Front. Public Health Frontiers in Public Health Front. Public Health 2296-2565 Frontiers Media S.A. 10.3389/fpubh.2017.00312 Public Health Original Research Diminution of Heart Rate Variability in Bipolar Depression Hage Brandon 1 Britton Briana 1 Daniels David 1 Heilman Keri 2 Porges Stephen W. 2 3 Halaris Angelos 1 * 1Department of Psychiatry and Behavioral Neurosciences, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States 2Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States 3Kinsey Institute, Indiana University Bloomington, Bloomington, IN, United States

Edited by: Joav Merrick, Ministry of Social Affairs, Israel

Reviewed by: Albert Yang, Harvard University, United States; Leandro Da Costa Lane Valiengo, University of São Paulo, Brazil

*Correspondence: Angelos Halaris, ahalaris@lumc.edu

Specialty section: This article was submitted to Family Medicine and Primary Care, a section of the journal Frontiers in Public Health

06 12 2017 2017 5 312 05 08 2017 06 11 2017 Copyright © 2017 Hage, Britton, Daniels, Heilman, Porges and Halaris. 2017 Hage, Britton, Daniels, Heilman, Porges and Halaris

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Autonomic nervous system (ANS) dysregulation in depression is associated with symptoms associated with the ANS. The beat-to-beat pattern of heart rate defined as heart rate variability (HRV) provides a noninvasive portal to ANS function and has been proposed to represent a means of quantifying resting vagal tone. We quantified HRV in bipolar depressed (BDD) patients as a measure of ANS dysregulation seeking to establish HRV as a potential diagnostic and prognostic biomarker for treatment outcome. Forty-seven BDD patients were enrolled. They were randomized to receive either escitalopram–celecoxib or escitalopram-placebo over 8 weeks in a double-blind study design. Thirty-five patients completed the HRV studies. Thirty-six healthy subjects served as controls. HRV was assessed at pretreatment and end of study and compared with that of controls. HRV was quantified and corrected for artifacts using an algorithm that incorporates time and frequency domains to address non-stationarity of the beat-to-beat heart rate pattern. Baseline high frequency-HRV (i.e., respiratory sinus arrhythmia) was lower in BDD patients than controls, although the difference did not reach significance. Baseline low-frequency HRV was significantly lower in BDD patients (ln4.20) than controls (ln = 5.50) (p < 0.01). Baseline heart period was significantly shorter (i.e., faster heart rate) in BDD patients than controls. No significant change in HRV parameters were detected over the course of the study with either treatment. These findings suggest that components of HRV may be diminished in BDD patients.

major depression heart rate variability respiratory sinus arrhythmia escitalopram celecoxib 10T-1401 Stanley Medical Research Institute10.13039/100007123

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Compared to major depressive disorder (MDD) and anxiety disorders, bipolar disorder (BD) is less prevalent, but it represents a significant mental health concern worldwide. BD is one of the most burdensome mental illnesses worldwide with nearly 50 million people suffering from it (1). Although manic episodes represent the distinguishing feature for a diagnosis of BD type I versus other mood disorders, bipolar depression (BDD) causes significant distress and dysfunction for patients and their families and poses major treatment challenges. Because it is often difficult to distinguish BDD from an episode of MDD prior to a distinct episode of mania, it poses significant diagnostic challenges to the clinician. Although episode length and frequency of episodes may be relatively similar between depression and mania in BD, clinical evidence suggests that BD patients are less likely to fully recover from a major depressive episode than from a manic, hypomanic, or even minor depressive episode (2) Therefore, it is imperative to consider BDD patients as being particularly susceptible to treatment resistance. Many symptoms of mood disorders may be reflective of an underlying dysregulation in autonomic nervous system (ANS) function. For example, the increased sympathetic activity with associated elevations in catecholamine and cortisol levels observed in anxiety results in a high comorbidity between anxiety and depression (3). This sustained increase in sympathetic tone can result in changes in blood pressure, decreased blood flow to the gastrointestinal tract leading to weight loss, and insomnia due to sustained pupillary dilation.

      Heart rate variability (HRV) is defined as the variation between heartbeats over a period of time; it involves input from both the sympathetic and parasympathetic divisions of the ANS. Short recordings on an electrocardiogram (ECG) produce two primary patterns of oscillation that correspond to HRV (4). One frequency band occurs between about 2 and 8 s (approximately one breath cycle in the general population), which corresponds to 0.12–0.4 Hz (high frequency, or HF-HRV). This oscillation coincides with a physiological phenomenon known as respiratory sinus arrhythmia (RSA), which is characterized by a spontaneous oscillation in the beat-to-beat heart rate pattern that occurs in relation to spontaneous breathing. It is accepted throughout the literature that RSA, or HF-HRV, can be used to estimate cardiac vagal tone (5, 6). A second frequency band occurs between about 10 and 25 s, which corresponds to 0.04–0.10 Hz (low frequency, or LF-HRV). The pattern produced by this frequency band is often known as the Traube–Hering–Mayer wave. Certain studies have attempted to validate the LF measurement as an index of sympathetic activity (7, 8), while other evidence suggests that LF measurements are more reflective of mixed sympathetic and parasympathetic activity (9, 10). A third theory suggests that since atropine, a cholinergic blocker, removes both oscillations in heart rate, the LF-HRV domain is also transmitted through the vagus nerve and represents another parasympathetic index (11). Given that abundant evidence has validated RSA as an index of cardiac vagal tone (12) and since there is substantial ambiguity in interpreting other components of HRV (13, 14), we chose to use RSA (i.e., HF-HRV) as our primary index of autonomic function and LF-HRV as a more general index of autonomic state via a pathway that is presently not well defined.

      The comorbidity between affective disorders and cardiovascular (CVD) and cerebrovascular disease is well documented in the literature. Elucidating the likely pathophysiological links between CVD and mental illness has been a major research focus over the past several decades, and there is growing evidence indicating that one of these links may be HRV. Studies indicate that decreased HRV may be indicative of a myocardial infarction (15, 16) and insulin resistance (17). The relationship between MDD and CVD has been robustly established in the literature (1820). A decreased RSA and an increased LF-HRV has been associated with MDD (21), and further evidence suggests that increased RSA prior to antidepressant treatment is predictive of a positive treatment response in MDD patients.1 The literature associating HRV to BD is not as robust, but recent research suggests links between the two (22). In one particular study, both BD and recurrent MDD patients were found to have significantly lower HRV parameters than healthy controls (HCs), despite clinical remission in both groups (23). In BD patients, HRV during a manic episode is significantly higher than HRV during a depressive episode or a euthymic state (24, 25). In the present study, we addressed three specific aims. First, we sought to detect differences in HRV between BDD patients and HC subjects before the initiation of antidepressant drug therapy in BDD patients with documented treatment resistance in regards to depression response. Second, based on our previous findings of treatment response prediction utilizing baseline RSA values in MDD patients, we were interested in determining whether a similar relationship exists between baseline HRV (i.e., RSA and LF-HRV) and treatment response in BDD patients. Third, we were interested in determining whether HRV (i.e., RSA and LF-HRV) changes during the course of treatment of our BDD patients, and if so, would responders differ from non-responders with respect to these components of HRV at the end of treatment.

      Materials and Methods Study Population

      The study was approved by the Institutional Review Board (IRB) of Loyola University Medical Center and was conducted according to the principles of the Declaration of Helsinki. Males and females 18–65 years of age who met DSM-IV criteria for BD I or BD II without any other psychiatric diagnoses, who were otherwise physically healthy and mentally capable to give informed consent, were considered as candidates. We selected BDD subjects whose depression had failed to remit following at least one adequate trial with an antidepressant, or who were experiencing a breakthrough depressive episode in spite of being maintained on a mood stabilizer and/or an atypical antipsychotic agent. As a condition to enrolling in the study, manic/hypomanic symptoms had to have responded adequately to a mood stabilizer and/or antipsychotic. Subjects were maintained on a mood stabilizer and/or atypical antipsychotic throughout the study. Since we used celecoxib as augmenting agent in one arm of this study, subjects who were being maintained on lithium at the time of screening could not be included due to a potential adverse interaction with celecoxib. If they qualified for the study and were agreeable to having their lithium replaced with a different mood stabilizer, they were enrolled. A minimum score of 18 on their 17-item Hamilton Depression Scale (HAMD-17) was required for study admission. Other Axis I diagnoses, active suicidality, uncontrolled hypertension, dyslipidemia, or diabetes mellitus, and history of smoking or substance abuse in the preceding 6 months. History of heart disease or autoimmune disorder was exclusion criteria. Subjects had to be free of any source of active or chronic inflammation. Female subjects could not be pregnant, lactating, or taking oral contraceptives. Screening blood samples were obtained to determine complete blood count, complete metabolic panel, lipid profile, thyroid function, and urinalysis (including pregnancy test). The presence of any clinically significant abnormalities excluded the prospective participant. Sixty-five treatment-resistant BDD patients who met the inclusion/exclusion criteria and successfully completed the baseline evaluations were randomized into one of the two treatment arms: escitalopram + placebo or escitalopram + celecoxib. The primary hypothesis underlying this study was to determine whether modulation of the inflammatory response by co-administration of a specific cyclooxygenase (COX-2) inhibitor would reverse treatment resistance and lead to a better treatment outcome. A total of 37 subjects had complete sets of HRV data to allow meaningful statistical analyses. Their demographic data is shown in Table 1.

      Demographic characteristics of BPD patients versus healthy control (HC) subjects.

      BPD subjects HC subjects p2 value
      Study participants 37 36
      Age (±SD) 42.5 (11.8) 39.3 (13.8) 0.28
      BMI (±SD) 31.3 (6.4) 26.7 (5.9) 0.003
      Female 64.9% 63.9% 0.93
      Caucasian 64.9% 75.0% 0.35
      Non-Caucasian 35.1% 25.0%

      To quantify the degree to which study patients were treatment resistant we used the Maudsley Staging Method to obtain a resistance score. The scale utilizes a variety of factors to quantify treatment resistance in depression, including duration of depressive symptoms, symptom severity, number of treatment failures, and whether or not the patient had received psychopharmacological augmentation or ECT (26, 27). Each patient was assigned a score with a range of 3 (minimal resistance) to 15 (maximal resistance). Seventy percent of our subjects had scores between 5 and 8, while 30 % had scores between 9 and 13.

      HC Subjects

      Eligible HC subjects were recruited by advertising and posting of IRB approved flyers. To determine eligibility, identical procedures were used as for the BDD group including a psychiatric diagnostic structured interview and routine laboratory tests. Main exclusion criteria were any medical, inflammatory, or mental illness and substance use (also among first degree relatives). Pregnant or lactating females were excluded. Their HAMD-17 and Beck Depression Inventory scores had to be less than 5. Thirty-six subjects were enrolled resulting in a BDD/HC ratio of about 1:1. Their demographic data are shown in Table 1.

      Study Design

      At the screening visit, subjects underwent a psychiatric interview to establish the diagnosis of treatment-resistant BDD. Subjects who met the screening criteria and signed the IRB-approved consent form underwent comprehensive assessments in order to quantify depression and associated symptoms. Patients then underwent a 2-week washout of their current antidepressant (4 weeks for fluoxetine). After the washout, subjects entered a 1-week run-in phase and received on a single-blind basis escitalopram placebo + celecoxib placebo. The purpose of this run-in was to identify placebo responders. Subjects who continued to meet eligibility criteria at the subsequent baseline visit, were randomized to receive on a double-blind basis escitalopram (beginning at 10 mg/day), +celecoxib (fixed at 400 mg/day), or celecoxib placebo. Escitalopram doses were optimized based on efficacy and tolerability over the first 4 weeks of active treatment but did not exceed a daily dose of 20 mg; no further dose adjustments could be made during the final 4 weeks of the study. Subjects were randomized according to a fixed assignment ratio of 1:1 (escitalopram + celecoxib or escitalopram + placebo). Assignment to groups was based on a pharmacy generated randomization code. The randomization code was kept in the pharmacy and could only be broken if a serious adverse reaction occurred. All study medications were prepared by the pharmacist and were handed to study subjects at each visit. They were instructed to return the empty vials at each visit to determine any amount of unused medication and hence failure to comply.

      No discontinuation of medication was permitted throughout the study. Enrolled patients received no other form of therapy for the duration of the study. Follow-up blood draws and assessments using both self-rating and clinician-administered depression and anxiety scales were performed at weeks 0, 1, 2, 4, and 8.

      Subjects had to complete at least 6 weeks of active treatment to be regarded as completers. If a subject chose to withdraw from the study on or after 6 weeks of treatment, s/he was expected to complete the end-of-study assessments at that time. Those results were carried forward for the purpose of data analysis.

      Collection of HRV Data

      Patients were assessed for HRV at weeks 0 and 8 using the SphygmoCor® CPVH system. This test was always carried out between 8 and 11 h in the morning and always in the same examination room to minimize environmental factors and diurnal fluctuations in ANS function. The patient was asked to recline on the examination table and a three-lead ECG was attached to the chest of the subject who had to rest for 10–15 min before the ECG recording was started. ECG data were collected over a 15-min period to ensure consistency in data collection. There is significant evidence that short-term HRV measurements (30 min or less) are stable over a significant period of time as compared to 24-h measurements via a Holter monitor (28, 29).

      Inter-Beat-Interval Editing and Analysis

      Data collected for HRV quantification are subject to artifacts that are related to the function of the ECG. The components of HRV (i.e., RSA and LF-HRV) were calculated from a time series generated by the times between sequential heartbeats (i.e., the time in millisecond between sequential R-wave in the ECG) over a period of 10–15 min. This time series consists of several hundred values that correspond to individual inter-beat-intervals (IBIs). Physiological mechanisms, both related and unrelated to RSA or LF-HRV, can contribute to this time series by distorting the accuracy of the R-wave detection. Influences from a spurious decrease in R wave amplitude, a random abnormally large T wave, single PACs/PVCs, or even patient activity must be removed from the time series before RSA and LF-HRV can be reliably quantified.

      To deal with potential anomalies through artifact or ventricular arrhythmia (e.g., RSA is an atrial rhythm and represents the time course of the vagal influence on the sinoatrial node), a software package was used to correct for any of the artifacts in the data collected (30). Editing involved integer arithmetic to adjust the time series by adding IBIs when false invalid intervals occurred and dividing IBIs when R wave detections were missed. These decisions were guided by inspection of the ECG. In order to preserve an accurate representation of the neural regulation of the heart, data were only accepted if less than 5% of the data needed to be corrected.

      After visual scanning and editing, the data were analyzed using CardioBatch Software (31). CardioBatch is a program that was created as a companion program to CardioEdit to quantify RSA and LF-HRV based on previously developed procedures by Dr. Stephen Porges (32). Fifteen minutes of ECG data were collected for each individual. Values for heart rate and RSA were calculated in sequential 30-s epochs and then averaged across the 15-min period. RSA and LF-HRV values for each epoch were transformed to their natural logarithmic values to conform to the distributional requirements for parametric analyses (12, 33).

      Statistical Analyses

      Consistent with the literature that documents HRV decreases with advancing age (34, 35), both the BDD and HC groups exhibited a significant negative relationship between HRV and age. Additionally, the BDD group had a significantly higher BMI than the HC group. To assess the contribution of potential confounding variables (e.g., age, sex, body-mass-index), analyses of covariance (ANCOVA) were used to remove potential confounding effects of age, sex, and ethnicity when comparing RSA and LF-HRV for HC and BD subjects at baseline (Table 1). In addition, heart period (HP) was analyzed. HP represents the average interval between heartbeats measured in milliseconds. HP period increases in duration when heart rate decelerates and decreases in duration when heart rate accelerates. Each patient was assigned a Maudsley score with a range of 3 (minimal resistance) to 15 (maximal resistance). A Pearson’s correlation was then run between severity of treatment resistance and BL RSA, LF-HRV, and HP.

      Repeated measures ANCOVA were conducted to evaluate potential differences in the autonomic parameters (i.e., RSA, LF-HRV, HP) at baseline and week 8 in both the escitalopram + celecoxib group and the escitalopram + placebo group, with controls for week 8 escitalopram dosage and treatment response.

      Treatment response in study completers was classified as (a) no response to treatment (less than 50% reduction in HAM-D score from baseline); (b) partial response to treatment (greater than 50% reduction but end-of-study HAM-D score greater than 7); (c) remission (greater than 50% reduction and end-of-study HAM-D score of less than 7). It is generally accepted that for a major depressive episode, patients who have had a partial response to antidepressant treatment are at much higher risk of experiencing physical and mental dysfunction in comparison to patients who achieve remission (36). For purposes of the present analyses, no response and partial response were grouped into the non-response category. ANCOVA compared autonomic parameters at baseline between treatment responders and non-responders.

      Level of significance for the analyses was set at p < 0.05. p-Values between 0.05 and 0.10 are reported as trends to be investigated in future studies with larger sample sizes (i.e., greater statistical power).

      Results

      Baseline RSA did not distinguish BDD patients (n = 37) from HC subjects (n = 36) (F = 1.44, p = 0.23). However, baseline LF-HRV of BDD patients (n = 37) was significantly lower than HC subjects (n = 36) (F = 29.41, p < 0.01). Also, baseline HP of BDD patients (n = 37) was significantly shorter than HC subjects (n = 36) (F = 4.70, p = 0.03) (Figures 1A,B).

      (A) Baseline respiratory sinus arrhythmia (RSA) and LF-heart rate variability (HRV) in all patients. Comparison of baseline RSA and LF-HRV in HC subjects (n = 36) and bipolar disorder (BD) patients (n = 37). No significant difference was found between RSA in HC subjects (5.65, SEM = 0.22) and BPD patients (5.12, SEM = 0.23) (F = 1.44, p = 0.23). Baseline LF-HRV was significantly higher in HC subjects (5.50, SEM = 0.17) than in BD patients (4.20, SEM = 0.14) (F = 29.41, p < 0.01). (B) Baseline heart period (HP) in all patients. Comparison of baseline HP in HC subjects (n = 36) and BD patients (n = 37). Baseline HP was significantly higher in HC subjects (932.75 ms, SEM = 22.26) than in BD patients (861.96 ms, SEM = 21.08) (F = 4.70, p = 0.03).

      BDD patient Maudsley scores were significantly and negatively correlated with baseline RSA (r = −0.458, p < 0.01). Maudsley scores also tended to be negatively correlated with baseline LF-HRV (r = −0.255, p = 0.127) and baseline HP (r = −0.274, p = 0.101), although the relationship did not reach statistical significance (Table 2).

      Correlations between severity of treatment resistance and heart rate variability (HRV) parameters.

      BL RSA BL LF-HRV BL HP
      Maudsley score r = −0.458, p < 0.01 r = −0.255, p = 0.13 r = −0.274, p = 0.10

      BL, baseline; RSA, respiratory sinus arrhythmia; LF, low frequency; HRV, heart rate variability; HP, heart period.

      No significant differences in the autonomic parameters were found between BDD patients receiving the escitalopram + celecoxib combination (n = 21) and the escitalopram + placebo combination during the baseline assessment (n = 14) (data not shown).

      For the escitalopram + placebo group (n = 14), RSA did not change significantly from baseline to week 8 after controlling for change in escitalopram dosage (F = 0.42, p = 0.53) and after considering treatment response (F = 2.89, p = 0.12) (Figure 2A). LF-HRV did not change significantly from baseline to week 8 after controlling for change in escitalopram dosage (F = 0.54, p = 0.48) and after considering treatment response (F = 1.38, p = 0.27) (Figure 2A). HP did not change significantly from baseline to week 8 after controlling for change in escitalopram dosage (F = 0.00, p = 0.96) and after considering treatment response (F = 0.00, p = 0.98) (data not shown).

      (A) Change in respiratory sinus arrhythmia (RSA) and LF-heart rate variability (HRV) in escitalopram-placebo group. Change in RSA and LF-HRV from baseline to end-of-study in patients receiving Escitalopram-placebo combination (n = 14). No significant changes in RSA (p = 0.54) or LF-HRV (p = 0.40) were found. (B) Change in RSA and LF-HRV in escitalopram–celecoxib group. Change RSA and LF-HRV from baseline to end-of-study in patients receiving escitalopram–celecoxib combination (n = 21). No significant changes in RSA (p = 0.14) or LF-HRV (p = 0.70) were found.

      For the escitalopram + celecoxib group (n = 21), baseline RSA for patients who were deemed to be end-of-study treatment responders (n = 13) was not significantly different than baseline RSA for patients who were deemed to be end-of-study treatment non-responders (n = 8) (F = 2.06, p = 0.17). No significant differences were found between responders and non-responders for baseline LF-HRV (F = 3.16, p = 0.10) and baseline HP (F = 0.04, p = 0.85) (data not shown). Visual inspection of these two figures indicates a flat time course of RSA and LF-HRV in the escitalopram + celecoxib group whereas the time course of change in the escitalopram + placebo group indicates a possible trend toward reduction in both components. While neither time course reached statistical significance, it is intriguing to speculate that the celecoxib combination might exert a “protective effect” against RSA and LF-HRV reduction, the latter being possibly associated with one or more of the concomitant medications, these patients were exposed to prior to and during the current study. Clearly an extended time course of observation and a larger sample size would be needed to investigate such a potential protective effect of the anti-inflammatory agent.

      For the escitalopram + celecoxib group (n = 21), RSA did not change significantly from baseline to week 8 after controlling for change in escitalopram dosage (F = 2.36, p = 0.14) and between treatment response groups (F = 0.09, p = 0.76) (Figure 2B). LF-HRV did not change significantly from baseline to week 8 after controlling for change in escitalopram dosage (F = 0.14, p = 0.72) and after considering treatment response (F = 0.19, p = 0.67) (Figure 2B). HP did not change significantly from baseline to week 8 after controlling for change in escitalopram dosage (F = 2.18, p = 0.16) and after considering treatment response (F = 0.16, p = 0.70) (data not shown).

      Discussion

      As illustrated in Figure 1, at baseline, when our BDD patients were at least moderately depressed, but not manic or hypomanic, relative to HC, they had significantly lower LF-HRV, and HP and a trend toward lower RSA. There were negative correlations between treatment resistance severity and baseline RSA, LF-HRV, and HP, with significance reached in the negative relationship between treatment resistance severity and RSA. This significant negative correlation supports the assumption that treatment-resistant BDD may account, at least in part, for reduced RSA. In this context, the role of possible effects of multiple medication trials and specific medications with anticholinergic properties must also be considered. Decreased HRV has been reported in bipolar patients during the manic phase in some studies (37, 38). However, these findings were not confirmed in a more recent study (24, 25) in which the investigators found increased HRV during manic states compared with depressive and euthymic states using a longitudinal study design with repeated measurements. Additionally, these authors reported an inverse relationship between HRV and the severity of depressive symptoms and a positive association between HRV and the severity of manic symptoms. In another study of bipolar patients studied during a euthymic state, Cohen et al. reported that time domains of HRV (HR, HP) were decreased compared to HCs; however, HF-HRV (also referred to as “vagal tone”) was significantly increased (39). A recent study comparing bipolar II depressed patients to unipolar major depressed patients and HCs found that BD patients had a significantly lower vagal tone than both HCs and unipolar major depressed patients (40). Specifically, in bipolar I patients, one study found that subsyndromal BD patients had significantly lower HRV parameters than HCs (41). Faurholt-Jepsen et al. (24, 25) recently published data from a systematic and extensive meta-analysis of 15 studies comprising a total of 2,534 patients and showed that HRV is reduced in BD patients compared to HC subjects. They further commented that the discrepant findings among the published studies could be due, at least in part, to factors unrelated to BD per se, notably, the heterogeneity of the disorder, phase of the illness at the time of study, sample sizes, and methods used. To this list of variables that must be controlled in future studies, a detailed list of all medications the patient is receiving at the time of the study should be included with special consideration to agents with established anticholinergic activity as well as known noradrenergic properties.

      To our knowledge, ours is the first study to find significant decreases in both time and frequency domain parameters of HRV in bipolar I and II depressed patients in comparison to HC subjects. Our findings are suggestive of the following. First, the directionality of both RSA and LF-HRV is supportive of the Polyvagal Theory (11), which proposes that there are two vagal inputs to the heart. The myelinated portion of the vagus nerve originates in the nucleus ambiguus and is responsible for the effects of RSA, whereas the unmyelinated portion of the vagus originates in the dorsal motor nucleus and contributes to bradycardia and the low-frequency (slow) bandwidth of HRV (11). If LF-HRV reflected any sympathetic activity, we would expect to see either no change or possibly even an increase in BDD patients, but the opposite was actually detected in our study. This finding is consistent with similar findings in MDD patients and frequency domain HRV measurements (42). It reinforces the need for further exploration of the physiological mechanism behind LF-HRV and is consistent with the evidence that there is no neural basis to interpret LF-HRV as an index of sympathovagal balance (43).

      Current evidence linking depression and HRV is inconclusive and is largely based on the majority of research done in MDD subjects. Initially, MDD appeared to be associated with decreased HRV, and no effect of Selective serotonin reuptake inhibitors (SSRI’s) on HRV was detected over a 3–6 week trial period (44). This finding is similar to the lack of effect found in our earlier study with MDD patients (see text footnote 1). However, data obtained over a 2-year period of observation show a significant decrease in HRV in MDD patients receiving antidepressants in comparison not only to HC subjects but also to MDD patients not on antidepressants (45). More recent research has focused on specific medications, and it appears that tricyclic antidepressants (TCAs) are most robust in reducing HRV, followed by serotonin/norepinephrine reuptake inhibitors (46, 47). SSRIs have the least effect on cardiac function and may even decrease cardiac sympathetic impact (46). In the present study with BDD patients, we did not observe a change in HRV parameters after 2 months of exposure to escitalopram, and this observation is consistent with the current literature. This finding was obtained with or without the addition of celecoxib to the treatment regimen.

      While there is limited evidence linking BDD to HRV, the link between specific medications and vagal tone may offer a glimpse into the findings of our study. TCAs have classically been associated with anticholinergic side effects (e.g., dry mouth, constipation, blurry vision, urinary retention), as well as cardiotoxicity and neurotoxicity in cases of overdose. It is not surprising then that TCAs could exert a deleterious effect on the heart (48). Other medications in psychiatric populations that have been routinely associated with anticholinergic side effects are antipsychotics, particularly, the typical antipsychotics, but also atypical antipsychotics to a degree. Of our 37 patients for whom we have complete HRV data, 10 were placed on a bipolar medication regime throughout the study that included an atypical antipsychotic, while seven were maintained only on an atypical antipsychotic for mood stabilization. The remaining patients were maintained only on a mood stabilizer, most commonly lamotrigine or valproic acid. Atypical antipsychotics most commonly used were quetiapine and aripiprazole, and, less frequently, ziprasidone, olanzapine, and risperidone. Many of our patients had been prescribed several of these medications throughout the course of their lives. We chose not to compare baseline HRV parameters between patients on different mood stabilization medication due to the confounding variables of dosage variations, duration of treatment, and lack of adequate sample size.

      Growing evidence indicates that antipsychotic medications can exert an effect on HRV in psychiatric patients. A recent meta-analysis established that clozapine is associated with a significant reduction in HRV (49). Another study determined that, in schizophrenic patients taking olanzapine, patients who gained a significant amount of weight after 1 month had a significantly lower HRV than patients who did not gain weight (50). These findings are not surprising, considering these two atypical antipsychotic agents are most commonly associated with metabolic side effects and are, therefore, more likely to have deleterious effects on the heart (51). These negative effects on HRV also appear to be dose-dependent, with higher doses being associated with further decreases in HRV (52). There have been other findings that atypical antipsychotics decrease HRV, but these papers do not specify which specific medications were used (53, 54). It is worth speculating, however, that atypical antipsychotics with a lower anticholinergic profile may be less prone to reduce HRV parameters. Clozapine, olanzapine, and, to a less degree, quetiapine, have all been shown to have anticholinergic side effects (55). These anticholinergic effects can be hypothesized to decrease vagal tone, reduce overall HRV, and contribute to increased cardiac morbidity and mortality that is often noted in patients taking antipsychotic medication.

      Anticholinergic properties of psychiatric medications have resulted in unwanted, unpleasant, or even dangerous side effects for psychiatric patients. There lies the possibility that these properties may also hinder a full treatment response as well. In our pervious study, MDD patients who did not respond to a 3-month trial of either escitalopram or quetiapine monotherapy had significantly lower vagal tone than patients who did respond (see text footnote 1). This finding was not replicated in our BDD patient study, but the theoretical implications are still worth noting. Many of the second line agents used for depression in both MDD and BDD are strongly anticholinergic, including TCAs and atypical antipsychotics, such as quetiapine and olanzapine. Thus, what may actually be happening is that we are making a certain subset of these otherwise treatment-resistant patients worse, by giving them medications that exacerbate possible inherent mechanisms responsible for their underlying treatment resistance.

      What are the clinical implications of HRV in BDD patients? The primary aim of the BDD study was to assess the role of inflammation in the pathophysiology of bipolar depression and determine if anti-inflammatory adjunctive treatment would aid in remission of depressive symptoms in BDD patients. Not only did patients receiving the escitalopram + celecoxib combination experience a significant decrease in depressive symptoms over a 2-month period in comparison to the escitalopram + placebo group, but they achieved remission much faster than the placebo group ((56); Halaris et al., in preparation).

      One possible mechanism underlying the pathophysiology of treatment resistance in either MDD or BDD can be the associated pro-inflammatory state and ANS dysregulation with associated diminution in vagal tone. A decrease in vagal tone likely leads to dysregulation of the body’s inflammatory response mediated, in part, by the cholinergic anti-inflammatory pathway (57). It has been demonstrated that efferent vagal fibers originating in the dorsal motor nucleus can modify the release of inflammatory cytokines, such as TNFα, from macrophages, thereby preventing over-activation of the inflammatory process without inducing immunosuppression (58). Loss of vagal tone, therefore, may be crucial to understanding the pro-inflammatory status associated with MDD and BD that has been described in the literature (59, 60). If parasympathetic tone can be maintained at HC levels, reflecting a physiological degree of inflammatory response, antidepressant drug action may proceed unhindered ultimately leading to remission. In our study, we did not see a change in HRV over the course of the study in either the combination treatment group or the placebo group. Celecoxib co-administration modulated inflammation as reflected in significant reduction is specific pro-inflammatory mediators, thereby facilitating and even enhancing the antidepressant efficacy of escitalopram. However, this adjunctive anti-inflammatory treatment did not produce any beneficial cardiovascular effects within the time frame of our study ostensibly due to the anticholinergic properties of the concomitant psychotropic medications used in the present study. Nevertheless, these findings suggest an additional and intriguing theory about the mechanism(s) of treatment resistance and its relationship to both depression and CVD.

      Future Studies

      Although much time and research have been devoted to distinguishing the depressive phase of BD from MDD, a reliable diagnostic distinction often poses serious challenges to the clinician (61). One potential avenue is to utilize HRV assessment and domain analysis as a diagnostic and prognostic biomarker. Recent evidence suggests that acute HRV measurements can be obtained by only 120 s of ECG recordings (62). Indeed, a recent study compared patients with bipolar II depression and patients with unipolar depression and found significantly lower HF-HRV and a higher LF/HF ratio (used as a measurement of sympathetic tone) in bipolar II depressed patients as compared to unipolar depressed patients (40). Therefore, future studies should take into consideration the length of prior exposure, if any, to pharmacological agents, both psychiatric and non-psychiatric. It will also be interesting to determine if anti-inflammatory medication utilizing selective COX-2 inhibitors can exert beneficial effects on HRV over a longer treatment period. Once the possible effects of pharmacologic agents on HRV domains have been fully clarified, wide utility of HRV as a biomarker will be justified.

      Limitations of the Study

      One limitation to our study is the small sample size. Several of our trending variables might have reached statistical significance with a larger patient and/or HC population. Specifically, given the small heterogeneous sub-groups (age, ethnicity, BMI), it may not be viable within this sample to investigate whether components of HRV at baseline (e.g., RSA and LF-HRV) are related to current episode length and/or previous episodes. Although this does not detract from the importance of our findings, reproducibility with a larger population would be necessary to confirm those findings that did not reach statistical significance. As in any study relying on the collection of data over time, several limitations are to be noted. Current mood state of the patient could have influenced the assigned scores in both the self-assessment and rater-administered scales. To minimize such effects, consistent provider–patient pairings were kept over the course of the study to minimize interobserver bias and to allow the patient to receive a consistent level of care. The fact that our patients had to be fully stabilized on mood stabilizers before being administered antidepressant medication may have blunted any changes in HRV during the course of treatment. In addition, the relatively short duration of our recording (15 min) in the resting state precluded the opportunity to assess HRV during both rest and activity and thereby provide a better measure of cardiac resilience.

      Ethics Statement

      This study was carried out in accordance with the recommendations of the Declaration of Helsinki and Institutional Review Board with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the Institutional Review Board of Loyola University Stritch School of Medicine/Loyola University Medical Center.

      Author Contributions

      AH designed the study, wrote the protocol, and oversaw the preparation of the manuscript. BH actively participated in data collection, data analyses, literature search, and preparation of all drafts of the manuscript. BB contributed to data management and data analyses. DD participated in the clinical portions of the study and data collection. KH performed data analyses. SP oversaw data analyses, contributed to manuscript preparation, and acted as a consultant to the co-investigators.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. This work was supported in part by an intramural research grant from Loyola University Stritch School of Medicine and by an investigator-initiated grant from the Stanley Medical Research Institute (Stanley Foundation, Grant No. 10T-1401), both awarded to AH.

      References Ferrari AJ Stockings E Khoo J-P Erskine HE Degenhardt L Vos T The prevalence and burden of bipolar disorder: findings from the Global Burden of Disease Study 2013. Bipolar Disord (2016) 18:44050.10.1111/bdi.1242327566286 Solomon D Leon A Coryell W Endicott J Li C Fiedorowicz J Longitudinal course of bipolar I disorder: duration of mood episodes. Arch Gen Psychiatry (2010) 67(4):33947.10.1001/archgenpsychiatry.2010.1520368510 Sartorius N Ustün TB Lecrubier Y Wittchen HU. Depression comorbid with anxiety: results from the WHO study on psychological disorders in primary health care. Br J Psychiatry Suppl (1996) (30):3843.20368510 Heathers J. Everything Hertz: methodological issues in short-term frequency-domain HRV. Front Physiol (2014) 5:177.10.3389/fphys.2014.0017724847279 Akselrod S Gordon D Ubel FA Shannon DC Berger AC Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science (1981) 213:2202.10.1126/science.61660456166045 Kamath M Fallen E. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng (1996) 21:245311. Goldstein D Bentho O Park M Sharabi Y. LF power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol (2011) 96:125561.10.1113/expphysiol.2010.056259 Reyes del Paso G Langewitz W Mulder L Roon AV Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology (2013) 50:47787.10.1111/psyp.1202723445494 Pagani M Lucini D Porta A. Sympathovagal balance from heart rate variability: time for a second round? Exp Physiol (2012) 97:11412.10.1113/expphysiol.2012.066977 Moak J Goldstein DS Eldadah B Saleem A Holmes C Pechnik S Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm (2007) 4:15239.10.1016/j.hrthm.2007.07.019 Porges SW. The polyvagal perspective. Biol Psychol (2007) 74(2):11643.10.1016/j.biopsycho.2006.06.00917049418 Lewis GF Furman SF McCool MF Porges SW. Statistical strategies to quantify respiratory sinus arrhythmia: are commonly used metrics equivalent? Biol Psychol (2012) 89:34964.10.1016/j.biopsycho.2011.11.00922138367 Billman G. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol (2013) 4:19.10.3389/fphys.2013.00222 Lombardi F. Clinical implications of present physiological understanding of HRV components. Card Electrophysiol Rev (2002) 6(3):2459.10.1023/A:101632900892112114846 Buccelletti E Gilardi E Scaini E Galiuto L Persiani R Biondi A Heart rate variability and myocardial infarction: systematic literature review and metanalysis. Eur Rev Med Pharmacol Sci (2009) 13:299307.19694345 Carney R Blumenthal J Stein P Watkins L Catellier D Berkman L Depression, heart rate variability, and acute myocardial infarction. Circulation (2001) 104:20248.10.1161/hc4201.09783411673340 Svensson M Lindmark S Wiklund U Rask P Karlsson M Myrin J Alterations in heart rate variability during everyday life are linked to insulin resistance: a role of dominating sympathetic over parasympathetic nerve activity. Cardiovasc Diabetol (2016) 15:91.10.1186/s12933-016-0411-8 Barth J Schumacher M Herrmann-Lingen C. Depression as a risk factor for mortality in patients with coronary heart disease: a meta-analysis. Psychosom Med (2004) 66:80213.10.1097/01.psy.0000146332.53619.b215564343 Garfield L Scherrer J Hauptman P Freedland K Chrusciel T Balasubramanian S Association of anxiety disorders and depression with incident heart failure. Psychosom Med (2014) 76:12836.10.1097/PSY.000000000000002724434950 Rugulies R. Depression as a predictor for coronary heart disease. A review and meta-analysis. Am J Prev Med (2002) 23:5161.10.1016/S0749-3797(02)00439-712093424 Davydov D Shapiro D Cook I Goldstein I. Baroreflex mechanisms in major depression. Prog Neuropsychopharmacol Biol Psychiatry (2007) 30:16477.10.1016/j.pnpbp.2006.08.015 Bassett D. A literature review of heart rate variability in depressive and bipolar disorders. Aust N Z J Psychiatry (2016) 50(6):5119.10.1177/000486741562268926698824 Bassett D Bear N Hood S Bassett S Hans D. Reduced heart rate variability in remitted bipolar disorder and recurrent depression. Aust N Z J Psychiatry (2016) 50(8):793804.10.1177/000486741665273427307288 Faurholt-Jepsen M Brage S Kessing LV Munkholm K. State-related differences in heart rate variability in bipolar disorder. J Psychiatr Res (2017) 84:16973.10.1016/j.jpsychires.2016.10.00527743529 Faurholt-Jepsen M Kessing LV Munkholm K. Heart rate variability in bipolar disorder: a systematic review and meta-analysis. Neurosci Behav Rev (2017) 73:6880.10.1016/j.neubiorev.2016.12.00727986468 Fekadu A Wooderson S Donaldson C Markopoulou K Masterson B Poon L A multidimensional tool to quantify treatment resistance in depression: the Maudsley Staging Scale. J Clin Psychiatry (2009) 70(2):17784.10.4088/JCP.08m04309 Fekadu A Wooderson SC Markopoulou K Cleare AJ. The Maudsley staging method for treatment-resistant depression: prediction of longer-term outcome and persistence of symptoms. J Clin Psychiatry (2009) 70(7):9527.10.4088/JCP.08m04728 Sinnreich R Kark J Friedlander Y Sapoznikov D Luria M. Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics. Heart (1998) 80:15662.10.1136/hrt.80.2.1569813562 Tarkiainen T Timonen K Tiittanen P Hartikainen J Pekkanen J Hoek G Stability over time of short-term heart rate variability. Clin Auton Res (2005) 15:3949.10.1007/s10286-005-0302-716362542 Porges SW. Method and Apparatus for Evaluating Rhythmic Oscillations in Aperiodic Physiological Response Systems. Patent Number: 4,510,944. Washington, DC: U.S. Patent Office (1985). Porges SW Byrne EA. Research methods for measurement of heart rate and respiration. Biological psychology (1992) 34(2–3):93130.10.1016/0301-0511(92)90012-J Denver JW Reed SF Porges SW. Methodological Issues in the Quantification of Respiratory Sinus Arrhythmia. Biol Psychol (2007) 74(2):28694.10.1016/j.biopsycho.2005.09.005. Riniolo T Porges SW. Evaluating group distributional characteristics: why psychophysiologists should be interested in qualitative departures from the normal distribution. Psychophysiology (2000) 37:218.10.1111/1469-8986.371002110705764 Zhang J. Effect of age and sex on heart rate variability in healthy subjects. J Manipulative Physiol Ther (2007) 30(5):3749.10.1016/j.jmpt.2007.04.00117574955 Voss A Schroeder R Heitmann A Peters A Perz S. Short-term heart rate variability—influence of gender and age in healthy subjects. PLoS One (2015) 10(3):e0118308.10.1371/journal.pone.0118308 Lenox-Smith A Martinez J Perahia D Dowsett S Dennehy E Lopez-Romero P Treatment and outcomes for patients with depression who are partial responders to SSRI treatment: post-hoc analysis findings from the FINDER European observational study. J Affect Disord (2014) 169:14956.10.1016/j.jad.2014.08.00325194783 Henry B Minassian A Paulus M Geyer M Perry W. Heart rate variability in bipolar mania and depression. J Psychiatr Res (2010) 44:16876.10.1016/j.jpsychires.2009.07.011 Chang H Chang C Tzeng N Kuo T Lu R Huang S. Heart rate variability in unmedicated patients with bipolar disorder in the manic phase. Psychiatry Clin Neurosci (2014) 68:67482.10.1111/pcn.1217824612182 Cohen H Kaplan Z Kotler M Mittleman I Osher Y Bersudsky Y. Impaired heart rate variability in euthymic bipolar patients. Bipolar Disord (2003) 5:13843.10.1034/j.1399-5618.2003.00027.x12680904 Chang HA Chang CC Kuo TB Huang SY. Distinguishing bipolar II depression from unipolar major depressive disorder: Differences in heart rate variability. World J Biol Psychiatry (2015) 16(5):35160.10.3109/15622975.2015.101760612680904 Lee J Kim B Hong Y Joo Y. Heart rate variability in subsyndromal depressive phase of bipolar disorder. Psychiatry Clin Neurosci (2012) 66:3616.10.1111/j.1440-1819.2012.02335.x Hage B Britton B Daniels D Heilman K Porges SW Halaris A. Low cardiac vagal tone index by heart rate variability differentiates bipolar from major depression. World J Biol Psychiatry (2017):19.10.1080/15622975.2017.1376113 Eckberg DL. Physiological basis for human autonomic rhythms. Ann Med (2000) 32(5):3419.10.3109/0785389000899593710949066 Kemp A Quintana D Gray M Felmingham K Brown K Gatt J. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry (2010) 67:106774.10.1016/j.biopsych.2009.12.01220138254 Licht C Geus E Dyck R Penninx B. Longitudinal evidence for unfavorable effects of antidepressants on heart rate variability. Biol Psychiatry (2010) 68:8618.10.1016/j.biopsych.2010.06.03220843507 Licht C Penninx B De Geus E. Effects of antidepressants, but not psychopathology, on cardiac sympathetic control: a longitudinal study. Neuropsychopharmacology (2012) 37:248795.10.1038/npp.2012.107 Kemp A Brunoni A Santos I Nunes M Dantas E Carvalho de Figueiredo R Effects of depression, anxiety, comorbidity, and antidepressants on resting-state heart rate and its variability: an ELSA-Brasil Cohort Baseline Study. Am J Psychiatry (2014) 171:132834.10.1176/appi.ajp.2014.1312160525158141 Cohen H Gibson G Alderman M. Excess risk of myocardial infarction in patients treated with antidepressant medications: association with use of tricyclic use. Am J Med (2000) 108:28.10.1016/S0002-9343(99)00301-0 Alvares G Quintana D Hickie I Guastella A. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: a systematic review and meta-analysis. J Psychiatry Neurosci (2015) 41(2):89104.10.1503/jpn.140217 Wang J Liu Y Zhu W Zhang F Zhou Z. Olanzapine-induced weight gain plays a key role in potential cardiovascular risk: evidence from heart rate variability analysis. Sci Rep (2014) 4:7394.10.1038/srep07394 Bobo W Bonaccorso S Jayathilake K Meltzer H. Prediction of long-term metabolic effects of olanzapine and risperidone treatment from baseline body mass index in schizophrenia and bipolar disorder. Psychiatry Res (2011) 189:2007.10.1016/j.psychres.2011.07.00821802150 Iwamoto Y Kawanishi C Kishida I Furuno T Fujibayashi M Ishii C Dose-dependent effect of antipsychotic drugs on autonomic nervous system activity in schizophrenia. BMC Psychiatry (2012) 12:199.10.1186/1471-244X-12-19923151241 Moon E Lee S Kim D Hwang B. Comparative study of heart rate variability in patients with schizophrenia, bipolar disorder, post-traumatic stress disorder, or major depressive disorder. Clin Psychopharmacol Neurosci (2013) 11(3):13743.10.9758/cpn.2013.11.3.137 Linder JR Sodhi SK Haynes WG Fiedorowicz JG. Effects of antipsychotic drugs on cardiovascular variability in participants with bipolar disorder. Hum Psychopharmacol (2014) 29(2):14551.10.1002/hup.2380 Chew M Mulsant B Pollock B Lehman M Greenspan A Kirshner M A model of anticholinergic activity of atypical antipsychotic medications. Schizophr Res (2006) 8(1–3):6372.10.1016/j.schres.2006.07.01116928430 Halaris A Alvi N Meresh E Sharma A. Inflammation control reverses treatment-resistance in bipolar depression. Neurol Psychiatry Brain Res (2014) 20:123.10.1016/j.npbr.2014.01.151 Tracey K. Physiology and immunology of the cholinergic anti-inflammatory pathway. J Clin Invest (2007) 117(2):28996.10.1172/JCI30555 Pavlov V Tracey K. The cholinergic anti-inflammatory pathway. Brain Behav Immun (2009) 19:4939.10.1016/j.bbi.2005.03.015 Boorman E Romano GF Russell A Mondelli V Pariante CM. Are mood and anxiety disorders inflammatory diseases? Psychiatr Ann (2015) 45(5):2408.10.3928/00485713-20150501-06 Chang Y Assari S Prossin A Stertz L McInnis M Evans S. Bipolar disorder moderates associations between linoleic acid and markers of inflammation. J Psychiatr Res (2016) 85:2936.10.1016/j.jpsychires.2016.10.021 Pendergast L Youngstrom E Merkitch K Moore K Black C Abramson LY Differentiating bipolar disorder from unipolar depression and ADHD: the utility of the General Behavior Inventory. Psychol Assess (2014) 26(1):195206.10.1037/a003513824295236 Munoz M Van Roon A Riese H Thio C Oostenbroek E Westrik I Validity of (ultra-) short recordings for heart rate variability measurements. PLoS One (2015) 10(9):e0138921.10.1371/journal.pone.013892126414314

      1Hage B, Sinacore J, Heilman K, Porges S, Halaris A. Heart rate variability predicts treatment outcome in major depression. Psychiatry Clin Neurosci (under review).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.kdihdp.com.cn
      idpro.com.cn
      www.lykxgm.org.cn
      jksksd.com.cn
      dyxdhs.com.cn
      www.leenuisun.com.cn
      wheatrip.com.cn
      nmgqzgwy.com.cn
      xapycw.com.cn
      pinjiuba.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p