Front. Sustain. Food Syst. Frontiers in Sustainable Food Systems Front. Sustain. Food Syst. 2571-581X Frontiers Media S.A. 10.3389/fsufs.2021.605610 Sustainable Food Systems Original Research Organic Fertilizer Based on Rhizophagus intraradices: Valorization in a Farming Environment for Maize in the South, Center and North of Benin Aguégué Ricardos M. 1 Assogba Sylvestre A. 1 Salami Hafiz A. A. 1 Koda Abdel D. 1 Agbodjato Nadège A. 1 2 Amogou Olaréwadjou 1 Sina Haziz 1 Salako K. Valère 3 Ahoyo Adjovi Nestor R. 4 Dagbénonbakin Gustave 4 Kakai Romain Glélé 3 Adjanohoun Adolphe 4 Baba-Moussa Lamine 1 * 1Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou, Benin 2Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa 3Biomathematics and Forest Estimation Laboratory, Faculty of Agronomic Sciences, University of Abomey-Calavi, Cotonou, Benin 4Scientific Management Department of the Institute, National Institute of Agricultural Research of Benin, Cotonou, Benin

Edited by: Duraisamy Saravanakumar, The University of the West Indies St. Augustine, Trinidad and Tobago

Reviewed by: Luciana Maria Saran, São Paulo State University, Brazil; Everlon Cid Rigobelo, São Paulo State University, Brazil

*Correspondence: Lamine Baba-Moussa laminesaid@Yahoo.fr

This article was submitted to Crop Biology and Sustainability, a section of the journal Frontiers in Sustainable Food Systems

08 11 2021 2021 5 605610 12 09 2020 05 10 2021 Copyright © 2021 Aguégué, Assogba, Salami, Koda, Agbodjato, Amogou, Sina, Salako, Ahoyo Adjovi, Dagbénonbakin, Kakai, Adjanohoun and Baba-Moussa. 2021 Aguégué, Assogba, Salami, Koda, Agbodjato, Amogou, Sina, Salako, Ahoyo Adjovi, Dagbénonbakin, Kakai, Adjanohoun and Baba-Moussa

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Maize plays an important role in agricultural production systems in all agro-ecological zones of Benin. Despite its importance, its production faces many constraints including soil fertility. One of the ecological technologies aimed at improving agricultural production is the use of soil microorganisms including arbuscular mycorrhizal fungi (AMF). This study aims to evaluate the effectiveness of Rhizophagus intraradices, an indigenous strain, on maize productivity in farmers' areas in the Research and Development (RD) sites of the North (Ouénou), Center (Miniffi), and South (Zouzouvou). Three maize producers were selected at each RD site, for nine maize producers. The experimental design was a randomized complete block of three treatments with three replications. The different treatments were (i) Control–farmer's practice, (ii) R. intraradices + 50% of the recommended dose of NPK and urea, and (iii) 100% of the recommended dose of NPK and urea. Soil samples from the different RD sites were taken at a depth of 0–20 cm before sowing for chemical analysis. The different growth parameters (height, crown diameter, and leaf area), grain yield, and endomycorrhizal infection of maize plants were evaluated. The results showed that the soils were moderately acidic (5.5 ≤ pH waters ≤ 6.8) and low in organic matter (0.95 ≤ 33 OM ≤ 1.17) regardless of the study area. The greater maize grain yield was recorded with application of 100% of the recommended dose of NPK and urea, and R. intraradices + 50% of the recommended dose of NPK and urea. In the RD sites at the South, Center, and North recorded with R. intraradices + 50% of recommended dose of NPK and urea, the grain yields of 1.9, 3.4, and 1.74 t/ha with an increase of 28, 38.21, and 13.21%, respectively, compared with farmer's practice. Mycorrhization frequencies in plants treated with Ri¹ N15P15K15 vary between 37.44 and 51.67% in the three zones. The results of the current study have proven the potential use of R. intraradices in sustainable intensification of maize production in Benin.

Rhizophagus intraradices farming environment ecological systems yield maize Benin

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The decadent productivity of agricultural speculation, in general, and that of maize, in particular, in Benin, a West African country, could be justified by certain constraints including climate change, declining soil fertility illustrated by nitrogen and phosphorus deficiencies (Benbrahim et al., 2004; Balogoun et al., 2014) caused by poor farming practices such as slash-and-burn agriculture. In tropical and subtropical countries, phosphorus is essential because of its natural unavailability in soils (Hailemariam et al., 2013), and nitrogen (N) is a limiting factor for cereal crops (Batamoussi et al., 2014). In this context, the satisfaction of food needs, in general, and maize demands, in particular, will have to be based on productivity improvement. Thus, producers resort to intensive use of inputs, especially mineral fertilizers, which are leached and easily diluted into rivers, lakes, and streams with adverse consequences on the environment and the health of humans and animals. According to Alalaoui (2007), the prolonged use of mineral fertilizers without organic inputs leads to the depletion of soil organic matter, which is more sensitive to wind and rain erosion.

      For these reasons, it is imperative to have an understanding of the processes underlying the bioavailability of soil nutrients to plants, as well as the soil–root interactions of microorganisms (Eisenhauer, 2017; Bi et al., 2018). One of the oldest and most widespread mutualistic associations of microorganisms concern symbiosis in which a particular soil fungi called arbuscular mycorrhizal fungi (AMF) colonize the roots of most (74%) of the terrestrial plant families (van der Heijden et al., 2015). These fungi belong to the family of glomeromycetes, which includes at least 313 characterized species. AMF are key elements of soil fertility (Bedini et al., 2018). Several examples suggest the use of AMF for the promotion of plant performance (growth, survival, and tolerance) because they improve nutrition (water and minerals), photosynthesis, protection against biotic and abiotic stresses, regulation of development processes (flowering, fruit formation, rooting, etc.), (Bedini et al., 2018), and participate in soil structuring (Alqarawi et al., 2014). However, the wide use of mycorrhizal inocula in agriculture remains a challenge due to their cost, variability, quality, and effects on the plant such as their incompatibility with high levels of phosphorus (P) in the soil (Usharani et al., 2014; Berruti et al., 2016).

      However, knowledge and understanding of the mechanisms that govern the functioning of these AMF communities, particularly in poor tropical agrosystems where sustainable management of generally low soil nutrient resources, must take into account the benefits of indigenous microorganisms. Fortunately, with the advent of molecular biology, considerable advances in AMF identification and nomenclature have been noted (Oehl et al., 2011).

      Although the importance of intraspecific plant diversity and AMF for ecosystem functioning has often been highlighted (Wall et al., 2015), the interactive influences on their respective and reciprocal performance are still not well-understood (Sendek et al., 2019).

      Although work on AMF diversity and use is not legion in Benin (Tchabi et al., 2008; Balogoun et al., 2014), it is, nonetheless, oriented toward speculation other than maize in small geographical study areas and has mainly concerned exotic strains of AMF. However, Benin has indigenous strains of AMF in regions characterized by different types of climate and soils from North to South through the center and which could each present significant specificity to be taken into account in the analyses. The objective of this study is to evaluate the effect of the fungus Rhizophagus intraradices on maize growth and yield at three Research and Development (RD) sites in Benin.

      Materials and Methods Materials

      The maize variety 2,000 SYNEE-W was used during the experimentation at the different sites where the trials were carried out. It is an extra-early variety, 75 days old, developed by the International Institute of Tropical Agriculture (IITA) and the Institut National des Recherches Agricoles du Bénin (INRAB). It is a variety that presents a good resistance to the rot of the stem, to the maize streak virus (MSV) of the Mastrevirus genus, to the American rust, to the helminthosporiose caused by the Cochliobolus heterostrophus fungus. In addition, it tolerates drought (MAEP, 2016).

      The mycorrhizal inoculum of the Rhizophagus intraradices species used was isolated, identified, and characterized on the basis of morphological criteria (diameter, color, ornamentation, thickness of the spore wall) from the rhizosphere of maize soils in different agro-ecological zones of Benin (Aguégué et al., 2021). This mychorizial fungus was preserved at the Laboratory of Biology and Molecular Typing in Microbiology of Faculty of Sciences and Techniques of University of Abomey-Calavi (FAST/UAC). The inocula were produced and multiplied by associating spores of Rhizophagus intraradices with sorghum seedlings. Sorghum seeds were disinfected in a bleach solution (5%), then rinsed and soaked in sterile distilled water for 24 h. Sorghum plants were grown in glasshouses in pots containing sterilized substrate consisting of a mixture of clay and peat (2:1 v/v), for 4 months to ensure good sporulation of the strains. After 4 months of cultivation, the inoculum, consisting of spores and root fragment mixture, was collected (Rivera et al., 2003).

      Study Area

      The tests were installed on Research and Development sites respectively in the South at Zouzouvou (Commune of Djakotomey), in the Center at Miniffi (Commune of Dassa) and in the North at Ouénou (Commune of N'Dali), (Figure 1). In each of the zones, the trials were set up at three (3) different producers. The choice of sites was made taking into account the fact that they are the sites of Research and Development programs and that declining soil fertility is a priority constraint. The sites are flat with a maximum 2% slope and are not flooded.

      Geographic location of experimental sites.

      Determination of Soil Chemical Parameters

      Soil samples were taken at a depth of 0–20 cm (Adjanohoun et al., 2011) at various sites in the South (Zouzouvou), Center (Miniffi), and North (Ouénou). A 500-g composite sample was collected at each site prior to the installation of the experimental device. At each site, a mixture of soil samples was collected using an auger at a depth of 0–20 cm. Five (05) sampling points were randomly selected. Four (04) of the five (5) sampling points are each located on the four cardinal points (North–South–West–East). The fifth sampling point is located approximately at the junction of the four (04) preceding points. These samples were sent to the Laboratoire des Sciences du Sol, Eau et Environment (LSSEE) of the Institut National des Recherches Agricoles du Bénin (INRAB). These analyses consisted of the determination of pH (water), (by glass electrode in a soil/water ratio of 1/2.5), organic matter and carbon (Walkley and Black, 1934), assimilable phosphorus (Bray and Kurtz, 1945), total nitrogen (Kjedahl, 1883), and exchangeable bases by the method of Metson (1957) with ammonium acetate at a pH equal to 7.

      Experimental Device

      The plowing was done at a depth of 20 cm using a hoe on each site. Each 12.8 m2 (4 × 3.2 m) elementary plot had four lines of 4-m long. The trials were installed at three growers on each site. At each grower, the experimental design used was a completely randomized block of three treatments with three replicates. Each treatment had, thus, covered three elementary plots (1 plot × 3 replicates) separated by alleys 1-m wide. The treatments were defined as follows:

      -T1: Farmer's practice (control);

      -T2: Ri½ N15P15K15_Urea (R. intraradices + 50% of the recommended dose of NPK and urea);

      -T3: N15P15K15_Urea (100% of the recommended dose of NPK and urea).

      Farmer's practice technique in the present study is characterized by the application of the recommended dose of mineral fertilizer N15P15K15 on the 15th day after sowing and urea on the 45th day after sowing. However, for treatments T2 and T3, the mineral fertilizer N15P15K15 was applied on the day of sowing, and urea was applied on the 45th day after sowing. The recommended rate of mineral fertilizer for the maize crop used in this study is 200 kg ha−1 of N15P15K15 and 100 kg ha−1 of urea (46% N).

      Sowing and Inoculation of Maize Seeds

      Before sowing, the maize seeds were coated with the inoculum of Rhizuphagus intraradices. Seed coating was done according to the methodology described by Fernandez et al. (2000). A 1 kg of the inoculum was mixed with 600 ml of distilled water to obtain a paste to which 10 kg of seeds were added for mixing. The coated seeds were dried at room temperature for 12 h. Sowing was done in plots about 5-cm deep at a spacing of 0.80 × 0.40 m, i.e., a density of 31,250 plants/ha (Hernandez et al., 1995). On the day of sowing, a bottom manuring at the rate of 200 kg/ha of fertilizer (N15P15K15) was applied in accordance with the experimental protocol. Then, on the 40th day after sowing (DAS), maintenance manure consisting of urea (40% N) was applied in accordance with the experimental design. Data for the various growth, yield, and mycorrhization parameters were collected on the two central lines of the 6.4-m2 working plot at each site.

      Evaluation of Growth Parameters

      The height of the maize plants and the diameter at the collar of the plants were collected on 12 plants from the two central lines of each elementary plot, every 15 days from DAS until the 60th DAS on the different RD sites. The height of a maize plant was measured with a graduated ruler, the diameter was measured with a caliper at the plant collar, and the leaf area was estimated at the 60th DAS by the product of the length and width of the leaves multiplied by 0.75 (Ruget et al., 1996).

      Evaluation of Grain Yield

      Corn grain yield was assessed at harvest (80th DAS). Corn cobs were harvested, dispatched, and shelled per plant and per elementary plot. Grain moisture percentage was determined using a moisture meter (LDS-1F). The average grain yield values of the maize plants were determined by Equation 1 used by Ferro Valdés et al. (2013):

       R=P × 10.000S × 1.000× 14% H

      Where,

      R = the average maize grain yield in t ha−1;

      P = the maize grain weight in kilograms (kg);

      S = the harvest area in m2, and

      % H = the grain moisture content in %.

      Evaluation of Endo Mycorrhizal Infection of Maize Plant Roots

      Corn root samples were collected at the 80th DAS. After staining with trypan blue according to the method described by Phillips and Hayman (1970), arbuscular mycorrhizal fungi associated with maize plant roots were observed with binoculars (XSP-BM-2CEA. 2013). Estimation of mycorrhizal infection of roots was carried out according to the intersection method described by Giovanetti and Mosse (1980). The rate of mycorrhization was estimated by two parameters of arbuscular mycorrhizal infection described by Trouvelot et al. (1986), namely: (i) mycorrhization frequency (F), which reflects the degree of infection of the root system, and (ii) mycorrhization intensity or absolute mycorrhization intensity (m), which expresses the portion of the colonized cortex in relation to the entire root system, calculated according to Equations 2, 3, respectively.

      F(%)=(Nno)N

      where

      N is the number of fragments observed and

      no is the number of fragments with no trace of mycorhization;

      m(%)=95n5+ 70n4+30n3+ 5n2+ n1N no

      In Equation 3, n5, n4, n3, n2, and n1 are the numbers of fragments, respectively, noted in the five classes of infection marking the importance of mycorrhization, namely, 5: more than 95%; 4: from 50 to 95%; 3: 30 to 50%; 2: 1 to 30%; 1: 1% of the cortex.

      Statistical Analysis

      Data per site for all parameters assessed were collected. Mixed-effect linear models on longitudinal data were fitted to evaluate the effect of treatments and area on plant growth parameters (height and crown diameter). In each model, treatments and zones were considered fixed factors, and time was considered random. Adjusted averages were also calculated to represent trends in each growth parameter at the treatment and zone level. These analyses were performed using the nlme (for model fitting), and it means (for the calculation of adjusted averages) packages. Descriptive statistics were calculated for each growth parameter measured.

      In order to assess the effect of treatments and zone on yield and leaf area, it was evaluated using a two-criteria analysis of variance (treatment and zone). The Shapiro-Wilk and Levene tests (Glèlè Kakaï et al., 2006) were performed to verify the conditions of normality and homoscedasticity of the data required for ANOVA. As the experimental design was balanced, the ANOVA type II test was adopted. Once the ANOVA test was significant, a pairwise comparison post-hoc test using the Tuckey's post-hoc test (Douglas and Fligner, 1991) was performed to assess the statistical differences in the means. In addition, descriptive statistics were calculated for each measured parameter. These analyses required the use of the dplyr and DescTools packages for the calculation of descriptive statistics, the ggplot2, and ggpur packages for the mustache boxes, the stats package for the Shapiro test and Levene test, the car package for the ANOVA, and the multcomp package for the pairwise comparison post-hoc test.

      The significance threshold retained is 5%, and all the different tests were performed in R 4.0.2 software (R Core Team, 2020).

      Results Chemical Characteristics of the Soil

      The soil chemistry characteristics of the R&D Sites are presented in Table 1. The soil water pH in Zouzouvou (pH = 5.6), Ouénou (pH = 5.5), and Minifi (pH = 6.2) is acidic. Organic matter varies between 0.95 and 1.17%, while assimilable phosphorus has a respective value of 2 ppm at Zouzouvou, 11.7 ppm at Miniffi, and 6.9 ppm at Ouénou. Exchangeable bases vary between 1.82 and 7.84 meq/100 g of soil.

      Chemical characteristics of the study soil.

      Characteristics pH (water) OM (%) P-ass (ppm) C/N Sum of exchangeable bases (meq/100 g) CEC (meq/100 g)
      Miniffi 6.20 1.16 11.75 13.33 7.84 8
      Ouénou 5.54 0.95 6.91 6.88 1.82 4.64
      Zouzouvou 5.6 1.17 2 10.75 2.47 6.5

      pH(water); OM, organic matter; P-ass, assimilable phosphorus; C, carbon; N, Nitrogen; CEC, cation exchange capacity.

      Effect of the Mycorrhizal Fungus <italic>Rhizophagus intradices</italic> on the Growth of Maize Seedlings

      The results of the analysis of variance show that the height variations observed at the plant level depend only on the area (p-value < 0.0001) and over time (Table 2).

      ANOVA results of height and collar diameter.

      Sources of variation Height Collar diameter
      F-value p-value F-value p-value
      (Intercept) 334.5508 <0.0001 1,148.9774 <0.0001
      Time 140.5530 <0.0001 128.8457 <0.0001
      Treatment 0.1180 0.8888 74.4053 <0.0001
      Areas 56.2697 <0.0001 4.3320 0.0161
      Time:treatment 1.3592 0.2622 0.2867 0.7514
      Time:areas 22.5223 <0.0001 4.0523 0.0207
      Treatment:areas 1.5527 0.1941 20.1609 <0.0001
      Time:treatment:areas 0.5470 0.7017 0.7745 0.5447

      The bold values show the significance level of the different variables under study.

      The evolution of these average plant heights over time and by treatment are presented graphically by zone (Figure 2). From the figure, it appears that whatever the zone, the growth in height of the plants reaches its maximum around 60 days after sowing. The highest maize plant heights were observed in the south regardless of treatment. However, in the Center and North, the best heights were observed, respectively, at the level of plants treated with Ri½ N15P15K15_Urea (T2) and N15P15K15_Urea (T3), (Figure 2).

      Height variation by treatment and study area.

      The results of the analysis of variance show that the variations in collar diameter observed at the plant level depend on the treatments (p-value < 0.001) and on the zone (p-value = 0.016). However, these variations over time do not depend on the treatments (p-value = 0.751) but rather on the zone (p-value < 0.001), (Table 2).

      The curves of the evolution of the diameter at the collar of the plants over time and by treatment show these variations by zone (Figure 3). Thus, in general, and whatever the zone, the growth in diameter of the plants reaches its maximum around 60 days after sowing. The treatment Ri½ N15P15K15_Urea (T2) followed by N15P15K15_Urea (T3) induced the largest collar diameters (Figure 3) in the Center, while the largest collar diameter values were recorded with treatments Farmer's practice (T1) and N15P15K15_Urea (T3) in the South and North, respectively.

      Variation in collar diameter as a function of different treatments and study areas.

      From the analysis in Figure 4, it appears that the plants in the southern zone perform best for most treatments. The results of the analysis of variance show a significant difference in the effects of the interaction between treatment and zone (Df = 8, p-value = < 0.001) on the leaf area of the plants. It can be deduced that the variation in plant leaf area per treatment depends on the experimental area. The Tuckey's test performed (Figure 4) shows the difference in performance between the treatments according to each zone. Thus, the treatment N15P15K15_Urea (T3) in the South zone gives the best performance. Next comes the treatment Ri½ N15P15K15_Urea (T2) and treatment Farmer's practice (T1) in the southern zone, followed by the treatment N15P15K15_Urea (T3) in the northern zone. Treatments Ri½ N15P15K15_Urea (T2), and Farmer's practice (T1) in the northern zone have similar performances as the treatment N15P15K15_Urea (T3) in the central zone. The treatment Farmer's practice (T1) in the central zone, gives a low performance.

      Variation in maize plant leaf area as a function of treatments.

      Effect of the Mycorrhizal Fungus <italic>Rhizophagus intradices</italic> on Maize Grain Yield

      The analysis in Figure 5 shows that the plants in the Southern and Central zone perform best for most treatments. The results of the analysis of variance show a significant difference in the effects of the interaction between treatment and zone (Df = 8, p-value = < 0.001) on plant grain yield. This suggests that the variation in plant grain yield per treatment depends on the experimental area. The Tuckey's test performed (Figure 5) shows the difference in performance between the treatments according to each zone. Thus, the treatment N15P15K15_Urea (T3) in the South and Central zone gives the best performance (3.3 t ha−1). Next comes the treatment Ri½ N15P15K15_Urea (T2), (2.8 t ha−1) and the treatment Farmer's practice (T1) in the South and Central zones. The treatment Ri½ N15P15K15_Urea (T2) in the North zone has similar performances as the treatment N15P15K15_Urea (T3). Of all the zones, the treatment Farmer's practice (T1) in the North zone gives the lowest performance (1.6 t ha−1).

      Corn grain yield variation by treatment.

      Effect of the Mycorrhizal Fungus <italic>Rhizophagus intradices</italic> on the Mycorrhization of Maize Plant Roots

      Mycorhization frequencies in plants treated with the treatment Ri½ N15P15K15_Urea (T2) vary between 37.44 and 51.67% in the three zones (Figure 6). Mycorhization intensity varies between 6.19 and 27.02%. It should be noted, however, that we did not observe mycorhization at the root level of the plants treated with the treatment Farmer's practice (T1) and the plants treated with the treatment N15P15K15_Urea (T3). The results of the analysis of variance of mycorhization intensity and frequency in the three study areas revealed a significant difference (p < 0.001) in mycorhization intensity between the study areas, while the frequency of mycorhization was similar in the different study areas. The contact of the line with a given arc represents the mean value, while the horizontal line indicates the median. Thus, the high intensity of mycorhization is observed in the South of Benin. The intensities of mycorhization in the Center and in the North are similar.

      Boxplot of mycorrhization across study areas: frequency of colonization (A); intensity of colonization (B).

      Discussion

      The chemical characteristics of our study soils show that organic matter varies between 0.95 and 1.17%, while assimilable phosphorus had a respective value of 2 ppm in the South, 47.5 ppm in the Center, and 6.7 ppm in the North. Exchangeable bases varied between 1.82 and 7.84 meq/100 g of soil. The chemical characterizations show that the experimental soils in the South, Center, and North were acidic and moderately poor (Sys et al., 1993). Moreover, soil contents in organic matter, phosphorus, and exchangeable bases are good for an expression of the effects of NPK mineral fertilizers (Igué et al., 2015). The water pH of the study soils varies between 5.5 and 6.20, which shows that our study soils are acidic. According to Davet (1996), AMF are preponderant in acidic soils. The pH influences the activity of soil microorganisms that participate in the mineralization of organic matter as well as that of mycorrhizal fungi (Parent and Gagné, 2010). Coughlan et al. (2000) demonstrated a positive correlation of pH with the quality and quantity of intra-root colonization. They stated that mycorrhizal colonization is high at pH levels between 5 and 7, but low at pH levels around 4, as the adaptation of fungi to different pH levels varies between species. In soils with pH between 7 and 7.6 R. intraradices colonizes more the roots of plants to stimulate their growth.

      The contribution of arbuscular mycorrhizal fungi had a significant effect on maize plant growth. Indeed, the application of Ri½ N15P15K15_Urea induced better growth of maize plants compared with the Farmer's practice and those receiving N15P15K15_Urea in Southern Benin, while in Central and Northern Benin, it was the Ri½ N15P15K15_Urea and N15P15K15_Urea treatments that generated the greatest growth variables. These results are in agreement with those obtained by Ndoye et al. (2016) in Senegal who revealed that inoculation with arbuscular mycorrhizal fungi (Glomus manihotis) significantly improved the growth (+28.5%) of fonio (Digitaria exilis Stapf) under semi-controlled conditions. Also, (Sánchez-Roque et al., 2016) also observed a positive effect of AMF inoculation on three pepper varieties.

      As for corn grain yield, the results of the analysis of the means revealed a significant difference. Ri½ N15P15K15_Urea had generated the highest yields in the Center, while N15P15K15_Urea had induced the highest yields in the South. However, there was no significant difference between the three treatments in the North with low performance. Indeed, grain yields obtained in the South was 1.95 t ha−1 with the contribution of Ri½ N15P15K15_Urea. These grain yield values are 28% higher than the grain yield obtained from the plants treated with Farmers' practices (without AMF, with N15P15K15_Urea). Plants that received N15P15K15_Urea in Central Benin had an average yield of 2.5 t ha−1, and those that received Ri½ N15P15K15_Urea yielded around 3.4 t ha−1. In North Benin, there was no significant difference between the three treatments. These differences in yield are due to several factors such as the functional diversity of AMF and environmental conditions as so well-noted by (Walder and Van Der Heijden, 2015).

      Grain yield was higher on ferruginous soil in the Center compared with yields in the North and South. This is explained by a good level of assimilable phosphorus (11.75 ppm), which was higher than in the ferruginous soils of the North (6.91 ppm) and ferralitic soils of the South (2 ppm) in this study. In addition, the soils of Central Benin have an organic matter rate of 1.16% and a pH in water (6.2) allowing a good expression of R. intraradices, which shows a good colonization of plant roots in soils with a pH between 7 and 7.6. Rivera et al. (2003) in Cuba, Assogba et al. (2017), and Aguégué et al. (2021) in Benin also observed a 35–50% increase in maize yields compared with the control (without AMF or mineral fertilizers) following the application of N15P15K15_Urea, which created a commercial strain. It should be noted that other factors such as temperature and pest attacks may explain the differences in yield observed from one area to another. According to the work of Hasanuzzaman et al. (2013), high temperatures in the northern zone of the country affected plant growth and development through mechanisms described by delayed growth rate, drop in biomass production, leaf and reproductive organ burning, leaf abscission and senescence, fruit damage and, in turn, yield reduction and cell death. Through symbiosis, AMF established mycorrhiza with their hosts (Nadeem et al., 2014; Zhang et al., 2017) and reduced drought-related consequences (Yooyongwech et al., 2016; Moradtalab et al., 2019). Thus, hosts benefited more often from increased access to nutrients with improved growth and yield (Hart et al., 2014; Liu et al., 2016; Chen et al., 2017). Also, the release of nitrogen from mineral fertilizers increased yield and its components (Torbert et al., 2001; Nyembo et al., 2012). Bakonyi and Csitári (2018) made the same observations, showing that AMF inoculation increased wheat grain yield from 7.52 to 8.17 t ha−1 in the same way as mineral fertilization (7.38 to 8.31 t ha−1).

      The frequency of mycorhization of maize roots in this study was low. Root colonization of maize plants ranged from 6.19 to 27.02%. These values are low in comparison with the work of Rivera et al. (2003) and Tian et al. (2013), which showed a 76–80% colonization of maize roots as a result of the combination of arbuscular mycorrhizal fungi with the recommended half-dose of mineral fertilizer during and after moderate states of hydric stress. Ndoye et al. (2016) observed the highest mycorhization frequencies and intensities of fonio root mycorhization with G. aggregatum and R. irregularis. On the other hand, Incesu et al. (2015) observed higher rates of root colonization of Diospyros virginiana with R. irregularis and G. caledonium compared with other AMF species (G. etunicatum, Funneliformis mosseae, and G. clarium). However, it is important to note that above 12% mycorhization intensity, the benefits derived by the plant symbiote are not negligible (Diagne et al., 2013).

      Conclusion

      The results of this study showed that Ri½ N15P15K15_Urea had a positive impact on all the variables of grain growth and yield while reducing by half the use of mineral fertilizers at the different Research and Development Sites of Ouénou, Miniffi, and Zouzouvou. These results show that mycorhization of maize could play an important role in improving the growth and yield of maize plants and, thus, contribute to the development of methods that are environmentally friendly and guarantee sustainable agriculture in Benin. Further work is needed to better understand the behavior of AMF on maize growth and productivity, and soil fertility management in a large number of producers in order to make recommendations on the use of these fungus-based biofertilizers.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Author Contributions

      This work was carried out in collaboration with all authors. RA, SA, HSa, AK, NAg, and OA conducted the trial set-up, data collection, and harvesting. RA wrote the first draft of the manuscript and managed the bibliographical research. KS with RGK performed the statistical analysis. NAh, HSi, GD, AA, and LB-M wrote the protocol, managed the study analyses, and supervised the various activities. All authors read and approved the final manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher's Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      The authors thank the National Institute of Agricultural Research of Benin, West Africa Agricultural Productivity Program (WAAPP) and Center National de Spécialisation-Maïs (CNS-Maïs) for funding this work.

      References Adjanohoun A. Baba-Moussa L. Glèlè kakaï R. Allagbé M. Yèhouénou B. Gotoechan-Hodonou H. . (2011). Caractérisation des rhizobactéries potentiellement promotrices de la croissance végétative du maïs dans différents agrosystèmes du Sud-Bènin. Int. J. Biol. Chem. Sci. 5, 433444. Aguégué M. R. Nestor R. A. A. Nadège A. A. Pâcome N. A. Sylvestre A. Hafiz S. . (2021). Efficacy of native strains of arbuscular mycorrhizal fungi on maize productivity on ferralitic soil in Benin. Agri. Res. 11, 1-9. 10.1007/s40003-021-00602-7 [Epub ahead of print]. Alalaoui A. C. (2007). Fertilisation minérale des cultures: les éléments fertilisants majeurs (Azote, Potassium et Phosphore). Bull. Mensuel Inform. Liaison 155, 14. Alqarawi A. Hashem A. Abd_Allah E. Alshahrani T. Huqail A. (2014). Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biol. Hung. 65, 6171. 10.1556/ABiol.65.2014.1.624561895 Assogba S. Noumavo A. P. Dagbenonbakin G. Agbodjato A. N. Akpode C. Koda D. A. . (2017). Improvement of maize productivity (zea mays l.) By mycorrhizal inoculation on ferruginous soil in center of Benin. Int. J. Sustain. Agric. 4, 63-76. 10.18488/journal.70.2017.43.63.76 Bakonyi I. Csitári G. (2018). Response of winter wheat to arbuscular mycorrhizal fungal inoculation under farm conditions. Columella 5, 5158. 10.18380/SZIE.COLUM.2018.5.1.51 Balogoun I. Saïdou A. Ahoton E. L. Amadji G. L. Ahohuendo C. B. Adebo J. B. (2014). Characterization of cashew based production system in the main growing areas in Benin. Agron. Afr. French 26, 922. Batamoussi M. H. Oga C. A. Sèkloka E. Saïdou A. (2014). Effects of different formulations of mineral fertilizers on the agronomic parameters of maize (Zea mays) in the climate change conditions of central Benin. Int. J. Adv. Sci. 4, 3135. Bedini A. Mercy L. Schneider C. Franken P. Lucic-Mercy E. (2018). Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defence triggering the endomycorrhizal symbiosis behavior. Front. Plant Sci. 9:1800. 10.3389/fpls.2018.0180030619390 Benbrahim K. F. Ismaili M. Benbrahim S. F. Tribak A. (2004). Problèmes de dégradation de l'environnement par la désertification et la déforestation: impact du phénomène au Maroc. Sci. Chang. Planét. Sécher. 15, 307320. Berruti A. Lumini E. Balestrini R. Bianciotto V. (2016). Arbuscular mycorrhizal fungi as natural biofertlizers: let's benefit from past successes. Front. Microbiol. 6:1559. 10.3389/fmicb.2015.0155926834714 Bi Y. Zhang Y. Zou H. (2018). Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. Int. J. Coal Sci. Technol. 5, 47-53. 10.1007/s40789-018-0201-x Bray R. H. Kurtz L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 3946. Chen S. Zhao H. Zou C. Li Y. Chen Y. Wang Z. . (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front. Microbiol. 8:2516. 10.3389/fmicb.2017.0251629312217 Coughlan A. P. Dalpé Y. Lapointe L. Piché Y. (2000). Soil pH-induced changes in root colonization, diversity, and reproduction of symbiotic arbuscular mycorrhizal fungi from healthy and declining maple forests. Can. J. For. Res. 30, 1543-1554. 10.1139/x00-090 Davet P. (1996). Vie microbienne du sol et production végétale. Editions Quae. Paris: Institut National de la Recherche Agronomique. Diagne N. Thioulouse J. Sanguin H. Prin Y. Krasova-Wade T. Sylla S. . (2013). Ectomycorrhizal diversity enhances growth and nitrogen fixation of Acacia mangium seedlings. Soil Biol. Biochem. 57, 468476. 10.1016/j.soilbio.2012.08.030 Douglas C. E. Fligner M. A. (1991). On distribution-free multiple comparisons in the one-way analysis of variance. Commun. Stat. Theory Methods 20, 127-139. 10.1080/03610929108830487 Eisenhauer N. (2017). Consumers control carbon. Nat. Ecol. Evol. 1, 1596-1597. 10.1038/s41559-017-0352-y28993613 Fernandez F. Gómez R. Vanegas L. F. Martýnez M. A. de la Noval B. M. Rivera R. (2000). Producto inoculante micorrizógeno. Oficina Nacional de Propiedad Industrial. Ferro Valdés E. M. Chirino González E. Márquez Serrano M. Mirabal Báez E. Ríos Labrada H. Guevara Hernández F. . (2013). Experiencias obtenidas en el desarrollo participativo de híbridos lineales simples de maíz (Zea mays, L.) en condiciones de bajos insumos agrícolas. Cult. Trop. 34, 6169. Giovanetti M. Mosse B. (1980). An evaluation for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol. 84, 489500. 10.1111/j.1469-8137.1980.tb04556.x Glèlè Kakaï R. Sodjinou E. Fonton N. (2006). Conditions d'Application des Méthodes Statistiques Paramétriques: Application sur Ordinateur. Bénin: Bibliothèque Nationale, 86. Hailemariam M. Birhane E. Asfaw Z. Zewdie S. (2013). Arbuscular mycorrhizal association of indigenous agroforestry tree species and their infective potential with maize in the rift valley, Ethiopia. Agrofor. Syst. 87, 1261-1272. 10.1007/s10457-013-9634-9 Hart M. M. Gorzelak M. Ragone D. Murch S. J. (2014). Arbuscular mycorrhizal fungal succession in a long-lived perennial. Botany 92, 313320. 10.1139/cjb-2013-0185 Hasanuzzaman M. Gill S. S. Fujita M. (2013). Physiological role of nitric oxide in plants grown under adverse environmental conditions, in Plant Acclimation to Environmental Stress (New York, NY: Springer), 269-322. 10.1007/978-1-4614-5001-6_11 Hernandez J. A. Olmos E. Corpas F. J. Sevilla F. Del Rio L. A. (1995). Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 105, 151167. 10.1016/0168-9452(94)04047-8 Igué A. M. Adjanohoun A. Aǐhou C. Mensah G. A. (2015). Document Technique d'Information: Evaluation de l'état de la fertilité des sols champs des producteurs élites de maïs du Bénin. Dépôt légal N° 8116 du 09/09/2015. Trimestre: Bibliothèque Nationale (BN). Incesu M. Yepilðdlu T. Cimen B. Yilmaz B. (2015). Influences of different iron levels on plant growth and photosynthesis of W. Murcott mandarin grafted on two rootstocks under high pH conditions. Turk. J. Agric. For. 39, 838844. 10.3906/tar-1501-25 Kjedahl J. (1883). Method for the Quantitative Determination of Nitrogen in Chemical Substances. Copenhague: Carlberq Laboratory. Liu A. Chen S. Wang M. Liu D. Chang R. Wang Z. . (2016). Arbuscular mycorrhizal fungus alleviates chilling stress by boosting redox poise and antioxidant potential of tomato seedlings. J. Plant Growth Regul. 35, 109-120. 10.1007/s00344-015-9511-z MAEP (2016). Catalogue Béninois des Espèces et Variétés végétales (CaBEV), 2ème Edn. Ministère de l'Agriculture de l'Elevage et de la Peche; INRAB/DPVPPAAO/ProCAD/MAEP and CORAF/WAAPP, Dépôt légal N 8982 du 21 octobre 2016, Bibliothèque Nationale du Bénin, 4ème trimestre. Available online at: http://inrab.org/wp-content/uploads/2018/01/CaBEV-interactif-2.pdf (accessed January 25, 2021). Metson A. J. (1957). Methods of chemical analysis for soil survey samples. Soil Sci. 83:245. 10.1097/00010694-195703000-00016 Moradtalab N. Hajiboland R. Aliasgharzad N. Hartmann T. E. Neumann G. (2019). Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9:41. 10.3390/agronomy9010041 Nadeem S. M. Ahmad M. Zahir Z. A. Javaid A. Ashraf M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32, 429448. 10.1016/j.biotechadv.2013.12.00524380797 Ndoye F. Abdala G. D. Moustapha G. Diomacor F. Adeline B. Mame O. S. . (2016). Réponse du fonio blanc (Digitaria exilis Stapf) à l'inoculation avec des champignons mycorhiziens à arbuscules en conditions semi-contrôlées. J. Appl. Biosci. 103, 97849799. 10.4314/jab.v103i1.1 Nyembo K. L. Useni S. Y. Mpundu M. M. Bugeme M. D. Kasongo L. E. Baboy L. L. (2012). Effect of increasing doses of the mineral fertilizer (NPKS and Urea) on maize (Zea mays L.) yield and profitability in Lubumbashi, Southeast of the DR Congo. J. Appl. Biosci. 59, 42864296. Oehl F. Alves a Silva G. Goto B. T. Costa Maia L. Sieverding E. (2011). Glomeromycota: two new classes and a new order. Mycotaxon 116, 365-379. 10.5248/116.365 Parent L. E. Gagné G. (2010). Guide de référence en fertilisation. Centre de référence en agriculture et agroalimentaire du Québec. Phillips J. M. Hayman D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158IN18. 10.1016/S0007-1536(70)80110-3 R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Rivera R. Fernández F. Hernández-Jiménez A. Martín J. R. Fernández K. (2003). El manejo efectivo de la simbiosis micorrízica, una vía hacia la agricultura sostenible, in Estudio de caso, el Caribe, eds Rivera R. Y. Fernández K. (La Habana: Ediciones Instituto Nacional de Ciencias Agrícolas), 1-42. Ruget F. Bonhomme R. Chartier M. (1996). A simplified method for estimating the leaf area growth of field-grown maize from a reduced number of measurements. Agronomie 9, 553561. Sánchez-Roque Y. Pérez-Luna Y. Becerra-Lucio A. Alvarez-Gutiérrez P. Pérez-Luna E. González-Mendoza D. . (2016). Effect of arbuscular mycorrhizal fungi in the development of cultivars of Chili. Int. J. Adv. Agric. Res. 4, 1015. Sendek A. Karakoç C. Wagg C. Domínguez-Begines J. do Couto G. M. van der Heijden M. G. . (2019). Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci. Rep. 9, 1-15. 10.1038/s41598-019-45702-131273222 Sys C. Van Ranst E. Debaveye J. Beenaert F. (1993). Land Evaluation Part III. Crop Requirements. Agriculture publication, 166. Tchabi A. Coyne D. Hountondji F. Lawouin L. Wiemken A. Oehl F. (2008). Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18, 181195. 10.1007/s00572-008-0171-818386078 Tian H. Drijber R. A. Li X. Miller D. N. Wienhold B. J. (2013). Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.).Mycorrhiza 23, 507514. 10.1007/s00572-013-0491-123467773 Torbert H. A. Potter K. N. Morrison J. E. (2001). Tillage system, fertilizer nitrogen rate, and timing effect on corn yields in the Texas Blackland Prairie. Agron. J. 93, 11191124. 10.2134/agronj2001.9351119x Trouvelot A. Kough J. L. Gianinazzi-Pearson V. (1986). Mesure du taux de mycorhization VA d'un syste‘me radiculaire. Recherche de methode d'estimation ayant une signification fonctionnelle, in Physiological and Genetical Aspects of Mycorrhizae: Proceedings of the 1st European Symposium on Mycorrhizae (Dijon), 217221. Usharani G. Sujitha D. Sivasakthi S. Saranraj P. (2014). Effect of arbuscular Mycorrhizal (AM) fungi (Glomus fasciculatum L.) for the improvement of growth and yield of maize (Zea mays L.). Centr. Eur. J. Exp. Biol. 3, 1925. van der Heijden M. G. Martin F. M. Selosse M. A. Sanders I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406-1423. 10.1111/nph.1328825639293 Walder F. Van Der Heijden M. G. (2015). Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1, 17. 10.1038/nplants.2015.15927251530 Walkley A. Black I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29-38. 10.1097/00010694-193401000-00003 Wall D. H. Nielsen U. N. Six J. (2015). Soil biodiversity and human health. Nature 528, 69-76. 10.1038/nature1574426595276 Yooyongwech S. Samphumphuang T. Tisarum R. Theerawitaya C. Cha-Um S. (2016). Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci. Hortic. 198, 107117. 10.1016/j.scienta.2015.11.002 Zhang H. Wei S. Hu W. Xiao L. Tang M. (2017). Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum. Front. Plant Sci. 8:440. 10.3389/fpls.2017.0044028424720
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016lztpv.net.cn
      kjfafa.com.cn
      www.gxxsgj.com.cn
      www.kmohgr.com.cn
      savebox.net.cn
      www.nbhongyuan.com.cn
      www.shuaqb.net.cn
      www.rjshjf.com.cn
      www.qzqosy.com.cn
      pcyfoh.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p