Edited by: Feni Agostinho, Paulista University, Brazil
Reviewed by: Daniel Elliott Campbell, University of Rhode Island, United States; Hongfang Lu, South China Botanical Garden (CAS), China
This article was submitted to Urban Resource Management, a section of the journal Frontiers in Sustainable Cities
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Urbanization is widely recognized as a relentless trend at the global level. Nevertheless, a comprehensive assessment of urban systems able to address the future growth and decline of cities is still lacking. Urban systems today rely on abundant resources, flowing in from other regions, and their future availability and accessibility should be taken into consideration to ensure urban well-being and resilience in likely post-growth scenarios. A logical framework to address the challenge of urban planning and management to promote long-term urban system sustainability is proposed. Systems thinking and diagramming are applied, while comprehensively tracking the key material flows upon which cities depend back to their sources. First, the nexus among resources and urban activities is identified, and then its circularity is framed within a wider discourse on urban sustainability and resilience. Discussion is carried out within a two-fold perspective of both existing and newly built environments, while related economies are analyzed in order to find possible game-changing scenarios.
香京julia种子在线播放
Urbanization is widely recognized as a relentless trend at the global level, with 55% of the world's population already living in urban areas. Projections show that the urban population will increase up to 68% by 2050 (United Nations Department of Economic Social Affairs,
The city is a complex system, and its complexity lies mostly in the intertwined network of feedback relations among its elements, be they physical (infrastructure), political, economic, or environmental. Any attempt to characterize the city's complexity must take into account how the feedback network acts as a driver of self-organization, following patterns of operation that are intrinsically systemic, and thus may exhibit counterintuitive or non-linear behaviors difficult to predict. Technological and strategic innovation framed in terms of “business as usual” is still seen as sufficient to guarantee the resilience and sustainability of the cities, despite the real possibility of socioeconomic collapse that climate change research is addressing (Ripple et al.,
Since the variables that define the metabolism of a city may vary simultaneously and “in subtly interconnected ways” (Orr,
An SF diagram contains the relevant stocks along with the relevant flows and processes that define system operations. Stocks are elements containing a quantity of something (moles of atoms, energy, information, people, money, and so on) and are diagrammed as shield-like elements. They are changed over time by the action of flows, thus acting as delays or buffers in the system. Flows—represented by arrows—are physical flows of resources of different forms and units. Under the framework of Energy Systems Theory (Odum,
Being that a city is an open system, a correct description of its behavioral patterns should connect the resource flows to the supporting natural and socioeconomic environment, which in turn is expected to develop autocatalytic behaviors in the supporting action (Odum,
In order to address a general discourse on sustainable cities and urban metabolism, we propose a study on Metropolitan Area of Naples (
The Metropolitan City of Naples is mainly a coastal area located around the Gulf of Naples in the Tyrrhenian Sea, covering a surface of 1,179 km2 and orographically characterized by the presence of short coastal mountain relief, as well as of a volcano, Mount Vesuvius. The Metropolitan City has a resident population of 3,101,000 inhabitants (according to the Italian National Statistics Institute, ISTAT-Istituto Nazionale di Statistica,
MAECI-NSFC ongoing activities include a comprehensive tracking of the key material flows that cities usually depend upon: while also addressing the issue of sustainability through a focus on developing a circular economy (CE), the systems thinking and emergy accounting approaches focus on tracking material and immaterial costs and effects that are usually neglected; thus, the method is potentially able to reinforce the objective to improve sustainability and resilience even outside of the CE mainstream narratives. A “first draft” of the nexus among resources, lifestyles, and urban activities is presented in this work—including the food, energy, and water security nexus—and possible collaborative patterns and circular feedbacks are suggested (for the moment) on a qualitative level.
A circular economy (CE), with products designed to ease their recycling, reuse, disassembly, and remanufacturing, is currently expected to replace conventional, “linear” wasteful models used to drive the global economy. Resource constraints, as well as increasing volumes of waste and pollution, threaten urban welfare and well-being, as well as competitiveness, business continuity, profits, and jobs. Therefore, CE policy and technology solutions are proposed to achieve resource conservation and pollutant reduction. In order to deploy the CE framework, and for the general assessment of city sustainability, three main types of matter and energy flows at the urban/metropolitan area level need to be evaluated (Ghisellini et al.,
primary material and energy resources (construction materials, fuels, food, goods, and water), with a focus on waste prevention, minimization of input flows, considering both non-renewable and renewable aspects of the flows and the relative efficacy of each;
useful flows from one production sector to another (reuse, planning, transferring, exchanging); and
waste and residues from production and consumption sectors (recycling, recovery, and disposal).
This study addresses an integrated urban systems model that takes maximum advantage of available resources by the optimum use of coproducts, wastes, and residues from all metropolitan sectors via appropriate technologies, networks, and the integration of components, thus saving energy and resources, addressing the problem of waste disposal, and minimizing the environmental impacts of production and consumption. European ecocities best practices (Beatley,
As shown it its homonymous section is based on diagramming. Starting from a model originally proposed by Viglia et al. (
Systems diagram of a metropolitan area.
Nowadays, many CE policy and technology solutions are proposed to achieve resource conservation and pollutant reduction. As vital components of the city, water, energy, and food, as well as their nexus, are key points for the implementation of CE policies. Various measures, such as the recycling of industrial water, have been taken to ease the heavy burden of water shortage. Besides that, there are circular food policies to address food shortages or food residue issues (e.g., biofermentation, hydrogen production, and anaerobic digestion). The construction of CE scenarios, taking into account not only the water–energy–food nexus but also the purchase–income–waste generation nexus, may provide different pathways toward the desired CE future.
Therefore, the sustainability of a system calls for appropriate resource use and decreased waste generation. For the Metropolitan Area of Naples, as well as for many other urban systems, this entails dealing with the complexity of various production and consumption processes. The development of computation procedures for circular processes requires a preliminary survey of all urban activities, as well as an agreement on the definition of the methodologies to be applied. Many important circular patterns can be identified in the investigated urban system. To draw attention to the most relevant sectors, a preliminary survey was performed to identify the most representative sectors in the area. Sectors and processes have been chosen based on our knowledge of other metropolitan case studies, either in China, in Italy, or in the rest of the world, for both their regional relevance and their suitability to implement circular patterns. Thus, the selected circular strategies are evaluated, and their implementation proposed for critical processes. The following sectors have been selected for their important role in the economy of the area at issue, as well as to address their potential for the exploration of innovative circular patterns:
urban tourism industry
urban waste management
wastewater treatment
agri-food chains and residues conversion for value-added products
WEEE (waste electrical and electronic equipment)
construction sector
The successful implementation of circular urban systems requires (i) all recovery processes be integrated into the system; (ii) participatory strategies, bottom-up, and top-down interactions, to allow the search for optimized solutions (i.e., optimum compromises) toward prevention of conflicts; (iii) the application of innovative technologies; and (iv) locally creative projects that will supply a roadmap toward well-being through increased environmental care and appropriate resource use and sharing. An important sector that could also be introduced is that of mobility; however, in this sector co-products are difficult to be saved and further exploited, before entering the environment as pollution or waste. This subject deserves a more comprehensive discussion, interrelating many of the selected sectors and implying an even higher level of discussion on values, culture, and politics.
As shown in the Energy Systems Language model diagram in
Current narratives on urban planning often claim technological solutions that are able to solve the problems of innovation needed to attain the sustainability of a city. This “technology optimism” (Gonella et al.,
The proposals to systemically alleviate the upstream and downstream ecological impact of the economic sectors, while reducing waste production, must be built up out of the mainstream narratives. As a matter of fact, there is not yet a full awareness and attention to the current global ecological crisis. Moreover, matching the CE, which is rapidly becoming part of mainstream topics, to the optimization of urban metabolism is expected to allow a change of scale, from a focus on production to a focus on life, as well as from the private to a shared public perspective. The study of this change can be framed within systems thinking and emergy accounting, mixing up hard and social sciences to produce a more lucid and honest analysis than that driven by a purely economic point of view. All the resource flows entering, exiting, and sustaining urban economies are part of a complex self-organizing network of feedbacks, so they must be treated as connected one to another and read from both an upstream and downstream perspective, because a partial reading gives rise to useless partial visions and narratives. Design and planning for more sustainable production and consumption patterns in a metropolitan area can represent a leverage point toward more sustainable urban systems. Preventing the waste of still useful resources is hardly debatable and can be read as one of the largest potential gains for optimizing the urban operations at issue. The problems of city management must be correctly described in terms of waste prevention, ecodesign, resource optimization, and regenerative and redistributive economies, within the various aspects of urban economic processes (e.g., production, consumption, households, infrastructures, services). Furthermore, there should be an effective involvement of stakeholders, administrators, business units, and organizations, all working toward a shared goal of increased well-being, which gets closer to harmonizing the ecological, social, and economic dimensions of sustainability. However, even this might still not be enough. In a century in which great changes are expected to occur and within a context of resource scarcity, we suggest that constant attention is needed to more comprehensively address sustainability issues, verifying the truthfulness of “magic pills” or recipes, which is a crucial regulatory task for science. Systems thinking and diagramming help us to critically read the resource flows of a city. For instance, we address the importance of importing—when pursuing sustainability; specifically, it is necessary to harmonize internal resource optimization and waste reduction with the pressure generated on the urban environment and possibly shifted to city support areas, for example, in terms of external demand for further resources or internal demands for waste processing. Although sharing the reference to general systemic conservation, sustainability, and resilience are different concepts. The definition of sustainability, which is certainly more elusive, has an anthropocentric character, whereas resilience (Holling,
Speaking of circles, in cycling the spinning speed also matters. Any increase in the cycling speed also increases the rate at which resources are required (hence inserted) into the system—and Jevons' paradox reminds us that increased efficiency causes increases in this spinning speed. Thus, we suggest that decreasing the spinning speed may be one of the goals to help in attaining the sustainability of a given system. In this framework, good candidates for leveraging agents in the system may not be represented by technological advancements, but by forward-looking ideas. This necessarily calls into question our values, culture, and the overall repoliticization of urban metabolism and urban life in general
To improve policies and actions affecting urban sustainability, it is crucial to monitor the resource inflows and outflows, by employing system diagrams that increase our understanding of how they relate to population, resource availability, and environmental carrying capacity (Ulgiati and Zucaro,
applying circular discourses to urban metabolism requires a change of scale in our thinking, from production to life, and of sphere, from private to shared collective goals;
the use of systems thinking and emergy concepts provides comprehensive transdisciplinary and lucid approaches that will make up for the limits and distortions of using the viewpoints of economists alone;
soil is a vital resource that cannot be neglected when talking about urbanization;
cities have large support areas, and we stress the importance of imported resources;
the size of the flows associated with such imports, as well as control over them, has much to do with urban sustainability and resilience in a changing world;
although it can be diverted by profit, the theoretical goal of a city is the well-being of its citizens, which requires us to resize flows in order to ensure their lasting availability and our control;
waste prevention and increased efficiency in the use of urban metabolic resources ought to be matched to an overall rethinking of the speed of internal processes to avoid undesired effects, while keeping in mind both thermodynamic laws and Jevons' paradox;
a holistic perspective is mandatory when addressing urban policy-making procedures in the framework of the CE concept. Cities must be regarded as “natural” complex systems that obey the same laws as the rest of nature;
from a systemic point of view, we suggest that acting at the level of design and planning can represent a leverage point for (urban) sustainability; and
matching this to a paradigm shift able to include and rethink cultural, political, and societal values can be essential to ensure resilience and sustainability in post-growth scenarios.
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.
Abstract, first draft, introduction, systems diagramming, and conclusion and perspectives mostly by SC. Method mostly by FG. Other resource and discussion mostly by AZ and SC. Details about circular economy evaluation and dynamic modeling mostly by GL. Overall management and editing by SC and AZ. Scientific supervision by SU and FG.
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
1For a critique of the expansion paradigm and resource use, see Cristiano and Gonella (
2As shown in
3Our elaboration and adjustment after Marcuse (
4Such monitoring could possibly use an Urban Circular Economy Calculator (UCEC, Xue et al.,