Front. Sustain. Food Syst. Frontiers in Sustainable Food Systems Front. Sustain. Food Syst. 2571-581X Frontiers Media S.A. 10.3389/fsufs.2018.00057 Sustainable Food Systems Original Research Beyond Calories: A Holistic Assessment of the Global Food System Ritchie Hannah * Reay David S. Higgins Peter University of Edinburgh, Edinburgh, United Kingdom

Edited by: Pietro Paolo Michele Iannetta, James Hutton Institute, United Kingdom

Reviewed by: Daniela Moura de Oliveira Beltrame, Biodiversity for Food and Nutrition, Brazil; Hamid El Bilali, Istituto Agronomico Mediterraneo di Bari, Italy; Michael A. Grusak, Children's Nutrition Research (USDA-ARS), United States

*Correspondence: Hannah Ritchie hannah.ritchie@ed.ac.uk

This article was submitted to Nutrition and Environmental Sustainability, a section of the journal Frontiers in Sustainable Food Systems

14 09 2018 2018 2 57 30 01 2018 20 08 2018 Copyright © 2018 Ritchie, Reay and Higgins. 2018 Ritchie, Reay and Higgins

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The global food system is failing to meet nutritional needs, with growing concerns for health related to both under-, over-consumption and severe micronutrient deficiency. The 2nd Sustainable Development Goal (SDG2) targets the end of malnutrition in all forms by 2030. To address this challenge, the focus around food security and malnutrition must be broadened beyond the scope of sufficient energy intake to take full account of total nutrient supply and requirements. Here, for the first time, we have quantitatively mapped the global food system in terms of energy, protein, fat, essential amino acids, and micronutrients from “field-to-fork,” normalized to an equitable per capita availability metric. This framework allows for the evaluation of the sufficiency of nutrient supply, identifies the key hotspots within the global food supply chain which could be targeted for improved efficiency, and highlights the trade-offs which may arise in delivering a balanced nutritional system.

global food system nutrition food availability food losses sustainable food

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction Global malnutrition burden

      The global food system is currently failing to meet the nutritional needs of a growing human population (FAO et al., 2015; FAO, 2017b). The standard measure of poor nutrition—caloric hunger—indicates that 795 million (one-in-nine) people were undernourished in 2014–2016 (FAO, 2017b). The Food and Agriculture Organization (FAO)'s most recent analysis suggests that under business-as-usual (BAU) progress, by 2030, 653 million people will remain undernourished globally (FAO, 2017b). These metrics, however, severely underestimate the scale of the challenge in delivering a nutritionally-sufficient diet for everyone (Sukhdev et al., 2016). Malnutrition exists in various forms beyond insufficient energy intake: it's estimated that approximately one billion people suffer from protein deficiency (Wu et al., 2014); one-third of under-5 s are stunted (low height-for-age; Ahmed et al., 2012); more than two billion suffer from micronutrient deficiencies (also known as “hidden hunger”; von Grebmer et al., 2014); and paradoxically two billion adults are classified as overweight or obese, with strong links to an alarming rise in the prevalence of non-communicable diseases (NCDs), such as type-II diabetes and heart disease (International Food Policy Research Institute, 2016). This challenge exists across countries of all income levels, with a growing number of developing nations experiencing a “triple burden”—an increase in the prevalence of obesity in parts of the population alongside the wide prevalence of undernourishment and micronutrient deficiencies (Alexandratos and Bruinsma, 2012). The widespread and multifaceted nature of malnutrition not only comes at a severe social cost, but also an economic one. It's estimated that malnutrition could negatively impact global gross domestic product by 10% per year (Horton and Steckel, 2011).

      The Millennium Development Goals largely limited measures of malnutrition to energy undernourishment (United Nations, 2001). The Sustainable Development Goals (SDGs) have broadened this perspective to include the ambition to end all forms of malnutrition (SDG2) by 2030 (United Nations, 2015a), making this challenge inclusive of all countries at all income levels. Whilst the importance of nutrition is exemplified in the second SDG (SDG2), malnutrition forms a core component of many of the other SDGs, with highly relevant indicators in gender equality, healthy life, poverty, reducing inequality, education, peace and justice, and growth and employment (International Food Policy Research Institute, 2016). The co-dependence of agriculture and environment means it is also tightly linked to Goals 13–15, concerned with climate change, oceans and terrestrial ecosystems. In particular, global food production must adapt to environmental change, but also play a key role in climate change mitigation (IPCC, 2014).

      The inadequacy of a caloric-based outlook to, by itself, address these challenges has led to recent calls for a major reframing of our global approach to malnutrition and food research (Haddad et al., 2016; Sukhdev et al., 2016). A few fundamental components emerge as crucial to this shift: the food system must be reviewed with the inclusion of all essential nutritional elements; holistically, across the full agricultural and food value chain to identify entry points for change; and with relevant metrics which can be more widely understood and communicated.

      Research aims

      Here, for the first time, we have mapped the global flow of all essential nutritional components—including energy, protein, fat, micronutrients (essential vitamins and minerals), and amino acids—from “field-to-fork,” assuming per capita equity (i.e., utilizing an average per capita metric) availability. This was quantified drawing upon the FAO's Food Balance Sheets (FBS) for 2011 (the latest complete dataset available; FAO, n.d.), FAO regional commodity waste estimates (FAO, 2011b); and FAO and the United States Department of Agriculture (USDA) nutrient databases (FAO, 2001, 2016; USDA, 2016; see Methods).

      This analysis serves several purposes. Firstly, by measuring average nutrient intakes relative to recommended requirements, it reviews the capacity with which the current food system could sufficiently nourish the current global population through equitable distribution. Secondly, it identifies the key system inefficiencies, which can be compared both across stages of the value chain and across nutrients, to better understand the entry points which can be targeted for improved efficiency. These entry points may differ between macro- and micronutrients, making a holistic analysis crucial to recognizing the trade-offs and balance in optimizing both. This will allow for further quantification and analysis of the capacity of the food system to meet growing nutritional demands through time, and SDG targets by 2030. Whilst this has been evaluated previously in the form of caloric supply (Cassidy et al., 2013; BajŽelj et al., 2014), this discussion must be extended to all essential nutrients if SDG2 is to be met.

      There are three core components necessary to deliver an effective food system for everyone:

      a sufficient range of food items necessary for a diet of balanced nutritional quality must be produced and available for consumption at the household level;

      a sufficient range of commodities must be regionally and locally accessible for consumers;

      a diverse range of nutritious products must be affordable for consumers at all income levels.

      Our analysis primarily focuses on the first of these three components. By normalizing to an average per capita metric, such an analysis fails to capture the global inequalities in nutrient availability and intake which exist, and that are reflected in the latter two components. However, the framework utilized in this study holds merit in its replicability: it can be easily scaled for use at a range of levels including regional, national or local contexts. In this case, such analyses can prove effective in assessing the capability of national food systems or trade to meet domestic nutritional requirements.

      Methods Nutrient availability estimates

      The global food system was mapped from crop production through to per capita food consumption using FAO Food Balance Sheets (FBS) from its FAOstats databases (FAO, n.d.). FBS provide quantitative data (by mass) on production of food items and primary commodities, and their utilizations throughout the food supply chain. Such data are available at national, regional and global levels. To maintain consistency and ensure use of the best-available data throughout the analysis, FAO data have been utilized at all possible stages. Food Balance Sheet data for 2011 have been used, these being from the latest full dataset available.

      Food Balance Sheets provide mass quantities across the supply chain. In this analysis, we include all stages of the supply chain available within the FBS (with exception of post-harvest losses and wastage, which are further disaggregated as described in section Food Wastage Estimates): crop production, exports, imports, stock variation, re-sown produce, animal feed, other non-food uses, and food delivered to households. Data on all edible food items and commodities across all food groups are included within these balances; a full list of included commodities are detailed in Supplementary Table 1. In calculation of animal feed production in the form of oilcakes, FAO figures were normalized to primary crop equivalents based on cake-to-crop conversion factors applied by Davis and D'Odorico (Davis and D'Odorico, 2015).

      In order to estimate the total nutrient value in the eight supply chain stages above, mass quantities of each food commodity (for example, tons of wheat, rice, soyabeans) were multiplied by energy (kcal), fat and protein content of each key food item/commodity (for example, 350 kilocalories per 100 g; FAO, 2001). This therefore gives the total quantity of kilocalories, grams of protein and fat at each stage of the global supply chain.

      Food wastage estimates

      FBS provide a single value of supply chain losses for each commodity—grouped as a single category “losses.” Here we have attempted to provide food loss and waste figures by specific stage in the supply chain. Our disaggregated food loss figures have been calculated based on the commodity-specific regional percentages provided in other FAO literature (FAO, 2011b). These percentage figures break food losses down across seven commodity groups and five supply chain stages (agricultural production, post-harvest handling and storage, processing and packaging, distribution and consumption). The applied percentage values by commodity type and supply chain stage are provided in Supplementary Table 2. Food losses at each of the five loss or wastage stages were therefore first estimated by region (using mass quantities and percentage loss figures by region), and summed in order to derive a global figure.

      It's important to note that the FAO FBS report final nutrient figures as “food availability”—these figures have not been corrected for consumption wastage, meaning they often overestimate final consumption. In this study we have attempted to correct for consumption-level wastage by applying the “consumption” commodity-specific percentage loss figures (one of the five stages of loss and wastage defined above) and subtracting from “food availability” figures. This provides a more precise indication of food availability—here, we have referred to final food availability as “residual food availability.”

      Corrections for protein quality, amino acid and micronutrient availability

      Protein quality is a key concern for many developing nations as a result of a predominance of grain-based diets, with grains tending to have poorer digestibility and amino acid (AA) profiles than animal-based products and plant-based legume alternatives (Swaminathan et al., 2012; Wu, 2016). Whilst cereal-dominant diets may meet total protein requirements, protein intake is often of poor quality and insufficient to meet actual nutritional requirements (Bouis et al., 2011).

      Taking full account of protein quality impacts would require quantification based on the FAO's recommended Protein Digestibility Corrected Amino Acid Score (PDCAAS) and, more recently, the Digestible Indispensable Amino Acid (DIAA) score (WHO/FAO/UNU Expert Consultation, 2007; FAO, 2011a). These scoring systems calculate protein quality based on a food's most limiting AA. Although ideal for the assessment of protein quality in individual food items, and occasionally applied for analysis of simple dietary composition, PDCAAS and DIAA methods present significant challenges when applied to an aggregate of 100+ food items—limiting AA's, for example, can cancel out between different food items (FAO, 2011a). To best quantify limitations in protein quality, protein intakes have therefore been corrected for digestibility using FAO digestibility values (World Health Organization, 1991), with amino acid profiles analyzed separately. The production and distribution of individual indispensable amino acids (FAO, 2011a) were quantified using FAO and USDA composition databases (FAO, 2016; USDA, 2016).

      The sufficiency and requirements of AA intake is measured differently to that of macro- and micronutrients. Whilst the latter are measured in terms of total consumption, AAs are quantified relative to grams of protein intake (mg amino acid per gram of total protein; WHO/FAO/UNU Expert Consultation, 2007). An amino acid is considered to be “limiting” if its relative (mg g protein−1) quantity falls below its AA-specific requirement. When this occurs, protein synthesis cannot proceed beyond the rate at which the limiting AA is available (FAO, 2011a). In other words, overall protein utilization (the total quantity of protein used in the body) is only as effective as its limiting AA. Since amino acid limitation is defined based on AA contents per gram of protein, the relative AA values were calculated using the total protein content at each supply chain stage.

      In a similar manner to macronutrients, micronutrients were quantified at each stage of the food chain by multiplying mass quantities of specific commodities by their equivalent micronutrient contents from FAO INFOODS (FAO, 2016) composition and USDA nutrient databases33. It's important to note that our study attempts to quantify the average supply and availability of nutrients through the commodity chain—micronutrients can additionally be lost through processes such as cooking (World Health Organization, 2005), impacting on the true level of consumption in individuals. These additional losses are difficult to quantify. As such, we might consider our results to be an upper estimate on micronutrient availability. In this analysis, we have selected eight micronutrients which are typically analyzed in nutritional assessment: calcium, iron, zinc, folate, and vitamins A, B6, B12, and C.

      It should be noted that this analysis considers only natural micronutrient sources within the commodity chain. Vitamins and minerals are frequently added to food products at the processing stage (Miller and Welch, 2013). This food fortification process is widely implemented across many developed nations, and can be an essential source of key micronutrients. Such practices are, however, largely absent across most developing nations where natural dietary sources of micronutrients are also likely to be lowest.

      Assessment of nutritional sufficiency

      For consistency, and to provide a better understanding of the food system down to the individual level, all metrics have been normalized to average per person per day (pppd) metric—this was calculated by dividing total nutrient contents by 2011 global population figures from UN population data (United Nations, 2015b). This therefore provides an average value, assuming equitable distribution across the population.

      In order to assess the capacity of the global food system to deliver sufficient nutrients for all, this average pppd nutrient availability was compared relative to energy, macronutrient, amino acids and micronutrient recommended requirements. We acknowledge that nutritional requirements vary significantly between individuals depending on gender, age, size, and levels of activity—this study is unable to capture such heterogeneity. However, it does provide an important comparison of equitable average availability and average recommended requirement.

      In this study we have defined caloric requirements by the World Health Organization's (WHO's) minimum threshold of 2,100 kcal pppd (UNHCR/UNICEF/WFP/WHO, 2004) and 50 g pppd of protein (World Health Organization, 1991). Daily requirements for fatty acids are less straightforward to determine, relative to energy or protein—there is no widely-agreed figure for total fat requirements for adequate nutrition (FAO/WHO, 2008). A commonly adopted recommended level of fat intake in national dietary guidelines is 70 g pppd of total fat (FAO, 2017a), however this should not be interpreted as absolute requirements in the manner of energy or protein. The resolution of food balance sheet data does not allow us to adequately quantify the availability to the level of specific fatty acids. As a result, although we have mapped pathways of total fat availability through the food system in a similar manner to energy and protein, we have not here attempted to quantity the prevalence of potential insufficiency.

      Micronutrient Estimated Average Requirement (EAR) values were used to determine recommended dietary requirements. EAR is defined as the median required intake and is based on the assertion that nutrient intake and requirements are independent; the distribution of requirements falls symmetrically around the EAR value; and the distribution of nutrient intakes is much larger than that of requirements (World Health Organization, 2005). Micronutrient requirements—in contrast to some dietary needs such as energy, which have larger inter-individual variabilities in requirement—meet these criteria. Individuals which fall below the EAR value are deemed to be at risk of deficiency. This means that in order to ensure global requirements are met, all intakes must surpass the EAR (not just the average intake). WHO guidelines (World Health Organization, 2005; WHO/FAO/UNU Expert Consultation, 2007) and recommended demographic requirements for calculation of global population EARs (for individuals >12 months of age) have been followed using UN age and gender demographic data (United Nations: Department of Social Economic Affairs, 2013). Full data on EARs by age and gender group, and population weightings are provided in Supplementary Tables 3, 4. Individuals which fall below EAR values are defined as being at risk of deficiency.

      Amino acid requirements and sufficiency are more complex to assess since they are dependent on total protein intake. Here we have derived a population-weighted average requirement based on AA-specific concentration requirements by age and demographic data. UN age and gender demographic data is provided in Supplementary Table 3. AA requirements by age are provided in Supplementary Table 5, and are taken from WHO recommendations (WHO/FAO/UNU Expert Consultation, 2007). WHO estimates are derived assuming individuals' total protein intake meets requirements for their body mass (i.e., they meet the grams of protein per kilogram of body mass requirement).

      Results and discussion Energy and macronutrients

      The three nutrient pathways (energy, protein and fat) from agricultural production through to food eaten are shown in Figures 1A–C.

      Production and losses in the global food system from “field to fork” in 2011. Food pathways in (A) calories; (B) digestible protein; and (C) fat from crop production to residual food availability, normalized to average per capita levels assuming equal distribution. Red bars (negative numbers) indicate food system losses; green bars indicate meat and dairy production; and gray bars indicate macronutrient availability at intermediate stages of the chain with the minimum average requirement shown in black.

      Caloric pathways in the food system are the most well-documented to date. Our analysis indicates an average global per capita availability of 2,687 kcal pppd in 2011, well above the minimum requirements of 2,100 kcal pppd. Our figure is slightly lower than the FAO's reported average caloric supply of 2,869 kcal pppd (FAO, n.d.), since we have attempted to estimate residual availability after correction for wastage at the consumption level. This is in contrast to FAO figures, which reports food available for consumption, without correction for wastage at the consumer level (FAO, 2001). This result—that globally we produce more than enough to meet current energy needs if equitably distributed—is already well-established (Foley et al., 2011; Cassidy et al., 2013; BajŽelj et al., 2014). Our analysis provides further support for this conclusion. In reality, an estimated two billion overconsume, and close to 800 million are left undernourished (International Food Policy Research Institute, 2016).

      Results of this analysis suggest that, once corrected for digestibility, average protein availability was 63 g pppd. Despite surpassing the 50 g pppd minimum requirement, the distribution of intakes around this average value is likely to be larger than that of energy; the unit costs of protein are generally higher than that of carbohydrates or fats, making protein more income-dependent than energy intake (Drewnowski, 2010). This is particularly important for many developing nations where consumption of animal-based products and plant-based alternatives such as pulses are often low (Dror and Allen, 2011; Varadharajan et al., 2013). Protein quality is an important factor to consider in evaluating whether intake is sufficient. Studies often report that average regional or national intakes meet 50 g pppd requirements (Ranganathan et al., 2016), however, there are examples of low- and middle-income countries—such as India—where dominant protein sources are cereal- or plant-based, where average intake can fall below this requirement once digestibility has been considered (Ritchie et al., 2018).

      Our analysis suggests that, with equitable distribution, availability of fat would have been 105 g pppd in 2011—well above the 70 g pppd typically recommended in national dietary guidelines (FAO, 2017a). It is well-established that individual intakes of dietary fat are often in excess of recommended guidelines, particularly in developed nations (FAO, n.d.). This is of concern from a health perspective, with strong links between dietary fat intake, obesity and NCDs such as heart disease and stroke (Bray et al., 2004; Malik et al., 2013). However, it's also important to acknowledge the physiological role of fat in nutritional outcomes, and the negative health impacts which can occur through inadequate consumption. Fat plays an important role in the absorption of key micronutrients (FAO/WHO, 2008); low fat intake, as remains the case in many developing nations (FAO, n.d.), therefore serves to exacerbate cases of micronutrient deficiency which are prevalent in low-income communities (Brown et al., 2004; White et al., 2017). The large variations in global intakes of fat therefore have important health implications at both ends of the spectrum.

      Whilst the availability of macronutrients at the household level is of prime importance, the average supply of energy, protein and fat are generally well understood (FAO et al., 2015; FAO, n.d.). Of greater interest for building future food resilience and more sustainable food systems is to understand the complete food production and use chain in order to identify key inefficiencies and potential intervention points.

      The pathways of energy, digestible protein and fat from “field-to-fork” have both similarities and conflicting patterns, which are important to consider when defining potential entry points for change. All chains experience severe losses across the value chain, with losses of 54, 56, and 31% in energy, digestible protein and fat, respectively. The three nutritional components show similar patterns of loss in stages we would define as supply chain losses (harvesting, post-harvest, processing, distribution, and consumption) with moderate losses at all stages, and the highest in the harvesting phase. As has been previously documented, such patterns will be regionally variable and income-dependent, with major losses at the post-harvest stage in developing nations, and more wastage at the consumer level in higher-income households (Lipinski et al., 2013).

      The dominant losses occur in the allocation of edible crops toward non-food uses and animal feed. This is where the pathways between nutrients differ. The diversion of both energy and fat to non-food uses are much larger than that of digestible protein. The largest commodities utilized for non-food purposes are in the form of oils and cereals. This is an expected result due to large allocation of these commodities for the production of biofuels and industrial products such as cosmetics, construction and polymer materials (Foley et al., 2011; Lu et al., 2011). The re-allocation of oils and cereals explains the comparably larger losses of energy and fat vs. digestible protein (which is in low concentration in cereals, and absent in liquid oil component of oilcrops; FAO, 2001).

      The largest loss of energy and digestible protein occurs in the re-allocation of crops for animal feed. This is in contrast to fat, which generates a net surplus in the production of animal-based fats. Our analysis suggests that approximately 1,500 kcal and 70 g of digestible protein pppd is diverted for feed. Whilst some energy and protein is converted and re-enters the system in the form of meat and dairy products, both experience a significant net loss in this conversion process (Figures 1A,B). Cereals, roots, and high-quality protein crops such as soybeans form the largest sources of animal feed, which explains the basis of this loss. It is important to note that the complete nutrient flow in this process is not captured through mapping edible food energy content alone; there are also significant energy and protein inputs in the form of grazing, pasture and fodder (land use for animal production is estimated to account for approximately 75% of total agricultural land; Foley et al., 2011).

      Amino acids

      Our analysis has mapped the aggregate amino acid concentrations of all indispensable AAs by stage in the supply chain (Table 1). The amino acid profile is of lower importance where digestible protein availability is above requirements (as shown in Figure 1). However, in particular national or local settings where protein intake is below requirements, such analysis could help to identify where particular AAs are deficient, and where in the food chain they are produced or lost.

      Aggregate amino acid profiles by stage in food supply chain.

      Isoleucine Leucine Lysine Methionine + Cysteine Phenylalanine + Tyrosine Threonine Tryptophan Valine Histidine
      Crop production 35.0 54.9 36.6 26.4 61.4 28.0 9.6 39.1 19.8
      Harvesting losses 40.9 66.0 44.4 25.9 62.3 40.6 21.3 0.0 0.0
      Crop harvest 34.6 54.1 36.0 26.5 61.3 27.0 8.7 42.1 21.4
      Post-harvest losses 34.5 52.9 32.6 26.0 58.7 24.1 7.9 38.5 19.4
      Available crop 34.6 54.1 36.2 26.5 61.5 27.2 8.7 42.3 21.5
      Non-food uses 17.9 36.4 17.8 15.1 37.9 16.7 4.5 24.4 11.8
      Resown/replanted 35.7 48.5 39.1 30.7 70.4 30.2 11.2 43.0 21.2
      Fed to animals 37.4 64.8 46.9 27.2 63.8 32.3 10.8 43.4 22.7
      Meat and dairy 55.4 96.1 103.0 40.5 89.9 49.5 13.8 61.3 36.3
      Production and packaging losses 51.8 76.6 56.0 29.0 69.5 34.3 10.8 42.6 24.8
      Distribution waste 53.4 85.5 75.2 31.8 77.8 40.8 12.0 50.5 28.9
      Food delivered to households 41.5 63.0 56.6 33.4 74.0 32.9 9.2 52.4 28.1
      Consumption waste 43.8 61.3 55.0 32.9 72.2 34.0 11.1 44.7 25.4
      Residual food availability 41.3 63.1 56.8 33.4 74.2 32.7 9.0 53.1 28.4
      Population-weighted requirement 30.1 59.5 46.1 22.5 39.1 23.6 6.2 39.4 15.4

      Amino acid (AA) concentrations (measured per gram of total protein) of aggregated food commodities at each stage of the food production and supply chain. This is measured relative to derived population-weighted requirement values.

      Values in bold represent average final food availability for consumers, with reference to average requirements shown in italics.

      At the level of global food consumption, no AAs are deemed to be limiting in the average global diet. However, we have highlighted lysine as the amino acid of particular concern. As is clearly demonstrable in our analysis, and has been widely discussed within the literature (WHO/FAO/UNU Expert Consultation, 2007; Swaminathan et al., 2012), there is a significant contrast in the lysine concentration of plant- and animal-based products. The lysine concentration of aggregate commodities in the crop production and harvest phases of the supply chain is notably lower than the latter stages, where animal-based products are introduced. Whilst the average diet is not lysine-deficient, if meat and dairy products were removed, the global food system would be severely lysine-limited. At the crop production level, the average lysine concentration is 36.6 mg g protein−1, much lower than the required value of 46.1 mg g protein−1. The only component of the crop-based system for which the overall lysine concentration is above this requirement—and only marginally, at 46.9 mg g protein−1–is the portion allocated for animal feed.

      This finding is important for several reasons. Diets low in intakes of animal-based products—especially those limited for economic reasons (where higher-quality alternatives such as pulses and legumes are not widely consumed) are likely to be lysine-limited. After correction for protein digestibility, this limitation further reduces the level of utilizable protein consumed in low-income settings (WHO/FAO/UNU Expert Consultation, 2007).

      It also has important implications for the promotion of more sustainable plant-based diets. It's widely acknowledged that the resource footprints of animal-based products are typically higher than crop-based alternatives (Tilman and Clark, 2014), driving efforts for the adoption of more plant-based or vegetarian dietary habits (Ranganathan et al., 2016). However, our analysis suggests that our current food system would be severely lysine-limited in the absence of meat and dairy products. Although feed conversion in the production of livestock is inefficient—with large losses of energy and digestible protein—it is essential within our current food system to meet lysine requirements. This does not imply that a global shift toward a plant-based diet could not meet these requirements, however, a major shift in overall agricultural production toward more protein-based crops such as pulses and legumes would be necessary. Since the energy content of these commodities is typically lower than that of staple carbohydrate crops (FAO, 2001; USDA, 2016), the displacement of agricultural land used for cereal production may result in an overall reduction in total global caloric output. This is an important balance to assess in meeting the caloric, protein and lysine requirements of a growing population. This makes the extension of future analyses beyond caloric production even more essential.

      Micronutrients

      The pathways of individual micronutrients are presented in Figures 2A–C, 3A–C, 4A,B. As shown, all micronutrients meet their EAR in the global average availability. However, there are several micronutrients for which this is marginal. For example, the average availability of calcium is 953 mg pppd relative to 877 mg pppd requirements. Similarly, the availability of folate is only marginally higher than its EAR (with an intake of 313 μg ppd vs. 299 μg ppd requirements). This would be sufficient if diets were perfectly equitable, however, large geographical variations in dietary availability—especially in micronutrients which, like digestible protein, are typically more income dependent than caloric supply (Drewnowski, 2010)—mean that many will consume well below EARs.

      Production and losses of micronutrients in the global food system from “field to fork” in 2011. Food pathways in (A) calcium; (B) iron; and (C) zinc from crop production to residual food availability, normalized to average per capita levels assuming equal distribution. Red bars (negative numbers) indicate food system losses; green bars indicate meat and dairy production; gray bars indicate macronutrient availability at intermediate stages of the chain, with the estimated average requirement shown in black.

      Production and losses of micronutrients in the global food system from “field to fork” in 2011. Food pathways in (A) folate; (B) vitamin A; and (C) vitamin C from crop production to residual food availability, normalized to average per capita levels assuming equal distribution. Red bars (negative numbers) indicate food system losses; green bars indicate meat and dairy production; and gray bars indicate macronutrient availability at intermediate stages of the chain, with the estimated average requirement shown in black.

      Production and losses of micronutrients in the global food system from “field to fork” in 2011. Food pathways in (A) vitamin B6; and (B) vitamin B12 from crop production to residual food availability, normalized to average per capita levels assuming equal distribution. Red bars (negative numbers) indicate food system losses; green bars indicate meat and dairy production; and gray bars indicate macronutrient availability at intermediate stages of the chain, with the estimated average requirement shown in black.

      Micronutrient pathways demonstrate a trade-off similar to calorie, protein and lysine balances in relation to livestock production. As shown (Figures 24), the largest supply chain losses of several micronutrients (folate, zinc, iron, vitamin A and calcium) occur in the allocation of crops to animal feed. Whilst this highlights an important inefficiency in the food system, it's essential in the production of vitamin B12, for which animal-based products are the only dietary source (Wu et al., 2014). This dependence on meat and dairy products is likely to leave many individuals at risk of deficiency (especially in calcium, iron, zinc, folate vitamin A, C, and B-vitamins), especially those in lower income groups.

      Our results indicate that the magnitude of total micronutrient loss from “field-to-fork” is typically higher than that of macronutrients. All micronutrients assessed in this study—with the exception of vitamin B12–experience total losses of over 60%. In the case of folate, this inefficiency reaches 71%. This result is a reflection of the large losses and wastage of highly perishable foods, such as fruits, vegetables and animal-based products (FAO, 2011b).

      Data limitations

      The challenge in developing accurate Food Balance Sheets (FBS) at the national and global level are widely acknowledged and discussed by the FAO (FAO, 2001). The accuracy of FBS is constrained by the completeness and reliability of commodity production and utilization statistics in national records.

      Food loss and waste figures, especially in countries where small-holder farms and local markets are prevalent, has a high level of uncertainty. To our knowledge, statistics on supply chain losses and waste down to the national level are not widely available, particularly at the resolution of commodity and chain stage breakdown. For this reason, published commodity-specific FAO figures on regional losses have been applied in this study (Supplementary Table 2). A reliance on aggregated regional values reduces the resolution to which supply chain losses can be quantified, and introduces an additional degree of uncertainty.

      Where data within FBS are deemed to be incomplete or inconsistent, the FAO draw upon judgements from national expert opinion and technical expertise to provide as reflective coverage as possible in its FBS. Whilst likely to provide a close approximation, this is rarely 100% accurate.

      Nonetheless, the FBS is currently the best available data source for construction and analysis of the complete commodity chain. Literature is available based on studies conducted at the household level (Swaminathan et al., 2012), however, very few studies attempt to provide coverage of the food chain dynamics from crop production through to human consumption, especially on a global basis as in the present study. Without a complete overview of the commodity chain, the impacts of interventions (such as improved food management and storage; trade; reduced allocation of crops to non-food uses; improved crop yields) are almost impossible to assess.

      As the FAO notes, food balance sheets “provide an approximate picture of the overall food situation in a country and can be useful for economic and nutritional studies, for preparing development plans and for formulating related projects” (FAO, 2001). In this study, we have therefore relied on FAO datasets in order to construct a high-level overview of the global commodity chain to assess its overall capacity to meet nutritional demands at present. This overview will not be perfect in a statistical sense, however these issues are global in scale and hence we deem the analysis to be appropriate to inform broad policy focus and assess the potential of supply chain interventions.

      Improved agricultural, food waste and nutritional reporting would allow for more robust estimates to be constructed. Such data collection will be important in informing future policy and allowing for forward planning in this sector. It should therefore be an area of renewed focus for global food and nutritional assessment in the coming years.

      Conclusion

      This study has attempted to holistically map the global food commodity and nutrient system from agricultural production through to food eaten—a system which is complex, and in some cases, poorly quantified. To maintain methodological consistency, we have utilized FAO FBS, regional waste and nutrient composition data as far as possible—the FAO is currently the only data repository from which such a global analysis can be sourced. The uncertainty around FBS and waste data is fully acknowledged by the FAO (FAO, 2001). As such, we acknowledge that our analysis is not perfect in a statistical sense (see section Data Limitations), however, it is currently the best estimate of the global food nutrient system to date.

      Our analysis further highlights the importance of extending food and nutrient analysis beyond the scope of caloric supply—complex trade-offs arise in sufficient production of energy, specific macronutrients, amino acids and micronutrients. Meeting future food demand (and SDG2 targets) requires a holistic overview of each across the full commodity system. It is from this starting point that the focus and efficacy of interventions can be quantified and balanced to better meet global nutritional demands. The effectiveness of particular interventions is likely to be component-dependent. For example, the disproportionately large losses of many micronutrients across the supply chain mean that strategies which focus on improved storage and distribution management are likely to improve micronutrient availability even more than macronutrient availability. Balancing and optimizing these intervention options to meet context-specific deficiencies is vital in reducing the scale of global nutrient deficiency.

      Despite providing an important global overview of the overall food system, this analysis has limitations in its effectiveness at capturing regional, national and local system dynamics. That said, this framework is highly replicable—FAO data exist at regional and national levels—and can be scaled for more context-specific nutritional analysis. Such scalability will allow for better coverage of the dietary inequalities which exists both between and within countries.

      Author contributions

      HR conceptualized the research, developed the methodology and carried out the analysis. All authors contributed to writing the paper.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fsufs.2018.00057/full#supplementary-material

      References Ahmed T. Hossain M. Sanin K. I. (2012). Global burden of maternal and child undernutrition and micronutrient deficiencies. Ann. Nutr. Metabol. 61, 817. 10.1159/00034516523343943 Alexandratos N. Bruinsma J. (2012). World agriculture: towards 2030/2050: an FAO perspective. Land Use Policy 20, 375. 10.1016/S0264-8377(03)00047-4 BajŽelj B. Richards K. S. Allwood J. M. Smith P. Dennis J. S. Curmi E. . (2014). Importance of food-demand management for climate mitigation. Nat. Climate Change 4, 924929. 10.1038/nclimate2353 Bouis H. E. Eozenou P. Rahman A. (2011). Food prices, household income, and resource allocation: socioeconomic perspectives on their effects on dietary quality and nutritional status. Food Nutr. Bull. 32, 1423. 10.1177/15648265110321S10321717914 Bray G. A. Paeratakul S. Popkin B. M. (2004). Dietary fat and obesity: a review of animal, clinical and epidemiological studies. Physiol. Behav. 83, 549555. 10.1016/j.physbeh.2004.08.03915621059 Brown M. J. Ferruzzi M. G. Nguyen M. L. Cooper D. A. Eldridge A. L. Schwartz S. J. . (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with. Am. J. Clin. Nutr. 80, 396403. 10.1093/ajcn/80.2.39615277161 Cassidy E. S. West P. C. Gerber J. S. Foley J. A. (2013). Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 18. 10.1088/1748-9326/8/3/034015 Davis K. F. D'Odorico P. (2015). Livestock intensification and the influence of dietary change: a calorie-based assessment of competition for crop production. Sci. Total Environ. 538, 817823. 10.1016/j.scitotenv.2015.08.12626340584 Drewnowski A. (2010). The cost of US foods as related to their nutritive value. Am. J. Clin. Nutr. 92, 11811188. 10.3945/ajcn.2010.2930020720258 Dror D. K. Allen L. H. (2011). The importance of milk and other animal-source foods for children in low-income countries. Food Nutr. Bull. 32, 227243. 10.1177/15648265110320030722073797 FAO (2001). Food Balance Sheets Handbook. FAOstats. Rome. Available online at: http://www.fao.org/faostat/en/ FAO (2011a). Dietary Protein Quality Evaluation in Human Nutrition. Food and Agriculrure Organization of the United Nations. Available online at: http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf FAO (2011b). Global Food Losses and Food Waste – Extent, Causes and Prevention. Rome: UN Food and Agriculture Organization. FAO (2016). FAO/INFOODS Food Composition Databases. Available online at: http://www.fao.org/infoods/infoods/tables-and-databases/faoinfoods-databases/en/ (Accessed November 28, 2016). FAO (2017a). Food-Based Dietary Guidelines. Rome. FAO (2017b). The Future of Food and Agriculture – Trends and Challenges. Rome: UN Food and Agriculture Organization. FAO IFAD, and WFP. (2015). The State of Food Insecurity in the World: Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: FAO, IFAD and WFP. FAO. (n.d.). FAOstat Database. Available online at: http://www.fao.org/faostat/en/#data/FBS (Accessed January 6, 2017). FAO/WHO (2008). Fats and Fatty Acids in Human Nutrition, Report of an expert consultation. Report of an Expert Consultation (Vol. 91). Rome: UN FAO and World Health Organization. Foley J. A. Ramankutty N. Brauman K. A. Cassidy E. S. Gerber J. S. Johnston M. . (2011). Solutions for a cultivated planet. Nature 478, 337342. 10.1038/nature1045221993620 Haddad L. Hawkes C. Webb P. Thomas S. Beddington J. Waage J. . (2016). A new global research agenda for food. Nature 540, 3032. 10.1038/540030a27905456 Horton S. Steckel R. (2011). Malnutrition: Global Economic Losses Attributable to Malnutrition 1900–2000 and Projections to 2050. Copenhagen: Copenhagen Consensus on Human Challenges. International Food Policy Research Institute (2016). Global Nutrition Report–From Promise to Impact: Ending Malnutrition by 2030. Washington D.C: IFPRI. IPCC (2014). AR5 WGIII chapter 11–agriculture, forestry and other land use (AFOLU), in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Edenhofer O. Pichs-Madruga R. Sokona Y. Farahani E. Kadner S. Seyboth K. . (Geneva). Lipinski B. Hanson C. Waite R. Searchinger T. Lomax J. Kitinoja L. . (2013). Reducing food loss and waste, in Working Paper, Installment 2 of Creating a Sustainable Food Future. Washington, DC: World Resources Institute. Available online at: http://www.worldresourcesreport.org Lu C. Napier J. A. Clemente T. E. Cahoon E. B. (2011). New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr. Opin. Biotechnol. 22, 252259. 10.1016/j.copbio.2010.11.00621144729 Malik V. S. Willett W. C. Hu F. B. (2013). Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9, 1327. 10.1038/nrendo.2012.19923165161 Miller D. D. Welch R. M. (2013). Food Systems Strategies for Preventing Micronutrient Malnutrition. (Rome: UN Food and Agriculture Organization), 115128. 10.1016/j.foodpol.2013.06.008 Ranganathan J. Vennard D. Waite R. Dumas P. Lipinski B. Searchinger T. (2016). Washington, DC: Shifting Diets for a Sustainable Food Future. Ritchie H. Reay D. Higgins P. (2018). Sustainable food security in India–domestic production and macronutrient availability. PLoS ONE 13:e0193766. 10.1371/journal.pone.019376629570702 Sukhdev P. May P. Müller A. (2016). Fix food metrics. Nature 540, 3334. 10.1038/540033a27905460 Swaminathan S. Vaz M. Kurpad A. V. (2012). Protein intakes in India. Br. J. Nutr. 108, S50S58. 10.1017/S000711451200241323107548 Tilman D. Clark M. (2014). Global diets link environmental sustainability and human health. Nature 515, 518522. 10.1038/nature1395925383533 UNHCR/UNICEF/WFP/WHO (2004). Food and Nutrition Needs in Emergencies. Geneva: United Nations. United Nations (2001). Road Map Towards the Implementation of the United Nations Millennium Declaration. New York, NY: United Nations. United Nations (2015a). Transforming our World: The 2030 Agenda for Sustainable Development 16301. New York, NY: Vol. 16301. United Nations (2015b). UN Population Prospects. Available online at: http://esa.un.org/unpd/wpp/ (Accessed February 6, 2016). United Nations: Department of Social and Economic Affairs (2013). World Population Prospects: The 2012 Revision, DVD edition. Population Division 2013. Available online at: http://esa.un.org/unpd/wpp/Excel-Data/population.htm. USDA (2016). USDA Food Composition Databases. Available online at: https://ndb.nal.usda.gov/ndb/ (Accessed November 28, 2016). Varadharajan K. S. Thomas T. Kurpad A. V. (2013). Poverty and the state of nutrition in India. Asia Pac. J. Clin. Nutr. 22, 326339. 10.6133/apjcn.2013.22.3.1923945402 von Grebmer K. Saltzman A. Birol E. Wiesmann D. Prasai N. Yin S. . (2014). 2014 Global Hunger Index: The Challenge of Hidden Hunger, Vol. 12. Bonn; Washington, DC; Dublin: IFPRI. White W. S. Zhou Y. Crane A. Dixon P. Quadt F. Flendrig L. M. (2017). Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables. Am. J. Clin. Nutr. 106, 10411051. 10.3945/ajcn.117.15363528814399 WHO/FAO/UNU Expert Consultation (2007). Protein and Amino Acid Requirements in Human Nutrition. Geneva: World Health Organization Technical Report Series. 28515162 World Health Organization (1991). Energy and Protein Requirements. Geneva. Available online at: http://www.fao.org/docrep/003/aa040e/AA040E00.htm#TOC. World Health Organization (2005). Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation. Geneva: World Health Organization. Wu G. (2016). Dietary protein intake and human health. Food Funct. 7, 12511265. 10.1039/c5fo01530h26797090 Wu G. Fanzo J. Miller D. D. Pingali P. Post M. Steiner J. L. . (2014). Production and supply of high-quality food protein for human consumption: Sustainability, challenges, and innovations. Ann. N. Y. Acad. Sci. 1321, 119. 10.1111/nyas.1250025123207

      Funding. This research was funded by the UK Natural Environment Research Council (NERC, grant number: NE/L002558/1) under its E3 Doctoral Training Programme (DTP).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016fzchain.com.cn
      www.hilegua.org.cn
      flchain.com.cn
      krchain.com.cn
      kychain.com.cn
      www.jxstjy.com.cn
      www.ogwqmd.com.cn
      www.sxfkch.com.cn
      www.tsfhc.org.cn
      x-nv.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p