Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2020.557225 Psychology Original Research Effect of Background Music on Attentional Control in Older and Young Adults Cloutier Amélie 1 * Fernandez Natalia B. 2 3 Houde-Archambault Catherine 1 Gosselin Nathalie 1 * 1International Laboratory for Brain, Music and Sound Research (BRAMS), Center for Research on Brain, Language and Music (CRBLM) and Laboratory for Music, Emotions and Cognition Research (MUSEC), Department of Psychology, University of Montreal, Montreal, QC, Canada 2Laboratory of Behavioral Neurology and Imaging of Cognition (LabNIC) and Swiss Center for Affective Sciences (CISA), Department of Neuroscience, University of Geneva, Geneva, Switzerland 3Laboratory of Cognitive and Affective Neuroscience (CANEURO), Department of Psychology, University of Zurich, Zurich, Switzerland

Edited by: Cunmei Jiang, Shanghai Normal University, China

Reviewed by: Lutz Jäncke, University of Zurich, Switzerland; Clara Eline James, University of Applied Sciences and Arts of Western Switzerland, Switzerland

*Correspondence: Nathalie Gosselin, nathalie.gosselin@umontreal.ca Amélie Cloutier, amelie.cloutier.1@umontreal.ca

This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Psychology

20 10 2020 2020 11 557225 29 04 2020 15 09 2020 Copyright © 2020 Cloutier, Fernandez, Houde-Archambault and Gosselin. 2020 Cloutier, Fernandez, Houde-Archambault and Gosselin

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Healthy aging may be accompanied by cognitive decline that includes diminished attentional control, an executive function that allows us to focus our attention while inhibiting distractors. Previous studies have demonstrated that background music can enhance some executive functions in both young and older adults. According to the Arousal-Mood Theory, the beneficial influence of background music on cognitive performance would be related to its ability to increase the arousal level of the listeners and to improve their mood. Consequently, stimulating and pleasant music might enhance attentional control. Therefore, the aims of this study were (1) to determine if the influence of background music, and more specifically its arousal level, might improve attentional control in older adults and (2) whether this effect is similar across older and young adults. Older and young adults performed a visuo-spatial flanker task during three auditory conditions: stimulating music, relaxing music, and silence. Participants had to indicate as fast and as accurately as possible the direction of a central arrow, which was flanked by congruent or incongruent arrows. As expected, reaction times were slower for the incongruent compared to congruent trials. Interestingly, this difference was significantly greater under the relaxing music condition compared to other auditory conditions. This effect was the same across both age groups. In conclusion, relaxing music seems to interfere with visuo-spatial attentional control compared to stimulating music and silence, regardless of age.

healthy aging executive functions attentional control flanker task background music musical emotions arousal neuropsychology Fonds de recherche du Québec société et culture (FRQSC) Center for Research on Brain, Language and Music (CRBLM) Fonds de recherche nature et technologies du Québec (FRQNT) FRQSC10.13039/100008240

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Music listening induces strong and consistent emotions in the listener (Blood and Zatorre, 2001; Hunter and Schellenberg, 2010; Chanda and Levitin, 2013). As recommended by Eerola and Vuoskoski (2011), these musical emotions are often studied into valence (i.e., positive and negative emotions) and arousal (i.e., stimulating and relaxing) dimensions (Vieillard et al., 2008), which are taken from Russell’s model (Russell, 1980). Both music-resulting emotions and dimensions have been convincingly demonstrated to be associated with different musical parameters (for a review, see Juslin and Laukka, 2004). For example, most of the time, a fast tempo is associated with a high level of arousal, whereas a slow tempo is associated with a low level of arousal. Similarly, music composed in a major mode is typically associated with a high level of valence and with positive emotions like joy and peace. Also, it has been demonstrated that loudness is related to the perceived level of arousal and valence in music (Schubert, 2004; Dean et al., 2011; Olsen et al., 2015). Further studies also showed a positive correlation between the tempo of background music and reading speed (Kallinen, 2002), perceptual motor abilities (Nittono et al., 2000), and visual attention tasks (Bolger et al., 2013; Trost et al., 2014), giving an evident support to the impact of musical parameters on cognition. In Bolger et al. (2013) study, the targets of the visual attention task were presented across four selected metrical positions of the auditory stimulus in order to observe the entrainment effect of the rhythm of the music. In Trost et al. (2014) study, targets appeared time-locked to either strong or weak beats of the background music. The tempo of a musical stimulus presented before the cognitive task was also correlated to spatial ability (Husain et al., 2002).

      Valence and arousal dimensions also seem to interact in inducing musical emotions (Salimpoor et al., 2009; van den Bosch et al., 2013). Previous work has demonstrated that music inducing a higher level of arousal generates more pleasure in the listener (Salimpoor et al., 2009). More precisely, if the listener likes the musical excerpt, subjective felt arousal ratings and the listener’s arousal state (as measured by electrodermal activity) increase with pleasure ratings (Salimpoor et al., 2009). These authors also specify that this link is unidirectional, since an increase in arousal does not always lead to pleasure (Salimpoor et al., 2009). Similarly, the familiarity of the music (i.e., how well someone knows the musical piece) has been positively correlated with the level of arousal and the pleasantness rated by the listener (van den Bosch et al., 2013). Moreover, it has been demonstrated that perception of positive emotional valence in music increases with age, with older adults tending to find music more pleasant on average than young adults (Cohrdes et al., 2020). It is also important to note that, in general, older adults have more positive emotional well-being than young adults (Carstensen et al., 2011).

      Background music has been shown to have both beneficial and detrimental effects on a variety of cognitive functions in healthy young adults (see Kämpfe et al., 2010 for a meta-analysis). According to the most well-known theory regarding the link between music and cognitive performance, the Arousal-Mood Theory, a musical stimulus presented before the task and characterized by a high level of arousal (i.e., stimulating music) and a high level of valence (i.e., pleasant music) would increase the arousal level of the listener and improve his or her mood, thereby enhancing subsequent cognitive performance (Thompson et al., 2001). Other studies have demonstrated this effect when music was presented simultaneously with a variety of executive tasks, such as cognitive flexibility, working memory and attentional control (Thompson et al., 2005; Mammarella et al., 2007; Jefferies et al., 2008; Jiang et al., 2011; Bottiroli et al., 2014; Shih et al., 2016; Fernandez et al., 2020). However, not all of the available research findings fit well within this theoretical relationship between music and cognitive performance. For example, some research suggests that highly pleasant music requires more attentional resources and thus may impair cognitive performance in the context of attentional tasks (Nemati et al., 2019).

      In particular, the impact of background music on attentional control, an executive function that allows one to focus attention on a specific stimulus, while inhibiting distractors from the environment (Theeuwes, 2010; Diamond, 2013), is somewhat ambiguous, with previous research generating heterogeneous results and not always controlling for levels of arousal and/or valence. One study demonstrated that, compared to silence, personally chosen background music enhanced young adults’ attentional control performance (Darrow et al., 2006), while another showed that sad music enhanced selective attention performance compared to calm, happy, and scary music (Jefferies et al., 2008). Furthermore, a study that used music prior to a flanker task, which measures attentional control (Eriksen and Eriksen, 1974), demonstrated that positive affect (i.e., higher valence level) induces a larger flanker effect [difference in reaction time (RT) between incongruent and congruent trials], suggesting that background music characterized by positive valence impairs attentional control performance (Rowe et al., 2007). A recent study reported improved perceptual judgment in a flanker task in young adults when they were listening to joyful and arousing background music, compared to sad and tender music as well as to silence (Fernandez et al., 2020); however, they did not find any effect of background music on attentional control performance per se. Also, Burkhard et al. (2018) showed that, compared to a silent condition, relaxing and exciting music did not have any effect on young adults’ inhibitory performance on the go/no-go task (Nosek and Banaji, 2001), nor on the event-related components underlying inhibitory processing. In sum, studies in young adults still show heterogeneous results concerning the effect of background music on attentional control, and the role of arousal in this effect is still not completely understood.

      The role of music in attentional control in elderly populations has only been investigated very recently (Fernandez et al., 2020). In this work, they demonstrated that, compared to silence as well as sad and tender music, joyful and highly arousing background music enhanced perceptual judgments in a flanker task in both older and young adults (Fernandez et al., 2020). No background music effect was found on older adults’ attentional control performance (Fernandez et al., 2020). However, this study used a modified version of the flanker task, taken from the Attention Network Test, which measures several components of attention and includes cues before the trials. Thus, a more challenging task measuring attentional control specifically might produce different results regarding the effect of background music in older adults. In sum, it is apparent that the existing findings about the effect of background music on attentional control in both older and young adults are not always in accordance with the Arousal-Mood Theory (Thompson et al., 2001).

      It is important to study the effect of background music in older adults since attentional control can be impaired in normal cognitive aging (Buckner, 2004). Indeed, older adults have been reported to be generally more sensitive to distractors (Hasher and Zacks, 1988; Hasher et al., 1991; Gazzaley et al., 2005; Darowski et al., 2008), showing slower RT in the flanker task compared to young adults (Zeef et al., 1996; Salthouse, 2010). Also, a speed-accuracy trade-off can be observed in older adults’ performance at the flanker task (Wild-Wall et al., 2008; Hsieh and Fang, 2012; Hsieh and Lin, 2014). In other words, compared to younger adults, older adults make fewer errors but present slower RT. It is important to note that this slowing in older adults’ performance could also be caused by vision and/or hearing loss, since a relationship has been demonstrated between vision and hearing and cognitive performance in this population (Li and Lindenberger, 2002; Wahl and Heyl, 2003; Lin et al., 2013). A recent study investigating the cerebral substrates associated with this age-related slowdown in the flanker task, demonstrated additional brain activations in posterior parieto-occipital areas which were linked to greater efforts to process the central target in incongruent trials (Fernandez et al., 2019). In sum, the literature indicates that older adults struggle more in inhibiting distractors and probably recruit different brain areas to compensate for their difficulties.

      In addition to attentional declines in the elderly, it is possible that the presentation of a visual or auditory stimulus during the completion of a cognitive task might be more distracting for older adults than young adults, even if they are told to ignore the distraction (Guerreiro et al., 2010). Studies conducted by Alain and Woods (1999) and by Andrés et al. (2006) demonstrated that adding irrelevant sounds to a visual discrimination task impairs older adults more than young adults in their RT, as well as in the amplitude of the event-related potential linked to the processing of distraction (N1 and MMN). In the same manner, adding background music to a visual task could potentially be more distracting for older adults than for young adults.

      However, it is also possible that background music added to a visual task could impair the performance of young adults. Indeed, for attentional tasks that are time-critical, as well as for spatial attentional tasks, shared attentional resources are involved when processing stimuli from different modalities (i.e., auditory and visual), and this is the case for adults of all ages (for a review, see Wahn and König, 2017). This can lead to impairment in the processing of one or both modalities. For example, when auditory and visual stimuli are presented simultaneously in an attentional task, both auditory and visual processing are slowed down (Dunifon et al., 2016). However, the effect of background music on attentional control in young and older adults is still not fully understood and needs further investigation.

      In sum, normal aging is accompanied by cognitive decline that affects attentional control. Thus, it is important to find easy and pleasant ways for older adults to maximize their attentional control in everyday situations, for example with background music. However, the beneficial effect of background music on different executive functions is not fully understood, possibly due to the fact that the arousal level of music is not always controlled in previous studies. More particularly, the comparison between young and older adults in the effect of background music on attentional control specifically needs more investigation.

      This study aimed to determine if the influence of background music, and more specifically its arousal level, might improve visuo-spatial attentional control in older adults and whether this effect is similar across older and young adults. To do this, we compared the effect of stimulating and relaxing music on performance on the flanker task, with a silence condition representing the base level performance.

      Regarding the effect of background music, we expected faster answers and fewer errors for older adults under the stimulating music condition compared to both the relaxing music and silence conditions. As for young adults, knowing that results in the literature about the effect of background music on attentional control are still heterogeneous, there were no hypotheses concerning the effect of background music on their performance on the flanker task.

      Materials and Methods Participants

      Nineteen older adults and 21 younger adults participated in this experiment. They all provided informed consent and received financial compensation for their participation. All participants were francophone Quebecers and reported to have normal audition, as well as normal or corrected-to-normal visual acuity. They also reported information about their music listening habits. None reported neurological, neurodevelopmental, or diagnosed psychiatric disorders. Depression and anxiety questionnaires were used to ensure that participants did not have clinically significant levels of anxio-depressive symptoms.

      Young adults completed both the Beck Anxiety Inventory (BAI; Beck et al., 1988) and Beck Depression Inventory II (BDI-II; Beck et al., 1996), for which scores over critical thresholds (26/63 and 29/63, respectively) were considered exclusion criteria. All young adults presented scores of 12 or lower (M = 4.36; SD = 3.83) for the BAI and scores of 20 or lower (M = 7.24; SD = 5.32) for the BDI-II.

      Older adults completed the Geriatric Anxiety Inventory (GAI; Pachana et al., 2007), as well as the short form of the Geriatric Depression Scale (GDS-SF; Burke et al., 1991). Scores over critical thresholds (9/20 and 5/15, respectively) were considered exclusion criteria. Older participants had scores of 8 or lower (M = 2.05, SD = 2.59) on the GAI, as well as of 3 or lower for the GDS-SF (M = 0.79; SD = 1.08). In addition, general cognitive state was evaluated using the Mini Mental State Examination (MMSE; Folstein et al., 1975; Commenges et al., 1992) to ensure no deficits (e.g., mild cognitive impairment). Based on previous studies (Folstein et al., 1975; Hudon et al., 2009), older participants whose scores were over the threshold of 27/30 were retained in the study. All older participants had scores of 28 or more (M = 29.26; SD = 0.73).

      In addition, basic executive functioning was assessed using the color-word interference test, from the Delis-Kaplan Executive Function System battery (D-KEFS; Delis et al., 2001). The color-word interference condition consists of naming the color of the ink with which each word is printed, thus permitting an evaluation of inhibition processes. No inhibition deficits were observed in either group, with standard scores in the average range when compared to age-based norms (M = 10.29, SD = 1.82 for young adults; M = 10.42, SD = 1.98 for older adults).

      The two groups were significantly different in age (see Table 1). They were matched in terms of sex, years of schooling, and years of musical training, with a similar proportion of men and women and equivalent years of schooling and years of musical training (see Table 1). However, our participants were mainly women (i.e., 18 older women for one man and 19 young women for two men). For musical expertise, none of the participants were professional musicians.

      Comparison between older and younger adults on demographic variables.

      Age groups
      Older adults Young adults df t/χ2 p Effect size (r)
      N (M, F) 19 (1, 18) 21 (2, 19) 1 0.26 =0.61 =0.08
      Age (years) 67.26 (3.16) 23.95 (3.51) 38 −40.82 <0.001 =0.99
      Years of education 16.16 (2.69) 16.48 (1.86) 38 0.44 =0.66 =0.07
      Years of musical training 1.37 (2.17) 2.81 (4.69) 38 1.23 =0.23 =0.2

      Except for sex, this table presents means (and standard deviations). M = male, F = female. Group composition was compared for sex, using a chi square test, and for age, years of education, and years of musical training using independant t-tests.

      The music listening habits of our sample did not appear to be different between young and older adults, neither as principal activity (reported by 13/21 young adults with a mean of 2.69 h/week and 13/19 older adults with a mean of 2.76 h/week) nor as background music (reported by all young adults with a mean time of 8.1 h/week and 13/19 older adults with a mean time of 8.79 h/week).

      Flanker Task

      All participants performed an arrow version of Eriksen’s flanker task (Eriksen and Eriksen, 1974) from a viewing distance of 100 cm from the screen. We followed previous recommendations for size and spacing parameters (Zeef et al., 1996; Maylor and Lavie, 1998; Hsieh and Lin, 2014). Participants were asked to focus their attention on the central arrow (0.4° of visual angle vertically and 0.6° horizontally) of a series of five and to indicate the direction in which it pointed, as quickly and accurately as possible. The target was flanked by two arrows on the left and two arrows on the right and could either point the same direction (congruent condition: right > > > > > or left < < < < <) or the opposite direction (incongruent condition: right < < > < < or left > > < > >) as the central arrow (see Figure 1).

      The course of a flanker task trial. Symbols are not to scale; they have been enlarged to be visible in this diagram.

      Each trial contained five steps (see Figure 1). First, a fixation cross was displayed in the center of the screen for 500 ms, followed by an array of arrows in the middle of the screen for a duration of 250 ms. Next, a black screen was presented, and participants had a maximum of 2,000 ms to provide their answer regarding the direction of the central arrow. After the answer was given or the time limit was over, the screen remained black for 500 ms. Finally, the symbol “--” was presented in the middle of the screen during the inter-trial interval (duration between 850 and 950 ms). Depending on the participant’s RT and the duration of the inter-trial interval, the total duration of one trial varied between 2,500 and 4,200 ms.

      The experiment comprised 21 blocks containing 32 trials each (with an equal number of congruent and incongruent trials) for a total of 672 trials. Both blocks and trials were presented in a randomized order for each participant. Of the 21 blocks, seven were allocated to each of the three auditory conditions (stimulating music, relaxing music, and silence). For the two musical conditions, each block was associated with a different musical excerpt. Participants could take breaks between each block to rest. The total duration of one block varied between 80 and 90 s, depending on the RT of the participant. Without the breaks between each block, the total duration of the entire task was approximately 30 min. To familiarize participants with the task, it was preceded by a practice block that included feedback to inform the participants about their performance. The practice block was presented with background music characterized by an intermediate tempo (i.e., 110 beats per minute, BPM). The flanker task and the music were presented using MATLAB (MATLAB Release 2018a, The MathWorks, Inc., Natick, Massachussetts, United States) with the “Psychophysics Toolbox Version 3” extension (Brainard, 1997; Kleiner et al., 2007).

      Musical Stimuli

      All participants performed the flanker task under three auditory conditions: stimulating music, relaxing music, and silence. The music was pleasant sounding instrumental works composed in a major mode, chosen from the classical repertoire. Inter-rater agreement between three researchers was used to select the seven most stimulating (e.g., William Tell Overture: Final, composed by Giochino Rossini), as well as the seven most relaxing (e.g., Suite Bergamasque, Clair de Lune composed by Claude Debussy), musical excerpts from a larger pool of musical material in use in our laboratory. Excerpts of 100 s were chosen from the original pieces, so that the arousal and valence levels, as well as the tempi, were stable throughout each excerpt. The stimulating musical excerpts had a mean tempo of 153.14 BPM (SD = 23.35), while the relaxing musical excerpts had a mean tempo of 59.29 BPM (SD = 11.34). All excerpts were normalized at peak value (90% of maximum amplitude) and logarithmic fade-ins and fade-outs of 500 ms were added at the beginning and end of each excerpt, using Adobe Audition 3.0 software (Adobe Systems, Inc. San Jose, CA, United States). The music was presented via Beyer Dynamic Headphones (Model DT 770 Professional, 250 OHM).

      Musical Evaluation

      After completing the flanker task, participants were asked to listen carefully to each musical excerpt without time restriction and to evaluate how much the piece was considered to be (a) arousing, i.e., relaxing or stimulating, (b) unpleasant or pleasant, and (c) unfamiliar or familiar, using a continuous visual analogue scale from 0 (extreme left) to 100 (extreme right). Thus, a low score on the arousal dimension would mean that the musical excerpt was judged as relaxing.

      Data Analysis

      Group composition was compared for sex, using a chi square test, and for age, years of education, and years of musical training using independent t-tests.

      Performance on the flanker task was analyzed using RT and error rate (ER). Average RT values for successful trials were calculated in milliseconds for each flanker congruency type of trial (i.e., congruent and incongruent), each auditory condition (stimulating music, relaxing music, and silence), and each participant separately. The averages and standard deviations of ER as percentages (excluding missed trials) were also calculated for each participant, as well as for each flanker congruency and auditory condition. RT and ER scores were entered into separate mixed-design analyses of variance (ANOVAs) with Age Group (older and young adults) as a between-subject factor, Auditory Condition (stimulating music, relaxing music, and silence), and Flanker Congruency trial type (congruent and incongruent) as within-subject factors. When interactions between repeated measure factors were significant, a standard contrasts analysis was used to determine if the difference between congruent and incongruent trials (i.e., flanker effect) was the same between auditory conditions.

      To confirm that the musical conditions differed in perceived arousal level and to explore whether there was a difference between older and younger adults’ judgments, a mixed-design ANOVA with the between subject factor Age Group (older and younger adults) and the within subject factor Music Condition (stimulating music and relaxing music) was conducted. Two other exploratory mixed design ANOVAs were conducted with the judgments of valence and familiarity.

      All statistical analyses were performed using IBM SPSS Statistics 24 (IBM Corp., 2016). Behavioral mean results (music evaluation and flanker performance) as well as statistical results are presented in Tables 14.

      Results of the analyses of variance (ANOVA) for the evaluation of arousal, valence, and familiarity.

      Predictor df F p η2
      ArousalMusic ConditionAge GroupMusic Condition × Age Group 1, 381, 381, 38 1453.30.0162 <0.001=0.9=0.165 0.980.000.05
      ValenceMusic ConditionAge GroupMusic Condition × Age Group 1, 381, 381, 38 32.287.530.009 <0.001=0.009=0.926 0.460.170.00
      FamiliarityMusic ConditionAge GroupMusic Condition × Age Group 1, 381, 381, 38 1.3221.480.08 =0.258<0.0010.778 0.0330.360.002

      Results of the ANOVA for the flanker task RT.

      Predictor df F p η2
      Omnibus analysisAge GroupFlanker CongruencyAuditory Condition × Flanker Congruency 1, 381, 382, 67 55.02418.753.995 <0.001<0.0010.027 0.590.920.095
      Contrasts analysisRelaxing vs. StimulatingRelaxing vs. SilenceStimulating vs. Silence 1, 381, 381, 38 10.614.290.116 =0.002=0.0450.735 0.220.10.003

      Results of the ANOVA for the flanker task ER.

      Predictor df F p η2
      Omnibus analysisAge GroupFlanker CongruencyAge Group × Flanker CongruencyAuditory Condition 1, 381, 381, 382, 38 9.8666.2814.052.46 =0.003<0.001<0.001=0.097 0.210.640.270.056
      Post-hoc analysis (ANOVAs)Difference between older and young adults for congruent trialsDifference between older and young adults for incongruent trials 1, 381, 38 1.1311.45 =0.294=0.002 0.030.23
      Results Musical Stimuli Evaluation

      As expected, stimulating music was judged to be significantly more arousing than relaxing music by both older and young adult groups, the size of this effect being large (see Figure 2 and Table 2). There was no difference between older and young adults in their evaluation of the arousal level of musical excerpts and no significant interaction between Music Condition and Age Group.

      Judgments of arousal and valence. Mean rating (and standard errors) are presented as a function of music conditions and age groups on both valence and arousal dimensions.

      Relaxing music was considered significantly more pleasant than stimulating music by both older and young adults, with this effect being large (see Figure 2 and Table 2). Older adults generally judged the musical excerpts to be more pleasant than young adults, with this effect also being large. There was no significant interaction between Music Condition and the Age Group.

      Older adults were significantly more familiar (M = 84.41, SD = 16.73) with the musical excerpts than young adults (M = 62.32, SD = 17.41), with the size of this effect being large (see Table 2). There was no difference between stimulating and relaxing music in their level of familiarity. Finally, there was no significant interaction between Music Condition and the Age Group.

      Flanker Task

      Reaction time performance on the flanker task revealed a significant and general slowing in older adults compared to young adults (large effect, see Table 3 and Figure 3). For both older and young adults, RT was significantly slower in the incongruent trials than in the congruent ones, i.e., a flanker effect was clearly observed. Moreover, an interaction between Auditory Condition and Flanker Congruency showed that the difference in RT between incongruent and congruent trials varied between the three conditions. More specifically, the influence of background music revealed a greater flanker effect for relaxing music than for stimulating music or silence, these effects being, respectively, large and average (see Figure 4 and Table 3). These two latter conditions did not differ in terms of flanker effect (see Figure 4 and Table 3).

      Mean reaction time (RT) in ms and error rate (ER) in % (and standard errors) are presented for older and young adults. Values of p (asterisk): **p < 0.01 and ***p < 0.001.

      Flanker effects in ms (and standard errors) are presented for all participants (combined across age groups) as a function of Auditory Condition. Values of p (asterisk): *p < 0.05 and **p < 0.01.

      Older adults made fewer errors overall compared to young adults, and this was a large effect (see Figure 3 and Table 4). Also, for both older and young adults, ER was significantly higher for the incongruent than the congruent trials, this effect also being large. Moreover, an interaction between Age Group and Flanker Congruency showed that there was no age-related difference for the congruent trials, while older adults made significantly fewer errors in the incongruent trials compared to young adults (see Figure 5 and Table 4). There were no significant differences between the three experimental conditions in ER.

      Interaction between Age Group and Flanker Congruency in ER. Mean ER in % (and standard errors) were obtained for congruent and incongruent trials and separately for older and young adults. Values of p (asterisk): **p <0.01 and ***p < 0.001.

      Discussion

      This study aimed to explore the effect of the arousal level of background music on visuo-spatial attentional control in young and older adults. To do this, both groups performed an arrow version of the flanker task under three auditory conditions: stimulating music, relaxing music, and silence.

      Error Rates and Reaction Times in the Flanker Task

      The effects on ER seemed quite limited, probably due to the ceiling effect observed in both older and young adults (success rate > 95% for all participants). All participants presented expected slower RT and increased errors in the incongruent trials compared to the congruent ones, suggesting greater difficulty in inhibiting the distracting and incongruent arrows (Eriksen and Eriksen, 1974; Eriksen, 1995). Importantly, older adults had overall slower RT and lower ER than young adults. They seemed to favor accuracy over speed in their performance on the flanker task, while young adults favored speed over accuracy, which is consistent with previous studies using the same task (Wild-Wall et al., 2008; Hsieh and Fang, 2012; Hsieh and Lin, 2014). Although normal aging has been linked to impairments in attentional control (Hasher and Zacks, 1988; Hasher et al., 1991; Buckner, 2004; Gazzaley et al., 2005; Darowski et al., 2008), the slower results observed in our older adults during incongruent trials might be explained by compensatory mechanisms adopted to adequately complete the task (Wild-Wall et al., 2008; Hsieh and Fang, 2012; Hsieh and Lin, 2014), or decreased eyesight and hearing, which has been linked to cognitive performance deficits (Li and Lindenberger, 2002; Wahl and Heyl, 2003; Lin et al., 2013).

      In addition, results obtained in the flanker task might have been influenced by the female dominance of our sample. A previous study demonstrated that visual selective attention performance of women is more affected by invalid cues, while men benefit from those invalid cues (Merritt et al., 2007). Also, women are more influenced by irrelevant spatial cues compared to men (Bayliss et al., 2005). Finally, a study demonstrated that incongruent flankers impair women’s performance more than men’s, showing a gender difference in visuo-spatial selective attention (Stoet, 2010).

      The Effect of Background Music on Attentional Control

      In our study, the influence of background music during a visuo-spatial attention task revealed impaired attentional control performance during relaxing music exposure compared to silence and stimulating music. These results are not consistent with the Arousal-Mood Theory (i.e., stimuli rated as pleasant and stimulating can increase the arousal level and improve the mood in listeners) and other previous studies demonstrating that stimulating and pleasant music enhances cognitive performance (Thompson et al., 2001; Mammarella et al., 2007; Jiang et al., 2011; Bottiroli et al., 2014; Shih et al., 2016; Fernandez et al., 2020). They are also inconsistent with recent research that suggests no influence of relaxing or stimulating background music on inhibitory processing, albeit using a different type of inhibition task (go/no-go; Burkhard et al., 2018).

      It is difficult to reconcile these results demonstrating a difference between relaxing and stimulating music with the existing literature. However, based on previous studies demonstrating positive correlations between the tempo of music and cognitive performance across a number of domains, including reading speed (Kallinen, 2002), perceptual motor speed (Nittono et al., 2000), spatial ability (Husain et al., 2002), and visual attention tasks (Bolger et al., 2013; Trost et al., 2014), we hypothesize that this influence of relaxing music on participants’ reaction times might be associated with the tempi of our musical excerpts. Greater flanker effects are observed for the relaxing music condition, which is characterized by slower tempi, compared to the stimulating music condition, associated with faster tempi.

      The contradiction between our results and the Arousal-Mood Theory may also be explained by the fact that, in this study, stimulating music was judged to be less pleasant than relaxing music, while usually it is judged to be more pleasant (Salimpoor et al., 2009). In line with this, a previous study that used music to induced different moods prior the flanker task, showed that pleasant music induced a general slowdown in RT, as well as a greater flanker effect, compared to both neutral condition and unpleasant music (Rowe et al., 2007). Although all of the musical excerpts in our study were judged to be pleasant, the fact that relaxing music was seen as significantly more pleasant than stimulating music might explain why the former induced a greater flanker effect than the latter. It has also been demonstrated that listening to highly pleasurable music involves more attentional resources, and leads to a decline in cognitive performance (Nemati et al., 2019). Thus, it is possible that our relaxing music impaired the flanker task performance compared to stimulating music and silence by inducing a higher positive valence in our participants and by the same token, involving more attentional resources, leaving less for the execution of the task (Dunifon et al., 2016; Wahn and König, 2017; Nemati et al., 2019). It is possible that the sharing of attentional resources when processing both auditory and visual stimuli at the same time is even more difficult when the auditory stimuli is relaxing music (Dunifon et al., 2016; Wahn and König, 2017; Nemati et al., 2019).

      The Effect of Background Music Across Age

      Regarding age, the greater flanker effects observed for the relaxing music condition was similar between both groups. This is in line with very recent work demonstrating that classical music with different arousal and valence levels has the same impact on attention processing in both young and older adults, even if the latter experience a decline in this particular executive function (Fernandez et al., 2020). This also mirrors a study by Alain and Woods (1999), who reported no differences between older and young adults in their performance on a visual attention task, while listening to irrelevant auditory stimuli. However, in their study, the irrelevant sounds presented simultaneously with the visual attention task provoked greater event-related potential amplitude in older adults compared to young adults. These results demonstrate distinct background sounds processing across age for similar performances in a visual attention task. The behavioral similarities between older and young adults in the current study cannot rule out the possibility of age-related differences in the underlying neural networks for attentional control. Moreover, given that older and young adults differed in rating the musical excerpts for valence and familiarity, it is possible that, with similar ratings in these two dimensions, we would observe a difference between the two age groups in the effect of background music on attentional control.

      Musical Stimuli Evaluation

      We analyzed participants’ arousal, valence, and familiarity evaluations of the musical excerpts. Our results indicated that the arousal level of the musical excerpts was judged as expected by both age groups. Also, all musical excerpts were evaluated as pleasant, but unexpectedly, relaxing music pieces were felt to be more pleasant than stimulating music pieces. This finding is inconsistent with previous studies demonstrating that stimulating music generated higher ratings of pleasantness by listeners (Salimpoor et al., 2009; van den Bosch et al., 2013). However, those studies used musical material chosen by the participants or that resembled participants’ favorite music, from various musical genres (classic, jazz, rock, etc.), whereas in our study, only classical music selected by the researchers was used. Indeed, it has been demonstrated that, when listening to familiar music, there is a strong positive correlation between the pleasure felt by the listener and his level of arousal, but when the music is not familiar, there is no longer a clear relation between pleasure and arousal (van den Bosch et al., 2013). This might explain why we obtained different results, since our participants listened to music that they did not choose and were thus not as familiar as they would have been with personally chosen music.

      Relaxing and stimulating music did not differ in terms of familiarity level here, suggesting that the observed effect of background music on attentional control is likely due to the variations in arousal and valence levels only. However, we did find that music excerpts used in the current experiment were rated as more familiar and more pleasant for older adults than young adults. These results might be explained by the fact that older adults listen more to classical music, while young adults listen mostly to popular music (Savage, 2006). Thus, our musical excerpts might have matched older adults’ tastes and habits better than young adults’. Another putative explanation is related to the fact that perception of positive emotional valence in music increases with age; in other words, older adults tend to find music more pleasant on average than young adults (Cohrdes et al., 2020). The authors of this study interpret this finding in relation to other research that suggests that older adults’ emotional well-being is more positive than young adults’ (Carstensen et al., 2011). Hence, it is possible that our older participants were more inclined to find the music pleasant than our younger participants due to their age.

      Moreover, our participants were mostly women, and gender is known to have a moderate influence on the emotions induced by music (Aljanaki et al., 2016). Indeed, women tend to feel more amazed by classical music than men (Aljanaki et al., 2016). It has been showed that the brain activity linked to music-induced pleasantness and self-reported feelings of happiness were significantly greater in women than in men (Diaz et al., 2011). Another study demonstrated that women show elevated electrophysiological activity for arousing and unpleasant music, compared to men (Nater et al., 2006). Thus, the female dominance in our study might have influenced the results concerning musical stimuli evaluation.

      Although the evaluation of the valence dimension showed unexpected results [i.e., (1) relaxing music evaluated as more pleasant than stimulating music and (2) overall higher valence scores in the older compared to younger adults], the evaluation of the arousal dimension of our stimulating/relaxing musical excerpts were judged as expected. This allowed us to evaluate the effect of the arousal dimension of background music on attentional control, as measured by the flanker task.

      Conclusion

      In conclusion, we observed the expected performance of older and young adults in the flanker task, with slower RT and greater ER for incongruent trials compared to congruent trials. Our results, not supported by the Arousal-Mood Theory, suggest that relaxing pleasant background music can impair visuo-spatial attentional control performance, inducing a greater flanker effect or RT than that observed for stimulating pleasant music and silence. This effect was the same for older and young adults despite the typical decrement in attentional control associated with healthy aging.

      Limitations

      This study presents some limitations. First, only classical music was used and older adults found it more pleasant and familiar than young adults, potentially inducing a differential impact of these stimuli on our participants as a function of age. Future studies should control for the impact of age on emotional judgments of musical stimuli when comparing older and young adults. Second, although we screened older adults for cognitive impairments, given that hearing and vision loss can impact the cognitive performance of older adults, ideally these perceptual functions should be measured as well and, if necessary, entered as covariates in the analysis. Third, the music conditions differed not only in arousal but also in valence. Even if those two dimensions often interact together (Jefferies et al., 2008), it would be interesting to observe their separate effects on attentional control performance through manipulation of each of these factors independently. Fourth, given that a single visuo-spatial task was used to assess attentional control, the conclusions of this study are limited to visuo-spatial attentional control.

      Future Perspectives

      In order to improve the evaluation of arousal, future studies should use real-time objective measurements of arousal through the recording of electrodermal activity, while participants listen to the music and execute the task. Also, it would be interesting to control for inter-individual variability, in general, arousal level by measuring it before the beginning of the experiment. It would also be important to take into account the gender of participants in studying music-induced emotions. Moreover, to improve the ecological validity of the results, future work could also investigate the influence of longer periods of background music listening (in contrast to our 100 s excerpts) on visuo-spatial attentional control performance. An important extension to the current research would be the inclusion of other modalities of attentional control during background music listening, in order to draw more general conclusions about attentional control, and not limited to visuo-spatial attentional control as in the current paper. As mentioned previously, since some studies found an effect of background music on cortical activity in absence of a behavioral effect (Alain and Woods, 1999; Jäncke and Sandmann, 2010), it would also be interesting to investigate the impact of background music on EEG measures. Finally, if future studies support the present findings demonstrating a detrimental effect of relaxing background music on visuo-spatial attentional control performance and reproduce this effect with other executive functions, this study should be used as guideline in recommending or not the use of background music, while performing a cognitive task.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Ethics Statement

      The studies involving human participants were reviewed and approved by Comité d’éthique de la recherche en arts et en sciences, Université de Montréal. The participants provided their written informed consent to participate in this study.

      Author Contributions

      AC elaborated the theoretical frame and formulated the research question, as well as the objectives and hypotheses. AC contributed to the creation of the research protocol and methodology. AC contributed to the data collection and analysis and wrote the article. CH-A contributed to the creation of the research protocol and methodology, as well as the data collection. CH-A contributed to the revision and correction of the article. NF contributed to the establishment of the flanker task parameters, as well as to the revision and correction of the article. NG contributed to the elaboration of the theoretical frame and the formulation of the research question, objectives, and hypotheses. NG supervised the creation of the research protocol and methodology, as well as the data collection and analysis and the article redaction. All authors contributed to the article and approved the submitted version.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to thank Falco Enzler for his help in programming the MATLAB script for the flanker task. We also want to thank Simone Dalla Bella, Ph.D., and Simona Brambati, Ph.D. who evaluated Amélie’s master’s thesis. And most importantly, we would like to thank our participants, without whom the research would be impossible.

      References Alain C. Woods D. L. (1999). Age-related changes in processing auditory stimuli during visual attention: evidence for deficits in inhibitory control and sensory memory. Psychol. Aging 14, 507519. doi: 10.1037/0882-7974.14.3.507, PMID: 10509703 Aljanaki A. Wiering F. Veltkamp R. C. (2016). Studying emotion induced by music through a crowdsourcing game. Inf. Process. Manag. 52, 115128. doi: 10.1016/j.ipm.2015.03.004 Andrés P. Parmentier F. B. Escera C. (2006). The effect of age on involuntary capture of attention by irrelevant sounds: a test of the frontal hypothesis of aging. Neuropsychologia 44, 25642568. doi: 10.1016/j.neuropsychologia.2006.05.005, PMID: 16797613 Bayliss A. P. di Pellegrino G. Tipper S. P. (2005). Sex differences in eye gaze and symbolic cueing of attention. Q. J. Exp. Psychol. A 58, 631650. doi: 10.1080/02724980443000124, PMID: 16104099 Beck A. T. Epstein N. Brown G. Steer R. A. (1988). An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56, 893897. doi: 10.1037//0022-006x.56.6.893, PMID: 3204199 Beck A. T. Steer R. A. Brown G. K. (1996). Manual for the beck depression inventory-II. San Antonio, TX: Psychological Corporation. Blood A. J. Zatorre R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. U. S. A. 98, 1181811823. doi: 10.1073/pnas.191355898, PMID: 11573015 Bolger D. Trost W. Schön D. (2013). Rhythm implicitly affects temporal orienting of attention across modalities. Acta Psychol. 142, 238244. doi: 10.1016/j.actpsy.2012.11.012, PMID: 23357092 Bottiroli S. Rosi A. Russo R. Vecchi T. Cavallini E. (2014). The cognitive effects of listening to background music on older adults: processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music. Front. Aging Neurosci. 6:284. doi: 10.3389/fnagi.2014.00284, PMID: 25360112 Brainard D. H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433436. doi: 10.1163/156856897X00357 Buckner R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44, 195208. doi: 10.1016/j.neuron.2004.09.006, PMID: 15450170 Burke W. J. Roccaforte W. H. Wengel S. P. (1991). The short form of the Geriatric Depression Scale: a comparison with the 30-item form. J. Geriatr. Psychiatry Neurol. 4, 173178. doi: 10.1177/089198879100400310, PMID: 1953971 Burkhard A. Elmer S. Kara D. Brauchli C. Jäncke L. (2018). The effect of background music on inhibitory functions: an ERP study. Front. Hum. Neurosci. 12:293. doi: 10.3389/fnhum.2018.00293, PMID: 30083099 Carstensen L. L. Turan B. Scheibe S. Ram N. Ersner-Hershfield H. Samanez-Larkin G. R. . (2011). Emotional experience improves with age: evidence based on over 10 years of experience sampling. Psychol. Aging 26, 2133. doi: 10.1037/a0021285, PMID: 20973600 Chanda M. L. Levitin D. J. (2013). The neurochemistry of music. Trends Cogn. Sci. 17, 179193. doi: 10.1016/j.tics.2013.02.007, PMID: 23541122 Cohrdes C. Wrzus C. Wald-Fuhrmann M. Riediger M. (2020). “The sound of affect”: age differences in perceiving valence and arousal in music and their relation to music characteristics and momentary mood. Music. Sci. 24, 2143. doi: 10.1177/1029864918765613 Commenges D. Gagnon M. Letenneur L. Dartigues J. -F. Barberger-Gateau P. Salamon R. (1992). Statistical description of the Mini-Mental State Examination for French elderly community residents. J. Nerv. Ment. Dis. 180, 2832. doi: 10.1097/00005053-199201000-00007, PMID: 1538203 Darowski E. S. Helder E. Zacks R. T. Hasher L. Hambrick D. Z. (2008). Age-related differences in cognition: the role of distraction control. Neuropsychology 22, 638644. doi: 10.1037/0894-4105.22.5.638, PMID: 18763883 Darrow A.-A. Johnson C. Agnew S. Fuller E. R. Uchisaka M. (2006). Effect of preferred music as a distraction on music majors’ and nonmusic majors’ selective attention. Bull. Counc. Res. Music. Educ. 170, 2131. Dean R. T. Bailes F. Schubert E. (2011). Acoustic intensity causes perceived changes in arousal levels in music: an experimental investigation. PLoS One 6:e18591. doi: 10.1371/journal.pone.0018591, PMID: 21533095 Delis D. C. Kaplan E. Kramer J. H. (2001). Delis-Kaplan executive function system. Diamond A. (2013). Executive functions. Annu. Rev. Psychol. 64, 135168. doi: 10.1146/annurev-psych-113011-143750 Diaz J.-L. Flores-Gutiérrez E. O. Rio-Portilla Y. Cabrera M. C. (2011). “Musical emotion assessment, brain correlates, and gender differences” in Music: Composition, interpretation and effects. ed. Ivanova T. A. (New York, USA: Nova Science Pub Inc.), 3156. Dunifon C. M. Rivera S. Robinson C. W. (2016). Auditory stimuli automatically grab attention: evidence from eye tracking and attentional manipulations. J. Exp. Psychol. Hum. Percept. Perform. 42, 19471958. doi: 10.1037/xhp0000276, PMID: 27505224 Eerola T. Vuoskoski J. K. (2011). A comparison of the discrete and dimensional models of emotion in music. Psychol. Music 39, 1849. doi: 10.1177/0305735610362821 Eriksen C. W. (1995). The flankers task and response competition: a useful tool for investigating a variety of cognitive problems. Vis. Cogn. 2, 101118. doi: 10.1080/13506289508401726 Eriksen B. A. Eriksen C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143149. Fernandez N. B. Hars M. Trombetti A. Vuilleumier P. (2019). Age-related changes in attentional control and their relationship with gait performance in older adults with high risk of falls. Neuroimage 189, 551559. doi: 10.1016/j.neuroimage.2019.01.030, PMID: 30660655 Fernandez N. B. Trost W. J. Vuilleumier P. (2020). Brain networks mediating the influence of background music on selective attention. Soc. Cogn. Affect. Neurosci. 14, 14411452. doi: 10.1093/scan/nsaa004, PMID: 31993668 Folstein M. F. Folstein S. E. McHugh P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189198. doi: 10.1016/0022-3956(75)90026-6, PMID: 1202204 Gazzaley A. Cooney J. W. Rissman J. D’esposito M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nat. Neurosci. 8, 12981300. doi: 10.1038/nn1543, PMID: 16158065 Guerreiro M. J. Murphy D. R. Van Gerven P. W. (2010). The role of sensory modality in age-related distraction: a critical review and a renewed view. Psychol. Bull. 136, 9751022. doi: 10.1037/a0020731, PMID: 21038938 Hasher L. Stoltzfus E. R. Zacks R. T. Rypma B. (1991). Age and inhibition. J. Exp. Psychol. Learn. Mem. Cogn. 17, 163169. doi: 10.1037//0278-7393.17.1.163, PMID: 1826730 Hasher L. Zacks R. T. (1988). “Working memory, comprehension, and aging: a review and a new view” in Psychology of learning and motivation. Vol. 22. ed. Bower G. H. (New York, USA: Elsevier), 193225. Hsieh S. Fang W. (2012). Elderly adults through compensatory responses can be just as capable as young adults in inhibiting the flanker influence. Biol. Psychol. 90, 113126. doi: 10.1016/j.biopsycho.2012.03.006, PMID: 22445781 Hsieh S. Lin Y. -C. (2014). The boundary condition for observing compensatory responses by the elderly in a flanker-task paradigm. Biol. Psychol. 103, 6982. doi: 10.1016/j.biopsycho.2014.08.008, PMID: 25168289 Hudon C. Potvin O. Turcotte M. -C. D’Anjou C. Dubé M. Préville M. . (2009). Normalisation du Mini-Mental State Examination (MMSE) chez les Québécois francophones âgés de 65 ans et plus et résidant dans la communauté. Can. J. Aging 28, 347357. doi: 10.1017/S0714980809990171 Hunter P. G. Schellenberg E. G. (2010). “Music and emotion” in Music perception. eds. Jones M. R. Fay R. R. Popper A. N. (New York, NY: Springer), 129164. Husain G. Thompson W. F. Schellenberg E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music. Percept. 20, 151171. doi: 10.1525/mp.2002.20.2.151 Jäncke L. Sandmann P. (2010). Music listening while you learn: no influence of background music on verbal learning. Behav. Brain Funct. 6, 114. doi: 10.1186/1744-9081-6-3, PMID: 20180945 Jefferies L. N. Smilek D. Eich E. Enns J. T. (2008). Emotional valence and arousal interact in attentional control. Psychol. Sci. 19, 290295. doi: 10.1111/j.1467-9280.2008.02082.x, PMID: 18315803 Jiang J. Scolaro A. J. Bailey K. Chen A. (2011). The effect of music-induced mood on attentional networks. Int. J. Psychol. 46, 214222. doi: 10.1080/00207594.2010.541255, PMID: 22044234 Juslin P. N. Laukka P. (2004). Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. New Music Res. 33, 217238. doi: 10.1080/0929821042000317813 Kallinen K. (2002). Reading news from a pocket computer in a distracting environment: effects of the tempo of background music. Comput. Hum. Behav. 18, 537551. doi: 10.1016/S0747-5632(02)00005-5 Kämpfe J. Sedlmeier P. Renkewitz F. (2010). The impact of background music on adult listeners: a meta-analysis. Psychol. Music 39, 424448. doi: 10.1177/0305735610376261 Kleiner M. Brainard D. Pelli D. (2007). What’s new in Psychtoolbox-3. Perception 36, 116. Li K. Z. Lindenberger U. (2002). Relations between aging sensory/sensorimotor and cognitive functions. Neurosci. Biobehav. Rev. 26, 777783. doi: 10.1016/s0149-7634(02)00073-8, PMID: 12470689 Lin F. R. Yaffe K. Xia J. Xue Q. L. Harris T. B. Purchase-Helzner E. . (2013). Hearing loss and cognitive decline in older adults. JAMA Intern. Med. 173, 293299. doi: 10.1001/jamainternmed.2013.1868, PMID: 23337978 Mammarella N. Fairfield B. Cornoldi C. (2007). Does music enhance cognitive performance in healthy older adults? The Vivaldi effect. Aging Clin. Exp. Res. 19, 394399. doi: 10.1007/BF03324720, PMID: 18007118 Maylor E. A. Lavie N. (1998). The influence of perceptual load on age differences in selective attention. Psychol. Aging 13, 563573. doi: 10.1037//0882-7974.13.4.563, PMID: 9883457 Merritt P. Hirshman E. Wharton W. Stangl B. Devlin J. Lenz A. (2007). Evidence for gender differences in visual selective attention. Pers. Individ. Differ. 43, 597609. doi: 10.1016/j.paid.2007.01.016 Nater U. M. Abbruzzese E. Krebs M. Ehlert U. (2006). Sex differences in emotional and psychophysiological responses to musical stimuli. Int. J. Psychophysiol. 62, 300308. doi: 10.1016/j.ijpsycho.2006.05.011, PMID: 16828911 Nemati S. Akrami H. Salehi S. Esteky H. Moghimi S. (2019). Lost in music: neural signature of pleasure and its role in modulating attentional resources. Brain Res. 1711, 715. doi: 10.1016/j.brainres.2019.01.011, PMID: 30629944 Nittono H. Tsuda A. Akai S. Nakajima Y. (2000). Tempo of background sound and performance speed. Percept. Mot. Skills 90:1122. doi: 10.2466/PMS.90.3.1122-1122, PMID: 10939056 Nosek B. A. Banaji M. R. (2001). The go/no-go association task. Soc. Cogn. 19, 625666. doi: 10.1521/soco.19.6.625.20886 Olsen K. N. Dean R. T. Stevens C. J. Bailes F. (2015). Both acoustic intensity and loudness contribute to time-series models of perceived affect in response to music. Psychomusicology 25, 124137. doi: 10.1037/pmu0000087 Pachana N. A. Byrne G. J. Siddle H. Koloski N. Harley E. Arnold E. (2007). Development and validation of the Geriatric Anxiety Inventory. Int. Psychogeriatr. 19, 103114. doi: 10.1017/S1041610206003504, PMID: 16805925 Rowe G. Hirsh J. B. Anderson A. K. (2007). Positive affect increases the breadth of attentional selection. Proc. Natl. Acad. Sci. U. S. A. 104, 383388. doi: 10.1073/pnas.0605198104, PMID: 17182749 Russell J. A. (1980). A circumplex model of affect. J. Pers. Soc. Psychol. 39, 11611178. doi: 10.1037/h0077714 Salimpoor V. N. Benovoy M. Longo G. Cooperstock J. R. Zatorre R. J. (2009). The rewarding aspects of music listening are related to degree of emotional arousal. PLoS One 4:e7487. doi: 10.1371/journal.pone.0007487, PMID: 19834599 Salthouse T. A. (2010). Is flanker-based inhibition related to age? Identifying specific influences of individual differences on neurocognitive variables. Brain Cogn. 73, 5161. doi: 10.1016/j.bandc.2010.02.003, PMID: 20303636 Savage M. (2006). The musical field. Cult. Trends 15, 159174. doi: 10.1080/09548960600712975 Schubert E. (2004). Modeling perceived emotion with continuous musical features. Music Percept. 21, 561585. doi: 10.1525/mp.2004.21.4.561 Shih Y. -N. Chien W. -H. Chiang H. -S. (2016). Elucidating the relationship between work attention performance and emotions arising from listening to music. Work 55, 489494. doi: 10.3233/WOR-162408, PMID: 27689591 Stoet G. (2010). Sex differences in the processing of flankers. Q. J. Exp. Psychol. 63, 633638. doi: 10.1080/17470210903464253, PMID: 20013515 Theeuwes J. (2010). Top–down and bottom–up control of visual selection. Acta Psychol. 135, 7799. doi: 10.1016/j.actpsy.2010.02.006, PMID: 20507828 Thompson R. G. Moulin C. Hayre S. Jones R. (2005). Music enhances category fluency in healthy older adults and Alzheimer’s disease patients. Exp. Aging Res. 31, 9199. doi: 10.1080/03610730590882819, PMID: 15842075 Thompson W. F. Schellenberg E. G. Husain G. (2001). Arousal, mood, and the Mozart effect. Psychol. Sci. 12, 248251. doi: 10.1111/1467-9280.00345, PMID: 11437309 Trost W. Frühholz S. Schön D. Labbé C. Pichon S. Grandjean D. . (2014). Getting the beat: entrainment of brain activity by musical rhythm and pleasantness. Neuroimage 103, 5564. doi: 10.1016/j.neuroimage.2014.09.009, PMID: 25224999 van den Bosch I. Salimpoor V. Zatorre R. J. (2013). Familiarity mediates the relationship between emotional arousal and pleasure during music listening. Front. Hum. Neurosci. 7:534. doi: 10.3389/fnhum.2013.00534, PMID: 24046738 Vieillard S. Peretz I. Gosselin N. Khalfa S. Gagnon L. Bouchard B. (2008). Happy, sad, scary and peaceful musical excerpts for research on emotions. Cogn. Emot. 22, 720752. doi: 10.1080/02699930701503567 Wahl H. -W. Heyl V. (2003). Connections between vision, hearing, and cognitive function in old age. Generations 27, 3945. Wahn B. König P. (2017). Is attentional resource allocation across sensory modalities task-dependent? Adv. Cogn. Psychol. 13, 8396. doi: 10.5709/acp-0209-2, PMID: 28450975 Wild-Wall N. Falkenstein M. Hohnsbein J. (2008). Flanker interference in young and older participants as reflected in event-related potentials. Brain Res. 1211, 7284. doi: 10.1016/j.brainres.2008.03.025, PMID: 18433737 Zeef E. J. Sonke C. J. Kok A. Buiten M. M. Kenemans J. (1996). Perceptual factors affecting age-related differences in focused attention: performance and psychophysiological analyses. Psychophysiology 33, 555565. doi: 10.1111/j.1469-8986.1996.tb02432.x003, PMID: 8854743

      Funding. The study is funded by the Fonds de recherche du Québec société et culture (FRQSC), 2019-B1Z-256735, and the Center for Research on Brain, Language and Music (CRBLM). The CRBLM is funded by the Fonds de recherche nature et technologies du Québec (FRQNT) and by the FRQSC.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.lvb3x.net.cn
      www.hzxfsj.com.cn
      www.kmomjjy.com.cn
      ochygj.com.cn
      njfi.com.cn
      www.mrxmwp.com.cn
      steelbaas.com.cn
      ooxwdn.com.cn
      saehancsm.com.cn
      x-gnd.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p