers production system for small-scale farmers is imperative together with farmer support program.

      The roles of private and public sector need to be well-defined and alignment with regional and international research community should be emphasized.

      Currently, there are no improved cassava cultivar available in South Africa and the available varieties are vulnerable to diseases and have long maturity periods (>18 months) and low yields. Germplasm with high yield potential and resistance to biotic and abiotic stress factors should be imported, characterized and bred for local conditions to ensure the sustainable primary production of cassava.

      Author Contributions

      AA designed, initiated and managed the project and contributed to manuscript preparation. MB, OM, SV, and ML contributed to manuscript preparation and edition.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Abass A. B. Mlingi N. Ranaivoson R. Zulu M. Mukuka I. Abele S. . (2013). Potential for commercial production and marketing of cassava: Experiences from the small-scale cassava processing project in East and Southern Africa. Ibadan: International Institute of Tropical Agriculture (IITA). Abdu-Raheem K. A. Worth S. H. (2011). Household food security in South Africa: evaluating extension's paradigms relative to the current food security and development goals. SA J. Agr. Ext. 39, 91103. Adelekan B. A. (2010). Investigation of ethanol productivity of cassava crop as a sustainable source of biofuel in tropical countries. Afr. J. Biotec. 9, 56435650. Akinola R. Pereira L. M. Mabhaudhi T. de Bruin F-M Rusch L. (2020). A review of indigenous food crops in Africa and the implications for more sustainable and healthy food systems. Sustainability 12:3493. 10.3390/su1208349333520291 Aliber M. Hart T. (2009). Should subsistence farming be supported as a strategy to address rural food security? Agrekon 48, 43458. 10.1080/03031853.2009.9523835 Alicai T. Omongo C. A. Maruthi M. N. Hillocks R. J. Baguma Y. Kawuki R. . (2007). Re-emergence of cassava brown streak disease in Uganda. Plant Dis. 91, 2429. 10.1094/PD-91-002430781061 Altieri M. A. Funes-Monzote F. R. Petersen P. (2012). Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron. Sust. Dev. 32, 113. 10.1007/s13593-011-0065-6 Amusan L. Olawuyi S. O. (2018). The Menace of the Fall Armyworm: Food Security Challenges in Nigeria and South Africa. New Zealand International Review. Wellington. Anandajayasekeram P. (2011). The role of agricultural R&D within the agricultural innovation systems framework, in Proceedings of the ASTI/IFPRI-FARA Conference. December 5-7, 2011. Accra. Anikwe M. A. N. Ikenganyia E. E. (2017). Ecophysiology and production principles of cassava (Manihot species) in South Eastern Nigeria, in Cassava, ed Waisundara V. Y. (London, UK: IntechOpen), 105122. 10.5772/intechopen.70828 Aye T. M. Howeler R. (2017). Integrated crop management for cassava cultivation in Asia, in Achieving Sustainable Cultivation of Cassava. Volume 1: Cultivation Techniques. Burleigh Dodds Series in Agricultural Science, ed Clair H. (Cambridge: Burleigh Dodds Science Publishing), 424. 10.19103/AS.2016.0014.23 Baker L. (2017). Post-apartheid electricity policy and the emergence of South Africa's renewable energy sector, in The Political Economy of Clean Energy Transitions. WIDER Studies in Development Economics, eds Arent D. Arndt C. Miller M. Tarp F. Zinaman O. (Oxford: Oxford University Press), 371390. Baleta H. Pegram G. (2014). Water as an Input in the Food Value Chain. Understanding the Food Energy Water Nexus. Pretoria: WWF-SA. Benvenga M. A. C. Librantz A. F. H. Santana J. C. C. Tambourgi E. B. (2016). Genetic algorithm applied to study of the economic viability of alcohol production from cassava root from 2002 to (2013). J. Clean Prod. 113, 483494. 10.1016/j.jclepro.2015.11.051 Bouis H. E. Saltzman A. (2017). Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through (2016). Glob. Food Sec. 12, 4958. 10.1016/j.gfs.2017.01.00928580239 Bunce B. (2019). Fresh Produce Production Under Irrigation by Small-Scale Farmers in South Africa. GTAC/CBPEP/EU Project on Employment-Intensive Rural Land Reform in South Africa: Policies, Programmes and Capacities. Pretoria: Capacity Building Programme for Employment Promotion (CBPEP). Burns A. E. Gleadow R. Anabela Z. Cuambe C. E. Miller R. E. Cavagnaro T. (2012). Variations in the chemical composition of cassava (Manihot esculenta Crantz) leaves and roots as affected by genotypic and environmental variation. J. Agric. Food Chem. 60, 494656. 10.1021/jf204728822515684 Business wire (2019). Cassava Starch Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2019-2024. Available online at: https://www.businesswire.com/news/home/20190226005819 (accessed September 20, 2020). Cai X. Wang D. Laurent R. (2009). Impact of climate change on crop yield: a case study of rainfed corn in central Illinois. J. App. Meteor. Climat. 48, 18681881. 10.1175/2009JAMC1880.1 Calzadilla A. Zhu T. Rehdanz K. Tol R. S. J. Ringler C. (2014). Climate change and agriculture: impacts and adaptation options in South Africa. Water Res. Econ. 5, 2448. 10.1016/j.wre.2014.03.001 Carvalho L. J. C. B. Anderson J. V. da Silva J. P. Chen S. de Souza C. R. B. (2019). Protein content in cassava storage root is associated with total abundance of carotenoids. Int. Res. J. Plant Sci. 10, 110. 10.14303/irjps.2019.003 Ceballos H. Davrieux F. Talsma E. Belalcazar J. Chavarriaga P. Andersson M. S. (2017). Carotenoids in cassava roots, in Carotenoids eds Cvetkovic D. Nikolic G. (London, UK: InTechOpen), 189221. 10.5772/intechopen.68279 Chandrasekara A. Kumar T. J. (2016). Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. Inter. J. Food Sci. 2016:3631647. 10.1155/2016/363164727127779 Costa C. Delgado C. (2019). The Cassava Value Chain in Mozambique. License: Creative Commons Attribution CC BY 3.0 IGO. Washington, DC: World Bank. 10.1596/31754 Curcelli F. Bicudo S. V. Aguiar E. B. Valdivie M. I. V. (2014). Pruning management of cassava for animal feeding: parameters of roots. Afr. J. Agr. Res. 9, 12381243. 10.5897/AJAR2013.8015 Demiate I. M. Kotovicz V. (2011). Cassava starch in the Brazilian food industry. Food Sci. Tech. 31, 388397. 10.1590/S0101-20612011000200017 Donnenfeld Z. Crookes C. Hedden S. (2018). A Delicate Balance: Water Scarcity in South Africa. Southern Africa Report 13. Institute for Security Studies and Frederick S. Pardee Centre for International Futures. Josef Korbel School of International Studies. Denver, CO: University of Denver, 23. Ekop I. E. Simonyan K. J. Evwierhoma E. T. (2019). Utilization of cassava wastes for value added products: an overview. Inter. J. Sci. Engin. Sci. 3, 3139. 10.5281/zenodo.2556466 Elemike E. E. Oseghale O. C. Okoye A. C. (2015). Utilization of cellulosic cassava waste for bio-ethanol production. J. Env. Chem. Engin. 3, 27972800. 10.1016/j.jece.2015.10.021 El-Sharkawy M. A. De Tafur S. M. (2010). Comparative photosynthesis, growth, productivity, and nutrient use efficiency among tall- and short-stemmed rain-fed cassava cultivars. Photosynthetica 48, 173188. 10.1007/s11099-010-0023-6 FAOSTAT (2019). Food and Agriculture Organization of the United Nations statistics (FAOSTAT). FAO. Available online at: http://faostat.fao.org/default.htm (accessed August 29, 2019). GIBS (2018). Social Enterprises in South Africa: Discovering the Vibrant Sector. Pretoria: Gordon Institute of Business Science, University of Pretoria. Gondwe F. M. T. Mahungu N. M. Hillocks R. J. Raya M. D. Moyo C. C. Soko M. M. . (2003). Economic losses experienced by small-scale farmers in Malawi due to cassava brown streak virus disease, in Cassava Brown Streak Virus Disease: Past, Present and Future. Proceedings of an International Workshop, Mombasa, Kenya, 27–30 October, 2002. eds Legg J. P. Hillocks R. J. (Aylesford: Natural Resources International Limited), 2835. Greyling J. C. Pardey P. G. (2019). Measuring maize in South Africa: the shifting structure of production during the twentieth century, 1904–2015. Agr. Econ. Res. Pol. Prac. Southern Afr. 58, 2141. 10.1080/03031853.2018.1523017 Gwebu J. Z. Matthews N. (2018). Metafrontier analysis of commercial and smallholder tomato production: a South African case. South Africa J. Sci. 114, 5562. 10.17159/sajs.2018/20170258 Hershey C. Álvarez E. Aye T. M. Becerra L. A. Bellotti A. Ceballos H. . (2012). Eco-efficient interventions to support cassava's multiple roles in improving the lives of smallholders, in Eco-Efficiency: From Vision to Reality, eds Hershey C. Neate P. (Cali: Centro Internacional de Agricultura Tropical), 135160. Hillocks R. Raya M. D. Mtunda K. Kiozia H. (2008). Effects of brown streak virus disease on yield and quality of cassava in Tanzania. J. Phytop. 149, 389394. 10.1111/j.1439-0434.2001.tb03868.x Hillocks R. J. Raya M. D. Mtunda K. Kiozia H. (2001). Effects of brown streak virus disease on yield and quality of cassava in Tanzania. J. Phytopath. 149, 389394. 10.1046/j.1439-0434.2001.00641.x Huang L. Ye Z. Bell R. W. Dell B. (2005). Boron nutrition and chilling tolerance of warm climate crop species. Ann. Bot. 96, 755767. 10.1093/aob/mci22816033777 IDC (2017). A study on Market Potential for Increased Industrial Starch Production in South Africa. Pretoria: Industrial Development Cooperation. IPCC (2007). Climate change 2007 synthesis report. Intergovernmental Panel on Climate Change (IPCC) fourth assessment report. Available online at: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf (accessed August 30, 2019). Jarvis A. Ramirez-Villegas J. Herrera-Campo B. V. Navarro-Racines C. (2012). Is cassava the answer to African climate change adaptation? Trop. Plant Biol. 5, 929. 10.1007/s12042-012-9096-7 Jones R. A. C. Barbetti M. J. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CAB Rev. 7:022. 10.1079/PAVSNNR20127022 Khan M. N. Mobin M. Abbas Z. K. Alamri S. A. (2018). Fertilizers and their contaminants in soils, surface and groundwater, in The Encyclopaedia of the Anthropocene. Volume 5, eds Dominick A. Sala D. Goldstein M. I. (Oxford: Elsevier), 225240. 10.1016/B978-0-12-809665-9.09888-8 Kintché K. Hauser S. Mahungu N. M. Ndonda A. Lukombo S. Nhamo N. Uzokw V. N. E. . (2017). Cassava yield loss in farmer fields was mainly caused by low soil fertility and suboptimal management practices in two provinces of the Democratic Republic of Congo. Europ. J. Agron. 89, 107123. 10.1016/j.eja.2017.06.011 Kuria P. Ilyas M. Ateka E. Miano D. Onguso J. Carrington J. C. . (2017). Differential response of cassava genotypes to infection by cassava mosaic geminiviruses. Virus Res. 227, 6981. 10.1016/j.virusres.2016.09.02227693919 Legg J. P. Jeremiah S. C. Obiero H. M. Maruthi M. N. Ndyetabula I. Okao-Okuja G. . (2011). Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa. Virus Res. 159, 161170. 10.1016/j.virusres.2011.04.01821549776 Legg J. P. Lava-Kumar P. Makeshkumar T. Tripathi L. Ferguson M. Kanju E. . (2015). Cassava virus diseases: Biology, epidemiology, and management. Adv. Virus Res. 91, 85142. 10.1016/bs.aivir.2014.10.00125591878 Louw A. (2013). Sustainable policy support for smallholder agriculture in South Africa: key issues and options for consideration, “in Smallholder and Agro-food Value Chains in South Africa, ed Greenburg S. (Bellville: PLAAS), 2328. Lukuyu B. Okike I. Duncan A. Beveridge M. Blümmel M. (2014). Use of Cassava in Livestock and Aquaculture Feeding Programs. ILRI Discussion Paper 25. International Livestock Research Institute: Nairobi. Marx S. (2019). Cassava as feedstock for ethanol production: a global perspective, in Bioethanol Production from Food Crops: Sustainable Sources, Interventions, and Challenges, eds Ray R. C. Ramachandran S. (Amsterdam: Academic Press, Elsevier), 101110. 10.1016/B978-0-12-813766-6.00006-0 Marx S. Nquma T. Y. (2013). Cassava as feedstock for ethanol production in South Africa. Afr. J. Biotechnol. 12, 49754983. 10.5897/AJB12.861 Masinde E. A. Ogendo J. O. Maruthi M. N. Hillocks R. Mulwa R. M. S. Arama P. F. (2016). Occurrence and estimated losses caused by cassava viruses in Migori County, Kenya. African J. Agric. Res. 11, 20642074. 10.5897/AJAR2016.10786 Mateo-Sagasta J. Zadeh S. M. Turral H. (2017). Water Pollution From Agriculture: A Global Review. Rome: Food and Agriculture Organization of the United Nations; Colombo: International Water Management Institute, 35. Mbewe W. Tairo F. Sseruwagi P. Ndunguru J. Duffy S. Mukasa S. . (2017). Variability in P1 gene redefines phylogenetic relationships among cassava brown streak viruses. Virology J. 14, 17. 10.1186/s12985-017-0790-928637472 Miller K. (2008). Climate change and water resources: the challenges ahead. J. Intern. Affa. 61, 3550. Available online at: https://www.jstor.org/stable/24358110 Montagnac J. A. Davis C. R. Tanumihardjo S. A. (2009). Nutritional value of cassava for use as a staple food and recent advances for improvement. Comp. Rev. Food Sci. Food Saf. 8, 181194. 10.1111/j.1541-4337.2009.00077.x33467798 Morgan N. K. Choct M. (2016). Cassava: nutrient composition and nutritive value in poultry diets. Anim. Nut. 2, 253261. 10.1016/j.aninu.2016.08.01029767067 Mossa A. T. H. Mohafrash S. M. M. Chandrasekaran N. (2018). Safety of natural insecticides: toxic effects on experimental animals. BioMed Res. Int. 2018:4308054. 10.1155/2018/430805430410930 Mulenga R. M. Boykin L. M. Chikoti P. C. Sichilima S. Ng'uni D. (2018). Cassava brown streak disease and Ugandan cassava brown streak virus reported for the first time in Zambia. Plant Dis. 102, 14101418. 10.1094/PDIS-11-17-1707-RE30673562 Mupakati T. Tanyanyiwa V. I. (2017). Cassava production as a climate change adaptation strategy in Chilonga Ward, Chiredzi District, Zimbabwe. J. Disas. Risk Stud. 9:348. 10.4102/jamba.v9i1.34829955331 Naab F. Z. Dinye R. D. Kasanga R. K. (2013). Urbanisation and its impact on agricultural lands in growing cities in developing countries: a case study of Tamale in Ghana. Mod. Soc. Sci. J. 2, 256287. Nakabonge G. Samukoya C. Baguma Y. (2018). Local varieties of cassava: conservation, cultivation and use in Uganda. Env. Dev. Sustain. 20, 2427244. 10.1007/s10668-017-9997-633312055 Ndyetabula I. L. Merumba S. M. Jeremiah S. C. Kasela S. Mkamilo G. S. Kagimbo F. M. . (2016). Analysis of interaction between cassava brown streak disease symptom types facilitates the determination varietal responses and yield losses. Plant Dis. 100, 13811396. 10.1094/PDIS-11-15-1274-RE Nguyen T. L. T. (2007). Energy balance and GHG-abatement cost of cassava utilisation for fuel ethanol in Thailand. Ener. Pol. 35, 45854596. 10.1016/j.enpol.2007.03.012 Ntawuruhunga P. Okao-Okuja G. Bembe A. Obambi M. Mvila J. A. Legg J. (2007). Incidence and severity of cassava mosaic disease in the republic of Congo. African Crop Sci. 15, 19. 10.4314/acsj.v15i1.54405 Nuwamanya E. Chiwona-Karltun L. Kawuki R. S. Baguma Y. (2012). Bio-ethanol production from non-food parts of cassava (Manihot esculenta Crantz). AMBIO 41, 262270. 10.1007/s13280-011-0183-z22535425 Otekunrin O. A. Sawicka B. (2019). Cassava, a 21st century staple crop: how can Nigeria harness its enormous trade potentials? Acta Scie. Agric. 3, 194202. 10.31080/ASAG.2019.03.0586 Pandey R. K. Doharey R. K. Singh R. K. Mishra A. K. Jeetendra P. Manoj K. . (2015). A critical analysis on training needs of farmers about mustard production technology. Inter. J. Agri. Sci. 7, 892895. Available online at: http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217 Patil B. L. Fauquet C. M. (2009). Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. 10, 685701. 10.1111/j.1364-3703.2009.00559.x19694957 Patil B. L. Legg J. P. Kanju E. E. Fauquet C. M. (2015). Cassava brown streak disease: a threat to food security in Africa. J. Gen. Virol. 96, 956968. 10.1099/jgv.0.00001426015320 Perera F. (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Inter. J. Env. Res. Pub. Health 15:16. 10.3390/ijerph1501001629295510 Petrie B. (2014). South Africa: A Case for Biomass? London: International Institute for Environment and Development, 139. Phoncharoen P. Banterng P. Vorasoot N. Jogloy S. Theerakulpisut P. Hoogenboom G. (2019). Growth rates and yields of cassava at different planting dates in a tropical savannah climate. Sci. Agric. 76, 376388. 10.1590/1678-992x-2017-0413 Pienaar L. Traub L. (2015). Understanding the smallholder farmer in South Africa: towards a sustainable livelihoods classification, in International Association of Agricultural Economists Conference. August 9-14, 2015. Milan. Prochnik S. Marri P. R. Desany B. Rabinowicz P. D. Kodira C. Mohiuddin M. . (2012). The cassava genome: current progress, future directions. Trop. Plant Biol. 5, 8894. 10.1007/s12042-011-9088-z22523606 Sanchez T. Dominique D. Moreno J. L. Pizarro M. Aragón I. J. Dominguez M. . (2013). Changes in extended shelf life of cassava roots during storage in ambient conditions. Post. Biol. Technl. 86, 520528. 10.1016/j.postharvbio.2013.07.014 Sharma H. K. Njintang N. Y. Singhal R. S. Kaushal P. (2016). Tropical Roots and Tubers: Production, Processing and Technology. Technology & Engineering. Hoboken, NJ: John Wiley & Sons, 648. 10.1002/9781118992739 Shepherd M. Knox P. (2016). The Paris COP21 climate conference: what does it mean for the southeast? Southeast Geographer. 56, 147151. 10.1353/sgo.2016.0023 Singh B. R. Singh O. (2012). Study of impacts of global warming on climate change: rise in sea level and disaster frequency, in Global Warming – Impacts and Future Perspective, ed Singh B. R. (London: IntechOpen), 93118. STATS-SA (2017). Environmental Economic Accounts Compendium. Report No. 04-05-20. Pretoria: Statistics South Africa, 50. STATS-SA (2018). Electricity, gas and water supply industry. Report No. 41-01-02. Pretoria: Statistics South Africa, 34. Talsma E. F. Brouwer I. D. Verhoef H. Mbera G. N. K. Mwang A. M. (2016). Biofortified yellow cassava and vitamin A status of Kenyan children: a randomized controlled trial. Amer. J. Clin. Nut. 103, 25867. 10.3945/ajcn.114.10016426675768 Tomlinson K. R. Bailey A. M. Alicai T Seal S. Foster G. D. (2018). Cassava brown streak disease: historical timeline, current knowledge and future prospects. Mol. Plant Path. 19, 12821294. 10.1111/mpp.1261328887856 Tonukari N. J. (2004). Cassava and the future of starch: biotechnology issues for developing countries. Afr. J. Biotech. 7, 58. 10.2225/vol7-issue1-fulltext-9 Trade and Development Report (2010). Agriculture at the Crossroads: Guaranteeing Food Security in a Changing Global Climate. No. 18. United Nation Conference on Trade and Development (UNCTAD) (Geneva). UN Comtrade (2019). United Nations Commodity Trade Statistics Database. Avaialble online at: http://comtrade.un.org/ (accessed July 24, 2019). Van Schalkwyk H. D. Groenewald J. A. Gavin C. G. Fraser G. C. G. Obi A. van Tilburg A. (2012). Unlocking markets to smallholders: Lessons from South Africa. Mansholt publication series - Volume 10. Academic Publishers: Wageningen, 273. 10.3920/978-90-8686-168-2 Wang K. Yang X. Ren X. Zhang J. Mao Z. (2017). Development of a new cleaner production process for cassava ethanol. Chinese J. Chem. Engin. 25, 493498. 10.1016/j.cjche.2016.10.002 Wang W. (2002). Cassava production for industrial utilization in China - present and future perspective, in Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop. Proceedings of the Seventh Regional Cassava Workshop, Bangkok, Thailand, October 28 -November 1, 2002, ed R. H. Howlere, 3338. Wezel A. Goris M. Bruil J. Félix G. F. Peeters A. Bàrberi P. . (2018). Challenges and action points to amplify agro ecology in Europe. Sustainability 10:1598. 10.3390/su10051598 World Bank (2008). World Development Report 2008: Agriculture for Development. License: CC BY 3.0 IGO. Washington, DC: World Bank. Avaialble online at: https://openknowledge.worldbank.org/handle/10986/5990 (accessed August 10, 2019). Yang X. Wang K. Wang H. Zhang J. Mao Z. (2017). Novel process combining anaerobic-aerobic digestion and ion exchange resin for full recycling of cassava stillage in ethanol fermentation. Waste Manag. 62, 241246. 10.1016/j.wasman.2017.01.04028223080 Yaseen M. Hassan S. Tunio M. T. Ameen M. Abbas S. (2015). Role of capacity building and training for sustainable livelihood of farming community in Pakistan. Europ. Acad. Res. 3:3. Ziervogel G. New M. van Garderen E. A. Midgley G. Taylor A. Hamann R. . (2014). Climate change impacts and adaptation in South Africa. WIREs Climate Change 5, 605620. 10.1002/wcc.295
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016pschain.com.cn
      ubdex.net.cn
      qlchain.com.cn
      www.mscpw.com.cn
      phwpbk.com.cn
      sme3g.com.cn
      wfkgbu.com.cn
      qn0538.com.cn
      www.wujiyule.com.cn
      www.xecoin.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p