Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2019.00165 Psychology Original Research Evaluation of a Sound Quality Visual Feedback System for Bow Learning Technique in Violin Beginners: An EEG Study Blanco Angel David * Ramirez Rafael Music and Machine Learning Lab, Universitat Pompeu Fabra, Barcelona, Spain

Edited by: Graham Frederick Welch, UCL Institute of Education, United Kingdom

Reviewed by: Esther H. S. Mang, Hong Kong Baptist University, Hong Kong; Luciana Fernandes Hamond, Santa Catarina State University, Brazil

*Correspondence: Angel David Blanco adavid.blanco@upf.edu

This article was submitted to Performance Science, a section of the journal Frontiers in Psychology

12 02 2019 2019 10 165 29 06 2018 17 01 2019 Copyright © 2019 Blanco and Ramirez. 2019 Blanco and Ramirez

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Current music technologies can assist in the process of learning to play a musical instrument and provide objective measures for evaluating the improvement of music students in concrete music tasks. In this paper, we investigated the effects of a sound quality visual feedback system (SQVFS) in violin learning. In particular, we studied the EEG activity of a group of participants with no previous violin playing experience while they learned to produce a stable sound (regarding pitch, dynamics, and timbre) in order to find motor learning biomarkers in a music task. Eighteen subjects with no prior experience in violin playing were divided into two groups: participants in the first group (experimental group, N = 9) practiced with instructional videos and offline feedback from the SQVFS provided in alternation with their performance, while participants in a second group (control group, N = 9) practiced with the instructional videos only. A third group of violin experts (players with more than 6 years of experience) performed the same task for comparative purposes (N = 7). All participants were asked to perform 20 trials (4 blocks of 5 trials) consisting of a violin bowing exercise while their EEG activity and their produced sound was recorded. Significant sound quality improvements along the session were found in all participants with the exception of participants in the expert group. In addition, participants in the experimental group showed increased interest in the learning process and significant improvement after the second block not present in the control group. A significant correlation between the levels of frontal gamma band power and the sound improvement along the task was found in both the experimental and control group. This result is consistent with the temporal binding model which associates gamma band power with the role of integrating (binding) information processed in distributed cortical areas. Task complexity demands more cognitive resources, more binding and thus, gamma band power enhancement, which may be reduced as the demanded task begins to be automated as it is likely to be the case in both beginners groups.

signal processing audio violin learning e-learning EEG music Horizon 2020 Framework Programme10.13039/100010661

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1. Introduction 1.1. Feedback in Motor Learning

      There is ample literature reporting on the effects of feedback in motor learning tasks. From the first attempts to experimentally test Thorndike's theory of learning (Trowbridge and Cason, 1932), to more recent work (Newell, 1974; Salmoni et al., 1984; Schmidt et al., 1989; Winstein, 1991), studies consistently show how feedback during motor learning increases the rate of improvement over trials. However, the effects on retention and long-term learning are less clear. Approaches providing infrequent feedback have shown improvements in retention phases usually performed 24 h after the experiment (for a review of feedback studies see Winstein, 1991). Still, it is important to consider that this kind of research has focused on studying the effect of feedback in controlled environments where the effect of intrinsic feedback (e.g., visual, auditory, proprioceptive) pertaining to the outcome movement is minimized. This kind of experimental design may imitate the process of learning in a person with sensory deficits who is unable to use intrinsic feedback and depends on the extrinsic feedback (i.e., related to the result of the action) given by the experimenter. On the other hand, motivation is very important in learning (Elwell and Grindley, 1938). Some researchers have attempted to control the motivational effects of feedback in experimental setups where subjects were asked to improve their performance or were given explicit goals (Locke, 1966; Locke and Bryan, 1966) in order to find a significant goal effect. Although those results may relate with the learning of motor skills (e.g., in sports, music), extrinsic feedback could play a different role depending on the task performed, so more specific research is needed in order to understand better the impact of feedback technologies in music students.

      1.2. Technology-Enhanced Music Learning

      Mastering the violin and other bowed-string instruments require special considerations compared with other musical instruments. As opposed to the piano, for instance, pitch control in the violin is continuous and correct intonation is an important issue. In addition, the process of good sound generation in the violin is a notorious complex task which requires precise spatiotemporal control of bowing gestures (Schoonderwaldt and Demoucron, 2009). Acquiring correct bowing motor skills require many hours of practice in which aural feedback is crucial for students to adjust their motor gestures to generate good sound. According to Konczak and Jaeger (2009) novice players need approximately 700 practice hours to achieve bowing skills comparable to those of experts. Moreover, string players have the highest risk of playing-related musculoskeletal injuries/disorders (PRMDs) with the neck and shoulder being the main body parts affected (Middlestadt and Fishbein, 1989).

      A recent survey on Australian higher education music students showed how the use of Youtube and self-recording has become common practice among them (Zhukov, 2015). Youtube offers videos of professional musicians performing music repertoire pieces as a model for students while self-recording has become an important tool for self-evaluation. Previous research (Kepner, 1986; Bundy, 1987) found that high school instrumentalists were more able to identify musical errors when hearing tape recordings of their own performances than when actually performing the pieces. In particular, Bundy (1987) explains the obtained results by a sensory blocking theory which hypothesizes that when musicians are concerned with monitoring a big number of sensory aspects involved in performance (like sight-reading or finger movements) the sense of hearing, which is perceived to be of lesser importance, is blocked. However, recent research (Hewitt, 2001) studied the effects of listening to a model (i.e., an expert reference performance), listening to oneself on audiotape, and self-evaluation on junior high school instrumentalists, concluding that there is a significant interaction effect for modeling and self-evaluation. However, self-evaluation (which in the case of the study consisted on the Woodwind Brass Solo Evaluation Form Saunders and Holahan, 1997) or self-recording on their own were not found to be effective strategies for improving music performances. Although self-recording may be important, in absence of a teacher it requires the student to be his/her own judge which may be problematic. The superiority of highly trained musicians encoding spectral and temporal features of music-sound compared with non-musicians has been found in a large number of neuroscientific studies (Besson et al., 1994; Koelsch et al., 1999; Pantev et al., 2001; Tervaniemi et al., 2005; Hutchins and Peretz, 2012). For example, Koelsch et al. (1999) demonstrated, using electrophysiological and behavioral data, that highly trained violin players are able to detect automatically undetectable pitch differences for nonmusicians.

      Current music technologies provide us with objective measures of student improvement in specific music tasks. Thus, such technologies can allow us to monitor the learning process of music students in order to provide better and personalized learning strategies. In addition, objective measures about music students' performance may serve as additional information which could complement the verbal feedback given by the teacher. In the past, the role of feedback in music learning has been addressed mainly to study the effects of real-time visual feedback (RTVF) in singing. Welch et al. (1989) studied the effect of a feedback system called SINGAD (Singing Assessment and Development) in 32 primary school children aged 7 years. The system provided a real-time F0 trace plotted against time together with the target notes displayed in order to guide time and pitch accuracy. The study reported improved pitch accuracy by using the system. Previous research has studied the effect of using different kinds of interfaces and different kinds of feedback in singing voice (Thorpe, 2002; Welch et al., 2004; Wilson et al., 2008; Leong and Cheng, 2014), trombone (Schlegel and Gregory Springer, 2018), piano (Hamond, 2017), and violin (Wang et al., 2012). Although there are differences in the way RTVF may improve performance, most of the previous studies reported beneficial effects of RTVF in learning. An extensive review on feedback and technology applied to music learning can be found in Hamond (2017). The same author also investigated the nature and application of combined visual-auditory feedback generated by technology systems in higher education piano learning and teaching contexts. As suggested by self-reports collected from music students, the feedback provided could increase conscious-awareness of their own performance. As related by one of those students: “Sometimes you know in your mind what you want to do, […] but sometimes you do not realize exactly what you're doing in practice[…]. So, when you hear, you can clearly see what you are doing and what you're not” (Hamond, 2017, p. 278).

      Regarding violin learning, special efforts have been done to offer different kinds of feedback, not only on the produced pitch but also on timbre, good posture, and bowing technique. The i-Maestro project (Ng and Nesi, 2008) was one of the first steps in that direction offering tools based on gesture analysis and audio processing. More recently the TELMI project has developed tools for providing feedback on timbre quality, pitch and timing accuracy, posture and bowing techniques, and musical expression (Ortega et al., 2017; Dalmazzo et al., 2018; Giraldo et al., 2018; Zacharias et al., 2018). Optical motion capture combined with sensors has also been used to extract bowing parameters from violin performance (Schoonderwaldt and Demoucron, 2009; Deutsch, 2011) allowing to study and compare the motor patterns of professional and student violinists. Tracking violin performance using low-cost methods has also been investigated by Perez Carrillo and Wanderley (2012) through the sole use of audio signal and a system trained on empirical data previously collected with a highly accurate sensing system. Pardue et al. (2015) also explored low-cost methods using a resistive fingerboard and four optical reflectance sensors placed on the bow stick. Some attempts have been done in order to evaluate motion capture techniques to teach violin skills. For example, Van Der Linden et al. (2011) used a wearable system to teach good posture and bowing technique to novice violin students and found a larger improvement when compared with a control group of subjects who received the same number of training sessions using conventional teaching techniques. One possible limitation of the previously mentioned study is that the quality of generated sound is not taken into account, while in violin learning the production of a good sound is one of the main reasons for learning a correct bowing technique.

      The work of Romaní et al. (2015) aimed to identify audio descriptors, extracted from the recordings of professional musicians while playing single notes, maximally correlated with their own subjective opinions about the quality of the produced sound. Some of the features that showed higher correlations were those characterizing pitch stability and dynamic stability. This research led to the implementation of Cortosia (Korg, 2018) an app owned by the Korg company, which aims to provide students with visual feedback about the quality of their produced sound. More recently, Giraldo et al. (2018) investigated the application of machine learning techniques to obtain sound quality model and implemented a real-time feedback system for enhancing violin learning. However, no studies have been done until now to evaluate the pedagogical effectiveness of such systems.

      One could be tempted to offer simultaneous real-time feedback in violin learning environments (e.g., violin-bow orientation, bowing trajectory, and timbre quality). However, a common concern found in user studies offering several simultaneous feedback is that participants usually have difficulties dealing with them (Van Der Linden et al., 2011; Johnson et al., 2012; Johnson, 2014). Delivering the different feedback separately at different times and as requested by the user could be one possibility to resolve that problem, as has been the approach in the TELMI project. Another common concern is the potential dependency that feedback systems could create on students.

      Recent research (Brandmeyer et al., 2011) has evaluated the effects of RTVF on expressive percussion performance interpreting their results using the Cognitive Load Theory (CLT) (Paas et al., 2003). In their work, they differentiate between three different kinds of cognitive load: intrinsic, extraneous and germane. Intrinsic cognitive load is associated with the difficulty of the particular task whereas extraneous cognitive load relates to the manner in which information is received. On the other hand, germane cognitive load relates to the mental resources involved in learning in general, independently of the task. Brandmeyer et al. (2011) found empirically that too many visual elements can create a high extraneous cognitive load in participants, dividing their attention and leading to poorer learning outcomes. However, apart from behavioral measures, no other measures were used to evaluate the amount of cognitive load participants were experiencing. Physiological measures can provide objective measures of the mental work a person is experiencing while learning. Recently, the neural activity associated with learning tasks has been investigated by the neuroscientific community using both functional neuroimaging and electroencephalography (EEG) techniques. In particular, EEG is the most common technique used to study cognitive load from brain activity and one of the most feasible among other electro-physiological measures (Miller, 2001).

      1.3. E-Learning Systems Inspired in Brain Activity (EEG)

      Event-related (de)synchronization (ERS/ERD) is a well-established measure for the quantification of changes in different frequency bands of the EEG signal. It reflects the decrease (desynchronization) or increase (synchronization) in a band power during a test (time period where the subject is performing a specific task which demands cognitive load) compared with a reference baseline (time period without any task demands). This is usually done for each electrode. A positive ERD/ERS value means a decrease in a band power (desynchronization, ERD) while a negative value indicates an increase in band power (ERS). It has been reported repeatedly for several researchers that alpha and theta band activity (8–13 Hz and 4–7 Hz, respectively) is very sensitive to task difficulty or cognitive load in a wide variety of task demands (Klimesch, 1999; Gevins and Smith, 2003; Neubauer et al., 2006). Generally, as cognitive load increases, frontal midline theta band increases, and posterior alpha band decreases. Larger alpha band ERD has been associated with highly intelligent subjects and good performance (Jaušovec and Jaušovec, 2004). Explanations of this phenomenon are usually delegated to the neural efficiency hypothesis which assumes that high alpha band power reflects cortical inhibition. On the other hand, theta has been investigated for its implications in memory performance (Raghavachari et al., 2006) showing strong increases in the frontal area during the encoding and retention period (Maurer et al., 2015). Thus, an alpha band power decrease at posterior sites (larger alpha band ERD) and a frontal theta increase represent a general index for cognitive demands. Some research also highlights the importance of gamma band waves (30–100 Hz) which its enhancement is observed within a task-specific spatial distribution (Fitzgibbon et al., 2004) and seems to be correlated with cognitive load in humans (Howard et al., 2003). The temporal binding model gives gamma band the responsible role of integrating (binding) information processed in distributed cortical areas. Task complexity demands more cognitive resources, more binding and thus, gamma band power enhancement. Interestingly, some research has found that subjects with musical training show enhanced induced gamma band activity (Shahin et al., 2008; Trainor et al., 2009) suggesting it reflects a superior binding of acoustical features (e.g., pitch, timbre, harmony) and processes also thought to be enhanced by music training, e.g., anticipation, expectation and attention (Bhattacharya et al., 2001; Sokolov et al., 2004; Gurtubay et al., 2006).

      The viability of the use of EEG to test the effectiveness of learning materials designs has been provided by some studies (Antonenko and Niederhauser, 2010; Antonenko et al., 2010). Thanks to the measure of participants' cognitive load it is possible to assess which learning strategy seems to work better in concrete situations. On the other hand, some studies have also started to investigate the potential of real-time monitoring of mental workload to improve human performance. For instance, Kohlmorgen et al. (2007) describes a system to reduce distractions while driving by monitoring mental workload.

      EEG has also been used to improve music performance through the use of an increasingly popular technique called neurofeedback. It consists of learning, through visual or auditory feedback, how to modify voluntarily your own mental activity. Several studies have reported improvements in the music performance of those musicians who received a neurofeedback session on the theta /alpha protocol (i.e., learning how to maximize the theta to alpha ratio) before a performance, compared with other groups who received different kinds of relaxing techniques like the Alexander technique or different neurofeedback protocols (Bazanova et al., 2009; Gruzelier, 2009). Similar results have also been found for dancers (Raymond et al., 2005). According to the authors, the production of theta waves with eyes closed is related to the hypnogogic process which at the same time is associated with an improvement of the creative process and well-being of users.

      Other studies have tried the use of theta-EEG and EMG biofeedback with violinists while they perform, with positive results (Silvana et al., 2008). The pre-recorded sound of applauses as feedback gave the musician the opportunity to recognize which is the adequate mental and muscular state needed for optimum performance. The reason to train theta during the performance was that some investigations have found enhanced theta activity in highly-skilled professional musicians (Klimesch et al., 1997; Bazanova and Aftanas, 2006). According to the neural efficiency hypothesis experts should show lower brain activation (which means higher theta power and more efficient networks), and thus, training students to learn how to use their brain more efficiently could lead to an enhancement of their performance.

      The relationship between EEG power changes and proficiency have also been reported in sports activities such as rifle marksmanship (Haufler et al., 2000; Kerick et al., 2004), archery (Salazar et al., 1990; Landers et al., 1994) and golf (Crews and Landers, 1993; Babiloni et al., 2008). This research shows how the most predictive data of expertise is recorded before the skilled movements occur, in what is called the “pre-shot routine.” For instance, it has been shown that the magnitude of the increase in theta power before the shot is correlated with the accuracy of the shot. Berka et al. (2010) tracked the learning process of beginners in rifle marksmanship while firing a total of 40 shots and correlated the accuracy of the results with the EEG power activity, finding increases in theta and high theta Bands (6–7 Hz) just as experts showed during all their trials. They also compared the results of the learning group with another one which, additionally, received a neurofeedback training based on the same frequency bands showing how the neurofeedback group obtained significantly better results. Similar results were also found by Gentili et al. (2008) where subjects had to learn and interact with new tools. They found increases in alpha and theta band power in the frontal and temporal lobes during movement planning (i.e., just before the movement, like in the pre-shot routine).

      However, in a recent study (Gutierrez and Ramírez-Moreno, 2016) changes in brain activity associated with the progression of the learning experience were estimated with different results. They monitored the process of learning to typewrite using the Colemark keyboard layout, which is an alternative to the QWERTY layout, finding a decreasing trend of the beta and gamma bands. They interpreted beta band decrease as a result of long-duration repetitive hand movements, similar to results found by as Niemann et al. (1991) and Erbil and Ungan (2007), and explained the gamma band decrease as a consequence of the temporal binding model previously mentioned, which associates gamma band activity with coupling perception and learning, as reported by Gruber and Müller (2005).

      1.4. Aims of the Present Work

      The aim of this work is to contribute to the understanding of the effects of feedback in music learning from an electrophysiological point of view. For this purpose, we have evaluated the effectiveness of using a sound quality visual feedback system (SQVFS) to improve the quality of sound produced by of novice violin players while their EEG activity and the violin sound they produced was recorded. These recorded data provides non-invasive biomarkers of motor learning in a musical task. Participants (with no previous experience with violin or any other bowed string instrument) were asked to produce a stable and sustained violin sound on an open string (i.e., the second string in the violin). The choice of using an open string was to allow participants to exclusively concentrate their attention to control the bow movement. This task requires to control and change the pressure of the bow along the whole movement due to the fact that bow pressure requires to be heavier at the frog and lighter at the tip. If the pressure of the bow is not constant along the movement both pitch and energy of the produced tone could change. For that reason, we hypothesized that the use of dynamic stability and pitch stability audio descriptors, as Romaní et al. (2015) did, to measure sound quality among trials would allow us to track improvement through the session. We also offered the numerical result of the descriptors as feedback to the participants (i.e., the SQVFS).

      Participants were divided into two groups. Both of them had access to learning materials and reference videos during the experiment, but in addition one of the groups received offline feedback about the quality of their performance given by the SQVFS. The quality of the produced sound, as well as the EEG activity of each participant, was recorded during 4 blocks of 5 trials each (20 trials in total). An additional group of violin experts was considered in the experiment for comparative purposes. Data recollected in this study is publicly available in Zenodo (Casares and Ramírez, 2018) and the code to analyze it in Github (Blanco, 2018).

      2. Materials and Methods 2.1. Participants

      The study was carried out in the recording studio located in the Information and Communication Technologies Engineering (ETIC) department of the Universitat Pompeu Fabra, Barcelona and included the participation of twenty-five right-handed subjects. Participants conceded their written consent and procedures were approved by the Conservatoires UK Research Ethics committee on 04/04/2017, following the guidelines of the British Psychological Society. Participants provided information about their musical skills, main instrument and years of music training. Those with extensive experience in violin playing were included in the expert group [EG;6 male, 1 female; mean age: 35.2 (9.01); mean years studying violin: 7.6 (2.19)]. Participants with no violin (or viola, double-bass or cello) experience were included in the beginner's group. This last group, was randomly divided in two groups: the first group [BF; 6 male, 3 female; mean age: 27.57 (4.46); all of them were musicians with several years of experience, mean: 9 (5.07)] practiced with instructional videos and offline feedback from the SQVFS reflecting the quality of their produced sound, while the second group [BNF; 8 male, 1 female; mean age: 27.2 (2.28)] practiced with the instructional videos only. All participants were musicians with several years of experience, mean: 10.8 (4.65).

      2.2. Materials

      EEG data were acquired using the Emotiv EPOC EEG device. The Emotiv EPOC consists of 16 wet saline electrodes, located at the positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 according to the international 10-20 system (see Figure 1). The two remaining electrodes located at P3 and P4 are used as reference. The data acquired were digitized using the embedded 16-bit ADC with 128 Hz sampling frequency per channel and sent to the computer via Bluetooth. The Emotiv Control Panel software was used to monitor visually the impedance of the electrodes contact to the scalp. The data were recorded using the OpenViBE platform (Renard et al., 2010) and later processed in EEGLAB (Delorme and Makeig, 2004) under the Matlab environment (MATLAB, 2010).

      Emotiv EPOC electrodes aligned with positions in the 10–20 system.

      A Zoom H4N handy recorder was used to record the audio of each trial which was processed in Matlab using the “Yin pitch estimation toolbox” (Llimona, 2015) in order to extract audio features for assessing sound quality and provide feedback to participants. Yin is a widely used algorithm to estimate fundamental frequency both in speech and music (De Cheveigne and Kawahara, 2002).

      Visual feedback provided to the BF group consisted of graphs generated in Matlab showing the sound quality score in the y-axis and the trial number in the x-axis. Feedback was intended to allow participants to monitor their progress and compare their performance to that of an expert participant who previously did the experiment (also plotted in the feedback screen) (see Figure 2).

      Example of the results in dynamic instability, pitch instability and aperiodicity shown to a subject just after performing trial number nine.

      Instructional videos about basic violin playing techniques, e.g., stance, violin position, bow position, and grip, were used to provide participants with basic information. The videos were collected from the web (Sassmannshaus, 2018) (see Figure 3). In addition, we recorded a reference video of the requested task performed by a professional violin player. The produced video was shown to all participants to explain the task to be performed. The video can be found in Zenodo (Casares and Ramírez, 2018).

      Instructional videos on stance, violin position, straight bow geometry and bow grip were collected from Violinmasterclass.com.

      EEG acquisition and audio processing were performed on different laptops (PC1 and PC2, respectively). To synchronize audio and EEG data PC2 sent markers to OpenVibe in PC1 through OSC everytime a new trial began and ended. The experimenter controlled the display of instructional videos and the reference expert video for both BNF and BF groups and sound quality visual feedback for the BF group (see Figure 4).

      Setup of the experiment. EEG data and audio data from the participant are processed separately in different computers that are communicated through OSC. The experimenter controlled the display of instructional videos (including the reference expert video) for both BNF and BF groups and sound quality visual feedback for the BF group.

      2.3. Methods

      Due to the nature of the experiment, it was not possible to conduct a double-blind study. In order to avoid unconscious bias during the instructions given to participants, both beginner groups (i.e., BNF and BF) watched the same set of instructional videos on violin and bow position and stance with a total duration of 10 min (Sassmannshaus, 2018). Participants watch the videos while the EEG device was positioned on their heads. Once setup of the EEG device and the videos were finished, participants proceeded to perform the violin bowing exercise which consisted in the alternation of eight up and down bowing movements using the full length of the bow with the goal of producing a sound in the A open string. Participants were asked to produce a stable and sustained sound at the same tempo of the reference video. Participants were also asked to minimize blinking and facial movements during the exercise to avoid artifacts in the EEG signal.

      The blocks of trials were named as follows: early block (trials from 6 to 10), middle block (trials from 11 to 15), and late block (trials from 15 to 20). In Figure 5 we can see all the steps that were involved in the processing of audio and EEG data. First, audio and EEG data were processed separately to extract meaningful descriptors. Posterior EEG and audio analysis allows us to study changes over time and between groups. Finally, the correlation analysis allows us to measure the correlation between sound quality features and EEG features. We also did a behavioral analysis to study participants' learning patterns, i.e., number of times they consulted the learning materials. The total duration of the experiment was approximately 45 min. The first block of trials, where both groups of beginners did not have the option to rewatch instructional videos or offline feedback from the SQVFS, was used as a baseline to compute the amount of change in both sound quality and EEG waves around the rest of blocks. From the early block on, BF and BNF had the option to rewatch both instructional and/or reference expert videos as many times as they wanted for the rest the trials. In addition, the BF group had the opportunity to receive offline feedback from the SQVFS visualizing the dynamic stability, pitch stability and aperiodicity scores of their performance for each trial. The number of times a participant requested the learning materials were also recorded.

      EEG and audio raw data from each participant and each trial were processed separately to extract meaningful descriptors that were used to analyze changes over time and between groups together with correlations.

      2.3.1. Extraction of Audio Features

      Violin sounds generated by participants were recorded for each trial with a sampling rate (SR) of 44,100 samples. The Yin algorithm was used to extract sound descriptors from the audio signal of each trial using a windows size of 33 ms and a hop size of 0.7 ms. Three different parameters were computed for each window: instantaneous power, fundamental frequency (f0) in cents (reference: 440) and aperiodicity. The quality of the sound recorded in one trial may be assessed through sound descriptors such as dynamic stability (see 1) or pitch stability (see 2) by computing the standard deviation of both f0 and power throughout the trial (Romaní et al., 2015). Aperiodicity was also included as a descriptor (details about how aperiodic power is computed can be found in De Cheveigne and Kawahara, 2002). See Equations (1–3) for a formal definition of these descriptors.

      dynamicStability = 11Ni=1N(piμ)2   pitchStability = 11Ni=1N(f0iμ)2 aperiodicity = aperiodicPowertotalPower

      First, the values of pitch stability and dynamic stability were inverted and renamed pitch instability and dynamic instability, respectively. After that, the values of aperiodicity were standardized together with pitch instability and dynamic instability by mean subtraction and averaged for each trial. The descriptor resulting from this process was called Sound instability. In order to check the utility of using aperiodicity, we computed Sound instability in two different ways: one including aperiodicity, and the other not including it. Audio features' discriminability between beginner and expert players was investigated by computing the information gain for each feature [the Gain Attribute Evaluation (IGAE) implementation in Weka (Witten et al., 2016) was used to rank the features] over the first five trials (before receiving any kind of external feedback).

      2.3.2. EEG Power Computation

      For each subject and each single-trial, the power spectral density (PSD) was computed from activity in each electrode using Welch's overlapped segment averaging estimator using a window size of 2 s. Four frequency bands were extracted corresponding to theta (4–8 Hz), alpha (8–13 Hz), beta (13–24 Hz), and gamma (30–50 Hz). Changes in the EEG signal were computed in the form of event-related desynchronization (ERD) or an event-related synchronization (ERS). In the ERD/ERS equation (see 4) the baselineIntervalBandPower corresponds to the PSD computed during the first block of five trials while testIntervalBandPower corresponds to the PSD computed for each other block.

      ERD/ERS(%)  =  baselineIntervalBandPowertestIntervalBandPowertestIntervalBandPower*100

      Outliers were removed for each trial using the modified Z-score equation (see 5) to label as potential outliers those modified Z-scores with an absolute value greater than 3.5 as Iglewicz and Hoaglin (1993) recommend.

      Mi = 0.6745(xix˜)median(|xix˜|)

      Where x~ denotes the median, i.e., the denominator is the median absolute deviation (MAD).

      Electrodes were grouped and averaged into different clusters: frontal (AF3, F7, F3, FC5, FC6, F4, F8, AF4), midfrontal (F3,F4), left frontal (AF3, F7, F3, FC5), right frontal (FC6, F4, F8, AF4), posterior (P7, O1, O2, P8), left posterior (P7,O1), right posterior (O2,P8) occipital (O1, O2), left parietal (P7), right parietal (P8), temporal (T7,T8), left temporal (T7), right temporal (T8). The different frequency bands for each cluster formed the initial amount of features for each group of participants. Information gain was computed for each feature over the first five trials to find those features that discriminate better between beginners and experts.

      3. Results 3.1. Audio Analysis

      The results of IGAE ranked the Sound instability descriptor which included aperiodicity as the most important one to differentiate between beginners and experts with a value of 0.668. It was followed by pitch instability with 0.599; dynamic instability with 0.577; Sound instability without aperiodicity with 0.549 and aperiodicity with 0.514. A Shapiro-Wilk test for normality was performed on the data showing significant results leading us to use non-parametric statistical tests. A Wilcoxon rank-sum test was performed for each audio descriptor comparing experts and beginners showing significant results (p < 0.00001 for all the descriptors). Beginners showed higher values than experts, i.e., beginners produced more unstable sound (see Figure 6).

      Median and standard deviation of each audio descriptor during the first block (5 trials). Both groups of beginners are represented together. As expected, descriptors show how the sound of beginners is more unstable than the one of experts.

      Percentage changes of Sound instability were computed for each block and for each group using the first block as a baseline. After adjusting the p-value for three tests using the Bonferroni method, significant changes through blocks were found for both beginners groups but not for the experts (Wilcoxon sign-rank test, BNF: p = 0.00001; BF: p = 0.000005; EG: p = 0.1396). In order to detect differences between the blocks, three more Friedman's tests were performed, one for each group. Only the BF group showed significant results (p = 0.0011). On average, the BF group showed a higher amount of change between the three blocks compared with the BNF group together with a higher variability especially during the Middle and Late period (see Figure 7). At the end of the session and during the Last period (trials 16–20), the BF group showed, on average, 200% percent more than the BNF group on the scores of Sound instability together with a standard deviation 4.7 times higher., although This difference was not found to be significant (Wilcoxon rank-sum test: p = 0.2973).

      Porcentual changes of each experimental group across blocks on Sound instability scores. Both beginners groups showed significant differences compared with the baseline but only the BF group showed significant differences between blocks.

      3.2. EEG Analysis

      The results of IGAE ranked beta and gamma band power at frontal sites as the most important features to discriminate between beginners and experts with a value of 0.01931 and 0.01905, respectively, followed by gamma band power at posterior sites with 0.00828; right frontal beta with 0.00811; right frontal gamma with 0.00562; left frontal gamma with 0.00424; left posterior gamma and beta with 0.00297 and 0.00269, respectively.

      A Shapiro-Wilk test for normality was performed in the distributions of each group showing significant results leading us again to use non-parametric statistical tests. Eight Wilcoxon rank-sum tests were performed for each feature comparing experts and beginners adjusting the p-value with Bonferroni correction. Only beta and gamma band power at frontal sites showed significant results (p < 0.00001 both). Figure 8 shows the differences in beta and gamma band power between beginners and experts. On average, Beginners showed an amount of 190% more of power than experts in the beta band and a 16% more in the gamma band.

      Beta and gamma band power measured at frontal sites during the first block (5 trials). Beginners are represented in blue and experts in yellow. Experts exhibited significant lesser values of frontal gamma band power when compared with beginners at both frequency bands.

      ERD/ERS was computed for the rest of the blocks using the first block as a baseline. A Wilcoxon sign-rank test was performed for each cluster and frequency band to determine those sensor clusters and frequency bands where variations occurred through the rest of blocks. The p-value threshold chosen after the Bonferroni correction for 156 tests was p < 0.00032. Results showed an overall desynchronization of gamma band across the scalp for all the experimental groups and all the blocks with certain differences between them. Significant desynchronizations were obtained for gamma band at frontal electrodes in both groups of beginners (see Figure 9) but not for experts (p < 0.00032). Significant desynchronizations for gamma band were also found at right parietal and left temporal in all the groups including experts. Only the expert group showed significant changes at the right temporal cluster reflecting a synchronization of beta band.

      Upper left Figure: Frontal gamma ERD measured at each block using first five trials as baseline. Only the BNF and BF group showed a significant desynchronization through the experiment. Desynchronization of the BNF group was significantly higher than the one of the BF group. Upper right Figure: Here we can see the results for right parietal gamma ERD. Only the EG group showed a significant desynchronization through the experiment. Bottom left Figure: Left temporal gamma ERD. All the groups showed significant desynchronizations through the experiment. Bottom right Figure: Right temporal beta band ERD. Only the EG group showed a significant synchronization through the experiment.

      Significant results were found when comparing the amount of desynchronization at frontal sites of the BNF group with the BF (p = 0.057) and with the EG(p = 0.025). Beta synchronization found at the right temporal cluster in experts showed significant results when comparing it with the BNF group (p = 0.000041) and with the BF group (p = 0.0149). In order to detect differences between the blocks, three more Friedman's tests were performed, one for each group. No significant changes were found in the amount of ERD/ERS between blocks.

      3.3. Correlation Analysis

      Four Pearson's correlations were performed in total. Four of them between each one of the four frequency bands filtered (theta, alpha, beta, gamma) from frontal electrodes and Sound instability across the whole session. After adjusting the p-value for four statistical tests results showed only one statistically significant linear correlation at gamma band (R2 = 0.70, p = 0.00001). In Figure 10 Sound instability results averaged for each trial for both beginners and expert groups can be seen in comparison with the averaged gamma band power at frontal electrodes obtained for each trial.

      Upper Figure: Frontal gamma band power seen in comparison with the Sound instability scores of both beginners groups. Bottom Figure: Frontal gamma band power seen in comparison with the Sound instability scores of the expert group.

      3.4. Behavioral Analysis

      The number of times each participant requested each learning material (instructional videos, reference video or their score evaluated with audio descriptors) was recorded and compared between the two different beginners groups (BF and BNF). A Shapiro-Wilk test for normality was performed in the distributions of the number of times each group requested a learning material showing significant results for the BNF group. Two statistical tests were performed in total adjusting the p-value with Bonferroni correction (p = 0.016). Two Mann-Whitney U-test were performed to find differences between both beginners group (BF + BNF) in each one of the distributions. No significant differences were found, although results show some different tendencies in terms of the number of reference video requests (p = 0.0203). On average, the BF group requested the reference video 25.8% more times than the BNF group. In Figure 11, we can see the differences found in each distribution for each group. The BF group also had the possibility to request the audio-based automatic evaluation of their performance produced by the system. A paired sampled t-test was performed between the number of times the BF group requested the reference video with the number of times they requested the audio evaluation. No significant differences were found (p = 0.37).

      Number of times each group of beginners requested learning materials during the experiment.

      4. Discussion

      In this work, we have used audio features like pitch stability and dynamic stability to measure sound quality as has been done in previously related work (Romaní et al., 2015; Giraldo et al., 2018). We have found that the aperiodicity measure is also a reliable indicator and offers extra information not found in the rest of descriptors. However, in this work we have not only shown how these descriptors could be useful to discriminate between those sounds performed in the violin by experts and beginners (i.e., a good or bad sound) but, in addition, we have used them to track the amount of learning of 18 participants, with no prior experience neither with the violin nor any bowed-string instrument, during 20 trials while learning to produce a stable and sustained sound in an open string. Allowing us to study objectively the impact of feedback technologies in the process of learning to produce a good sound with the violin.

      The visual feedback considered in this study consisted of a sound quality indicator computed using audio descriptors extracted from the audio produced by participants. The feedback was presented offline to participants in the form of a graph where the sound quality of the last trial was shown relative to the previous ones. They could also compare their performance to that of an expert participant who previously did the experiment. We referred to this type of technology a sound quality visual feedback system (SQVFS).

      At the end of the session, both groups of participants improved significantly their scores with the exception of the expert group. However, only participants who received feedback from the SQVFS improved their results between the different blocks in which the session was composed while the results of the rest of participants remained stable after the Early block. Nonetheless, no significant differences were found at the end of the session regarding the amount of improvement due to the fact that they also showed a higher variability during the last two blocks.

      We hypothesize that the reason for the found variability during the last two blocks is that feedback encouraged participants to experiment with new ways of producing sound. After reaching a certain threshold of sound quality, the produced sound of participants starts to stabilize and requires experimentation in order to reach the quality of the one produced by an expert. Without the presence of feedback (like the one given by an SQVFS in this case) participants may find hard to detect by themselves how far their sound is from the one of the expert reference video. Experimenting new ways of displacing the bow would have been the only way for them to check if it led to an improvement in the results of the descriptors or not. Some participants would have improved their results while others may have tried different strategies without success reflecting thus, the greater variability seen in the results. This hypothesis is also supported by the results found in the behavioral analysis. Participants who received feedback from the SQVF requested, on average, a bigger number of times the reference video than the group without feedback, reflecting, in our opinion, bigger efforts to analyze the sound and technique from the video in order to replicate it in their own performance.

      Regarding the electrophysiological analysis, we found beta and gamma band power at frontal sites to be the best features to discriminate between beginners and experts during the first block of the experiment. Beginners showed significantly higher activity of those bands than experts. No changes were found at the theta band as the neural efficiency hypothesis may have predicted (Klimesch et al., 1997; Bazanova and Aftanas, 2006) although changes found at beta and gamma bands are consistent with those found by Gutierrez and Ramírez-Moreno (2016) and with the temporal binding model (Bhattacharya et al., 2001; Howard et al., 2003; Fitzgibbon et al., 2004). Differences may be related to the way the EEG data was acquired and the type of task. In previous work (Salazar et al., 1990; Landers et al., 1994; Haufler et al., 2000), the effect of expertise in sports activity is measured using EEG signals during what is called the “pre-shot routine”, which is recorded just before the skilled movement occurs. Tasks like learning to type in a different keyboard layout as Gutierrez and Ramírez-Moreno (2016) studied or maintaining a stable sound with the violin during a period of time, require measuring the electrophysiological signals not before but, during the realization of the movement. The location of the electrodes in this experiment was also different due to hardware limitations of the Emotiv Epoc device with a more frontal density of electrodes and less density at parietal and central areas.

      In fact, Gutierrez and Ramírez-Moreno (2016) found desynchronizations at both beta and gamma bands as participants started to learn the tasks. In our study, we also found desynchronizations across blocks in the gamma band at frontal sites that showed some degree of correlation with task improvement. The expert group, who did not show significant improvement along the session, neither exhibited significant desynchronizations at frontal gamma band as both groups of beginners did. This results may be interpreted from the temporal binding model which associates gamma band with the role of integrating (binding) information processed in distributed cortical areas. Task complexity demands more cognitive resources, more binding and thus, gamma band power enhancement, which may be reduced as the demanded task begins to be automated which could have been the case of both beginners groups.

      We also found significant differences between the amount of gamma band desynchronization among beginners groups. On average, the BNF group showed higher desynchronizations than the BF group. This results may also be explained by our experimentation hypothesis. We hypothesize that the lower desynchronizations found at the BF group could reflect the higher efforts made during the task trying to achieve the expert score in the SQVF.

      EG showed very clear localized gamma band desynchronizations at right parietal and left temporal sites and beta band synchronizations at right temporal area. Both groups of beginners also showed significant desynchronizations at the left temporal cluster, however, desynchronizations of the gamma band at right parietal and synchronizations at right temporal were exclusive from experts. This may indicate the use of different strategies when performing the task and maybe, a good reliable indicator to discriminate between beginners and experts. This could be exploited as a future neurofeedback protocol for violin students. Although the limited number of electrodes of the Emotiv Epoc prevents a deeper analysis of the results, its low cost and easy setup make it a good candidate to be used in educational environments or as a neurofeedback system.

      In contrast with most part of the previous research that has studied the use of technology to provide different kinds of feedback to improve learning (Thorpe, 2002; Welch et al., 2004; Wilson et al., 2008; Van Der Linden et al., 2011; Wang et al., 2012; Leong and Cheng, 2014; Schlegel and Gregory Springer, 2018), we did not found statistical differences between the amount of improvement at the end of the task between the BF and the BNF group. However, behavioral differences found among the BF group could be the result of an increment of the conscious awareness of their own performance as suggested by Hamond (2017). It is important also to highlight that the demanded task and the feedback provided in this study differs widely compared with previous work which mainly studies pitch accuracy and uses real-time feedback. The amount of time could also have been insufficient considering that some previous research with novice violinists used up to six sessions (40 min. each) within a period of 8 days (Van Der Linden et al., 2011).

      One limitation of the present study is the lack of qualitative analysis that could have been collected at the end of the experiment to explore the degree of effort and implication that participants deposited in the task and how much they valued the use of an SQVFS during their practice. However, questionnaires also have their limitations and behavioral results like the ones we showed may offer us the possibility to infer how much they valued the SQVF by considering the number of times they requested it.

      This research could have benefited from optical motion capture techniques and gesture analysis as has been done before (Ng and Nesi, 2008; Schoonderwaldt and Demoucron, 2009; Deutsch, 2011). Tracking with more detail bow movements of participants along the session would have allowed us to study with more detail the amount and type of bow movement experimentation. A higher number of electrodes in the EEG would have also been beneficial since it would have allowed us to study changes at central sensorimotor areas and thus, to see clearly if the results still coincide with those found by Gutierrez and Ramírez-Moreno (2016).

      As motivation seems to be an important variable to take into account when evaluating learning processes (Elwell and Grindley, 1938), future work could address optimal ways to measure it. Different experimental designs may be proposed to test motivation, for example allowing participants to do as many trials as they want and to stop whenever they want. If a significant difference on the time spent learning is found between groups (technology and no-technology groups), this would indicate that the motivation offered by this kind of tools may be considered to be an important factor on the learning process. EEG data collected from participants could also be a reliable indicator to measure differences among participants and how cognitive load or boredom may influence their decision to stop the task and leave.

      Finally, another important limitation of the study is the small number of participants involved, although results obtained seem promising. It is also important to take into account that both beginner groups consisted of musicians due to their greater accessibility on the campus. Although we hypothesize that this type of task could have been performed similarly by both non-musicians and musicians (given that beginner participants had no experience in violin or related instruments), it is known that musicians show different patterns of brain activation than non-musicians in a wide variety of tasks (Bhattacharya et al., 2001; Sokolov et al., 2004; Gurtubay et al., 2006; Shahin et al., 2008; Trainor et al., 2009). This means that we may found different electrophysiological results with non-musicians than those founds with musicians. Future work is needed to investigate if the results of this study replicate in different contexts.

      5. Conclusions

      In this work, we have studied the effects of an SQVFS in violin beginner students while learning to produce a stable sound using the bow. A group of experts was included in the study as reference. Experts did not show improvement along the session, while both groups of beginners did. In particular, only the BF group (beginners with SQVF) showed improvement through the Middle and Late blocks of the session while the BNF group (beginners without SQVF) stabilized their results after the Early block. We hypothesize that SQVF increased the awareness of participants about how far they were from an expert performance, leading them to experiment more with the instrument and getting more involved in the task. The BF group also requested the reference video more times compared with BNF.

      Higher values of gamma and beta band power were found at frontal sites of both BNF and BF group when compared with EG during the first block. However, only beginners showed significant gamma band desynchronizations across blocks that showed some correlation with the amount of improvement in the task. This leads us to propose gamma band as a potential biomarker of motor learning similarly to Gutierrez and Ramírez-Moreno (2016). Task complexity demands more cognitive resources, more binding and thus, gamma band power enhancement, which may be reduced as the demanded task begins to be automated as could be the case found of both beginners groups. Nonetheless, the BNF group showed a higher amount of desynchronization than the BF group. This results could also be interpreted from our experimentation hypothesis as lower desynchronizations found at the BF group could reflect higher efforts made during the task trying to achieve the expert score.

      Data Availability Statement

      The datasets generated for this study can be found in https://doi.org/10.5281/zenodo.2072946 and https://github.com/adavidBlancoUPF/Evaluation-of-Audio-Based-Feedback-Technologies/.

      Author Contributions

      AB and RR designed the methodology of the study. AB recorded, processed and analyzed the EEG and audio data, and wrote the paper. RR supervised the study and contributed to the writing of the paper.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      This is a short text to acknowledge the contributions of specific colleagues, institutions, or agencies that aided the efforts of the authors.

      References Antonenko P. Niederhauser D. (2010). The influence of leads on cognitive load and learning in a hypertext environment. Comput. Hum. Behav. 26, 140150. 10.1016/j.chb.2009.10.014 Antonenko P. Paas F. Grabner R. van Gog T. (2010). Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22, 425438. 10.1007/s10648-010-9130-y Babiloni C. Del Percio C. Iacoboni M. Infarinato F. Lizio R. Marzano N. . (2008). Golf putt outcomes are predicted by sensorimotor cerebral EEG rhythms. J. Physiol. 586, 131139. 10.1113/jphysiol.2007.14163017947315 Bazanova O. Aftanas L. (2006). Using individual eeg peculiarities increase neurofeedback efficiency. Ann. Gen. Psychiatry 5:S98. 10.1186/1744-859X-5-S1-S98 Bazanova O. Mernaya E. Shtark M. (2009). Biofeedback in psychomotor training. Electrophysiological basis. Neurosci. Behav. Physiol. 39, 437447. 10.1007/s11055-009-9157-z19430974 Berka C. Behneman A. Kintz N. Johnson R. Raphael G. (2010). Accelerating training using interactive neuro-educational technologies: applications to archery, golf, and rifle marksmanship. Int. J. Sports Soc 1, 87104. 10.18848/2152-7857/CGP/v01i04/54040 Besson M. Faïta F. Requin J. (1994). Brain waves associated with musical incongruities differ for musicians and non-musicians. Neurosci. Lett. 168, 101105. 10.1016/0304-3940(94)90426-X8028758 Bhattacharya J. Petsche H. Pereda E. (2001). Long-range synchrony in the γ band: role in music perception. J. Neurosci. 21, 63296337. 10.1523/JNEUROSCI.21-16-06329.200111487656 Blanco (2018). Evaluation of Audio-based Feedback Technologies. Available online at: https://github.com/adavidBlancoUPF/Evaluation-of-Audio-Based-Feedback-Technologies/ Brandmeyer A. Timmers R. Sadakata M. Desain P. (2011). Learning expressive percussion performance under different visual feedback conditions. Psychol. Res. 75, 107121. 10.1007/s00426-010-0291-620574662 Bundy O. R. (1987). Instrumentalists' Perception of Their Performance as Measured by Detection of Pitch and Rhythm Errors Under Live and Recorded Conditions. Doctoral dissertation, Pennsylvania State University. Dissertation Abstracts International, 4810A, 2567. Casares A. D. B. Ramírez R. (2018). Evaluation of a Sound Quality Visual Feedback for Bow Learning Technique in Violin Beginners: An EEG Study. Zenodo. Barcelona: Universitat Pompeu Fabra. Crews D. J. Landers D. M. (1993). Electroencephalographic measures of attentional patterns prior to the golf putt. Med. Sci. Sports Exerc. 25, 116126. 10.1249/00005768-199301000-000168423744 Dalmazzo D. Tassani S. Ramírez R. (2018). A machine learning approach to violin bow technique classification: a comparison between imu and mocap systems in Proceedings of the 5th international Workshop on Sensor-Based Activity Recognition and Interaction (Berlin: ACM), 12. 10.1145/3266157.3266216 De Cheveigne A. Kawahara H. (2002). Yin, a fundamental frequency estimator for speech and music. J. Acoust. Soc. Am. 111, 19171930. 10.1121/1.145802412002874 Delorme A. Makeig S. (2004). Eeglab: an open source toolbox for analysis of single-trial eeg dynamics. J. Neurosci. Methods 134, 921. 10.1016/j.jneumeth.2003.10.00915102499 Deutsch L. M. (2011). Motion Study of Violin Bow Technique. Ph.D. thesis, University of california Los Angeles. Elwell J. L. Grindley G. C. (1938). The effect of knowledge of results on learning and performance: I. A co-ordinated movement of the two hands. Brit. J. Psychol. 29, 3954. 10.1111/j.2044-8295.1938.tb00899.x Erbil N. Ungan P. (2007). Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements. Brain Res. 1169, 4456. 10.1016/j.brainres.2007.07.01417689502 Fitzgibbon S. Pope K. Mackenzie L. Clark C. Willoughby J. (2004). Cognitive tasks augment gamma EEG power. Clin. Neurophysiol. 115, 18021809. 10.1016/j.clinph.2004.03.00915261859 Gentili R. Bradberry T. Hatfield B. Contreras-Vidal J. (2008). A new generation of non-invasive biomarkers of cognitive-motor states with application to smart brain computer interfaces in Proceedings of the 16th European Signal Processing Conference - 2008 (Lausanne). Gevins A. Smith M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theor. Issues Ergon. Sci. 4, 113131. 10.1080/14639220210159717 Giraldo S. Ramirez R. Waddell G. Williamon A. (2018). Computational modelling of timbre dimensions for automatic violin tone quality assessment in Proceedings of the Timbre is a Many-Splendored Thing Conference (Montreal, QC). Gruber T. Müller M. (2005). Oscillatory brain activity dissociates between associative stimulus content in a repetition priming task in the human EEG. Cereb. Cortex 15, 109116. 10.1093/cercor/bhh11315238442 Gruzelier J. (2009). A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration. Cogn. Process. 10, 101109. 10.1007/s10339-008-0248-519082646 Gurtubay I. Alegre M. Valencia M. Artieda J. (2006). Cortical gamma activity during auditory tone omission provides evidence for the involvement of oscillatory activity in top-down processing. Exp. Brain Res. 175, 463470. 10.1007/s00221-006-0561-016763832 Gutierrez D. Ramírez-Moreno M. (2016). Assessing a learning process with functional anova estimators of EEG power spectral densities. Cogn. Neurodyn. 10, 175183. 10.1007/s11571-015-9368-727066154 Hamond L. F. (2017). The Pedagogical Use of Technology-Mediated Feedback in a Higher Education Piano Studio: An Exploratory Action Case Study. Ph.D. thesis, University College London. Haufler A. J. Spalding T. W. Santa Maria D. Hatfield B. D. (2000). Neuro-cognitive activity during a self-paced visuospatial task: comparative eeg profiles in marksmen and novice shooters. Biol. Psychol. 53, 131160. 10.1016/S0301-0511(00)00047-810967230 Hewitt M. P. (2001). The effects of modeling, self-evaluation, and self-listening on junior high instrumentalists' music performance and practice attitude. J. Res. Music Educ. 49, 307322. 10.2307/3345614 Howard M. W. Rizzuto D. S. Caplan J. B. Madsen J. R. Lisman J. Aschenbrenner-Scheibe R. . (2003). Gamma oscillations correlate with working memory load in humans. Cereb. Cortex 13, 13691374. 10.1093/cercor/bhg08414615302 Hutchins S. M. Peretz I. (2012). A frog in your throat or in your ear? Searching for the causes of poor singing. J. Exp. Psychol. 141:76. 10.1037/a002506421875245 Iglewicz B. Hoaglin D. C. (1993). How to Detect and Handle Outliers, asqc Basic References in Quality control. Milwaukee, WI: American Society for Quality Control. Jaušovec N. Jaušovec K. (2004). Differences in induced brain activity during the performance of learning and working-memory tasks related to intelligence. Brain Cogn. 54, 6574. 10.1016/S0278-2626(03)00263-X14733902 Johnson R. Rogers Y. van der Linden J. Bianchi-Berthouze N. (2012). Being in the thick of in-the-wild studies: the challenges and insights of researcher participation in CHI '12 CHI Conference on Human Factors in Computing Systems (ACM), 11351144. 10.1145/2207676.2208561 Johnson R. M. G. (2014). In Touch With the Wild: Exploring Real-time Feedback for Learning to Play the Violin. PhD thesis, University College London. Kepner C. B. (1986). The Effect of Performance Familiarity, Listening Condition, and Type of Performance Error on Correctness of Performance Error Detection by 50 High School Instrumentalists as Explained Through a Sensory Blocking Theory. Doctoral dissertation, Kent State University, Kent, OH. Dissertation Abstracts International, 4705A, 1643. Kerick S. E. Douglass L. W. Hatfield B. D. (2004). Cerebral cortical adaptations associated with visuomotor practice. Med. Sci. Sports Exerc. 36, 118129. 10.1249/01.MSS.0000106176.31784.D414707777 Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169195. 10.1016/S0165-0173(98)00056-310209231 Klimesch W. Doppelmayr M. Pachinger T. Ripper B. (1997). Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neurosci. Lett. 238, 912. 10.1016/S0304-3940(97)00771-49464642 Koelsch S. Schröger E. Tervaniemi M. (1999). Superior pre-attentive auditory processing in musicians. Neuroreport 10, 13091313. 10.1097/00001756-199904260-0002910363945 Kohlmorgen J. Dornhege G. Braun M. Blankertz B. Müller K. Curio G. . (2007). Improving Human Performance in a Real Operating Environment Through Real-Time Mental Workload Detection. Cambridge, MA: MIT Press. Konczak J. vander Velden H. Jaeger L. (2009). Learning to play the violin: motor control by freezing, not freeing degrees of freedom. J. Mot. Behav. 41, 243252. 10.3200/JMBR.41.3.243-252 Korg (2018). Cortosia. Available online at: https://www.korg.com/us/products/software/cortosia/ (Accessed December 8, 2018). Landers D. M. Han M. Salazar W. Petruzzello S. J. (1994). Effects of learning on electroencephalographic and electrocardiographic patterns in novice archers. Int. J. Sport Psychol. 25, 313330. Leong S. Cheng L. (2014). Effects of real-time visual feedback on pre-service teachers' singing. J. Comput. Assist. Learn. 30, 285296. 10.1111/jcal.12046 Llimona Q. (2015). Yin Pitch Estimation Toolbox. Available online at: https://github.com/lemonzi/matlab/tree/master/yin Locke E. A. (1966). The Motivational Effects of Knowledge of Results: the Influence of Goal-setting. Technical report, American Institutes for Research Silver Spring md. Locke E. A. Bryan J. F. (1966). Cognitive aspects of psychomotor performance: the effects of performance goals on level of performance. J. Appl. Psychol. 50:286. 10.1037/h00235505944072 MATLAB (2010). version 7.10.0 (R2010a). Natick, MA: The MathWorks Inc. Maurer U. Brem S. Liechti M. Maurizio S. Michels L. Brandeis D. (2015). Frontal midline theta reflects individual task performance in a working memory task. Brain Topogr. 28, 127134. 10.1007/s10548-014-0361-y24687327 Middlestadt S. E. Fishbein M. (1989). The prevalence of severe musculoskeletal problems among male and female symphony orchestra string players. Med. Probl. Perform. Art. 4, 4148. Miller S. (2001). Literature Review: Workload Measures. Iowa City, IA: The University of Iowa. Neubauer A. C. Fink A. Grabner R. H. (2006). Sensitivity of alpha band erd to individual differences in cognition. Prog. Brain Res. 159, 167178. 10.1016/S0079-6123(06)59011-917071230 Newell K. M. (1974). Knowledge of results and motor learning. J. Motor Behav. 6, 235244. Ng K. Nesi P. (2008). I-maestro: technology-enhanced learning and teaching for music in NIME (Genova), 225228. Niemann J. Winker T. Gerling J. Landwehrmeyer B. Jung R. (1991). Changes of slow cortical negative DC-potentials during the acquisition of a complex finger motor task. Exp. Brain Res. 85, 417422. 10.1007/BF002294181893989 Ortega F. J. M. Giraldo S. I. Ramirez R. (2017). Phrase-level modeling of expression in violin performances in Proceedings of the 10th International Workshop on Machine Learning and Music, MML 2017 (Barcelona), 4954. Paas F. Renkl A. Sweller J. (2003). Cognitive load theory and instructional design: recent developments. Educ. Psychol. 38, 14. 10.1207/S15326985EP3801_1 Pantev C. Roberts L. E. Schulz M. Engelien A. Ross B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport 12, 169174. 10.1097/00001756-200101220-0004111201080 Pardue L. S. Harte C. McPherson A. P. (2015). A low-cost real-time tracking system for violin. J. New Music Res. 44, 305323. 10.1080/09298215.2015.1087575 Perez Carrillo A. Wanderley M. M. (2012). Learning and extraction of violin instrumental controls from audio signal in MM '12 ACM Multimedia Conference Nara (Japan: ACM), 2530. Raghavachari S. Lisman J. E. Tully M. Madsen J. R. Bromfield E. Kahana M. J. (2006). Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. Neurophysiol. 95, 16301638. 10.1152/jn.00409.200516207788 Raymond J. Sajid I. Parkinson L. A. Gruzelier J. H. (2005). Biofeedback and dance performance: a preliminary investigation. Appl. Psychophysiol. Biofeedback 30, 6573. 10.1007/s10484-005-2175-x15889586 Renard Y. Lotte F. Gibert G. Congedo M. Maby E. Delannoy V. (2010). OpenViBE: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments in Presence (MIT Press), 3353. Available online at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6797525&isnumber=6797172 Romaní O. Parra H. Dabiri D TOkuda H. Hariya W. Oishi K. . (2015). A real-time system for measuring sound goodness in instrumental sounds in 138th Audio Engineering Society Convention (Warsaw). Salazar W. Landers D. M. Petruzzello S. J. Han M. Crews D. J. Kubitz K. A. (1990). Hemispheric asymmetry, cardiac response, and performance in elite archers. Res. Q. Exerc. Sport 61, 351359. 10.1080/02701367.1990.106074992132894 Salmoni A. W. Schmidt R. A. Walter C. B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychol. Bull. 95:355. 10.1037/0033-2909.95.3.355 Sassmannshaus K. (2018). Violin Master Class. Available online at: http://www.violinmasterclass.com/en/masterclasses/stance-violin-position (Accessed March 23, 2018). Saunders T. C. Holahan J. M. (1997). Criteria-specific rating scales in the evaluation of high school instrumental performance. J. Res. Music Educ. 45, 259272. 10.2307/3345585 Schlegel A. L. Gregory Springer D. (2018). Effects of accurate and inaccurate visual feedback on the tuning accuracy of high school and college trombonists. Int. J. Music Educ. 36, 394406. 10.1177/0255761418763914 Schmidt R. A. Young D. E. Swinnen S. Shapiro D. C. (1989). Summary knowledge of results for skill acquisition: support for the guidance hypothesis. J. Exp. Psychol. Learn. Mem. Cogn. 15:352. 10.1037/0278-7393.15.2.352 Schoonderwaldt E. Demoucron M. (2009). Extraction of bowing parameters from violin performance combining motion capture and sensors. J. Acoust. Soc. Am. 126, 26952708. 10.1121/1.322764019894846 Shahin A. J. Roberts L. E. Chau W. Trainor L. J. Miller L. M. (2008). Music training leads to the development of timbre-specific gamma band activity. Neuroimage 41, 113122. 10.1016/j.neuroimage.2008.01.06718375147 Silvana M.-S. Nada P.-J. Dejan G. (2008). Simultaneous EEG and EMG biofeedback for peak performance in musicians. Prilozi 29, 23952. Sokolov A. Pavlova M. Lutzenberger W. Birbaumer N. (2004). Reciprocal modulation of neuromagnetic induced gamma activity by attention in the human visual and auditory cortex. Neuroimage 22, 521529. 10.1016/j.neuroimage.2004.01.04515193580 Tervaniemi M. Just V. Koelsch S. Widmann A. Schröger E. (2005). Pitch discrimination accuracy in musicians vs. nonmusicians: an event-related potential and behavioral study. Exp. Brain Res. 161, 110. 10.1007/s00221-004-2044-515551089 Thorpe C. W. (2002). Visual feedback of acoustic voice features in voice training in Presentation was held at the Australian International Conference on Speech Science and Technology, 12. Trainor L. J. Shahin A. J. Roberts L. E. (2009). Understanding the benefits of musical training. Ann. N. Y. Acad. Sci. 1169, 133142. 10.1111/j.1749-6632.2009.04589.x19673769 Trowbridge M. H. Cason H. (1932). An experimental study of Thorndike's theory of learning. J. Gen. Psychol. 7, 245260. 10.1080/00221309.1932.9918465 Van Der Linden J. Schoonderwaldt E. Bird J. Johnson R. (2011). Musicjacket—combining motion capture and vibrotactile feedback to teach violin bowing. IEEE Trans. Instrum. Meas. 60, 104113. 10.1109/TIM.2010.2065770 Wang J.-H. Wang S.-A. Chen W.-C. Chang K.-N. Chen H.-Y. (2012). Real-time pitch training system for violin learners in Multimedia and Expo Workshops (ICMEW), 2012 IEEE International Conference on (Melbourne, VIC: IEEE), 163168. Welch G. Himonides R. Howard D. Brereton J. (2004). Voxed: technology as a meaningful teaching aid in the singing studio in Proceedings of the Conference on Interdisciplinary Musicology. Welch G. Howard D. Rush C. (1989). Real-time visual feedback in the development of vocal pitch accuracy in singing. Psychol. Music 17, 146157. 10.1177/0305735689172005 Wilson P. H. Lee K. Callaghan J. Thorpe C. W. (2008). Learning to sing in tune: Does real-time visual feedback help? J. interdiscipl. Music Stud. 2. Winstein C. J. (1991). Knowledge of results and motor learning—implications for physical therapy. Phys. Ther. 71, 140149. 1989009 Witten I. H. Frank E. Hall M. A. Pal C. J. (2016). Data Mining: Practical Machine Learning Tools and Techniques, 4th Edn. Cambridge, MA: Morgan Kaufmann. Zacharias V. Alfonso P. C. Rafael R. (2018). Acquisition of violin instrumental gestures using an infrared depth camera. Zenodo 10.5281/zenodo.1422548 Zhukov K. (2015). Exploring the role of technology in instrumental skill development of Australian higher education music students. Austral. J. Music Educ. 6677.

      Funding. This work was partly sponsored by Fundación Memora, the Spanish TIN project TIMUL (TIN2013-48152-C2-2-R), and the European Union Horizon 2020 research and innovation program under grant agreement No. 688269 (TELMI project).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016mdeykb.com.cn
      egnea.com.cn
      www.judemt.com.cn
      ep500.com.cn
      gzchst.com.cn
      www.lnwdzs.com.cn
      www.jxlvlin.com.cn
      jtkplk.com.cn
      www.wcbnfy.com.cn
      www.tgchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p