Front. Sustain. Cities Frontiers in Sustainable Cities Front. Sustain. Cities 2624-9634 Frontiers Media S.A. 10.3389/frsc.2020.00012 Sustainable Cities Original Research On the Systemic Features of Urban Systems. A Look at Material Flows and Cultural Dimensions to Address Post-Growth Resilience and Sustainability Cristiano Silvio 1 2 3 * Zucaro Amalia 4 * Liu Gengyuan 5 Ulgiati Sergo 3 5 Gonella Francesco 1 2 1Research Institute for Complexity, Università Ca' Foscari Venezia, Venice, Italy 2Department of Molecular Science and Nanosystems, Università Ca' Foscari Venezia, Venice, Italy 3Department of Science and Technology, Università degli Studi di Napoli “Parthenope”, Naples, Italy 4Division Resource Efficiency, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Rome, Italy 5School of Environment, Beijing Normal University, Beijing, China

Edited by: Feni Agostinho, Paulista University, Brazil

Reviewed by: Daniel Elliott Campbell, University of Rhode Island, United States; Hongfang Lu, South China Botanical Garden (CAS), China

*Correspondence: Silvio Cristiano silvio.cristiano@unive.it; silvio.cristiano@uniparthenope.it Amalia Zucaro amalia.zucaro@enea.it

This article was submitted to Urban Resource Management, a section of the journal Frontiers in Sustainable Cities

22 05 2020 2020 2 12 02 12 2019 30 03 2020 Copyright © 2020 Cristiano, Zucaro, Liu, Ulgiati and Gonella. 2020 Cristiano, Zucaro, Liu, Ulgiati and Gonella

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Urbanization is widely recognized as a relentless trend at the global level. Nevertheless, a comprehensive assessment of urban systems able to address the future growth and decline of cities is still lacking. Urban systems today rely on abundant resources, flowing in from other regions, and their future availability and accessibility should be taken into consideration to ensure urban well-being and resilience in likely post-growth scenarios. A logical framework to address the challenge of urban planning and management to promote long-term urban system sustainability is proposed. Systems thinking and diagramming are applied, while comprehensively tracking the key material flows upon which cities depend back to their sources. First, the nexus among resources and urban activities is identified, and then its circularity is framed within a wider discourse on urban sustainability and resilience. Discussion is carried out within a two-fold perspective of both existing and newly built environments, while related economies are analyzed in order to find possible game-changing scenarios.

material and immaterial drivers post-growth resilience and sustainability urban metabolism systems thinking urban ecology sustainable planning and design cities Ministero degli Affari Esteri e della Cooperazione Internazionale10.13039/501100006601

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Urbanization is widely recognized as a relentless trend at the global level, with 55% of the world's population already living in urban areas. Projections show that the urban population will increase up to 68% by 2050 (United Nations Department of Economic Social Affairs, 2018), on an ever-growing denominator, which is expected to approach 10 billion by this time (United Nations Department of Economic Social Affairs, 2019). Despite such significant numbers, a comprehensive assessment of urban sustainability able to envision the cities into the rest of this challenging century is still lacking. Projections on the demand for urban growth may not be the correct point to address, because it is the socio-ecological supply that might not be able to keep up with this pace. In fact, today, urban systems rely on abundant resources, goods, and technologies flowing in from other regions, thanks to a combination of economic, geopolitical, and sometimes military conditions. Therefore, the future availability and accessibility of such resources, goods, and technologies must be taken into consideration to verify that existing and future conditions are likely to allow for such urban expansion (hence resource use),1 together with related urban well-being and resilience in likely post-growth scenarios. By 2050, two thirds of the global population might suffer from land and water scarcity, as well as food insecurity (Rivas and Nonhebel, 2016), with land use closely connected to the ever-growing urbanization. In addition to the non-renewable sources, such as fossil fuels, other crucial raw materials essential to global economies are also expected to diminish, thus constraining the planet within its physical limits (as first pointed out by Meadows et al., 1972; clearly explained in Calvo et al., 2017, and graphically illustrated in Cristiano, 2019). Furthermore, social limits must be also taken into account (Hirsch, 2005), including the progressive displacement of exploited cheap labor (see Demaria et al., 2013; D'Alisa et al., 2014; Cristiano, 2018). Urbanization, economic growth, and resource consumption (above all, energy) are all intertwined with one another, as recently analyzed, for example, by Zhao and Wang (2015) with a focus on Chinese trends. Since urbanization, economic growth, and resource consumption have been projected as ever increasing in the next decades, some underlying issues should be explored in light of what we have reported so far. First, physical and social limits exist, and current sustaining flows of energy, materials, goods, and labor cannot be taken for granted forever. Second, global urbanization has little to do with the current narrative of smart and sustainable cities and buildings (Albino et al., 2015; Gonella et al., 2019; Joss et al., 2019) and often implies unsafe and unhealthy slums and shelters for desperate job seekers. As a result, the assumed benefits of cities are not equally distributed, and many people have started to call for a “right to metabolism” (Olsen et al., 2018), that is, more equal access to both the sustainable and unsustainable driving flows of megalopoleis. Third, the effects of such economic urbanization patterns have already reached critical levels in terms of pollution and climate change. Moreover, because of their location and economic subalternity (Barca, 2012a,b; Cristiano, 2018), not all countries and populations undergo the same environmental and climate risks (Brulle and Pellow, 2006; Martinez-Alier et al., 2016; Anand, 2017; Pulido and De Lara, 2018). All that said, it is enough to acknowledge that current global strategies to attain sustainability (Sachs, 2012; Griggs et al., 2013; United Nations, 2015) are far from reaching their objectives, and several of the Sustainable Development Goals seem threatened, in particular, no poverty (#1), good health and well-being (#3), clean water and sanitation (#6), affordable and clean energy (#7), reduced inequalities (#10), climate action (#13), and peace, justice, and strong institutions (#16). Virtuous planning paths for sustainable cities and urban metabolism are therefore urgently required. However, this cannot be limited to technical and sectorial approaches and proposals, but rather needs comprehensive and transdisciplinary approaches—including consideration of the cultural and political dimensions—while offering recursive dialogue and double-checks to ensure good levels of action. From this perspective, there is a clear need for a better understanding of urban energy and material flows, as well as how they can point to ecological sustainability and socially distributed well-being in cities. This calls for guiding urban sustainability assessment with clear, integrative sustainability principles. Therefore, this work aims to address the complexity of urban sustainability, starting from the identification of the main drivers and systemically placing potentials and limits on the implementation of circular patterns as systematic alternatives, requiring a fundamental change in our way of thinking. The use of systems thinking and emergy concepts is suggested, within a holistic perspective, as comprehensive transdisciplinary approaches to explore the dynamics of the evolution of the city.

      Materials and Methods Systems Thinking

      The city is a complex system, and its complexity lies mostly in the intertwined network of feedback relations among its elements, be they physical (infrastructure), political, economic, or environmental. Any attempt to characterize the city's complexity must take into account how the feedback network acts as a driver of self-organization, following patterns of operation that are intrinsically systemic, and thus may exhibit counterintuitive or non-linear behaviors difficult to predict. Technological and strategic innovation framed in terms of “business as usual” is still seen as sufficient to guarantee the resilience and sustainability of the cities, despite the real possibility of socioeconomic collapse that climate change research is addressing (Ripple et al., 2019; United Nations, 2019). In fact, most of the literature concerning the systemic analysis of cities (e.g., Huang et al., 2006; Araos et al., 2016, among others) reports on systemic approaches aimed at pointing out a collection of indicators of system condition. The selection of indicators for urban sustainability assessment is not often guided by a theoretical framework, because the literature framing sustainability assessment has often targeted the national and global scales (Cohen, 2017). The water–energy nexus in urban systems, considering the consumption patterns of water and energy in buildings, residential sectors, and production sectors, can provide important insights for sustainable city planning (Fan et al., 2019). Linking urban metabolism to policy strategies is necessary in order to measure and change urban sustainability performances, by developing the interdisciplinary practice of urban metabolism assessment. Therefore, it is fundamental to discuss and to more deeply understand the complexity of future urban development and management, going much beyond the linear and monodimensional approach of just measuring a city's population, energy consumption, or gross domestic product (Ulgiati and Zucaro, 2019). This addresses sustainability issues based on multiple trade-offs but disregards the complex non-linear character of urban systems, emerging from the network of feedbacks of urban elements (Jackson, 2000; Meadows, 2008; Sterman, 2012). Therefore, an analytical representation of the configurational features of the urban elements is therefore necessary for the definition of any policy action aimed at attaining the integrated sustainability of the city (Luna-Reyes and Andersen, 2003). A suitable general systemic approach is grounded in systems thinking (Forrester, 1961; Odum, 1983), in particular, in the stock-flow (SF) representations of systems (Sterman, 1994, 2012; Meadows, 2008). Systems thinking originated as a development of the pioneering work by Ludwig von Bertalanffy (1968), finding application in several fields dealing with the study of complex systems, especially environmental and socioeconomic ones (as recently reviewed by Monat and Gannon, 2015). “Systems thinking” is usually considered one of the systemic approaches included in the general definition of “systems science,” which collects methods aimed at studying a system through its collective behavioral features. From an epistemological point of view, systems thinking addresses concise descriptions that use a low number of state variables and real flows of matter, energy, or information. A comprehensive and updated review of all the definitions and aspects related to the systems thinking, together with the history of its development, may be found in Monat and Gannon (2015). Representations based on the use of the “stocks and flows” concept have been developed separately in various disciplines. For example, economists used to call them “levels” and “rates,” respectively. Back in 1961, Forrester (1961) introduced SF description dealing with management issues, but similar concepts may be found in physics, in particular thermodynamics, where system states are often expressed by a set of time-dependent extensive variables. The evolution of the system state is then determined by differential equations that point out the mathematical relationship existing between the change of a stock and the flows generated by that. Generally speaking, SF diagrams allow a shift of the attention from the events and their direct causes to the systems that are responsible for their occurrence, in turn resulting from the configuration of feedback structures. By identifying the observable dynamical patterns of the system on simulation, it is possible to describe its operational features and to find the possible leverage points for managing its sustainability in an integrated way. The SF approach starts by identifying a limited number of extensive variables (stocks), those necessary to describe the flows of resources actually occurring in the system. Stocks can be seen as state variables of the system, whose dynamics are determined by the feedback network connecting one to another, as well as by the effects of external factors affecting system inflows and outflows.

      Since the variables that define the metabolism of a city may vary simultaneously and “in subtly interconnected ways” (Orr, 2014), a systemic approach is not sufficient per se to address the city's complexity, unless it explores the dynamics of the evolution of the city. This is one of the main points of this work: if an integrated systemic description of urban metabolism is necessary, it must also be able to address the dynamics of the city, which is expected to self-organize in a complex way depending on the changes in a set of external driving forces. This aspect of the systemic approach is rarely addressed by most studies on urban systems, which most of all aim at providing a set of indicators suitable for short-term decision-making processes.

      An SF diagram contains the relevant stocks along with the relevant flows and processes that define system operations. Stocks are elements containing a quantity of something (moles of atoms, energy, information, people, money, and so on) and are diagrammed as shield-like elements. They are changed over time by the action of flows, thus acting as delays or buffers in the system. Flows—represented by arrows—are physical flows of resources of different forms and units. Under the framework of Energy Systems Theory (Odum, 1983), which is a particular systemic approach, and using the Emergy methodology (Odum, 1996), it is possible to represent stocks and flows in the same unit of emergy, the solar emjoule (sej), which accounts for all the available energy directly and indirectly used per unit of time, area, and etc., and so allows the quantification of the description of the complex system. Although the details of emergy accounting are well beyond the scope of this article, it is worth noting how it provides a mathematical model and evolutionary justification of how and why systems develop autocatalytic modules based on reinforcing feedback loops (Odum, 1994; Campbell, 2001), a behavior that in ecosystems is at the basis of various adaptation mechanisms.

      Being that a city is an open system, a correct description of its behavioral patterns should connect the resource flows to the supporting natural and socioeconomic environment, which in turn is expected to develop autocatalytic behaviors in the supporting action (Odum, 1988). The intrinsic systemic character of the problems of a city comes from undesirable features of the system structures that produce them, so that the city should be regarded as the source of many of its own problems. Tracing cause–effect paths by separating small, easy-to-describe subsets is certainly a good means to describe some aspects of the urban metabolism, but the overall sustainability of a city requires a holistic–systemic perspective. Indeed, systemic thinking relies on physical principles, such as the second law of thermodynamics, or Lotka's power maximization principle (Lotka, 1922), in recent years extended to include the quality of energy using the emergy concept (Hall, 2004). In the words of Odum (1996), “[i]n the competition among self-organizing processes, network designs that maximize empower will prevail, by reinforcing resource intake at the optimum efficiency.” In this context, the systems thinking and diagramming approach can be seen as a valuable tool to address the challenge of urban planning and management in the name of achieving long-term holistic sustainability.

      Case Study

      In order to address a general discourse on sustainable cities and urban metabolism, we propose a study on Metropolitan Area of Naples (Napoli), in Southern Italy. The complexity of urban production and consumption processes is systematically taken into account, including logistic resource supply and recovery chains, transport and storage infrastructures, water and energy management, waste and residues collection, treatment, and recovery. This study aims at designing a circular organization of production and consumption patterns in the metropolitan area at hand, by identifying all the available opportunities (and promoting new ones) for resource saving, as well as for the exchange of still useful resources. This will be achieved by implementing principles of ecodesign, such as waste prevention, resource optimization, and a regenerative and redistributive economy in all aspects of urban organization (production, consumption, households, infrastructures, and services), involving stakeholders, administrators, business units, and organizations.

      The Metropolitan City of Naples is mainly a coastal area located around the Gulf of Naples in the Tyrrhenian Sea, covering a surface of 1,179 km2 and orographically characterized by the presence of short coastal mountain relief, as well as of a volcano, Mount Vesuvius. The Metropolitan City has a resident population of 3,101,000 inhabitants (according to the Italian National Statistics Institute, ISTAT-Istituto Nazionale di Statistica, 2018), with a population density of 2,630 inhabitants/km2. It is composed of 92 lower administrative bodies, known as Comuni (municipalities), among which Naples represents the chief city. The economy of the city of Naples is mostly focused on the tertiary sector (e.g., local, metropolitan, and regional administrations and governments; healthcare, education, and research; trade and freight transportation, including port activities; and an expanding tourism industry), with limited primary and secondary economic activities. However, the latter are more important in the rest of the Metropolitan Area, which is therefore characterized by a varied economy (ISTAT-Istituto Nazionale di Statistica, 2018). The mobility and logistic infrastructure network of the Metropolitan City of Naples is the most important in Southern Italy (DARA, 2017), with the international airport of Capodichino representing the busiest air station in the macroregion, a railway network composed of slightly more than 1,000 km of active lines and nine freight-tourist rail systems. Naples is the eighth largest Italian port for freight transport and the first for tourism, the primacy of which is also due to cruise ship activities. At the end of 2018, about 289,500 enterprises were present (i.e., registered and active) in the Metropolitan City of Naples (Camera di Commercio di Napoli, 2018). This work was developed in compliance with the European Union programs and directives for waste reduction, waste recycling, and larger use of renewable resources, as well as EU Directive 2009/28/CE of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources (the so-called 20-20-20 Directive), in the framework of Chinese-Italian high-relevance project on urban ecology “MAECI-NSFC,” in order to create the basis for a more sustainable urban metabolism in the Metropolitan City of Naples. Although not central to the present work, the study of an urban system as well as possible circular organizations of production and consumption patterns in the Metropolitan City of Naples is proposed as a case study comparable to studies of similar complex systems in China and elsewhere.

      MAECI-NSFC ongoing activities include a comprehensive tracking of the key material flows that cities usually depend upon: while also addressing the issue of sustainability through a focus on developing a circular economy (CE), the systems thinking and emergy accounting approaches focus on tracking material and immaterial costs and effects that are usually neglected; thus, the method is potentially able to reinforce the objective to improve sustainability and resilience even outside of the CE mainstream narratives. A “first draft” of the nexus among resources, lifestyles, and urban activities is presented in this work—including the food, energy, and water security nexus—and possible collaborative patterns and circular feedbacks are suggested (for the moment) on a qualitative level.

      A circular economy (CE), with products designed to ease their recycling, reuse, disassembly, and remanufacturing, is currently expected to replace conventional, “linear” wasteful models used to drive the global economy. Resource constraints, as well as increasing volumes of waste and pollution, threaten urban welfare and well-being, as well as competitiveness, business continuity, profits, and jobs. Therefore, CE policy and technology solutions are proposed to achieve resource conservation and pollutant reduction. In order to deploy the CE framework, and for the general assessment of city sustainability, three main types of matter and energy flows at the urban/metropolitan area level need to be evaluated (Ghisellini et al., 2019):

      primary material and energy resources (construction materials, fuels, food, goods, and water), with a focus on waste prevention, minimization of input flows, considering both non-renewable and renewable aspects of the flows and the relative efficacy of each;

      useful flows from one production sector to another (reuse, planning, transferring, exchanging); and

      waste and residues from production and consumption sectors (recycling, recovery, and disposal).

      This study addresses an integrated urban systems model that takes maximum advantage of available resources by the optimum use of coproducts, wastes, and residues from all metropolitan sectors via appropriate technologies, networks, and the integration of components, thus saving energy and resources, addressing the problem of waste disposal, and minimizing the environmental impacts of production and consumption. European ecocities best practices (Beatley, 2012; Joss et al., 2013) are found in Germany, Sweden, United Kingdom, and elsewhere. In China, several ecocity projects have been developed (Qiang, 2009; Wong and Yuen, 2011), among which those for Beijing, Shanghai, Tianjin, and Dalian investigate the potential of the CE for efficient resource use, by decreasing municipal waste production and improving waste treatment, thereby increasing the care for the environment. A preliminary implementation of CE patterns at the lower level of the Municipality of Naples brought about significant reductions in terms of the emergy invested in the system, highlighting that the CE might become a viable alternative business model (Santagata et al., 2020). Nevertheless, strategic long-sighted design and planning are still required to implement an urban CE that moves toward real sustainability and resilience. In the near future, successful long-term planning is expected to call into question cultural and political aspects of the present system at a higher level of organization, including groundbreaking new values and lifestyle changes, which will occur in addition to innovative technological advances. Therefore, all the primary production and consumption processes in the investigated metropolitan system require us to take into account inequality and other social concerns, as well as the entire base for urban production (agriculture, agroindustrial, commercial, household sectors), while considering that these are occurring in a disadvantaged portion of the country.

      Results Systems Diagramming of a City

      As shown it its homonymous section is based on diagramming. Starting from a model originally proposed by Viglia et al. (2018) for some Italian towns and cities, Figure 1 shows a general systemic diagram of a city, more exactly, of a metropolitan area, like the Metropolitan City of Naples. The diagram at hand is basic enough to allow for generalization beyond our case study, and context-specific features can be addressed quantitatively through emergy accounting (Odum, 1996; Brown and Ulgiati, 2016a; Brown et al., 2016; 2016b). In a fully evaluated energy system language (ESL) diagram, the quality and quantity of input flows are described along with the main requirements and operations of the system, as well as desired and undesired products and coproducts (output flows), in this case of the Naples Metropolitan Area.

      Systems diagram of a metropolitan area.

      Key Flows and Sectors in Our Case Study

      Nowadays, many CE policy and technology solutions are proposed to achieve resource conservation and pollutant reduction. As vital components of the city, water, energy, and food, as well as their nexus, are key points for the implementation of CE policies. Various measures, such as the recycling of industrial water, have been taken to ease the heavy burden of water shortage. Besides that, there are circular food policies to address food shortages or food residue issues (e.g., biofermentation, hydrogen production, and anaerobic digestion). The construction of CE scenarios, taking into account not only the water–energy–food nexus but also the purchase–income–waste generation nexus, may provide different pathways toward the desired CE future.

      Therefore, the sustainability of a system calls for appropriate resource use and decreased waste generation. For the Metropolitan Area of Naples, as well as for many other urban systems, this entails dealing with the complexity of various production and consumption processes. The development of computation procedures for circular processes requires a preliminary survey of all urban activities, as well as an agreement on the definition of the methodologies to be applied. Many important circular patterns can be identified in the investigated urban system. To draw attention to the most relevant sectors, a preliminary survey was performed to identify the most representative sectors in the area. Sectors and processes have been chosen based on our knowledge of other metropolitan case studies, either in China, in Italy, or in the rest of the world, for both their regional relevance and their suitability to implement circular patterns. Thus, the selected circular strategies are evaluated, and their implementation proposed for critical processes. The following sectors have been selected for their important role in the economy of the area at issue, as well as to address their potential for the exploration of innovative circular patterns:

      urban tourism industry

      urban waste management

      wastewater treatment

      agri-food chains and residues conversion for value-added products

      WEEE (waste electrical and electronic equipment)

      construction sector

      The successful implementation of circular urban systems requires (i) all recovery processes be integrated into the system; (ii) participatory strategies, bottom-up, and top-down interactions, to allow the search for optimized solutions (i.e., optimum compromises) toward prevention of conflicts; (iii) the application of innovative technologies; and (iv) locally creative projects that will supply a roadmap toward well-being through increased environmental care and appropriate resource use and sharing. An important sector that could also be introduced is that of mobility; however, in this sector co-products are difficult to be saved and further exploited, before entering the environment as pollution or waste. This subject deserves a more comprehensive discussion, interrelating many of the selected sectors and implying an even higher level of discussion on values, culture, and politics.

      Discussion Systems Description of a City

      As shown in the Energy Systems Language model diagram in Figure 1, the operation of a city has general features that can be found in any urban system. The diagram shows that renewable resources, such as solar radiation, wind, and rain, including the geopotential/chemical potential energy of water, and geothermal heat represent the most basic renewable energy drivers of a city, as for any other nature-based system. Coastal cities also draw upon tides and waves, as is the case for the Metropolitan Area of Naples. Local non-renewables are highly variable, depending on the geographic context. However, a common valuable natural resource is represented by soil, whose contribution to system organization is usually expressed as the organic carbon lost in consumed topsoil. Within the physical boundary of a city, environmental production is based on photosynthesis; this produces biomass and (sometimes) a supply of food and other organic materials for the city. The rest of the food and material resources needed are imported from outside the city system. In the diagram, imports are accompanied by services, that is, indirect labor and indirect socioecological costs such as the paid services for extraction or production, manufacturing or processing, and final transportation. Services are exchanged for money, which is expressed by using dashed arrows (money flows) in the diagram. Monetary transactions are represented by diamonds covering resource flows received (solid lines) and money-paid flows (dashed). Among the other imported goods and services are also fuels and electricity. Local inputs and imported inputs contribute to what is defined as the metropolitan economy in the diagram: this encompasses the primary, secondary, and tertiary economic sectors that are required for the functioning of the city, including the feeding and recreation of its human and non-human inhabitants. The city has some exported outputs, which are exchanged on markets for money (right side of the figure) required to buy the inputs from outside. In principle, the systemic goal of an urban system is the increased well-being of its population (as generally expressed by hexagonal symbols, which represent users or consumers stocks in the Energy Systems Language, ESL, Odum, 1994). This output directly addresses the concept of sustainability, attained over time within a transgenerational perspective. However, the real factors driving a city are much more complex, including money and profit (for a more extensive treatise on these aspects, see Cristiano, 2018). In addition to the systemic goals of sustainability and resilience, the robustness of metropolitan economic processes also plays an important role. Their speed, which is influenced by the demands of the urban population, and efficiency, which is influenced by the productive and transformative patterns within the city, can determine the pressure on local and imported resources, as well as the waste and pollution generated by the city2. Also, such processes can represent what is generally referred to as urban metabolism. It is in this framework that we might interpret the aims and operations of projects and measures seeking circular and collaborative patterns that are genuinely sustainable for urban economies. Premised on these goals, the systems diagram of a city that we have just described, including its stocks and flows, does not represent the outcome of our study, but rather a necessary step for the critical considerations that we illustrate in the following sections. A similar role can be bestowed on our case study, which is used here as an inspiration to describe circular approaches for city development, while proposing theoretical discussions and conclusions that follow from our considerations. Rather than having our case study as the basis for our conclusions, we propose that our concluding thoughts are able to represent an appropriate basis for addressing the case study.

      Current Narratives on Urban Planning, Circularity, and Sustainability

      Current narratives on urban planning often claim technological solutions that are able to solve the problems of innovation needed to attain the sustainability of a city. This “technology optimism” (Gonella et al., 2019) is actually rarely justified, most of all because it addresses “local” solutions without taking into account the possible feedbacks connected to the rest of the system, as well as the importance of the support region of the city. This is the case, for example, of the smart interconnectedness advocated by the current Smart City narrative (Gonella, 2019), which should allegedly allow people to directly access city services, thus facilitating the creation of “smart business” entrepreneurship. The same narrative usually does not address any of the changes required in the urban resource inflows, including those of human labor and services. Nor does it address how that part of the citizenry who are excluded from any technological or participatory form of urban life, for example, slum dwellers or the homeless, would gain any profit from e-gov, smart mobility, and interconnectedness of the smart city. Similar considerations may be made for the concept of the CE, applied at the city scale. On the one hand, the CE is, from all the points of view, clearly an endorsable project. On the other hand, it may have significant relevance in urban policy-making procedures only if it is framed in a holistic perspective (Céspedes Restrepo and Morales-Pinzón, 2018), which regards cities as “natural” complex systems obeying the same laws as the rest of nature. This is actually another key point of this article.

      General Potentials and Limits of Current Trends and Circular Patterns in Cities

      The proposals to systemically alleviate the upstream and downstream ecological impact of the economic sectors, while reducing waste production, must be built up out of the mainstream narratives. As a matter of fact, there is not yet a full awareness and attention to the current global ecological crisis. Moreover, matching the CE, which is rapidly becoming part of mainstream topics, to the optimization of urban metabolism is expected to allow a change of scale, from a focus on production to a focus on life, as well as from the private to a shared public perspective. The study of this change can be framed within systems thinking and emergy accounting, mixing up hard and social sciences to produce a more lucid and honest analysis than that driven by a purely economic point of view. All the resource flows entering, exiting, and sustaining urban economies are part of a complex self-organizing network of feedbacks, so they must be treated as connected one to another and read from both an upstream and downstream perspective, because a partial reading gives rise to useless partial visions and narratives. Design and planning for more sustainable production and consumption patterns in a metropolitan area can represent a leverage point toward more sustainable urban systems. Preventing the waste of still useful resources is hardly debatable and can be read as one of the largest potential gains for optimizing the urban operations at issue. The problems of city management must be correctly described in terms of waste prevention, ecodesign, resource optimization, and regenerative and redistributive economies, within the various aspects of urban economic processes (e.g., production, consumption, households, infrastructures, services). Furthermore, there should be an effective involvement of stakeholders, administrators, business units, and organizations, all working toward a shared goal of increased well-being, which gets closer to harmonizing the ecological, social, and economic dimensions of sustainability. However, even this might still not be enough. In a century in which great changes are expected to occur and within a context of resource scarcity, we suggest that constant attention is needed to more comprehensively address sustainability issues, verifying the truthfulness of “magic pills” or recipes, which is a crucial regulatory task for science. Systems thinking and diagramming help us to critically read the resource flows of a city. For instance, we address the importance of importing—when pursuing sustainability; specifically, it is necessary to harmonize internal resource optimization and waste reduction with the pressure generated on the urban environment and possibly shifted to city support areas, for example, in terms of external demand for further resources or internal demands for waste processing. Although sharing the reference to general systemic conservation, sustainability, and resilience are different concepts. The definition of sustainability, which is certainly more elusive, has an anthropocentric character, whereas resilience (Holling, 1973) is a general systemic property. Most of all, sustainability and resilience address different time perspectives. The former indicates what should be the systemic operation now that is able to guarantee the survival and the quality of tomorrow. On the other hand, resilience refers to the capability of reacting now to survive and preserve some systemic quality of now. Of course, several features of a city that can improve its resilience could be equally effective in terms of promoting its sustainability, but the sustainability of a city is strongly interconnected to that of its support systems (regional, national, global). This is one of the main reasons why a proper dynamic systemic analysis is mandatory for any long-term sustainability policy. Jevons (1865) admonished us that energy efficiency is not the same as energy savings: increasing the efficiency in the use of a resource may lead to an increase of its consumption rate, because of the consequential increase of demand and lowering of the price. Therefore, it seems it is finally time to go past current trends, which are recklessly careless of social and ecological issues. However, innovative circular patterns need to acknowledge Jevons' paradox while not neglecting the second law of thermodynamics. From a scientific and systemic viewpoint, we might suggest that applying circular patterns to urban metabolism could be a way to round something off, although not really creating proper circles; that is, improving the sustainability of the systems does not mean that it will make them “ideal.”

      Speaking of circles, in cycling the spinning speed also matters. Any increase in the cycling speed also increases the rate at which resources are required (hence inserted) into the system—and Jevons' paradox reminds us that increased efficiency causes increases in this spinning speed. Thus, we suggest that decreasing the spinning speed may be one of the goals to help in attaining the sustainability of a given system. In this framework, good candidates for leveraging agents in the system may not be represented by technological advancements, but by forward-looking ideas. This necessarily calls into question our values, culture, and the overall repoliticization of urban metabolism and urban life in general3. One of the major potentials for the redesign of urban metabolism might be a cultural shift from an acceptance of waste as scrap, or discards, to the perspective of waste as a valuable resource to be produced only when necessary and reused until it is no longer possible. Although (or maybe because) culture is thought of as intangible, it is taught and learned and reinterpreted and changed by each new generation, and therefore it emerges as a leverage point to rethink urban metabolic flows now and in the future within a perspective of resilience and sustainability.

      Conclusion and Perspectives

      To improve policies and actions affecting urban sustainability, it is crucial to monitor the resource inflows and outflows, by employing system diagrams that increase our understanding of how they relate to population, resource availability, and environmental carrying capacity (Ulgiati and Zucaro, 2019).4 Advocates of business-as-usual growth call for new technological improvements to address new challenges, allegedly relying on the self-regulatory ability of systems. At the same time, degrowth visions and strategies promote a paradigm shift, not only the acknowledgment that unlimited growth is impossible on a limited planet. Game-changing scenarios are usually called for in order to (i) decrease the pressure and demand on the environment, (ii) suggest sustainability and resilience strategies to harmonize internal resource optimization and waste reduction, and (iii) promote patterns for participatory and transparent assessment to move toward greater urban well-being. The transition process from linear to circular patterns is already striving—in its more genuine forms—to move toward a cultural change based on a new design to increase reuse and recycling of products. Nevertheless, to ensure an increase in the quality of life and relationships considering different business models, resource availability, environmental protection, and social development requires a path for planning sustainable cities, starting from a rethinking of urban metabolic flows. In order to make sustainability and resilience real in the face of changing, post-growth scenarios, we suggest that systems thinking plays a pivotal role and that the qualitative metabolic analysis of a European metropolitan area can be easily exported to other urban areas of the world. In particular, we conclude that

      applying circular discourses to urban metabolism requires a change of scale in our thinking, from production to life, and of sphere, from private to shared collective goals;

      the use of systems thinking and emergy concepts provides comprehensive transdisciplinary and lucid approaches that will make up for the limits and distortions of using the viewpoints of economists alone;

      soil is a vital resource that cannot be neglected when talking about urbanization;

      cities have large support areas, and we stress the importance of imported resources;

      the size of the flows associated with such imports, as well as control over them, has much to do with urban sustainability and resilience in a changing world;

      although it can be diverted by profit, the theoretical goal of a city is the well-being of its citizens, which requires us to resize flows in order to ensure their lasting availability and our control;

      waste prevention and increased efficiency in the use of urban metabolic resources ought to be matched to an overall rethinking of the speed of internal processes to avoid undesired effects, while keeping in mind both thermodynamic laws and Jevons' paradox;

      a holistic perspective is mandatory when addressing urban policy-making procedures in the framework of the CE concept. Cities must be regarded as “natural” complex systems that obey the same laws as the rest of nature;

      from a systemic point of view, we suggest that acting at the level of design and planning can represent a leverage point for (urban) sustainability; and

      matching this to a paradigm shift able to include and rethink cultural, political, and societal values can be essential to ensure resilience and sustainability in post-growth scenarios.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

      Author Contributions

      Abstract, first draft, introduction, systems diagramming, and conclusion and perspectives mostly by SC. Method mostly by FG. Other resource and discussion mostly by AZ and SC. Details about circular economy evaluation and dynamic modeling mostly by GL. Overall management and editing by SC and AZ. Scientific supervision by SU and FG.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Albino V. Berardi U. Dangelico R. M. (2015). Smart Cities: Definitions, dimensions, performance, and initiatives. J. Urban Technol. 22, 321. 10.1080/10630732.2014.942092 Anand R. (2017). International Environmental Justice: A North-South dimension. London, UK: Routledge. 10.4324/9781315252049 Araos M. Berrang-Ford L. Ford J. D. Austin S. E. Biesbroek R. Lesnikowski A. (2016). Climate change adaptation planning in large cities: a systematic global assessment. Environ. Sci. Policy. 66, 375382. 10.1016/j.envsci.2016.06.009 Barca S. (2012a). “Bread and poison. the story of labor environmentalism in Italy, 1968-1998,”in Dangerous Trade. Histories of Industrial Hazards across a Globalizing World. eds Sellers, Christopher; Melling, Joseph (Philadelphia, PA: Temple University Press), 126139. Barca S. (2012b). On working-class environmentalism. a historical and transnational overview. interface. J. Soc. Movements 4, 6180. Beatley T. (2012). Green Cities of Europe: Global Lessons On Green Urbanism. Washington, DC: Island Press. 10.5822/978-1-61091-175-7 Brown M. T. Campbell D. E. De Vilbiss C. Ulgiati S. (2016). The geobiosphere emergy baseline: a synthesis. Ecol. Modell. 339, 9295. 10.1016/j.ecolmodel.2016.03.018 Brown M. T. Ulgiati S. (2016a). Assessing the global environmental sources driving the geobiosphere: a revised emergy baseline. Ecol. Model. 339, 126132. 10.1016/j.ecolmodel.2016.03.017 Brown M. T. Ulgiati S. (2016b). Emergy assessment of global renewable sources. Ecol. Model. 339, 148156. 10.1016/j.ecolmodel.2016.03.010 Brulle R. J. Pellow D. N. (2006). Environmental justice: human health and environmental inequalities. Annu. Rev. Public Health 27, 103124. 10.1146/annurev.publhealth.27.021405.10212416533111 Calvo G. Valero A. Valero A. (2017). Assessing maximum production peak and resource availability of non-fuel mineral resources: analyzing the influence of extractable global resources. Resour. Conser. Recycl. 125, 208217. 10.1016/j.resconrec.2017.06.009 Camera di Commercio di Napoli (2018). Localizzazioni 3° Trimestre 2018. Naples: Camera di Commercio di Napoli. Campbell D. E. (2001). Proposal for including what is valuable to ecosystems in environmental assessments. Environ. Sci. Technol. 35, 28672873. 10.1021/es001818n11478236 Céspedes Restrepo J. D. Morales-Pinzón T. (2018). Urban metabolism and sustainability: precedents, genesis and research perspectives. Resour. Conserv. Recycl. 131, 216224. 10.1016/j.resconrec.2017.12.023 Cohen M. (2017). Systematic review of urban sustainability assessment literature. Sustainability 9:2048. doi10.3390/su9112048 Cristiano S. (2018). “Systemic thoughts on ecology, society, and labour,” in: Cristiano S. (Ed.) (2018). Through the Working Class Ecology and Society Investigated Through the Lens of Labour, Venice, Ca' Foscari University Press, Vol. 8, 9-23 (ISBN 978-88-6969-297-0; 978-88-6969-296-3). Cristiano S. (2019). L'approccio Sistemico eMergetico. Prospettive per una Valutazione Integrata Della Sostenibilità Di Progetti Civili e Piani Urbani [The eMergy Systems Approach. Perspectives for an Integrated Assessment of the Sustainability of Civil Works and Urban Plans]. Rassegna Italiana di Valutazione, FrancoAngeli, 71-72/2018, 149172. 10.3280/RIV2018-071008 Cristiano S. Gonella F. (2019). To build or not to build? Megaprojects, resources, and environment: an emergy synthesis for a systemic evaluation of a major highway expansion. J. Clean. Prod. 223, 772789. 10.1016/j.jclepro.2019.03.129 D'Alisa G. Demaria F. Kallis G. (Eds.) (2014). Degrowth: A Vocabulary for a New Era. London, UK: Routledge. 10.4324/9780203796146 DARA (Dipartimento per gli Affari Regionali e le Autonomie Presidenza del Consiglio dei Ministri). (2017). I Dossier delle Città Metropolitane. Città metropolitana di Napoli, I edizione [ISBN 978-88-99919-02-3]. Demaria F. Schneider F. Sekulova F. Martinez-Alier J. (2013). What is degrowth? From an activist slogan to a social movement. Environ. Values 22, 191215. 10.3197/096327113X13581561725194 Fan J. L. Kong L. S. Wang H. Zhang X. (2019). A water-energy nexus review from the perspective of urban metabolism. Ecol. Modell. 392, 128136. 10.1016/j.ecolmodel.2018.11.019 Forrester J. W. (1961). Industrial Dynamics. Cambridge, MA: MIT Press. Ghisellini P. Santagata R. Zucaro A. Ulgiati S. (2019). Circular patterns of waste prevention and recovery. E3S Web of Conferences. 119:00003. 10.1051/e3sconf/201911900003 Gonella F. (2019). The smart narrative of a smart city. Front. Sustain. 9, 17. 10.3389/frsc.2019.00009 Gonella F. Almeida C. M. V. B. Fiorentino G. Handayani K. Span,ò F. Testoni R. . (2019). Is technology optimism justified? A discussion towards a comprehensive narrative. J. Clean. Prod. 223, 456465. doi10.1016/j.jclepro.2019.03.126 Griggs D. Stafford-Smith M. Gaffney O. Rockström J. Öhman M. C. Shyamsundar P. . (2013). Policy: sustainable development goals for people and planet. Nature 495, 305. 10.1038/495305a23518546 Hall C. A. (2004). The continuing importance of maximum power. Ecol. Modell. 178, 107113. 10.1016/j.ecolmodel.2004.03.003 Hirsch F. (2005). Social Limits to Growth. London, UK: Routledge. Holling C. S. (1973). Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 123. 10.1146/annurev.es.04.110173.000245 Huang S. Ye J. Chen L. (2006). A review of urban sustainability indicators: systems framework and policy evaluation. Urban Studies 1, 227251. ISTAT-Istituto Nazionale di Statistica (2018). Bilancio demografico nazionale 2018. Available online at: dati.istat.it (accessed October 2018). Jackson M. C. (2000). Systems Approaches to Management. New York, NY: Kluwer Academic/Plenum Publisher. Jevons W. S. (1865). The Coal Question: An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of the Coal-Mines. London, UK: Macmillan. Joss S. Cowley R. Tomozeiu D. (2013). Towards the ‘ubiquitous eco-city': an analysis of the internationalisation of eco-city policy and practice. Urban Res. Practice 6, 5474. 10.1080/17535069.2012.762216 Joss S. Sengers F. Schraven D. Caprotti F. Dayot Y. (2019). The smart city as global discourse: storylines and critical junctures across 27 cities. J. Urban Technol. 26, 334. 10.1080/10630732.2018.1558387 Lotka A. J. (1922). Natural selection as a physical principle. Proc. Natl. Acad. Sci. U.S.A. 8:151. 10.1073/pnas.8.6.15116576643 Luna-Reyes L. F. Andersen D. L. (2003). Collecting and analyzing qualitative data for system dynamics: methods and models. Syst. Dynam. Rev. 19, 271296. 10.1002/sdr.280 Marcuse P. (2016). For the repoliticization of global city research. City Commun. 15, 113117. 10.1111/cico.12177 Martinez-Alier J. Temper L. Del Bene D. Scheidel A. (2016). Is there a global environmental justice movement? J. Peasant Stud. 43, 731755. 10.1080/03066150.2016.1141198 Meadows D. H. (2008). Thinking in Systems: A Primer. White River Junction, VT: Chelsea Green Publishing. Meadows D. H. Meadows D. L. Randers J. Behrens W. W. (1972). The limits to Growth. New York, NY. Monat J. P. Gannon T. F. (2015). What is systems thinking? A review of selected literature plus recommendations. Am. J. Syst. Sci. 4, 1126. 10.5923/j.ajss.20150401.02 Odum H. T. (1983). Systems Ecology: An Introduction. New York, NY: John Wiley. Odum H. T. (1988). Self-organization, transformity, and information. Science 242, 11321139. doi10.1126/science.242.4882.113217799729 Odum H. T. (1994). Ecological and General Systems: An Introduction to Systems Ecology. Niwot, CO: University Press of Colorado. Odum H. T. (1996). Environmental Accounting: Emergy and Environmental Decision Making. New York, NY: John Wiley and Sons. Olsen E. S. Orefice M. Pietrangeli G. (2018). “From the ‘right to the city’ to the ‘right to metabolismm,” in Housing for Degrowth: Principles, Models, Challenges and Opportunities. eds A. Nelson, and F. Schneider (London, UK: Routledge), 3344. 10.4324/9781315151205-3 Orr D. (2014). Systems Thinking and the future of cities. Solutions. Available online at: http://www.thesolutionsjournal.com/node/237149 Pulido L. De Lara J. (2018). Reimagining ‘justice' in environmental justice: radical ecologies, decolonial thought, and the black radical tradition. Environ. Plann. 1, 7698. 10.1177/2514848618770363 Qiang M. (2009). “Eco-city and eco-planning in China: taking an example for Caofeidian eco-city,” in Proceedings of the 4th International Conference of the International Forum on Urbanism (Delft), 511520. Ripple W. J. Wolf C. Newsome T. M. Barnard P. Moomaw W. R. (2019). World scientists' warning of a climate emergency. BioScience. 70, 812. 10.1093/biosci/biz088 Rivas M. I. Nonhebel S. (2016). Assessing changes in availability of land and water for food (1960–2050) An analysis linking food demand and available resources. Outlook Agric. 45, 124131. 10.1177/0030727016650767 Sachs J. D. (2012). From millennium development goals to sustainable development goals. Lancet 379, 22062211. 10.1016/S0140-6736(12)60685-022682467 Santagata R. Zucaro A. Viglia S. Ripa M. Tian X. Ulgiati S. (2020). Assessing the sustainability of urban eco-systems through Emergy-based circular economy indicators. Ecol. Indic. 109, 110. 10.1016/j.ecolind.2019.105859 Sterman J. D. (1994). Learning in and about complex systems. Syst. Dynam. Rev. 10, 291330. 10.1002/sdr.4260100214 Sterman J. D. (2012). “Sustaining Sustainability: creating a systems science in a fragmented academy and polarized world,” in Sustainability Science: The Emerging Paradigm and the Urban Environment, eds M. P. Weinstein, and R. E. Turner (New York, NY: Springer), 2158. 10.1007/978-1-4614-3188-6_2 Ulgiati S. Zucaro A. (2019). Challenges in urban metabolism: sustainability and well-being in cities. Front. Sustain. 1, 13. 10.3389/frsc.2019.00001 United Nations (2015). Transforming our World: The 2030 Agenda for Sustainable Development. United Nations (2019). UN Climate Action Summit 2019. Available online at: https://www.un.org/en/climatechange/un-climate-summit-2019.shtml31796909 United Nations Department of Economic Social Affairs (2018). 2018 Revision of World Urbanization Prospects. Available online at: https://population.un.org/wup/ United Nations Department of Economic Social Affairs (2019). World Population Prospects 2019. Available online at: https://population.un.org/wpp/ Viglia S. Civitillo D. F. Cacciapuoti G. Ulgiati S. (2018). Indicators of environmental loading and sustainability of urban systems. an emergy-based environmental footprint. Ecol. Indic. 94, 8299. 10.1016/j.ecolind.2017.03.060 von Bertalanffy L. (1968). General System Theory: Foundations, Development, Applications. New York, NY: George Braziller. Wong T. C. Yuen B. (2011). Eco-City Planning. Policies, Practice and Design. Dordrecht: Springer Science+ Business Media BV. 10.1007/978-94-007-0383-4 Xue J. Liu G. Casazza M. Ulgiati S. (2018). Development of an urban FEW nexus online analyzer to support urban circular economy strategy planning. Energy 164, 475495. 10.1016/j.energy.2018.08.198 Zhao Y. Wang S. (2015). The relationship between urbanization, economic growth and energy consumption in China: an econometric perspective analysis. Sustainability 7, 56095627. 10.3390/su7055609

      1For a critique of the expansion paradigm and resource use, see Cristiano and Gonella (2019).

      2As shown in Figure 1, renewables may have an important role, because they dilute and abate the levels of pollution and waste within and out of the urban system. Nevertheless, mass conservation highlights that pollution and waste do remain an issue and should be avoided upstream of their release.

      3Our elaboration and adjustment after Marcuse (2016).

      4Such monitoring could possibly use an Urban Circular Economy Calculator (UCEC, Xue et al., 2018), able to envision - through different scenarios sustaining different pathways while considering the food, energy, and water (FEW) nexus. This way, by providing system dynamics for the prediction of system adjustments over time, long-term simulations can accompany more general and theoretical discourses.

      Funding. This work was supported by the Projects of Sino-Italian Cooperation of Natural Science Foundation of China (NSFC, grant No. 71861137001) and the Italian Ministry of Foreign Affairs and International Cooperation, Direzione Generale per la Promozione del Sistema Paese (MAECI, High Relevance Bilateral Projects, grant code PGR05278), Beijing Science and Technology Planning Project (No. Z181100005318001), National Natural Science Foundation (No. 71673029), and the 111 Project (No. B17005). The project is aimed at enhancing urban resource conservation in a CE perspective. The Italian team includes Università degli Studi di Napoli Parthenope (Naples), Università Ca' Foscari Venezia (Venice) as well as Città della Scienza Foundation (Naples), while the Chinese team includes researchers from Beijing Normal University.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jjyygo.com.cn
      www.ipkoo.org.cn
      www.hyuemp.com.cn
      www.longtuty.org.cn
      www.oruiip.com.cn
      qxbxln.com.cn
      mkcpdc.com.cn
      www.tnchain.com.cn
      www.whjy365.org.cn
      muketi.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p