Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2020.01885 Psychology Perspective Lucid Dreaming Brain Network Based on Tholey’s 7 Klartraum Criteria Holzinger Brigitte 1 2 * Mayer Lucille 1 1Institute for Consciousness and Dream Research, Vienna, Austria 2Certificate Program Sleep Coaching, Medical University of Vienna, Vienna, Austria

Edited by: Sérgio Arthuro Mota-Rolim, Federal University of Rio Grande do Norte, Brazil

Reviewed by: Edward F. Pace-Schott, Harvard Medical School, United States; Axel Steiger, Ludwig Maximilian University of Munich, Germany

*Correspondence: Brigitte Holzinger, office@traum.ac.at; info@schlafcoaching.org

ORCID: Brigitte Holzinger, orcid.org/0000-0001-5385-4091

This article was submitted to Consciousness Research, a section of the journal Frontiers in Psychology

29 07 2020 2020 11 1885 27 02 2020 08 07 2020 Copyright © 2020 Holzinger and Mayer. 2020 Holzinger and Mayer

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Lucid dreaming refers to a dream state characterized by the dreamers’ awareness of being in a dream and being able to volitionally control its content. The aim of this study was to describe and model neurophysiological evidence for the seven awareness criteria of lucid dreaming based on those proposed by Paul Tholey. Each of the awareness criteria was analyzed separately with regard to its underlying neurocircuits. We hypothesized that not one, but several regions are involved in the state of lucid dreaming. Our results have shown a satisfactory overlap of the awareness criteria and the brain regions activated. During lucid dreaming, a brain network seems to emerge, that is something other than the sum of its parts. Further research is needed to understand the psychoneurological underpinnings of lucid dreams.

Klartraum lucid dreaming pre-lucid consciousness free will self-awareness choice brain regions

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Lucid dreaming (LD) is a fascinating research topic and has attracted many enthusiasts. Unfortunately, the scientific field is still lacking a comprehensive definition of LD.

      The term “lucid dream” was coined by the Dutch psychiatrist Frederik Willems van Eeden (Holzinger et al., 2006) who reported that in lucid dreams, “the reintegration of the psychic functions is so complete that the sleeper reaches a state of perfect awareness and is able to direct his attention, and to attempt different acts of free volition” (Van Eeden, 1913). The phenomenon of LD is generally understood as the fact that a dreamer is aware that he/she is dreaming while dreaming (LaBerge, 1980; Spoormaker and van den Bout, 2006). Tholey and Utecht (1987) defined additional criteria explaining LD, such as awareness of freedom of decision, memory of the waking state, and full intellectual abilities. Gackenbach and LaBerge (1988) expanded the original definition by requiring the dream to be ongoing, because sometimes the dreamer wakes up upon realising his/her state, and that would be defined as a pre-lucid dream (PLD) instead. Deirdre Barrett (1992) in which the following four criteria were examined: (1) the dreamer is aware that he/she is dreaming, (2) objects disappear after waking, (3) physical laws need not apply in the dream, (4) the dreamer has a clear memory of the waking world.

      For now, we preserve the definition according to Tholey (1977) and LaBerge et al. (1981). Lucid dreaming is a dream state characterized by the dreamer’s awareness of being in a dream and the awareness of choice (LaBerge, 1980a, b, 1985; LaBerge and Rheingold, 1991; Holzinger et al., 2006). Tholey (1980, 1981) however, being a German Gestalt Theorist, called the lucid dream “Klartraum,” or “Dream of Clarity” as Holzinger refers to it (Holzinger, 2009). Upon self-exploration of his dreamlife he described seven criteria of a “Klartraum” to be distinguished from a “Non-Klartraum” (Tholey, 1980, 1981). He declared criteria 1–4 as essential for a “Klartraum,” while criteria 5–7 are optional and do not make a “Klartraum” by themselves.

      Clarity that one is dreaming.

      Clarity about the freedom of choice (for experiments on the topic see: Libet et al., 1983; Fried et al., 1991; Haggard and Eimer, 1999; Soon et al., 2008; Liljenström, 2015; Liljenström and Nazir, 2016; for an overview see: Baumeister et al., 2010; Caruso, 2012).

      Clarity of consciousness.

      Clarity about the waking life.

      Clarity of perception.

      Clarity about the meaning of the dream.

      Clarity recollecting the dream.

      The seven criteria used in this article are based on Tholey’s, however, we used an adapted version (Holzinger, 2014) that fits the Gestalt theory terminology better (Yontef, 1993). We suggest these criteria are more closely related to newer neurophysiological findings and reportings of lucid dreaming experiences. Awareness being a lasting state seems to describe the process of a lucid dream better, compared to a moment of clarity which tends to be momentary. Nevertheless, the following criteria are in its core the same as those proposed by Tholey.

      Awareness of (spatial) orientation.

      Awareness of the capacity of choice.

      Awareness of (intense) concentration – (awareness of “flow” Csikszentmihalyi et al., 2014).

      Awareness of identity (the “I”).

      Awareness of the dreaming environment.

      Awareness of the meaning of the dream.

      Awareness of memory.

      Criteria 1 refers to the self-reflective capacity to appreciate the dream as a dream, by recognizing the dream environment and localizing oneself in it. As Tholey stated, the consciousness of being in a dream (or in our case orientation) is not sufficient for a dream to become lucid. The capacity of choice is what changes a dream (Tholey, 1980). Therefore, we suggest that awareness criteria 1 and 2 are crucial for the experience of LD. If only 1 awareness criteria applies, we should be speaking of a PLD (Green, 1968) since all imply some level of self-reflective capacity which in turn can lead to further cognitive capacities. Awareness criteria 5–7 are not essential for the definition for the PLD, LD and “Klartraum,” but can be part of a PLD (distinguishing the PLD from the non-lucid dream), the LD and the “Klartraum” (Holzinger, 2004), describing this extraordinary state and its potential. The definition of LD is still a work in progress and we hope that the discussion about the definition of a pre-lucid, a lucid dream and Klartraum will gain momentum in the scientific community.

      Additionally, we would like to propose the value of the seven awareness criteria of LD/ “Klartraum,” tracing back to Tholey (1977, 1980, 1981) in another field of research regarding lucid dreaming, namely the search for correlations of the LD state with specific cortex activation patterns of the brain. Our proposition here is that the “lucid” experience requires changes not in one but several areas of the cortex, and consequently the emergence of a brain network. Lewes (1875) defines emergence as follows: “The emergent is unlike its components insofar as these are incommensurable, and it cannot be reduced to their sum or their difference” (p. 413). It therefore occurs when an entity is observed to have properties its parts do not have on their own and in this case, the brain network is the new entity. Therefore, we assume a model of brain activation on the basis of the seven awareness criteria first described by Paul Tholey, and call it the “lucid brain model,” trying to integrate the varying results of research projects within the last decades.

      First, former findings regarding the general difference in brain activity during REM sleep and LD will be discussed, the matter of consciousness in LD will be introduced, and finally neuroscientific evidence for each of our seven proposed awareness criteria will be presented.

      A Brain Network in Lucid Dreaming From a Non-lucid to Lucid Dreaming Network

      There has been a great deal of speculation about the nature of changes during sleep in the known networks identified by fMRI resting state functional connectivity studies (for an overview see Raichle et al., 2001; for reviews see Fox et al., 2013; Picchioni et al., 2013; Pace-Schott and Picchioni, 2017; Baird et al., 2019). Although the review by Baird et al. (2019) is the only one dealing directly with lucid dreaming, other studies, particularly those examining REM (Fox et al., 2013) have relevance to network-based theories on what is happening during lucidity.

      During REM sleep, neural activity in the brain stem, thalamus, amygdala, and extrastriate temporo-occipital cortices increases, while other structures such as the dorsolateral prefrontal cortex and the precuneus show deactivation (Dresler et al., 2012). Hobson and Pace-Schott (2002) have theorized that this activity pattern might reflect visual hallucinations, emotional intensifications, and cognitive abnormalities typically experienced in dreams (Dresler et al., 2012). Deeper areas of the brain (limbic system, memory structures, arousal system) continue to play a role during the lucid dream state but will not be discussed in this article. We focus on those areas reactivated during LD in contrast to non-lucid REM sleep, especially frontal brain regions (Hobson and Pace-Schott, 2002). This recovery of reflective cognitive capabilities is likely to be the hallmark of LD (Dresler et al., 2012). Lucid dreamers report being in possession of all their cognitive faculties (Carskadon, 1995) and recent quantitative EEG data findings support the theory that the “wake-like intellectual clarity is paralleled by neural activations in frontal and frontolateral regions” (Dresler et al., 2012). Voss et al. (2018) found that lucidity was accompanied by an increased activation of the frontal lobes compared to regular REM-sleep dreams, regarding both synchronicity and consciousness-related frequencies (40 Hz). PET data also shows cognitive control in dreams to be associated with an activation of certain frontal cortex components (Shapiro et al., 1995). However, this does not imply that non-lucid dreams completely lack activation in frontal regions. Siclari et al. (2017) found that high-frequency frontal EEG activity (20–50 Hz) is higher in dreams that involve “thinking” rather than “perceiving” – which should be more often the case in LDs compared to non-lucid dreams, while parietal activation is higher in “perceiving” dreams. Frontal lobe functions include various tasks such as future planning, self-management and decision making, the integration of information from various sources, processing thoughts into words, voluntary movement, categorizing and making sense, forming memories, manage attention, impulse control, personality and empathy. Koch et al. (2016) on the other hand suggest that while frontal brain regions might be involved in directing attention or monitoring and co-vary with consciousness, the conscious experience itself relies on a temporo-parietal-occipital cortical “hot zone.” Therefore, increased activation of the frontal brain regions and temporo-parietal-occipital regions during LD compared to non-LD seem to have numerous effects on conscious awareness, influencing all seven components.

      Conscious Awareness During Lucid Dreaming

      At this point, we would also like to emphasize the notion of consciousness in sleep regarding the understanding and the consequent definition of LD as Harry Hunt did in 1995 (Hunt, 1995) and Jennifer Windt in 2011 (Windt and Noreika, 2011).

      Consciousness during regular dreams is thought to be mostly primary, or “characterized by a primitive, animistic style of thinking” (Carhart-Harris and Friston, 2010; Hobson and Voss, 2010). William James claimed that reflective awareness is an immanent part of the waking state while dreaming on the other hand lacks this capacity (James, 1981) and other influential dream researchers supported this theory (Freud, 1960; Hobson, 1988). However, newer findings suggest that rational thinking can be part of non-lucid dreaming as well (Cavallero and Foulkes, 1993) and dreams may be accompanied by a varying degree of insight and subjective control (Voss et al., 2018). Dresler et al. (2014) found that experienced volition was significantly higher during waking state and LD compared to non-lucid dreaming, and that the expression of different aspects of consciousness varies across states: while planning ability was most pronounced during wakefulness, intention enactment was most pronounced during LD, and self-determination most pronounced during both wakefulness and LD. Currently, there is no consensus whether dreaming cognition differs greatly from waking cognition, however, even during a mind wandering waking state, executive prefrontal cortex (PFC) regions are significantly more activated than during REM-sleep dreams (Fox et al., 2013).

      We do suspect different stages of consciousness and a lucid dreamer does show higher cognitive abilities and reflective awareness than a non-lucid dreamer overall. Empirical data supports the assumption that LD may be defined as a hybrid state, which is still partially ruled by lower level consciousness (Voss et al., 2009; Dresler et al., 2012; Voss et al., 2018). This might be the reason that lucid dreams are “happening” as a result of the subconscious, instead of being “created” in the first place. Like all dreams, they are a reflection of ourselves and our lives. Both lucid and non-lucid dreams may involve a “thinking” dimension as well as a “perceiving” or “experiencing” dimension.

      Two brain networks have been proposed in the study of consciousness, which seem to anti-correlate and cause a shift between externally and internally directed awareness (Fox and Raichle, 2007): the Default Mode Network (DMN; Raichle et al., 2001) and the Dorsal Attention Network (DAN; Corbetta et al., 2000). When the attention system is more active the organism’s attention is shifted to external stimuli, and conversely, when the DMN is more active the attention shifts inwards, e.g., to mental imagery (memory reprocessing or future imagination). Paradoxically, the inward shift of attention does not imply an increase in interoceptive sensations (e.g., taste, smell, digestion, pain) but only a shift to imagined visual and auditory content relative to actual empirical content (Pace-Schott et al., 2019). Recently, a third network has been introduced which could explain the emergence of lucidity, the Frontoparietal Control System, which seems to integrate information from DMN and DAN (Vincent et al., 2008). The DMN includes the precuneus, the medial prefrontal cortex (mPFC), and the left and right inferior parietal cortices (Raichle et al., 2001) while the DAN is comprised of the intraparietal sulci and frontal eye fields. The LD state seems to arise when DMN and executive functions are active at the same time. The executive control network (ECN) including dorsolateral PFC, intra-parietal sulcus, the salience network (anterior insula and orbitofrontal cortex), and the cingulo-opercular network (including anterior cingulate and frontal operculum) is a structure responsible for executive functions and might play a role in LD (Dosenbach et al., 2006).

      Awareness of (Spatial) Orientation

      High frequency activity in the right posterior parietal cortex, a region active during spatial perception and visuospatial attention, was associated with the report of a spatial setting in dreams (Siclari et al., 2017). Dream experience in which the dreamer reports a sense of movement were shown to be associated with an increase in high-frequency activity in the area of the right superior temporal sulcus (Siclari et al., 2017). This region is involved in the perception of motion and in viewing body movements. Dresler et al. (2012) found activation in the bilateral cuneus and occipitotemporal cortices during LD. These areas are part of the ventral stream of visual processing, which is involved in several aspects of conscious awareness in visual perception (Rees et al., 2002). According to Dresler et al. (2012) these findings support an exceptional brightness and visual clarity of the dream scenery which have been reported by lucid dreamers. Furthermore, Holzinger et al. (2006) found increased parietal beta activity during LD. One specific part, the temporo-parietal area, integrates visual, tactile, proprioceptive and vestibular information, and therefore contributes to self-consciousness and own-body imagery (Blanke and Mohr, 2005). If this region is disrupted during waking with magnetic or electrical stimulation, out-of-body experiences can be induced, which are defined as a subjective sensation of being outside one’s own body and may occur with or without viewing the own body (Blackmore, 1982; Blanke and Mohr, 2005). These results, together with the higher activation of meta-cognitive brain areas, possibly supply evidence for the awareness of spatial orientation, the awareness of the dream environment, and the option to navigate in it. This includes the awareness of being in a dream – which is Tholey’s first criteria but is also inherent to our first awareness criteria.

      Awareness of the Capacity of Choice/Deciding/Expectation/of Being in Charge

      Lucid dreamers are often able to act voluntarily within the dream upon reflection or in accordance with plans decided upon before sleep (Carskadon, 1995). However, Stumbrys et al. (2014) have shown that lucid dreamers are only able to remember their intentions half of the time, with half of those remembered intentions being successfully executed. The right dorsolateral PFC has been associated with self-focused metacognitive evaluation (Schmitz et al., 2004). Metacognition in this case refers to the “awareness of the awareness,” or higher order consciousness, which is present in LD (Sinclair, 1922; Voss et al., 2018). This might explain the capability of making choices. Furthermore, meta-cognitive evaluation might be the reason for being aware of one’s identity and metacognition includes metamemory, the awareness of one’s memory. The increased activation of the right dorsolateral PFC during LD compared to non-LD could be essential for lucidity and has been documented in empirical studies (Nofzinger et al., 1997; Voss et al., 2009; Dresler et al., 2012). Dresler et al. (2012) further observed that bilateral frontopolar areas are activated during LD. The frontopolar cortex (FPC) has been related to the processing of internal states, e.g., the evaluation of one’s own thoughts and feelings (Christoff et al., 2003; McCaig et al., 2011). While emotionality in normal REM sleep dreams usually resembles “unconscious affect,” referring to “valenced good/bad reactions that occur in the absence of conscious awareness” (Winkielman and Berridge, 2004) the ventrolateral PFC is reactivated during lucid dreams and seems to increase self-conscious emotions and a down-regulation of unconscious affect (Clore and Ketelaar, 1997) resulting in reduced negative (and perhaps overall) emotionality compared to normal dreams (Voss et al., 2018). These findings might explain why lucid dreamers are willing to change dream content. Since they become aware of the negative feelings a dream provokes, they try to change it into something more cheerful. FPC activity has also been correlated with a diverse range of other cognitive processes, including multitasking, implementing task sets, future thinking and prospective memory, exploratory decision making, deferring goals and cognitive “branching,” episodic memory retrieval and detailed recollection, evaluating counterfactual choice and facing uncertainty or conflict, complex relational and abstract reasoning, integrating outcomes of multiple cognitive operations, coordinating internal and external influences on cognition, evaluating self-generated information (Boschin et al., 2015). The possible activation of all these cognitive processes during LD might explain the awareness of the option to make sound choices based on thoughts, emotions and memories and individual preferences.

      Awareness of (Intense) Concentration – A State of “Flow”

      Lucid dreaming is characterized by a reflection on one’s own state of mind and not driven by the attention to the external dream scenery, which might lead to a state of more intense concentration or even “flow experience.” Like in an awake flow state, the dreamer is completely absorbed in their current activity, and has a sense of personal control or agency over the situation or activity, as compared to a state of confusion or semiconsciousness (Tholey, 1981). Additionally, Voss et al. (2018) found that LD differs from non-lucid dreams regarding the positivity of emotions, which might be relevant since the “flow” state is experienced as a very positive one. The flow experience as well as LD are accompanied by hormonal reactions, including norepinephrine, acetylcholine, dopamine, and serotonine (Yuschak, 2006). Acetylcholine has been shown to enhance cognitive function and learning ability and can also enhance LD (Bazzari, 2018; LaBerge et al., 2018). It seems to do so by allowing you to move directly from the waking state into a vivid dream state without losing consciousness (Yuschak, 2006). Dopamine plays an important role in dream recall for REM-dreams (De Gennaro et al., 2016) and might increase the control that a dreamer has within a lucid dream by substantially increasing confidence and motivation levels (Mohebi et al., 2019; Yuschak, 2006). Together with norepinephrine it boosts focus, increases the ability to connect and integrate information, facilitates pattern recognition and problem solving – in case of LD, it might also enhance the ability to recall details and memories from waking life while within the dream (Yuschak, 2006). This allows maintaining constant attention on accomplishing any goals, experiments, or other assignments that you have prepared for the dream. Yoshida et al. (2014) found that during a flow state, the concentration of oxygenated hemoglobin (oxy-Hb) was significantly increased in the right and left ventrolateral PFC. They also found a significant increase in oxy-Hb concentration in the right and left dorsolateral PFC, right and left frontopolar areas, and left ventrolateral PFC while participants were filling out the flow state scale after performing a task in the flow condition. These areas have been found to show increased activation during LD, which supports the LD-flow hypothesis. In conclusion, flow is associated with activity of the PFC, and may therefore be associated with functions such as cognition, emotion, maintenance of internal goals, and reward processing. Therefore, the flow experience shares many characteristics with the LD state.

      Awareness of Identity – The “I” Without Which There Would Be No Dialogue

      Studies have found that lucidity is related to a change on the degree of self-related processing and the type of self-presentation (Metzinger, 2004; Windt and Metzinger, 2007). Self-awareness is thought to be supported by the DMN, its activation leads to an inward shift of attention and has been found to be a hallmark of the REM dreaming state. Accordingly, Dresler et al. (2012) found that the strongest increase in activation during lucid compared to non-lucid REM sleep happened in the precuneus. This brain region is also a part of self-referential processing, such as first-person perspective and experience of agency (Cavanna and Trimble, 2006). Holzinger et al. (1998) found that the left parietal lobe was also more activated during LD, that area of the brain being related to semantic understanding and self-awareness. The insula is another relevant brain structure that lays between frontal, parietal and temporal cortex. Its functions are still investigated, but seem to include control of conscious awareness, motor control, perception and self-awareness (Craig and Craig, 2009). We suggest that this area of the brain might also play a role in LD, however, this is only speculative and requires further exploring. The awareness of the “I” is of course closely related to the awareness of memory, explained in section “Awareness of Memory,” which determines to a great part what the dreamer might decide, wish for or act upon when able to take control of the dream.

      Awareness of the Dreaming Environment

      The awareness and memory of a spatial dreaming environment can be part of non-lucid dreams as well, and is associated with high frequency activity in the right posterior parietal cortex (Siclari et al., 2017). However, while regular REM-sleep dreams usually involve an activation of the DMN and not the DAN, during LD, a higher connectivity between those networks evolves and the Frontoparietal Control System starts to integrate information from both. Awareness of the environment may be supported by this collaboration of DAN and ECN and the connectivity between frontal and parietal nodes in DAN, DMN, and ECN seems to reflect consciousness that is required for information integration (Picchioni et al., 2013). Together with those findings discussed in section “Awareness of (Spatial) Orientation,” the awareness of the dreaming environment during LD might be explained.

      Awareness of the Meaning of the Dream

      General frontal activation might be the reason for the ability to add meaning to a dream by integrating memory, identity and the dreaming environment into a whole. Based on empirical and theoretical findings, we suggest that a dream becomes meaningful by an integration of emotional content (limbic system), memory (hippothalamus and related structures) and brain structures involved in identity (see section “Awareness of Identity—the “I” Without Which There Would Be No Dialogue”). This might be possible due to an activation of the DMN and executive functions returning when accessing the state of LD compared to non-LD.

      Furthermore, meaning is typically added to something by using words, categories and logical thought. Several areas of the parietal lobe, which is more active during LD, are important in language processing. The left parietal-temporal areas have been found to be relevant for verbal memory and the ability to recall strings of digits (Warrington and Weiskrantz, 1978). Insula activity increases in case of unclear images and perceptive input (Lamichhane et al., 2016). We suggest that the insula might enable the lucid dreamer to make sense of the dream images. Furthermore, the insular cortex plays a role in developing a sense of the physiological condition of the entire body (introception) by collecting internal cues such as the beating of the heart, and related signals provide a basis for time perception (Craig, 2009). Üstün et al. (2017) found activity in the right dorsolateral prefrontal and right intraparietal cortical networks, together with the anterior cingulate cortex (ACC), anterior insula and basal ganglia during time perception. Meta-cognitive abilities, language processing, as well as time perception might play a role when adding meaning to a dream.

      Awareness of Memory

      Lucid dreamers are often able to remember previous LD experiences as well as the conditions of their waking life (Holzinger et al., 2015). Dresler et al. (2012) found the dorsolateral prefrontal cortex and parietal lobules to be active during LD, which may reflect working memory demands (Smith and Jonides, 1998). In normal dreams, on the contrary, working memory is strongly impaired (Hobson and Pace-Schott, 2002). The activation of the working memory could allow lucid dreamers to analyze the dream content in relation to their identity, memory and dream environment and decide and plan behaviors according to individual preferences. Ogilvie et al. (1978) found a global increase in the percentage of alpha band (8–12 Hz). This supports the hypothesis that LD is an intermediate stage between REM-sleep and waking. Alpha waves are typical for a state of relaxation and focus and are ideal for learning and memory retention (Makada et al., 2016). In this case, however, follow-up EEG studies found no significant differences in alpha power (LaBerge, 1988) or that only PLDs differed in alpha-power (Tyson et al., 1984).

      Discussion

      For each of the seven awareness criteria of lucid dreaming proposed, neurological evidence was collected. A visualization of our results can be seen in Figure 1. The most prominent feature of LD is the reactivation of brain areas that are inactive during regular REM-sleep dreams, which seem to explain the recovered awareness and consciousness of lucid dreamers. Awareness criteria nos. 1 and 2, the awareness of orientation and the awareness of being in charge, were considered essential for the experience of LD and accordingly, activation of relevant brain areas seems to exist. As Koch et al. (2016) suggested, multiple brain areas are involved in conscious experience, which include several frontal areas and a “posterior cortical hot zone.” The suggested emergence of a cortical network also points to brain plasticity and the fact that lucid dreaming can be learned and made easier by practicing. However, the findings presented above are not definite and should be further explored in the future. We do not want to imply that this attempt of explaining the underlying network of LD is the only or the best approach. Most studies used for reference have relied on small sample sizes, show low statistical power, discrepant results, and electrode montages in EEG studies were limited. Mota-Rolim et al. (2010) suggest that different subjective experiences and contents during lucid dreams might show different neurological activation. Changes in EEG might also depend on the LD experience of the dreamer and the vividness of a dream, individual working memory, emotionality, self-consciousness, as well as levels of attention and insight (Baird et al., 2019). As preliminary findings suggest, part of the observed activation of regions of anterior prefrontal, parietal and temporal cortex might not result from LD itself, but from the eye-signaling and hand-clenching task performed to signal lucidity, which also requires task-switching and sustained attention. Finally, we want to raise awareness for possible risks that might arise when practicing LD. While lucid dreaming can be a helpful tool in treating nightmares, depression or anxiety (Reynolds et al., 2006; Spoormaker and van den Bout, 2006; Doll et al., 2009; Holzinger et al., 2015) lucid dreams are also related to dissociative states, and phenomena like sleep paralysis, nightmares, or even psychosis or psychosis-like states might emerge in some cases (Holzinger, 2014; Aviram and Soffer-Dudek, 2018).

      Brain regions showing increased activity during lucid REM sleep contrasted with non-lucid REM sleep. Assignment of awareness criteria to brain regions: (1) Awareness of (spatial) orientation: 4, 5, 7, and 8; (2) Awareness of the capacity of choice: 1, 2, and 3; (3) Awareness of (intense) concentration – awareness of “flow”: 1, 2, and 3; (4) Awareness of identity (the “I”) : 4 and 6; (5) Awareness of the dreaming environment : 3, 4, 5, 7, and 8; (6) Awareness of the meaning of the dream : 1, 3, 4, and 5; Awareness of memory: 1, 3, 4, 5, and 6.

      Conclusion

      Lucid dreaming has the ability to increase awareness and control of the dreamer. Neurological evidence seems to support the seven awareness criteria suggested by Holzinger. During LD, not a single brain structure, but a whole network of brain regions is activated. In this study, we hypothesize that the awareness criteria of LD proposed by Holzinger can be supported by empirical data. However, we want to make clear that we do not claim that this theory has already been proven, we merely use former findings to form our theory. Instead, we wish to push along further research based on Tholey’s theoretical concept. We think that theoretical and practical works regarding lucid dreaming make this approach very promising. Lucid dreaming shows potential as a methodology in the cognitive neuroscience of consciousness as well as psychotherapy (Zadra and Pihl, 1997; Holzinger, 2014; De Macedo et al., 2019). However, there is still substantial disagreement with regard to the brain regions and frequency bands most activated during lucid dreaming and how they correlate with the theoretical base of lucid dreams. Further research is needed.

      Author Contributions

      BH and LM conducted the literature search, selected the eligible studies, and drafted the manuscript. Both authors confirm being the only contributors of this work and approved it for publication.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to express our sincere thanks to the editor and the reviewers for their careful work and thoughtful suggestions.

      References Aviram L. Soffer-Dudek N. (2018). Lucid dreaming: intensity, but not frequency, is inversely related to psychopathology. Front. Psychol. 9:384. 10.3389/fpsyg.2018.00384 29623062 Baird B. Mota-Rolim S. A. Dresler M. (2019). The cognitive neuroscience of lucid dreaming. Neurosci. Biobehav. Rev. 100 305323. 10.1016/j.neubiorev.2019.03.008 30880167 Barrett D. (1992). Just how lucid are lucid dreams? Dreaming 2 221228. 10.1037/h0094362 Baumeister R. Mele A. Vohs K. (2010). Free Will and Consciousness: How Might They Work?. New York, NY: Oxford University Press. Bazzari F. H. (2018). Can we induce lucid dreams? A pharmacological point of view. Int. J. Dream Res. 11 106119. 10.11588/ijodr.2018.2.42462 32522977 Blackmore S. (1982). Beyond the Body. An Investigation of Out-Of-Body Experiences. London: Heinemann. Blanke O. Mohr C. (2005). Out-of-body experience, heautoscopy, and autoscopic hallucination of neurological origin. Implications for neurocognitive mechanisms of corporeal awareness and self-consciousness. Brain Res. Rev. 50 184199. 10.1016/j.brainresrev.2005.05.008 16019077 Boschin E. A. Piekema C. Buckley M. J. (2015). Essential functions of primate frontopolar cortex in cognition. Proc. Natl. Acad. Sci. U.S.A. 112 E1020E1027. 10.1073/pnas.1419649112 25691741 Carhart-Harris R. L. Friston K. J. (2010). The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain 133 12651283. 10.1093/brain/awq010 20194141 Carskadon M. A. (1995). Encyclopedia of Sleep and Dreaming. New York, NY: Simon & Schuster MacMillan. Caruso G. D. (2012). Free Will and Consciousness: A Determinist Account of the Illusion of Free Will. Lanham, MA: Lexington Books. Cavallero C. E. Foulkes D. E. (1993). Dreaming as Cognition. Coleshill: Harvester Wheatsheaf. Cavanna A. E. Trimble M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129 564583. 10.1093/brain/awl004 16399806 Christoff K. Ream J. M. Geddes L. P. T. Gabrieli J. D. E. (2003). Evaluating self-generated information: anterior prefrontal contributions to human cognition. Behav. Neurosci. 117 11611168. 10.1037/0735-7044.117.6.1161 14674837 Clore G. Ketelaar T. (1997). Minding our emotions: on the role of automatic, unconscious affect. Adv. Soc. Cogn. 10 105120. Corbetta M. Kincade J. M. Ollinger J. M. McAvoy M. P. Shulman G. L. (2000). Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 3 292297. 10.1038/73009 10700263 Craig A. D. (2009). Emotional moments across time: a possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. B Biol. Sci. 364 19331942. 10.1098/rstb.2009.0008 19487195 Craig A. D. Craig A. D. (2009). How do you feel–now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10 5970. 10.1038/nrn2555 19096369 Csikszentmihalyi M. Abuhamdeh S. Nakamura J. (2014). Flow and the Foundations of Positive Psychology. Dordrecht: Springer. De Gennaro L. Lanteri O. Piras F. Scarpelli S. Assogna F. Ferrara M. (2016). Dopaminergic system and dream recall: an MRI study in Parkinson’s disease patients. Hum. Brain Mapp. 37 11361147. 10.1002/hbm.23095 26704150 De Macedo T. C. F. Ferreira G. H. Almondes K. M. D. Kirov R. Mota-Rolim S. A. (2019). My dream, my rules: can lucid dreaming treat nightmares? Front. Psychol. 10:2618. 10.3389/fpsyg.2019.02618 31849749 Doll E. Gittler G. Holzinger B. (2009). Dreaming, Lucid Dreaming and Personality. Heidelberg: Universitätsbibliothek der Universität. Dosenbach N. U. Visscher K. M. Palmer E. D. Miezin F. M. Wenger K. K. Kang H. (2006). A core system for the implementation of task sets. Neuron 50 799812. 10.1016/j.neuron.2006.04.031 16731517 Dresler M. Eibl L. Fischer C. F. J. Wehrle R. Spoormaker V. I. Steiger A. (2014). Volitional components of consciousness vary across wakefulness, dreaming and lucid dreaming. Front. Psychol. 4:987. 10.3389/fpsyg.2013.00987 24427149 Dresler M. Wehrle R. Spoormaker V. I. Koch S. P. Holsboer F. Steiger A. (2012). Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: a combined EEG/FMRI case study. Sleep 35 10171020. 10.5665/sleep.1974 22754049 Fox K. C. Nijeboer S. Solomonova E. Domhoff G. W. Christoff K. (2013). Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports. Front. Hum. Neurosci. 7:412. 10.3389/fnhum.2013.00412 23908622 Fox M. D. Raichle M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700711. 10.1038/nrn2201 17704812 Freud S. (1960). Die Traumdeutung [The Interpretation of Dreams]. Frankfurt/Main: Fischer. (Original work published 1900). Fried I. Katz A. McCarthy G. Sass K. J. Williamson P. Spencer S. S. (1991). Functional organization of human supplementary motor cortex studied by electrical stimulation. J. Neurosci. 11 36563666. 10.1523/JNEUROSCI.11-11-03656.1991 1941101 Gackenbach J. LaBerge S. (1988). Conscious Mind, Sleeping Brain: Perspectives on Lucid Dreaming. New York, NY: Plenum Press. Green C. (1968). Lucid Dreams. Oxford: Institute of Psychophysical Research. Haggard P. Eimer M. (1999). On the relation between brain potentials and the awareness of voluntary movements. Exp. Brain Res. 126 128133. 10.1007/s002210050722 10333013 Hobson J. A. (1988). The Dreaming Brain. New York, NY: Basic Books. Hobson J. A. Pace-Schott E. F. (2002). The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 3 679693. 10.1038/nrn915 12209117 Hobson J. A. Voss U. (2010). “Lucid dreaming and the bimodality of consciousness,” in Towards New Horizons in Consciousness Research From the Boundaries of the Brain, eds Perry E. Collerton D. LeBeau F. E. N. Ashton H. (Amsterdam: John Benjamins), 155165. Holzinger B. (2004). Der luzide Traum: Phänomenologie und Physiologie. Wien: WUV-Universitatsverlag. Holzinger B. (2009). Lucid dreaming–dreams of clarity. Contemp. Hypnosis 26 216224. 10.1002/ch.390 Holzinger B. (2014). “Lucid dreaming in psychotherapy,” in Practical and Applied Psychology. Lucid Dreaming: New Perspectives on Consciousness in Sleep: Science, Psychology, and Education; Religion, Creativity, and Culture, eds Hurd R. Bulkeley K. (Santa Barbara, CA: ABC-CLIO), 3761. Holzinger B. Klösch G. Saletu B. (2015). Studies with lucid dreaming as add-on therapy to Gestalt therapy. Acta Neurol. Scand. 131 355363. 10.1111/ane.12362 25639732 Holzinger B. LaBerge S. Levitan L. (2006). Psychological correlates of lucid dreaming. Dreaming 16 8895. 10.1037/1053-0797.16.2.88 Holzinger B. LaBerge S. Tholey P. (1998). Diskussion über Induktionsmethoden, theoretische Grundlagen und psychotherapeutische Anwendungen des Klarträumens. Gestalt Theory 20 143172. Hunt H. T. (1995). On the Nature of Consciousness: Cognitive, Phenomenological, and Transpersonal Perspectives. London: Yale University Press. James W. (1981). The principles of Psychology, Vol. 1. New York, NY: Dover. [Original work published 1890]. Koch C. Massimini M. Boly M. Tononi G. (2016). Neural correlates of consciousness: progress and problems. Nat. Rev. 17 307321. 10.1038/nrn.2016.22 27094080 LaBerge S. (1980). Lucid Dreaming: An Exploratory Study of Consciousness During Sleep. doctoral dissertation. Stanford University, Stanford, CA. LaBerge S. (1980a). Induction of lucid dreams. Sleep Res. 9:138. LaBerge S. (1980b). Lucid dreaming as a learnable skill: a case study. Percept. Mot. Skills 51 10391042. 10.2466/pms.1980.51.3f.1039 LaBerge S. (1985). Lucid Dreaming. New York, NY: Ballantine. LaBerge S. (1988). “The psychophysiology of lucid dreaming,” in Conscious Mind, Sleeping Brain, eds Gackenbach J. LaBerge S. (Boston, MA: Springer), 135153. 10.1007/978-1-4757-0423-5_7 LaBerge S. LaMarca K. Baird B. (2018). Pre-sleep treatment with galantamine stimulates lucid dreaming: a double-blind, placebo-controlled, crossover study. PLoS One 13:e0201246. 10.1371/journal.pone.0201246 30089135 LaBerge S. Nagel L. Dement W. C. Zarcone V. (1981). Lucid dream verified by volitional communication during REM sleep. Percept. Mot. Skills 52 727732. 10.2466/pms.1981.52.3.727 24171230 LaBerge S. Rheingold H. (1991). Exploring the World of Lucid Dreaming. New York, NY: Ballantine Books. Lamichhane B. Adhikari B. M. Dhamala M. (2016). The activity in the anterior insulae is modulated by perceptual decision-making difficulty. Neuroscience 327 7994. 10.1016/j.neuroscience.2016.04.016 27095712 Lewes G. H. (1875). Problems of Life and Mind, Vol. 2. London: Trübner. Libet B. Wright E. W. Jr. Gleason C. A. (1983). Preparation-or intention-to-act, in relation to pre-event potentials recorded at the vertex. Electroencephal. Clin. Neurophysiol. 56 367372. 10.1016/0013-4694(83)90262-6 Liljenström H. (2015). “Free will and spatiotemporal neurodynamics,” in Advances in Cognitive Neurodynamics (IV), ed. Rubin W. (Dordrecht: Springer), 523529. 10.1007/978-94-017-9548-7_75 Liljenström H. Nazir A. H. (2016). “Decisions and downward causation in neural systems,” in Advances in Cognitive Neurodynamics (V), eds Rubin W. Xiaochuan P. (Singapore: Springer), 161167. 10.1007/978-981-10-0207-6_23 Makada T. Ozair D. Mohammed M. Abellanoza C. (2016). “Enhancing memory retention by increasing alpha and decreasing beta brainwaves using music,” in Proceedings of the 9th ACM International Conference on Pervasive Technologies Related to Assistive Environments, New York, NY: ACM, 60. McCaig R. G. Dixon M. Keramatian K. Liu I. Christoff K. (2011). Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. NeuroImage 55 12981305. 10.1016/j.neuroimage.2010.12.016 21147230 Metzinger T. (2004). Being no One. The Self-Model Theory of Subjectivity. Cambridge, MA: MIT Press. Mohebi A. Pettibone J. R. Hamid A. A. Wong J. M. T. Vinson L. T. Patriarchi T. (2019). Dissociable dopamine dynamics for learning and motivation. Nature 570 6570. 10.1038/s41586-019-1235-y 31118513 Mota-Rolim S. A. Erlacher D. Tort A. B. Araujo J. F. Ribeiro S. (2010). Different kinds of subjective experience during lucid dreaming may have different neural sub-strates. J. Neurosci. 25 550557. 10.11588/ijodr.2010.1.596 32522977 Nofzinger E. A. Mintun M. A. Wiseman M. Kupfer D. J. Moore R. Y. (1997). Forebrain activation in REM sleep: an FDG PET study. Brain Res. 770 192201. 10.1016/s0006-8993(97)00807-x Ogilvie R. Hunt H. Sawicki C. McGowan K. (1978). Searching for lucid dreams. Sleep Res. 7:165. Pace-Schott E. F. Amole M. C. Aue T. Balconi M. Bylsma L. M. Critchley H. (2019). Physiological feelings. Neurosci. Biobehav. Rev. 103 267304. 10.1016/j.neubiorev.2019.05.002 31125635 Pace-Schott E. F. Picchioni D. (2017). “The neurobiology of dreaming,” in Principles and Practice of Sleep Medicine, 6th Edn, eds Kryger M. H. Roth T. Dement W. C. (Philadelphia, PA: Elsevier), 529538. Picchioni D. Duyn J. H. Horovitz S. G. (2013). Sleep and the functional connectome. Neuroimage 80 387396. 10.1016/j.neuroimage.2013.05.067 23707592 Raichle M. E. MacLeod A. M. Snyder A. Z. Powers W. J. Gusnard D. A. Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U. S. A. 98 676682. 10.1073/pnas.98.2.676 11209064 Rees G. Kreiman G. Koch C. (2002). Neural correlates of consciousness in humans. Nat. Rev. Neurosci. 3 261270. 10.1038/nrn783 11967556 Reynolds J. R. McDermott K. B. Braver T. S. (2006). A direct comparison of anterior prefrontal cortex involvement in episodic retrieval and integration. Cereb. Cortex 16 519528. 10.1093/cercor/bhi131 16049191 Schmitz T. W. Kawahara-Baccus T. N. Johnson S. C. (2004). Metacognitive evaluation, self-relevance, and the right prefrontal cortex. Neuroimage 22 941947. 10.1016/j.neuroimage.2004.02.018 15193625 Shapiro D. H. Wu J. Buchsbaum M. Hong C. Elderkin-Thompson V. Hillard D. (1995). Exploring the relationship between having control and losing control to functional neuroanatomy within the sleeping state. Psychologia 38 133145. Siclari F. Baird B. Perogamvros L. Bernardi G. LaRocque J. J. Riedner B. (2017). The neural correlates of dreaming. Nat. Neurosci. 20 872878. 10.1038/nn.4545 28394322 Sinclair J. G. (1922). Temperatures of the soil and air in a desert. Mon. Weather Rev. 50, 142144. Smith E. E. Jonides J. (1998). Neuroimaging analyses of human working memory. PNAS 95 1206112068. 10.1073/pnas.95.20.12061 9751790 Soon C. S. Brass M. Heinze H. J. Haynes J. D. (2008). Unconscious determinants of free decisions in the human brain. Nat. Neurosci. 11 543545. 10.1038/nn.2112 18408715 Spoormaker V. I. van den Bout J. (2006). Lucid dreaming treatment for nightmares: a pilot-study. Psychother. Psychosom. 75 389394. 10.1159/000095446 17053341 Stumbrys T. Erlacher D. Johnson M. Schredl M. (2014). The phenomenology of lucid dreaming: an online survey. Am. J. Psychol. 127 191204. 10.5406/amerjpsyc.127.2.0191 24934010 Tholey P. (1977). “Der Klartraum: seine Funktion in der experimentellen Traumforschung,” in Bericht ueber den 30; Kongress der deutschen Gesellschaft fuer Psychologie in Regensburg 1976, ed. Tack W. H. (Goettingen: Hogrefe), 376378. Tholey P. (1980). Klarträume als Gegenstand empirischer Untersuchungen. Gestalt Theory 2 175191. Tholey P. (1981). Empirische Untersuchungen über Klarträume. Gestalt Theory 3 2162. Tholey P. Utecht K. (1987). Schöpferisch träumen – Der Klartraum als Lebenshilfe. Niedernhausen: Klotz. Tyson P. D. Ogilvie R. D. Hunt H. T. (1984). Lucid, prelucid, and nonlucid dreams related to the amount of EEG alpha activity during REM sleep. Psychophysiology 21 442451. 10.1111/j.1469-8986.1984.tb00224.x 6463177 Üstün S. Kale E. H. Çiçek M. (2017). Neural networks for time perception and working memory. Front. Hum. Neurosci. 11:83. 10.3389/fnhum.2017.00083 28286475 Van Eeden F. (1913). A study of dreams. Proc. SPR 26 431461. Vincent J. L. Kahn I. Snyder A. Z. Raichle M. E. Buckner R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J. Neurophysiol. 100 33283342. 10.1152/jn.90355.2008 18799601 Voss U. D’Agostino A. Kolibius L. Klimke A. Scarone S. Hobson J. A. (2018). Insight and dissociation in lucid dreaming and psychosis. Front. Psychol. 9:2164. 10.3389/fpsyg.2018.02164 30483185 Voss U. Holzmann R. Tuin I. Hobson J. A. (2009). Lucid dreaming: a state of consciousness with features of both waking and non-lucid dreaming. Sleep 32 11911200. 10.1093/sleep/32.9.1191 19750924 Warrington E. K. Weiskrantz L. (1978). Further analysis of the prior learning effect in amnesic patients. Neuropsychologia 16 169177. 10.1016/0028-3932(78)90104-5 25892594 Windt J. M. Metzinger T. (2007). “The philosophy of dreaming and self-consciousness: what happens to the experiential subject during the dream state?,” in The New Science of Dreaming: Cultural and Theoretical Perspectives, Vol. 3 eds Barrett D. McNamara P. (Westport, CT: Praeger), 193247. Windt J. M. Noreika V. (2011). How to integrate dreaming into a general theory of consciousness—a critical review of existing positions and suggestions for future research. Conscious Cogn. 20 10911107. 10.1016/j.concog.2010.09.010 20933438 Winkielman P. Berridge K. C. (2004). Unconscious emotion. Curr. Dir. Psychol. Sci. 13 120123. 10.1111/j.0963-7214.2004.00288.x Yontef G. M. (1993). Awareness, Dialogue & Process: Essays on Gestalt Therapy. Highland, NY: The Gestalt Journal Press. Yoshida K. Sawamura D. Inagaki Y. Ogawa K. Ikoma K. Sakai S. (2014). Brain activity during the flow experience: a functional near-infrared spectroscopy study. Neurosci. Lett. 573 3034. 10.1016/j.neulet.2014.05.011 24836375 Yuschak T. (2006). Advanced Lucid Dreaming. The Power of Supplements. Hillsborough. St Raleigh, NC: Lulu Enterprises. Zadra A. L. Pihl R. O. (1997). Lucid dreaming as a treatment for recurrent nightmares. Psychother. Psychosom. 66 5055. 10.1159/000289106 8996716
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016kychain.com.cn
      www.qeis.com.cn
      www.sy1998gd.com.cn
      www.rzzxxu.com.cn
      www.pjchain.com.cn
      www.nzchain.com.cn
      ueelci.com.cn
      www.mj5ryf.com.cn
      www.nbfxj.net.cn
      wuxibar.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p