Front. Sustain. Cities Frontiers in Sustainable Cities Front. Sustain. Cities 2624-9634 Frontiers Media S.A. 10.3389/frsc.2020.00001 Sustainable Cities Review Reconceptualizing Urbanism: Insights From Maya Cosmology Lucero Lisa J. 1 * Gonzalez Cruz Jesann 2 1Anthropology Department, University of Illinois at Urbana-Champaign, Urbana, IL, United States 2Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Edited by: Elise Louise Amel, University of St. Thomas, United States

Reviewed by: Asmaa Abdelaty Mohamed Ibrahim, Cairo University, Egypt; Joseph Tainter, Utah State University, United States

*Correspondence: Lisa J. Lucero ljlucero@illinois.edu

This article was submitted to Urban Resource Management, a section of the journal Frontiers in Sustainable Cities

28 01 2020 2020 2 1 11 09 2019 07 01 2020 Copyright © 2020 Lucero and Gonzalez Cruz. 2020 Lucero and Gonzalez Cruz

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Sustainable practices in the present are typically designed to mitigate immediate concerns over decadal timespans. In the face of exponential population growth, overuse of resources, and global climate change, this time span is inadequate; longer, more resilient and sustainable options need to be implemented. Here, we tackle the intersection of human behavior and the urban environment by taking a holistic approach—that is, a non-anthropocentric approach critical to ensure the longevity, or even survival, of the planet. We thus approach urbanism as we would any ecosystem, with the broad understanding that the urban, the rural, humans, and non-humans are all interdependent. One cannot understand cities without an understanding of the surrounding rural or non-center areas, thus making critical an appreciation of urban-rural interdependence (URI). The holistic model is based on insights from the ancient Maya of Central America—a tropical society where farmers practiced widespread, sustainable agriculture for 4,000 years without denuding the landscape. The Classic Maya accomplished this feat in large part due to their sustainable URI and cosmocentric worldview (CWV)—that is, a cosmology of conservation, or merged existence, where people, animals, plants, rivers, stones, clouds, etc., each played a role in maintaining the world. Their CWV was also expressed in urban planning through manifestations of traditional knowledge, multi-purpose designs, and local resource networks. Insights from the Maya indicate that diversity is fundamental—across all scales; diverse strategies are flexible, spread risk, and are resilient in the face of change. As such, we present past lessons from Maya kings and farmers who built cities with reservoirs, causeways, monumental constructions and other urban features that integrated the built into the existing environment, ultimately resulting in green cities interspersed with farmsteads and managed biodiverse forests. In brief, our holistic model suggests possibilities for the re-integration of nature and culture, with the goal of a resilient URI.

insights urban-rural interdependence Classic Maya cosmocentric worldview holistic approach urban-rural resilience

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Study the past if you would divine the future—Confucius (551–479 BCE)

      History, especially since the Renaissance, demonstrates that humans have been attempting to tame, control, or reconfigure “nature.” This approach is not sustainable in the long-term due to several factors including exponential population growth, overuse of resources, and global climate change. Instead, people need to change and adapt, including how we conceptualize sustainable cities, the focus of this paper. Current sustainability practices are typically designed to mitigate immediate concerns over decadal timespans. In today's world, this time span is inadequate; longer and more resilient and sustainable options need to be implemented. The past provides options on how to avoid repeating mistakes because it “offers a pool of experience of challenges, strategies, practices, successes and failures from which to draw” (Isendahl et al., 2018, p. 19). Archaeology, specifically, contributes: (1) evidence for climate instability, flooding, extreme weather events, etc.; and (2) how people responded and/or changed their behavior (e.g., Fiske et al., 2015).

      The high interconnectivity of the modern world signifies that a call for urban resilience is a call for planetary resilience—expanding the spatial component of sustainability along with the temporal. Exceedingly vital is the necessity to think beyond humans since the survival of Homo sapiens is dependent on the endurance of the non-human world; if the environment and its resources, forests, water bodies and creatures are irrevocably damaged, humans cannot flourish. Thus, we opt for a non-anthropocentric approach for planning future cities; we broach changing the relationship between human behavior and the urban environment by taking a holistic, interspecies view of urban and non-urban spaces in the tropics.

      We approach urbanism as we would any ecosystem, and approach humans as any other organism, acknowledging that everything is reciprocally connected. Ecosystems demonstrate that diversity is fundamental across all scales; diverse strategies are flexible, spread risk, and are resilient in the face of change. We set the stage for this holistic model by discussing the Classic Maya (c. 250–900 CE) of Central America—a tropical society where farmers practiced widespread, sustainable agriculture for 4,000 years without destroying their ecosystem. The Maya accomplished this feat in large part due to their cosmocentric worldview (CWV)—that is, a cosmology of conservation where people, animals, plants, rivers, stones, clouds, etc., each played a role in maintaining the world (Lucero, 2018a). Their non-anthropocentric worldview was also expressed in their Urban-Rural Interdependence (URI), where Maya kings and subject farmers built cities with reservoirs, causeways and monumental constructions integrated into the existing environment, resulting in green cities interspersed with farmsteads and managed biodiverse forests.

      We present strategies gleaned from the tropical past that provide architypes for urban planning today (e.g., open and green spaces, natural cemeteries, constructed wetland biospheres, recycling organic waste, etc.). In brief, our holistic model re-integrates nature and culture. As archaeologists, we approach sustainable urbanism theoretically rather than empirically (Brenner and Schmid, 2015), and holistically as an ecosystem rather than an isolated unit of study. We begin with a brief discussion of urban-rural interdependency in tropical regions and elsewhere, followed by an introduction to the Classic Maya and their CWV. We then present a holistic approach for a future URI based on insights from the Maya.

      The Tropics, Urban-Rural Interdependence, and Sustainability

      Urban areas around the world have become a large rallying point in politics and policy, as well as sustainability initiatives, including tropical regions where over 40% of the world's population resides (Mora et al., 2013). The large population should come as no surprise given that people have been living in tropical regions for tens of thousands of years (Roberts et al., 2017). The tropics lie between 23.5° north and south of the equator; consequently, they have a high level of solar radiation throughout the year as well as some of the most diverse and complex ecosystems (Hutterer, 1985). Even though there is high forest biodiversity, resources are dispersed; species of flora and fauna are not concentrated in any given area. Healthy forests are critical for flora, fauna, and humans; forest cover also promotes precipitation and decreases evaporation and erosion (Lawrence and Vandecar, 2015). At present, the urban-rural divide looms increasingly prevalent as cities expand due to growing populations, which exerts pressure on rural communities and agricultural fields (Lichter and Brown, 2014; Barthel et al., 2019). This fact is even more significant given the expected expansion of the tropical belt beyond the ±23.5° latitude from the equator due to global climate change. Tropical features presumably also will spread, both good and bad, including wet and dry seasons, rainfall-dependency, hurricanes and tropical storms, changing biodiversity, diseases (e.g., Zika, malaria, dengue, etc.), and so on.

      Throughout history, rainfall-dependent tropical societies lived sustainability for millennia, relying on a combination of local, small-scale subsistence technologies and large-scale water management systems, brought together in a low-density agrarian urban system that integrated water and agricultural systems, political centers, dispersed farmsteads and communities, exchange networks, and resources (Fletcher, 2009). Low-density agrarian urban systems embodied an efficient URI and covered a wide range of scales, from the hundreds of Classic Maya kingdoms of Central America between the first century BCE and the tenth century CE, and the Sinhalese Buddhist capital of Anuradhapura between the fourth century BCE and eleventh century CE in Sri Lanka, to the Khmer capital of Angkor in Cambodia between the ninth and sixteenth centuries CE (Lucero et al., 2015). While their scale varies (e.g., Angkor and its immediate area integrated c. 750,000 people, whereas the largest Maya capitals up to c. 80,000), they had key features in common: their rainfall-dependency and the URI that emerged as a means to address it and other tropical conditions. There was a fine balance between the centripetal pull of cities (reservoirs, markets, large-scale public ceremonies and other events, etc.) and the centrifugal forces of scattered resources and subjects in non-urban or rural areas (Table 1). Table 1 represents a fluid system between the left and right columns; the amount of flow is largely dependent on seasonal variation because each has specific activities that relate to the dry season (agricultural downtime) and the wet season (agricultural intensive period).

      Low-density agrarian societies: URI (adapted from Lucero, 2018b, Table 1).

      Urban Rural
      Centripetal Centrifugal (diverse, dispersed resources)
      Hierarchy Self-organizing
      Political & religious elite, merchants Farmers, craft producers
      Temples, palaces, large public areas Managed forests & dispersed fields, livestock*
      Information nexus, exchange Information collection
      Markets, production nodes Small-scale markets/household production & exchange
      Provides services (protection, potable water) Provides tribute (labor, goods)

      Livestock was rare in the Americas until Europeans introduced horses, cattle, and the like beginning in the 1500s.

      Different tropical societies, though varying in size, had similar paths, signifying that future trajectories will likely be similar. Thus, it is crucial to be aware of the key factors that worked and did not work in the long term. As in the past, cities are heavily entangled with rural areas (Schaeffer et al., 2014). Rural communities provide food, recreation, energy, and other domesticates and natural resources to cities. The reliance of cities on rural populations bolsters an URI, a state in which the urban can only exist amidst a symbiotic relationship with the rural—in essence, they form an ecosystem of their own (Figure 1).

      Schematic showing intersection of urban and rural sectors. Generated by J. Gonzalez Cruz.

      The word ecology stems from the Greek word oikos for home. Hence, from an ecological perspective, to look at the urban is to grasp its relationship with other living things and their environment or homes—encompassing not only the rural, but also non-human entities. What are the foundations of a home for humans and non-humans? The environment, a social milieu, and production and consumption are the three underpinnings of every society and ecosystem (Table 2). Regardless of species, a home is a physical place (habitation) containing a social unit (individual/family). In human societies, families or households interact on a daily basis within communities or neighborhoods, which typically serve as the basis of identity (Smith, 2010) in a wider, integrated system. For example, traditional Maya wear woven clothing with designs (social unit) specific to each village (environment) (Dywer, 2005). Each community or town contains public features, or services, such as sanitation and water systems, administrative buildings, recreation facilities, courthouses, and others.

      Fundamentals of urban-rural interdependence.

      URI fundamentals Characteristics Examples
      Production/Consumption Food Mono-cropping
      Energy Electricity, fossil fuels
      Waste Sewage
      Markets Capitalism
      Environment Un/Built space & landscape Place of worship
      Residence Home
      Work/labor Automation
      Services Administrative/government State
      Public/social events U.S. 4th of July celebrations
      Information exchange Social media

      Current sustainable planning privileges humans, focusing on short-term solutions, which in turn leads to an imbalance caused by an over-reliance on technology, increased automation—and unintended consequences, the bane of human existence (e.g., Stokstad, 2019). For example, “influenza viruses coevolved with birds, pigs, and humans since the threshold of domestication, and the Industrial Revolution disrupted this ecosystem and amplified lethal viral mutations. The emergence of pandemic influenza viruses was…an unintended effect of the livestock revolution” (Keck, 2019, p. 1). Even green technology has unintended consequences; for instance, wind turbines, while producing stores of green energy, are killing swaths of migratory bats, already endangered by white nose syndrome (Frick et al., 2017). Bats provide many eco-services such as pollination, seed dispersal, fertilization, and insect control (Wilson, 1997). Dwindling bat species has major repercussions and elevates the need for human input to fill the increasing gap in their ecological niche. Similar critical repercussions occur with other taxa, such as the escalation of microplastic entanglements and ingestion by marine life, which ultimately affects various human food sources and environmental eco-services (Li et al., 2018).

      This is not to say that modernization should be delayed, or that a return to pre-modern ways is necessary, or even possible for that matter, but rather that a more-than-human, more holistic approach needs to be considered in urban sustainability discourse. What would a highly populated urban ecosystem look like with a more-than-human worldview? Tropical societies like the Classic Maya provide insights for a sustainable URI.

      The Classic Maya

      The Classic Maya (c. 250–900 CE) of the southern lowlands of present-day Belize, northern Guatemala and southeastern Mexico lived in urban centers or cities ruled by kings, or in dispersed rural farmsteads in a forested karstic landscape with high but dispersed biodiversity (Lucero, 2006, 2017) (Figure 2). There is also relatively limited surface water due to rainfall percolating through the permeable limestone bedrock. Water was vital in this rainfall-dependent society due to annual rainy and dry seasons; even most wetlands (c. 40% of the lowlands) became desiccated in the dry season (Dunning et al., 2006). The Maya area did not have metals or beasts of burden, and the Maya did not build extensive irrigation or extensive road systems. Instead they relied on labor, human ingenuity, stone tools, and working with the environment and its myriad of non-human entities. Organizing a dispersed subject populace required different administrative tools for efficient urban-rural interactions that encompassed diverse resource management strategies and long-term sustainable agriculture (Lucero, 2017, 2018b). Diversity in URI—in scale of water and subsistence technologies, resource types and locations, crops planted, forest management strategies, and other practices were key.

      The Maya area with major sites noted. Generated by L. J. Lucero.

      The diverse but scattered resources, including fertile agricultural soils, resulted in farmers living dispersed throughout the landscape; larger plots of fertile land supported more people and larger cities (Fedick and Ford, 1990). The Maya relied not only on diverse crops, but also diverse locations where they planted them—milpas (fields), house gardens, and managed forests. By planting in areas with fertile soils, the Maya not only fed more people by planting more crops per year, but they did not have the need to clear as much land (Ford and Clarke, 2016). An additional supply of food likely came from urban areas, where the Maya likely made use of the open, presumably green, spaces (Graham and Isendahl, 2018). Urban agriculture would have enhanced food security and resilience. Figure 3, an artist's rendition of Tikal, Guatemala, shows open areas between buildings, causeways, and reservoirs that could have supported urban gardens or even fields and forest stands. The Maya either walked through the jungle on well-established trails or canoed on navigable rivers. Thus, the lack of extensive road or transportation systems was not an issue because Maya relied on nearby resources and produce (Scarborough and Lucero, 2010).

      Artist's rendition of Tikal, Guatemala (courtesy of Vernon Scarborough) showing open areas, urban core and dispersed settlement, and reservoirs. Photo of Temple II by L. J. Lucero.

      Most of the 100's of urban centers had their own king, though some were more powerful than others, namely Tikal in Guatemala and Calakmul in Mexico, largely due to their location in areas with large amounts of fertile soils. These areas, however, lacked permanent surface water such as lakes and rivers because of the porous bedrock. Small- and large-scale water containment and conservation systems were thus vital for survival during the 5-month dry season. Rural farmers depended on city reservoirs for clean water during the dry season, which was the agricultural downtime. Urban planning and layout increasingly became interlinked with reservoir systems, creating anthropogenic landscapes that are still visible today (Scarborough, 1998; Scarborough et al., 2012). Urban features included multi-purpose ones; for example, while the causeways connected different political and ceremonial complexes, some also served as dams and walkways during the rainy season. In addition, cities exerted a centripetal pull on rural Maya through markets and access to goods, public ceremonies, and other large-scale public events. In turn, cities depended on the rural populace to fund the political economy in the form of labor, services (craft specialists, hunters, etc.), agricultural produce (e.g., maize, beans, manioc, squash, pineapple, tobacco, tomatoes, cacao, etc.), and forest resources (wood, fuel, construction materials, medicinal plants, chert, game, berries, twine, fruit, etc.).

      The Maya began building water systems by c. 100 BCE (e.g., El Mirador, Guatemala) (Scarborough, 2000). Growing population resulted in increasingly larger and more sophisticated artificial reservoirs with dams, channels and sand filtration systems, a trend that continued through the Late Classic (c. 600–800 CE), the period with the highest population size (Scarborough and Gallopin, 1991; Scarborough, 1993, 2003, p. 50–51, Scarborough, 2007). Maintaining water quality would have been crucial to curtail the presence of water borne parasites and diseases such as hepatic schistosomiasis, and the build-up of noxious elements such as nitrogen (Burton et al., 1979). The Maya kept water clean by mimicking wetland biospheres through the use of certain surface and subsurface plants and aquatic life (Lucero et al., 2011). Reservoirs, that is, constructed wetland biospheres, “also had other uses; fish eat insects and their feces and other bottom debris can be used as fertilizer…Fish, as well as snails and shellfish, are excellent sources of protein…Edible and medicinal plants grow in aquatic environments and the Maya perhaps used reeds that grew at reservoir edges for baskets and mats” (Lucero, 2017, p. 170–171). A major concern would have been dealing with human waste due to the porous limestone, especially since latrines have not been found in the archaeological record; perhaps the Maya used night soil as fertilizer, as traditional Chinese and other farmers have done.

      The URI developed out of the need to manage land and water in a tropical climate, which expanded and served people's needs until a series of prolonged droughts struck between c. 800 and 930 CE (Medina-Elizalde et al., 2010; Kennett et al., 2012; Douglas et al., 2015). Because kings relied on reservoirs to attract subjects and their services and labor, these droughts not only impacted reservoirs, but the foundation of royal power. As reservoirs dried up, water quality worsened and water plants died, along with Maya kingship. An urban diaspora ensued, resulting in c. 90% (Turner and Sabloff, 2012) of farming families leaving the interior southern lowlands for coastal areas and areas near major rivers and lakes (e.g., Belize River, Lake Petén Iztá) where smaller market towns emerged and trade thrived (Sabloff, 2007; Graham, 2011; Masson and Freidel, 2012). Maya families that remained lived near the relatively few perennial lakes and rivers (e.g., Belize River, Cara Blanca pools) in smaller communities with a different socio-political organization. Abandoned urban centers were never re-occupied. Maya families had to make hard, difficult and even radical decisions. They left their homes, fields, and communities. But they did so to save their families. While this response was drastic, it was an adaptive strategy—one that worked as evidenced by the over seven million Maya currently living in Central America and beyond (McAnany and Gallareta Negrón, 2009).

      Maya cities lasted as long as kings—water managers—provided clean water during the long dry season. By not diversifying their political economy, the kings became path dependent, which is in stark contrast to diverse and flexible strategies. “Path dependence connotes a sense of becoming increasingly stuck in a particular way of doing things, an inability to change even when change would be advantageous” (Nelson et al., 2014, p. 172; e.g., Hegmon et al., 2008). That said, cities in the southern lowlands prospered for over a thousand years. They lasted because of a fine-tuned URI that was dependent on predictable wet and dry seasons, which changed when the ninth century droughts struck. While Maya cities were not unsustainable per se, being path dependent was. Kings disappeared and cities remained empty; families and traditional knowledge endured.

      How did Maya farmers live for thousands of years without destroying their environment? How did their cities persist for over a thousand years? We posit through a non-anthropocentric worldview that guided daily existence and engagement with the non-human world in such a way that promoted a more equal relationship (Lucero, 2018a; see Tsing et al., 2019).

      The Maya Cosmology of Conservation

      The forest belongs to the Maya and they belong to it—Hanks (1990, p. 389)

      The current anthropocentric worldview as expressed in our Cartesian, dichotomous view of the world stands in stark contrast to a CWV found in many pre-modern or non-industrial societies (e.g., Weber, 2013; Lucero, 2017). A CWV is the opposite of anthropocentrism; it situates objects, humans, animals, land, water and everything on the same plane, with the goal of maintaining themselves and the world (Lucero, 2018a). The Maya thus were one with world, a concept illustrated in how they perceive the soul (ch'ulel). Every entity has a soul; every soul is connected and communicates with other souls (Houston et al., 2006, p. 142–143; Vogt, 1969, p. 369–371). Human souls are recycled; “Children and grandchildren were called kexol, “replacements” of their ancestors…” (Schele and Miller, 1986, p. 266). This CWV is embodied in languages as well; for example, “Native Americans often refer to the sun, mountains, clouds, rain, and so forth in kin terms” (Astor-Aguilera, 2010, p. 211). The Maya, and other societies with CWVs, saw more than we do—or at least acknowledged the vibrant forces of others and the fact that everything is connected and played their part to maintain the world, a concept illustrated in the ergative nature of Mayan languages and their “plurality of subjects” (England, 2017). Among the Tojolab'al Maya of Chiapas, Mexico, for instance, they emphasize “we” instead of “I” (Lenkersdorf, 2006); “we” includes clouds, plants, rivers, mountains, animals, and other entities.

      The Maya, as one with world, were closely connected and intermingled with the world around them. This point is illustrated in how the Maya perceive wits, a term that signifies lineage mountains and pyramid temples (Stuart, 1987, 1997; Stuart and Houston, 1994, p. 82). Temples are not replicas of ancestral mountains, they are ancestral mountains (see Brady and Ashmore, 1999; Harrison–Buck, 2012). It is in mountains were ancestors reside and watch over their descendants; they also serve as a means of communication through the many caves or ch'e'n. Such openings in the earth, especially caves and water bodies, are portals to the otherworld, where the Maya communicated with ancestors and gods (e.g., the Rain God Chahk). The Maya engaged with urban center wits (temples) as animated entities via ceremonies and summit performances (Reese-Taylor, 2002), as well as rural wits (mountains) via pilgrimage journeys and ceremonies (Lucero, 2018a). And even though artificial reservoirs provided clean drinking water, they, too, were considered portals and treated accordingly.

      There are no Mayan terms for “religion” or “nature” (Pharo, 2007), reflecting a merged existence that the Maya underscored through engaging with other entities via ceremonies in the home, gardens, milpas, cities and throughout the landscape (caves, water bodies, etc.). For example, Cara Blanca in central Belize served as a pilgrimage destination, especially during the ninth century droughts. This landscape includes fertile agricultural soils and 25 pools, some of which are deep watery portals or cenotes (steep-sided sinkholes filled by groundwater). Cenotes contain water throughout the year, including during the 5-month dry season. However, we only find minimal settlement near the cenotes, all ceremonial in nature (Lucero and Kinkella, 2015; Lucero et al., 2016). The Maya neither built houses nor planted fields near cenotes. They left these areas relatively untouched, despite the plentiful resources, likely because it held some significant cultural meaning. As a result, the lack of houses and fields near Cara Blanca cenotes allowed local flora and fauna to flourish, which in turn promoted biodiversity, and thus, conservation (Lucero, 2018a).

      Maya engagement of such “sacred” places was a type of sustainable management. Diversifying what they planted in their house gardens and milpas, in addition to this type of forest management, became an integral part in maintaining the landscape (Ford and Nigh, 2015, p. 13). There are other types of forest management strategies as well. A mosaic of built, managed and untouched areas sustained the Maya for millennia (Ford and Clarke, 2016).

      The Maya Cosmocentric Worldview and Resource Management

      The Maya left a sustainable imprint on the forested landscape. In fact, there is growing evidence that the “primary” forest we see today actually signifies a descendant forest reflecting ancient resource management (e.g., Gómez-Pompa et al., 1987; Lindsay, 2011, 2014; Ross, 2011). Forest management strategies included culling, promoting some species over others, land clearing, resource extraction, and intentional and accidental fires for uses including gathering wood for fuel and hunting (Ford and Nigh, 2009). Even at the height of population size in the Late Classic (c. 600–800 CE), the Maya managed and relied on forest products as evidenced in the flora and faunal remains in the archaeological record, as well as the current forest composition. For example, in a study of over 300 botanical specimens collected from areas with Maya sites in central Belize, a Mopan Maya foremen was able to identify approximately 95% of the specimens, most of which have uses today (e.g., spices, fruit, nuts, medicinal, construction materials, etc.) (Lindsay, 2011; Lucero et al., 2014). This knowledge reflects thousands of years of engaging responsibly with the living forest. Presently, the Maya make use of over 500 indigenous food plant species and a plethora of fauna, exotics, tools, ceramics, textiles, and aquatic foods (Fedick, 2010). In fact, current Maya house gardens and milpas typically mimic forest diversity (Lentz et al., 2015).

      Maya farmers likely planted non-contiguous plots to prevent the spread of pests, and used diverse small-scale extensive and intensive subsistence technologies that were environmentally unobtrusive; they included low terraces and dams, short and shallow canals and localized “raised fields that were used to grow the staples of maize, beans and squash in house gardens, short-fallow infields, long-fallow outfields and combinations of these techniques” (Lucero, 2017, p. 166). Present Maya communities still cultivate and maintain home gardens that are species rich (Thompson et al., 2015).

      Even with all of the history that has passed, including the Spanish conquest beginning in the 1520's, Spanish and English colonial rule, forced conversion to Christianity, massive population loss and displacement due to conflict and epidemic diseases and so on, the Maya and their knowledge of the environment prevail (e.g., Nations and Nigh, 1980; Argivo, 1994; Ford and Nigh, 2015) with broad implications for us all. The Maya and the tropical environment co-existed without either over-taxing the other. Low-density urbanism and URI, diverse crops and milpas and forest management are key components in tropical areas and play a key role in how we can implement sustainability goals. We propose a holistic approach for a sustainable URI that is inspired by insights from the Classic Maya.

      Reconceptualizing URI as Ecosystem: A Holistic Approach

      Human encroachment in the natural world is undeniable, but how we proceed in the near future may mean the difference between hard choices and long-term survival vs. short-term solutions and disaster. Figure 4 illustrates the worldview of the Anthropocene; while it may not be possible to completely revert to the other side of the spectrum, we must at least break down the hierarchical, anthropocentric view of the world—which would thus impact how we move forward to a sustainable URI.

      Ego vs. Eco: the former resulted in the Anthropocene, the latter in sustainable practices. Generated by J. Gonzalez Cruz and L. J. Lucero.

      At the outset, we first want to situate this model regarding the major challenges any urban model faces: (1) exponential population growth and concomitant expanding urban sprawl that endangers food security (Barthel et al., 2019); (2) overuse of resources; and (3) the need to factor in a global changing climate. Classic Maya society provides six relevant insights on how we can move toward sustainable cities with these challenges in mind, summarized here: (1) a CWV that places humans and non-humans on the same plane; (2) the importance of flexible and diverse practices and relations; (3) traditional knowledge; 4) multi-purpose designs like Maya reservoirs and causeways; (5) local resource networks; and (6) the family as the basic unit of society—and action. In brief, the Maya lived as part of the ecosystem, not divorced from it. In the remainder of this paper, we present alternative long-term strategies that are inspired from the Maya and approach the city with an integrated ecosystem lens.

      A More Merged Existence

      The Earth does not need humans to survive; it will continue to rotate beyond the existence of our species. As long as we are here, however, we need the Earth to support us. Environmental justice scholar David Schlosberg posits that it is necessary to put the non-human world at the forefront of planning, policy and the future more generally, coining the phrases ecological reflexivity and reflexive modernization (Schlosberg, 2007, p. 187–193). Reflexive modernization entails “citizen-directed policy informed by broad inclusion, ecological reflection, and social learning…in both the political and public spheres” (Schlosberg, 2007, p. 187), while ecological reflexivity demands paying close attention to nature's perspective (p. 189). Classic Maya society embodied these concepts, working with the environment, enculturating youth to respect the landscape, and abandoning cities and emigrating out of the interior when necessary for survival.

      Unlike the Maya case, migration is less of a long-term solution at present because of territorial and political issues, as well as the repercussions of exponential population growth, overuse of resources, and global climate change. Today, global climate change has been exacerbated by human activities due largely to a surge in greenhouse gases trapping in heat resulting from our reliance on fossil fuels and meat as a major source of food (methane gases from livestock) (Intergovernmental Panel on Climate Change (IPCC), 2019). The resulting fluctuations in precipitation patterns leading to droughts or floods, changes in animal habitats, colder winters and hotter summers have been quite noticeable, and are clear signs of environmental change. Cities, however, can develop infrastructure to educate and mobilize the public in environmental vigilance across urban and rural spaces, introducing a culture of ecological reflexivity. Residents who acknowledge the vital importance of nature may feel more inclined to advocate for nature and their non-human neighbors.

      The growth in the number of environmental advocates suggests that ecological reflexivity will make its way into production and consumption habits, including urban design and services (Portney and Berry, 2016). For example, the incorporation of biomimicry (e.g., constructed wetland biosphere) into planning and construction for wildlife and human habitation can increase human and non-human contact and shrink habitat fragmentation, and in so doing, boost wildlife biodiversity and health. Similarly, encouragement of vertical construction with innovative materials (e.g., various kinds of wood from sustainably grown trees) can limit urban sprawl into rural communities and help combat contributors to global climate change, such as the asphalt albedo effect (Cornwall, 2016). Planning for interspecies urbanism increases green spaces within cities and in rural areas, thereby boosting land availability for rewilding efforts or the designation of sacred/natural spaces outside of institutional structures such as National Forest Preserves (Johnson and Munshi-South, 2017; Bastin et al., 2019). As with the merged existence of the Maya, when the focus is on the interspecies collective rather than individuals, efforts become proactive and sustainable rather than reactive and short-term.

      Flexible and Diverse Strategies

      Maya URI was expressed in a mosaic of urban areas and dispersed rural settlement, intermingled with managed forested landscapes resulting in a sustainable, green urban-rural ecosystem. Today, green practices involve converting to renewable energy, banning straws, going paperless, ride-sharing, etc. All of these practices are great movements, but are rigid in nature—this is green, that is not. For a successful URI, flexibility and diversity are key. A prime example of a rigid and inflexible strategy is the Green Revolution, where large-scale extensive mono-cropping and use of chemical fertilizers and pesticides reign supreme. “The success of the Green Revolution cast doubt on the idea of human “carrying capacity” (i.e., the maximal population of a species that an environment can support without being degraded)…It encouraged the belief to prevail that human numbers are not constrained by environmental parameters but can defy limits through technological and agronomic innovations” (Crist et al., 2017, p. 261). The Green Revolution, however, does not always succeed. For instance, in the 1970's when the government of Bali implemented modern agricultural strategies as part of the Green Revolution, it turned out to be a dismal failure; the government then proceeded to ask anthropologists and religious leaders how to revert back to sustainable, traditional, and diverse agricultural strategies that were scheduled via temple districts and ritual calendars (Lansing, 1991). Unfortunately, and despite these lessons, mono-cropping has become widespread. As cities attract more and more people, the question then becomes: Can rural areas and populations fulfill urban demands for sustenance? Possibly, if flexible and diverse strategies are implemented.

      The IPCC summary report recently released (Aug., 2019) included a global call to consume less meat because of the land requirements (grazing resulting in massive deforestation) and atmospheric repercussions (methane contributing to CO2 emissions) of meat production. To feed more people, scientists and farmers throughout the world are experimenting with novel techniques, even more critical given that urban sprawl contributes to soil loss and degradation (Barthel et al., 2019). For instance, sustainable intensification (SI) focuses on redesigning current land use via both ecological (e.g., diversification, non-chemical pest management) and technological means, without cultivating more land and further damaging the environment (Pretty, 2018; but see Crist et al., 2017). SI methods were assessed in 286 projects in 57 countries (study 1) and 40 projects in 20 African countries (study 2). “In both, several million farmers on tens of megahectares had adopted practices that had led to yield increases of 79% (study 1) and 113% (study 2)” (Pretty, 2018, p. 2) over a period of 3–10 years. In these instances, farmers voluntarily adopted strategies; top-down laws will not work on their own without people agreeing in principal that changes need to be made. Further, while the bottom line can be used to convince farmers to change their ways to a more sustainable existence, we still need to promote the key role non-humans play in maintaining our world.

      There are also strategies that lessen technology-intensive agriculture and highlight traditional knowledge and diverse management strategies to promote sustainable food production and increase yields (e.g., agroforestry, forest management, silvopasture, diversified farming). One such means is through “working lands conservation” (Kremen and Merenlender, 2018); for instance, “[c]orn and soy grown in more complex rotations exhibited greater yields and more stability during hot and dry periods in the USA…and water infiltration that reduced drought effects was markedly improved in complex organic rotations compared to conventional monocultures” (Kremen and Merenlender, 2018, Table S2). SI and working lands conservation also benefit the environment (e.g., maintain biodiversity, pollinators, wildlife corridors, etc.). Incorporating traditional knowledge can help determine which practices are most suitable for any given region.

      Flexible and diverse strategies are also necessary to overcome difficult, entrenched or stigmatized ideas, including, for example, the repurposing of organic waste in urban and rural areas, which not only serves to remove unhealthy materials, but also serves to give back—as fertilizer. “Food production hinges largely upon access to phosphorus (P) fertilizer. Most fertilizer P used in the global agricultural system comes from mining of non-renewable phosphate rock deposits located within few countries. However, P contained in livestock manure or urban wastes represents a recyclable source of P” (Powers et al., 2019, p. 1). The economic value of organic waste lies in the recoverable resources that can feed back into the urban metabolism while enhancing local eco-system services, natural or bio-engineered (Trimmer et al., 2019, p. 1, Figures 14). “Urban organic waste is returned as fertilizers for food production, environmental impacts are relatively low because of reduced transport requirements, and energy is used more efficiently when fresh produce is consumed in the direct vicinity of the production site…” (Barthel et al., 2019, p. 16). As mentioned, the Classic Maya may have used human waste as fertilizer, based on the lack of latrines in the archaeological record; “it is conceivable that the sheer amount of human and food waste alone, if managed, would have allowed for more intensive agriculture in the city than in the rural zone” (Graham and Isendahl, 2018, p. 170). Such repurposing would limit the production of waste sites (biological and artificial waste) and innovate forms of waste recovery and reuse. Waste management can also take place at the household or community level—for example, using night soil for residential and community gardens. Diverse and flexible strategies are critical for more than just agriculture and sanitation to spread risk and minimize the impact of widespread disasters.

      A major issue in the coming years will be adequate supplies of clean water. The Classic Maya engineered constructed wetland biospheres. We can, too. Civil engineers at the University of California at Berkeley, for example, have been developing non-chemical means to clean water (e.g., Jasper et al., 2014; Radjenovic and Sedlak, 2015). Water supply and quality can be managed via cooperative social groups or neighborhoods (e.g., Scarborough and Lucero, 2010). Communities can be responsible for maintaining clean water supplies and gray water use for house and community gardens, for sewage purposes, and other uses. Another option is to repurpose swimming pools, transforming them into wetland biospheres; in the U.S. alone, there are hundreds of thousands of public swimming pools and over 10 million residential swimming pools1. Not only would they provide clean water, but also food (fish, edible shellfish, etc.), as they did for the Classic Maya. In fact, Coggins et al. (2019) recommend the expanded use of such ponds to address current and future water and wastewater treatment needs. Multi-scalar and flexible management at multiple and diverse sites minimize environmental shocks while tending to urban and rural human and non-human needs.

      Traditional Knowledge

      As demonstrated in our discussion of flexible and diverse strategies illustrated with the Classic Maya, traditional knowledge is fundamental to a healthy URI. Thus, it is no surprise that the Classic Maya utilized their intimate knowledge of the tropical environment to emulate the wetland biosphere for their centralized reservoirs that provided clean drinking water, as well as reeds, fish, fertilizer, and edible snails (see Lucero et al., 2011). In discussing Maya history, it is evident how vital it is to include the wisdom of elders and other knowledgeable people (e.g., multi-generation farmers, indigenous groups, etc.) in sustainable urban design, and give them their due credit. Traditional knowledge is grounded in intergenerational experience and community. Today, Maya sons continue to learn from their fathers how to cull what they need from the jungle, as well as farm their milpas, and maintain gardens. Maya girls learn from their mothers how to cook, weave cotton, maintain the house, and take care of children. Imbued in all of these teachings is the CWV and traditional knowledge, passed down generation after generation for thousands of years.

      While the sharing of traditional knowledge is at the discretion of each group, education in schools can foster sustainable behaviors that reflect a non-anthropocentric respect for the environment by re-introducing pre-industrial or traditional practices such as woodworking (using repurposed or extra wood), textiles (knitting, quilting, crocheting, sewing by hand, etc.), gardening, and others (e.g., Knudtson and Suzuki, 2006; Kimmerer, 2013, p. 385). Tangible practices such as gardening connect children with seeds, dirt and water, thus contextualizing the human and non-human efforts, raw materials, variables, and knowledge necessary for food production. Research suggests that involving children in urban improvement can be co-generative for both scholars and students (Horelli, 1997). Thus, education about traditional knowledge can help promote sustainable urbanism and environmental values. Community cohesion and reform, created by a shared knowledge base, is a relatively inexpensive means to promote a resilient URI. Similarly, traditional knowledge can inspire multi-purpose designs and engender ideas that promote intersections of the URI with other sectors such as the economy, which fall outside of the scope of this paper.

      Multi-Purpose Design

      We consider multi-purpose design as the antithesis to recycling. In fact, critics of recycling argue that it is not as sustainable as the public perceives (Lave et al., 1999; Hopewell et al., 2009). For example, “most of the recyclables that we so carefully triage are actually relatively inert (like glass and paper) and that the melting down of plastics into new shapes consumes a considerable amount of water” (Smith, 2019, p. 180). Because recycling requires an intermediary for reuse, resources such as water, capital and energy necessary for transportation and treatment, it lowers the sustainable effect of recycling substantially. As such, recycling should not be the apex of sustainable action; reuse and repurposing should.

      The first notable and perhaps most obvious principle of multi-purpose design is that an object should have more than one use. As mentioned, Classic Maya causeways often also served as dams and flood walkways. Whether for people, trade or information, today's roads primarily serve as a means of transportation; most roads are not sustainable because they serve a single-purpose and require continual maintenance (e.g., asphalt and annual potholes). This single-purpose use stands in stark contrast to ancient Roman roads, some of which are still used −2,000 years later (Dalgaard et al., 2018). Since cities rely on rural areas and people, roads will always be a part of URI. However, as climate change continues to disrupt weather patterns, water levels will rise and increased flood risks will render roads in coastal cities useless. Multi-purpose roads that double as flood barriers would ameliorate the dangers of entrenched roads; further, raised roads would provide shade underneath, as well as areas for walkways, bike paths, and small commercial enterprises.

      The Maya were experts in reuse and repurposing, the second element of multi-purpose design. They utilized broken objects and transformed them, such as a broken chert biface being reworked from a hoe into a hammerstone. Hence, if an object's initial shelf-life has expired, the object should be designed such that it can be repurposed and begin its next shelf-life, cyclically until the object is null. What cannot be reused needs to be compostable. Multi-purpose design ensures that manufactured objects do not unnecessarily infringe on non-human lives and health, while also maintaining urban-rural connections that foster a sustainable resource network.

      Resource Network

      In line with multi-purpose design is the resource network, one that emphasizes local resources. The Maya participated in long-distance exchange primarily for exotic goods rather than staple foods; for these, as mentioned, they relied on local networks. Their reliance on local networks was based on a strong labor force and specialized occupations rather than on technology per se. The resource networks we rely on today are technologically sophisticated, vast and expedient—so much so that in this globally-interconnected world, packages can be shipped from every corner of the Earth to individual recipients within days. For cities to become more sustainable, they need to shrink their resource network and rely less on technology and more on labor, which entails collapsing the network range to focus on local URI. A smaller resource network means that food production and other resources are mobilized within cities and nearby rural areas. As such, the locally sourced food movement can expand beyond boutique restaurants to every household—and include non-food resources as well.

      Technological responses alone to address energy and other needs are inadequate since they not only require finite resources to produce and energy to run, but also can put land and water supplies at risk (Intergovernmental Panel on Climate Change (IPCC), 2019; Stokstad, 2019). In the interspecies URI model presented here, labor is a form of green energy that is renewable, transportable, and currently available. We can decrease our reliance on automation and increase our reliance on a specialized labor force in the greening and urban self-sufficiency movement in a similar manner to the Classic Maya. We thus need innovations in both labor and technology (see Scarborough and Burnside, 2010); and unlike technology, we have an endless supply of ethically sourced labor. Relying on labor-intensive projects also ties in our need for more local resource networks. To truly construct a sustainable URI and address long-term issues, as we have attempted to show via the Classic Maya, we need a tool box that includes a revised worldview, traditional knowledge and bottom-up changes, each that begins at the family level.

      Scale for Action

      Healthier populations mean longer lifespans, and hence larger numbers of living people at any given time and place. With growing numbers of people living in cities, discussions of family planning in the before-life and afterlife become increasingly urgent. The before-life consists of all stages prior to birth and includes preventative contraceptives and minimally intrusive procedures upon informed consent. While innovative ideas exist to increase food supply, for some, this is not enough; we also need to focus on voluntary family planning, especially through increasing global access to education about family planning, particularly in the Global South (Crist et al., 2017).

      The afterlife deserves similar attention. There are no cemeteries in the Maya archaeological record. The Maya interred some family members in house floors. Chase and Chase (2011) suggest a figure of c. 10%, based on their analysis of nearly 300 burials from elite houses in the Maya city of Caracol, Belize. Using the hieroglyphic record and radiocarbon dates, they further posit that a key factor in determining interment was not who, but when; specifically, whoever happened to die closest to either two katuns (c. 40 years) or the 52-year calendar round (when the ritual and solar calendars conjoined). The question is, what did the Maya do with the c. 90% not buried in house floors? Perhaps, since souls themselves are recycled, the corporeal remains were used as fertilizer, or returned to the ancestors in the forest. Either way, such practices would have been part of world maintenance. Lineage forests can contribute to this world maintenance by minimizing the space afforded to the non-living, establishing new modes of remembrance.

      We need to encourage as part of future city planning natural cemeteries. In his book on the funeral industry, Harris (2007) begins in the preface by asking, what happened to “dust to dust”? This is an apt question that requires consideration. Natural cemeteries have no monuments, markers, plots per se, embalming, vaults, and metal caskets or fittings. Only biodegradable caskets are used, even though caskets are not required by law (Harris, 2007, p. 1–2, 155–163). The use of burial pods is another natural option (Rashmi et al., 2015). Other options to bury loved ones, though not as green as natural burials, include, in increasingly greener ways, cremation, burials at sea, memorial reefs, home funerals (where the body is prepared at home), use of locally made plain wood caskets, and backyard burials (in rural areas). By implementing natural burial practices, the interruption of the [food]chain of life through use of embalming chemicals ceases (not to mention loss of land for cemeteries). This movement is growing; for example, the company Ecocoffins makes caskets out of bamboo and banana leaf2. Natural cemeteries and burials are examples of some of the hard choices we will have to make in the near future if cities are to survive.

      How We Move Forward

      Ultimately, the basic unit of society, action, and change is the family. It was at the family level that the Maya responded to the several ninth century prolonged droughts; top-down strategies ultimately failed—that is, Maya kingship. Maya families persevered and still do. Similarly, policies such as the United States National Environmental Policy Act, though well-intended, ultimately fail to achieve widespread change because they attempt to impose value through a top-down approach (Caldwell, 1998, p. 21). A bottom-up approach understands that households are the foundation of society (White, 1959, p. 96, 247); together they constitute neighborhoods and communities. And it is at this level where cooperation can turn into collective action, that is, grassroots organization. After all, “It is ordinary people…who make cities what they are” (Smith, 2019, p. 4, 116–117).

      We take a page from former President Barack Obama's first presidential campaign to suggest one idea of how we can move forward: “By taking to heart the mantra of the field campaign, “respect, empower, include,” a small group of paid and unpaid organizers went out into the streets and the suburbs and started a movement powerful enough to overcome…attack ads, robocalls, and smear tactics” (Kennedy-Shaffer, 2009, p. 61). This was a grassroots effort that blossomed into the first elected African-American U.S. President. Social media makes this task even easier—neighborhood Facebook and Instagram pages are excellent places to start, even with concomitant challenges (e.g., fake news). In the Obama campaign, a key factor was recruiting young people (Kennedy-Shaffer, 2009, p. 88); this particularly resonates given that it is our youth that will have to deal with the repercussions of the Anthropocene—exponential population growth, overuse of resources, and global climate change. Another lesson is that people need specifics; “Obama fell short in some states where voters cared deeply about the specific challenges facing them and cared little for the generic rhetoric of hope” (p. 118). At the end of Kennedy-Shafer's book on the Obama campaign, he poses this question—and answer: “What turned the tide? A generation of believers, committed to creating a new kind of politics in America, started walking [door to door]” (p. 149).

      The holistic model we have presented does not try to take us back into the past through some romantic notion; this is not possible. What is possible is to rethink how we perceive and engage the world in which we live. This call to arms is not a political one; it is a cosmological one that involves the entire planet, city and rural, and human and non-human alike—as the Classic Maya case demonstrates.

      Concluding Remarks

      In 2015, 193 Member States adopted the United Nations 17 Sustainable Development Goals (United Nations, 2015). Goal 11 is of particular significance—to make cities and human settlements inclusive, safe, resilient and sustainable—as is Target 11.4 to strengthen efforts to protect and safeguard the world's cultural and natural heritage. To attain this goal, we need to address increasingly extreme weather events, such as what happened relatively recently in Houston, Texas and Puerto Rico. Cities rarely collapse; they are resilient (Smith, 2019, p. 253–255); rural areas even more so. That said, can Houston take another major hurricane? Can New Orleans withstand another massive flooding event? We can ask the same questions for most cities, whose foundation of existence is changing due to climate change.

      The model presented here has applications beyond tropical societies—especially since URI exists wherever cities do. As we have demonstrated from Classic Maya insights, URI must be the focal point for sustainability efforts. Cities do not stand alone; they are dependent on goods and produce from the rural area and populace. In turn, rural areas and people rely on cities for infrastructure, goods (e.g., machinery from factories), and cultural and political services. Focusing only on cities ignores the interrelations with rural communities and non-human entities, decreasing the overall impact of sustainability efforts.

      We also need to keep in mind the omnipresent unintended consequences, especially with regard to technology and our assumption—or even belief—that it will save the day as it has done several times in the past. A hypothetical example of the impact of climate change and technology comes in the form of another Dust Bowl and its impact on solar panels—dust clouds and blocked sunlight means less or no solar power. The resources and energy required to build and maintain solar panels are other issues entirely, not to mention the space they require.

      In cities, leaders come and go, with relatively little impact on their inhabitants (Smith, 2019, p. 239). Top-down mitigation in and of itself will not work without the support and action of the majority. Merging top-down and bottom-up approaches are the only alternative. And it begins at the foundation of any society—the family or household; it is and will be the basis for activism and action, including making some hard, life-altering decisions (e.g., using our own organic waste as fertilizer, natural cemeteries, etc.).

      The Classic Maya and other non-anthropocentric societies can teach us much, if we are willing to learn. In so doing, we will be able to reconceptualize sustainable urban planning in the future in a more holistic manner that considers non-human survival as well. Instead of “live and learn,” we need to learn and live.

      Author Contributions

      LL and JG contributed to the research design and holistic approach. LL wrote most of the Classic Maya material.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We thank the editors for inviting us to contribute to this important issue. We also want to thank the Maya, past and present, without whom none of this would have been possible. Comments by the two reviewers and Elise Amel made this a stronger paper, for which we are grateful.

      References Argivo R. (1994). Sastun: My Apprenticeship With a Maya Healer. San Francisco, CA: Harper. Astor-Aguilera M. A. (2010). The Maya World of Communicating Objects: Quadripartite Crosses, Trees, and Stones. Albuquerque, NM: University of New Mexico Press. Barthel S. Isendahl C. Vis B. N. Drescher A. Evans D. L. van Timmeren A. (2019). Global urbanization and food production in direct competition for land: leverage places to mitigate impacts on SDG2 and on the earth system. Anthropocene Rev. 6, 7197. 10.1177/2053019619856672 Bastin J. Finegold Y. Garcia C. Mollicone D. Rezende M. Routh D. . (2019). The global tree restoration potential. Science 356, 7679. 10.1126/science.aax0848 Brady J. E. Ashmore W. (1999). Mountains, caves, water: ideational landscapes of the ancient Maya, in Archaeologies of Landscape: Contemporary Perspectives, eds Ashmore W. Knapp A. B. (Oxford: Blackwell), 12445. Brenner N. Schmid C. (2015). Towards a new epistemology of the urban? City 19, 23. 10.1080/13604813.2015.1014712 Burton T. M. King D. L. Ball R. C. Baker T. G. (1979). Utilization of Natural Ecosystems for Waste Water Renovation. Chicago, IL: United States Environmental Protection Agency, Region V; Great Lakes National Programs Office. Caldwell L. K. (1998). The National Environmental Policy Act: An Agenda for the Future. Bloomington, IN: Indiana University Press. Chase D. Z. Chase A. F. (2011). Ghosts amid the ruins: analyzing relationships between the living and the dead among the ancient Maya at caracol, belize, in Living With the Dead: Mortuary Ritual in Mesoamerica, eds Fitzsimmons J. L. Shimada I. (Tucson, AZ: University of Arizona Press), 78101. Coggins L. X. Crosbie N. D. Ghadouani A. (2019). The small, the big, and the beautiful: emerging challenges and opportunities for waste stabilization ponds in Australia. WIREs Water 6:e1383. 10.1002/wat2.1383 Cornwall W. (2016). Would you live in a wooden skyscraper? Science. 10.1126/science.aah7334 Crist E. Mora C. Engelman R. (2017). The interaction of human population, food production, and biodiversity protection. Science 356, 260264. 10.1126/science.aal201128428391 Dalgaard C. Kaarsenm N. Olsson O. Selaya P. (2018). Roman Roads to Prosperity: Persistence and Non-Persistence of Public Goods Provision. Available online at: http://web.econ.ku.dk/pabloselaya/papers/RomanRoads.pdf (accessed September 3, 2018). Douglas P. M. J. Pagani M. Canuto M. A. Brenner M. Hodell D. A. Eglinton T. I. . (2015). Drought, agricultural adaptation, and sociopolitical collapse in the Maya lowlands. Proc. Natl. Acad. Sci. U.S.A.112, 56075612. 10.1073/pnas.141913311225902508 Dunning N. P. Beach T. Luzzadder-Beach S. (2006). Prehispanic agrosystems and adaptive regions in the Maya lowlands, in Precolumbian Water Management: Ideology, Ritual, and Politics, eds Lucero L. J. Fash B. W. (Tucson, AZ: University of Arizona Press), 8191. Dywer D. (2005). The rainbow textiles of the guatemalan highlands. Piecework 13, 5255. England N. C. (2017). Mayan languages, in Oxford Research Encyclopedias of Linguistics. Available online at: https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-60 Fedick S. L. (2010). The Maya forest: destroyed or cultivated by the ancient Maya? Proc. Natl. Acad. Sci. U.S.A. 107, 953954. 10.1073/pnas.091357810720080595 Fedick S. L. Ford A. (1990). The prehistoric agricultural landscape of the central Maya lowlands: an examination of local variability in a regional context. World Archaeol. 22, 1823. 10.1080/00438243.1990.9980126 Fiske S. Crate Crumley C. Galvin K. Lucero L. J. Oliver-Smith L. . (2015). Changing the Atmosphere: Anthropology and Climate Change. Final report of the AAA Global Climate Change Task Force, Arlington, VA. Available online at: http://www.aaanet.org/cmtes/commissions/upload/GCCTF-Changing-the-Atmosphere.pdf (accessed July 1, 2019). Fletcher R. (2009). Low-density, agrarian based urbanism, in The Comparative Archaeology of Complex Societies, ed Smith M. E. (Cambridge, MA: Cambridge University Press), 285320. Ford A. Clarke K. C. (2016). Linking the past and present of the ancient Maya: lowland land use, population distribution, and density in the late classic period, in Oxford Handbook of Historical Ecology and Applied Archaeology, eds Isendahl C. Stump D. (Oxford: Oxford University Press), 156183. Ford A. Nigh R. (2009). Origins of the Maya forest garden: Maya resource management. J. Ethnobiol. 29, 213236. 10.2993/0278-0771-29.2.213 Ford A. Nigh R. (2015). The Maya Forest Garden: Eight Millennia of Sustainable Cultivation of the Tropical Woodlands. Walnut Creek, CA: Left Coast Press. Frick W. F. Baerwald E. F. Polluck J. F. Barclay R. M. R. Szymanski J. A. Weller T. J. . (2017). Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conserv. 209, 172177. 10.1016/j.biocon.2017.02.023 Gómez-Pompa A. Salvaor Flores E. Sosa V. (1987). The pet kot: a man-made tropical forest of the Maya. Interciencia 12, 1015. Graham E. (2011). Maya Christians and their Churches in Sixteenth-Century Belize. Gainesville, FL: University Press of Florida. Graham E. Isendahl C. (2018). Neotropical cities as agro-urban landscapes: revisiting low-density, agrarian-based urbanism, in The Resilience of Heritage: Cultivating a Future of the Past. Essays in Honor of Professor, eds Sinclair J. J. Ekblom A. Isendahl C. Lindholm K. J. (Uppsala: Uppsala University, 165180. Hanks W. F. (1990). Referential Practice: Language and Lived Space among the Maya. Chicago, IL: University of Chicago Press. Harris M. (2007). Grave Matters: A Journey Through the Modern Funeral Industry to a Natural Way of Burial. New York, NY: Scribner. Harrison–Buck E. (2012). Architecture as animate landscape: circular shrines in the ancient Maya lowlands. Am. Anthropol. 114, 6480. 10.1111/j.1548-1433.2011.01397.x22662354 Hegmon M. Peeples M. A. Kinzig A. P. Kulow S. Meegan C. M. Nelson M. C. (2008). Social transformation and its human costs in the Prehispanic Southwest. Am. Anthropol. 110, 313324. 10.1111/j.1548-1433.2008.00041.x Hopewell J. Dvorak R. Kosior E. (2009). Plastics recycling: challenges and opportunities. Philos. Trans. R. Soc. 364, 21152126. 10.1098/rstb.2008.031119528059 Horelli L. (1997). A methodological approach to children's participation in Urban planning. Scand. Housing Plan. Res. 14, 105115. 10.1080/02815739708730428 Houston S. Stuart D. Taube K. (2006). The Memory of Bones: Body, Being, and Experience Among the Classic Maya. Austin, TX: University of Texas Press. Hutterer K. L. (1985). People and nature in the tropics: remarks concerning ecological relationships, in Cultural Values and Human Ecology in Southeast Asia, eds Hutterer K. L. Rambo A. T. Lovelace G. (Ann Arbor, MI: University of Michigan Center for South and Southeast Asian Studies), 5575. Intergovernmental Panel on Climate Change (IPCC) (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (SRCCL). Available online at: https://www.ipcc.ch/report/srccl/ (accessed September 3, 2019). Isendahl C. Lucero L. J. Heckbert S. (2018). Sustaining freshwater security and community wealth: diversity and change in the Pre-Columbian Maya lowlands, in Water and Society: Resilience, Decline, and Revival from Ancient Times to the Present, eds Sulas F. Pikiray I. (London: Routledge), 1739. Jasper J. T. Jones Z. L. Sharp J. O. Sedlak D. L. (2014). Biotransformation of trace organic contaminants in open-water unit process treatment wetlands. Environ. Sci. Technol. 48, 51365144. 10.1021/es500351e24734963 Johnson M. T. J. Munshi-South J. (2017). Evolution of life in urban environments. Science 358:eaam8327. 10.1126/science.aam832729097520 Keck F. (2019). Livestock revolution and ghostly apparitions: South China as a sentinel territory for influenza pandemics. Curr. Anthropol. 60:S20. 10.1086/702857 Kennedy-Shaffer A. (2009). The Obama Revolution. Beverly Hills, CA: Phoenix Books. Kennett D. J. Breitenbach S. F. M. Aquino V. V. Asmerom Y. Awe J. Baldini J. U. L. . (2012). Development and disintegration of Maya political systems in response to climate change. Science 338, 788791. 10.1126/science.122629923139330 Kimmerer R. W. (2013). Braiding Sweetgrass: Indigenous Wisdom, Scientific Knowledge, and the Teachings of Plants. Minneapolis, MN: Milkweed Editions. Knudtson P. Suzuki D. (2006). Wisdom of the Elders. Vancouver, BC: Greystone Books. Kremen C. Merenlender A. M. (2018). Landscapes that work for biodiversity and people. Science 362:eaau6020. 10.1126/science.aau602030337381 Lansing J. S. (1991). Priests and Programmers: Technologies of Power in the Engineered Landscape of Bali. Princeton, NJ: University of Princeton. Lave L. B. Hendrickson C. T. Conway-Schempf N. M. McMichael F. C. (1999). Municipal solid waste recycling issues. J. Environ. Eng. 25, 944949. 10.1061/(ASCE)0733-9372(1999)125:10(944) Lawrence D. Vandecar K. (2015). Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 2736. 10.1038/nclimate2430 Lenkersdorf C. (2006). The tojolabal language and their social sciences. J. Multicult. Discour. 1, 97114. 10.2167/md015.0 Lentz D. Magee K. Weaver E. Jones J. Tankersley K. Hood A. . (2015). Agroforestry and agricultural practices of the ancient Maya at tikal, in Tikal: Paleoecology of an Ancient Maya City, eds Lentz D. Dunning N. Scarborough V. (Cambridge: Cambridge University Press), 152185. Li J. Liu H. Chen J. P. (2018). Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 137, 362374. 10.1016/j.watres.2017.12.05629580559 Lichter D. T. Brown D. L. (2014). The new rural-urban interface: lessons for higher education. CHOICES Q. 29, 16. Available online at: https://www.jstor.org/stable/choices.29.1.11 (accessed August 4, 2019) Lindsay C. (2011). Culturally modified landscapes from past to present: Yalbac, Belize (Master's thesis). Urbana-Champaign, IL: University of Illinois Urbana-Champaign. Lindsay C. (2014). Botanical surveys from yalbac to cara blanca pool 6, in Results of the 2013 Valley of Peace Archaeology Project: Underwater and Surface Explorations at Cara Blanca Pool 1, ed Lucero L. J. (Belize: Institute of Archaeology, National Institute of Culture and History), 5164. Lucero L. J. (2006). Water and Ritual: The Rise and Fall of Classic Maya Rulers. Austin, TX: University of Texas Press. Lucero L. J. (2017). Ancient Maya water management, droughts, and urban diaspora: implications for the present, in Tropical Forest Conservation: Long-Term Processes of Human Evolution, Cultural Adaptations and Consumption Patterns, eds Sanz N. Lewis R. C. Mata J. P. Connaughton C. (Mexico: UNESCO), 162188. Lucero L. J. (2018a). A cosmology of conservation in the ancient Maya world. J. Anthropol. Res. 74, 327359. 10.1086/698698 Lucero L. J. (2018b). Climate change and water management in tropical societies: the classic Maya, in Exploring Frameworks for Tropical Forest Conservation: Integrating Natural and Cultural Diversity for Sustainability, A Global Perspective, eds Sanz N. Rommens D. Mata J. P. (Mexico: UNESCO), 204213. Lucero L. J. Fedick S. L. Dunning N. Lentz D. Scarborough V. L. (2014). Water and landscape: ancient Maya settlement decisions, in The Resilience and Vulnerability of Ancient Landscapes: Transforming Maya Archaeology through IHOPE, Archeological Papers of the American Anthropological Association No. 24, eds Chase A. F. Scarborough V. L. (Hoboken, NJ: Wiley-Blackwell), 3042. Lucero L. J. Fletcher R. Coningham R. (2015). From collapse to urban diaspora: the transformation of low-density, dispersed agrarian urbanism. Antiquity 89, 11391154. 10.15184/aqy.2015.51 Lucero L. J. Gunn J. D. Scarborough V. L. (2011). Climate change and classic Maya water management. Water 3, 479494. 10.3390/w3020479 Lucero L. J. Harrison J. Larmon J. Nissen Z. Benson E. (2016). Prolonged droughts, short-term responses and diaspora: the power of water and pilgrimage at the sacred cenotes of cara blanca, belize. WIRES Water 4:e1148. 10.1002/wat2.1148 Lucero L. J. Kinkella A. (2015). Pilgrimage to the edge of the watery underworld: an ancient Maya water temple at cara blanca, belize. Cambridge Archaeolo. J. 25, 163185. 10.1017/S0959774314000730 Masson M. A. Freidel D. A. (2012). An argument for classic era Maya market exchange. J. Anthropol. Archaeol. 31, 455484. 10.1016/j.jaa.2012.03.007 McAnany P. A. Gallareta Negrón T. (2009). Bellicose rulers and climatological peril?: Retrofitting twenty-first-century woes on eight-century Maya society, in Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire, eds McAnany P. A. Yoffee N. (Cambridge, MA: Cambridge University Press), 142175. Medina-Elizalde M. Burns S. J. Lea D. W. Asmerom Y. von Gunten L. Polyak V. . (2010). High resolution stalagmite climate record from the yucatán peninsula spanning the Maya terminal classic period. Earth Planet. Sci. Lett. 298, 255262. 10.1016/j.epsl.2010.08.016 Mora C. Frazier A. G. Longman R. J. Dacks R. S. Walton M. M. Tong E. J. . (2013). The projected timing of climate departure from recent variability. Nature 502, 183187. 10.1038/nature1254024108050 Nations J. D. Nigh R. B. (1980). The evolutionary potential of lacandon Maya sustained–yield tropical forest agriculture. J. Anthropol. Res. 36, 130. 10.1086/jar.36.1.3629550 Nelson B. A. Chase A. S. Z. Hegmon M. (2014). Transformative relocation in the U.S. Southwest and Mesoamerica, in The Resilience and Vulnerability of Ancient Landscapes: Transforming Maya Archaeology through IHOPE, Archeological Papers of the American Anthropological Association No. 24, eds Chase A. F. Scarborough V. L. (Hoboken, NJ: Wiley-Blackwell), 171182. Pharo L. K. (2007). The concept of “religion” in Mesoamerican languages. Numen 54, 2870. Portney K. E. Berry J. M. (2016). The impact of local environmental advocacy groups on city sustainability policies and programs. Policy Studies J. 44, 196214. 10.1111/psj.12131 Powers S. M. Chowdhury R. B. MacDonald G. K. Metson G. S. Beusen A. H. W. Bouwman A. F. . (2019). Global opportunities to increase agricultural independence through phosphorus recycling. Earths Fut. 7, 370383. 10.1029/2018EF001097 Pretty J. (2018). Intensification for redesigned and sustainable agricultural systems. Science 362:eaav0294. 10.1126/science.aav029430467142 Radjenovic J. Sedlak D. L. (2015). Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 9, 1129211302. 10.1021/acs.est.5b02414 Rashmi A. S. Namratha V. Sahithi P. (2015). Capsula mundi: an organic burial pod. Eur. J. Adv. Eng. Technol. 2, 4953. Reese-Taylor K. (2002). Ritual circuits as key elements in Maya civic center designs, in Heart of Creation: The Mesoamerican World and the Legacy of Linda Schele, ed Stone A. (Tuscaloosa, AL: University of Alabama Press, 14365. Roberts P. Hunt C. Arroyo-Kalin M. Evans D. Boivin N. (2017). The deep human prehistory of global tropical forests and its relevance for modern conservation. Nat. Plants 3:17093. 10.1038/nplants.2017.93 Ross N. J. (2011). Modern tree species composition reflects ancient Maya “forest gardens” in Northwest Belize. Ecol. App. 21, 7584. 10.1890/09-0662.121516889 Sabloff J. A. (2007). It depends on how you look at things: new perspectives on the postclassic period in the northern Maya lowlands. Proc. Am. Philo. Soc. 151, 1125. Available online at: www.jstor.org/stable/4599041 Scarborough V. L. (1993). Water management in the southern Maya lowlands: an accretive model for the engineered landscape. Res. Econ. Anthropol. 7, 1769. Scarborough V. L. (1998). Ecology and ritual: water management and the Maya. Latin Am. Antiq. 9, 135159. 10.2307/971991 Scarborough V. L. (2000). Resilience, resource use, and socioeconomic organization: a Mesoamerican pathway, in Natural Disaster and the Archaeology of Human Response, eds Bawden G. Reycraft R. (Albuquerque, NM: Maxwell Museum of Anthropology and the University New Mexico Press), 195212. Scarborough V. L. (2003). The Flow of Power: Ancient Water Systems and Landscapes. Santa Fe: School of American Research Press. Scarborough V. L. (2007). Colonizing a landscape: water and wetlands in ancient Mesoamerica, in The Political Economy of Ancient Mesoamerica: Transformations during the Formative and Classic Periods, eds Scarborough V. L. Clark J. (Albuquerque, NM: University of New Mexico Press), 163174. Scarborough V. L. Burnside W. R. (2010). Complexity and sustainability: perspectives from the ancient Maya and the modern balinese. Am. Antiq. 75, 327363. 10.7183/0002-7316.75.2.327 Scarborough V. L. Dunning N. P. Tankersley K. B. Carr C. Weaver E. Grizioso L. . (2012). Water and sustainable land use at the ancient tropical city of tikal, guatemala. Proc. Natl. Acad. Sci. U.S.A. 109, 1240812413. 10.1073/pnas.120288110922802627 Scarborough V. L. Gallopin G. C. (1991). A water storage adaptation in the Maya lowlands. Science 251, 658662. 10.1126/science.251.4994.65817741383 Scarborough V. L. Lucero L. J. (2010). The non-hierarchical development of complexity in the semitropics: water and cooperation. special issue, ancient near east and Americas. Water His. 2, 185205. 10.1007/s12685-010-0026-z Schaeffer P. Loveridge S. Weiler S. (2014). Urban and rural: opposites no more! Econ. Dev. Quart. 28:1. 10.1177/0891242413520089 Schele L. Miller M. E. (1986). The Blood of Kings: Dynasty and Ritual in Maya Art. New York, NY: George Braziller. Schlosberg D. (2007). Defining Environmental Justice: Theories, Movements and Nature. New York, NY: Oxford University Press. Smith M. E. (2010). The archaeological study of neighborhoods and districts in ancient cities. J. Anthropol. Archaeol. 29, 137154. 10.1016/j.jaa.2010.01.001 Smith M. L. (2019). Cities: The First 6,000 Years. London: Simon and Schuster. Stokstad E. (2019). Bioenergy not a climate cure-all, panel warns: IPCC report on using land to fight global warming cites risks to food and water. Science 365, 527528. 10.1126/science.365.6453.52731395762 Stuart D. S. (1987). Ten Phonetic Syllables. Research Reports on Ancient Maya Writing 14. Washington, DC: Center for Maya Research. Stuart D. S. (1997). The Hills are Alive: Sacred Mountains in the Maya Cosmos. Symbols Spring. 13–17. Available online at: https://www.peabody.harvard.edu/files/Symbols_Spring1997.pdf Stuart D. S. Houston S. (1994). Classic Maya Place Names. Washington, DC: Dumbarton Oaks. Thompson K. M. Hood A. Cavallaro D. Lentz D. L. (2015). Connecting contemporary ecology and ethnobotany to ancient plant use practices of the Maya at tikal, in Tikal: Paleoecology of an Ancient Maya City, eds Lentz D. L. Dunning N. P. (Cambridge, MA: Cambridge University Press), 124151. Trimmer J. T. Miller D. C. Guest J. S. (2019). Resource recovery from sanitation to enhance ecosystem services. Nat. Sustain. 2, 681690. 10.1038/s41893-019-0313-3 Tsing A. L. Mathews A. S. Bubandt N. (2019). Patchy anthropocene: landscape structure, multispecies history, and the retooling of anthropology an introduction to supplement 20. Curr. Anthropol. 60:S20. 10.1086/703391 Turner B. L. Sabloff J. A. (2012). Classic period collapse of the central Maya lowlands: insights about human–environment relationships for sustainability. Proc. Natl. Acad. Sci. U.S.A. 109, 1390813914. 10.1073/pnas.121010610922912403 United Nations (2015). Transforming our World: The 2030 Agenda for Sustainable Development. Available online at: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed July 10, 2019). Vogt E. Z. (1969). Zinacantan: A Maya Community in the Highlands of Chiapas. Cambridge: The Belknap Press of Harvard University Press. Weber M. (2013). [1905] The Protestant Ethic and the Spirit of Capitalism. Los Angeles, CA: HardPress Publishing. White L. A. (1959). The Evolution of Culture: The Development of Civilization to the Fall of Rome. New York, NY: McGraw-Hill Book Company. Wilson D. E. (1997). Bats in Question. Washington, DC: Smithsonian Institution.

      1https://www.apsp.org/Portals/0/2016%20Website%20Changes/2015%20Industry%20Stats/2015%20Industry%20Stats.pdf.

      2http://www.ecocoffin.com/.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hniyes.org.cn
      www.kybjdg.com.cn
      gnsjlp.com.cn
      lxytcys.org.cn
      uwme.com.cn
      www.wangcio.com.cn
      www.shengyu123.com.cn
      smeita.org.cn
      www.wtchain.com.cn
      wldgame.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p