Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2018.02725 Psychology Original Research Kinematic Analysis of Pianists' Expressive Performances of Romantic Excerpts: Applications for Enhanced Pedagogical Approaches Massie-Laberge Catherine 1 * Cossette Isabelle 2 Wanderley Marcelo M. 1 1IDMIL, CIRMMT, McGill University, Montreal, QC, Canada 2MPBL, CIRMMT, McGill University, Montreal, QC, Canada

Edited by: Aaron Williamon, Royal College of Music, United Kingdom

Reviewed by: Diana Mary Blom, Western Sydney University, Australia; Tsutomu Fujinami, Japan Advanced Institute of Science and Technology, Japan

*Correspondence: Catherine Massie-Laberge catherine.massie-laberge@mail.mcgill.ca

This article was submitted to Performance Science, a section of the journal Frontiers in Psychology

10 01 2019 2018 9 2725 30 06 2018 18 12 2018 Copyright © 2019 Massie-Laberge, Cossette and Wanderley. 2019 Massie-Laberge, Cossette and Wanderley

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Established pedagogical theories for classical piano usually do not consider the essential relationship between the musical structure, whole body movements, and expression. Research focusing on musicians' expression has shown that body movements reflect the performer's understanding of the musical structure. However, most studies to date focus on the performance of a single piece at a time, leaving unanswered the question on how structural parameters of pieces with varied technical difficulties influence pianists' movements. In this study, 10 pianists performed three contrasting Romantic excerpts in terms of technical level and character, while motion data was collected with a passive infrared motion capture system. We observed how pianists modulate their performances for each of the three pieces and measured the absolute difference in percentage of duration and quantity of motion (QoM) between four expressive conditions (normal, deadpan, exaggerated, immobile). We analyzed common patterns within the time-series of position data to investigate whether pianists embody musical structure in similar ways. A survey was filled in by pianists to understand how they conceive the relationship between body movements and musical structure. Results show that the variation in duration between the exaggerated and deadpan conditions was significant in one measure for one of the excerpts, and that tempo was less affected by the QoM used than by the level of expression. By applying PCA on the pianists' position data, we found that the head QoM is an important parameter for communicating different expressions and structural features. Significant variations in head QoM were found in the immobile and deadpan conditions if compared to the normal condition, only in specific regions of the score. Recurrent head movements occurred along with certain structural parameters for two of the excerpts only. Altogether, these results indicate that the analysis of pianists' body movements and expressive intentions should be carried out in relation to the specific musical context, being dependent on the technical level of the pieces and the repertoire. These results, combined with piano teaching methods, may lead to the development of new approaches in instrumental lessons to help students make independent choices regarding body movements and expression.

piano performance body movement expression musical structure motion capture motion recurrence

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1. Introduction

      While it is common knowledge that musicians' body movements contribute to the audience's understanding of the musical score and the performer's expressive interpretation of music (Vines et al., 2003; Dahl and Friberg, 2007; Weiss et al., 2018), the teacher rarely explicitly guides the students to connect their movements to the structural and stylistic features of a piece (Juslin and Persson, 2002; Young et al., 2003; Karlsson and Juslin, 2008). Although previous research has been conducted on musicians' expressive communication, the impact of the structural parameters of technically challenging pieces on pianists' body movements and expressive parameters remains largely unexplored. The majority of piano pedagogical theories are centered on fingering technique and on the position and weight of the hands and forearms (e.g., Kullak, 1893; Levinskaya, 1930; Wheatley-Brown et al., 2014). Piano teaching would benefit from the inclusion of a science-based pedagogical perspective by incorporating the results of recent experimental studies. A kinematic analysis of experienced pianists' body movements and musical timing in relation to the structural elements from various pieces of music would bring invaluable information that may help student performers monitor their body movements to improve their expressive communication abilities while consistently manipulating acoustical and physical parameters. These results can contribute to the design of a coherent pedagogical framework that may impact piano pedagogy.

      In the literature on music performance, two types of gestures have received more attention: effective or instrumental gestures, and sound-accompanying or ancillary gestures (Delalande, 1988; Cadoz and Wanderley, 2000; Wanderley, 2002). Effective gestures are responsible for the direct control of the quality of the sound and changes applied to the instrument itself, while ancillary gestures are not necessarily related to sound production and are mainly the result of three factors: ergonomic, structural and interpretative. The latter are responsible for postural adjustments and they help stabilize the performance, anticipate movements, and maintain the tempo (Godøy et al., 2010; Jensenius et al., 2010). They reflect the performer's individual representation of the music, which is affected by psychological and emotional states. To understand better the functions of body motion in relation to sound, researchers have discussed these different types of gestures, occurring on different timescales, as coarticulated actions (Godøy, 2010, 2013; Jensenius et al., 2010). For instance, a scale played on the piano might seem like a series of separate actions, when considering the finger movements only but those movements are connected and perceived as one coherent gesture if we concentrate also on the movements of the hand, arm, and upper body. In other words, the movements of the whole body may have a perceptual impact on expressive parameters. A recent embodied music cognition theory addresses the close relationships between the musician, his/her body movements and musical instrument, stating that the instrument is a natural extension of the musician's body (Nijs et al., 2018). The musician's body is described as an intermediary between the physical environment and one's personal musical experience (Leman, 2008). The whole-body movements may be so ingrained in a pianist's technique that removing or attenuating some of them may be detrimental to the sound result.

      In piano pedagogy, arms and hands are often at the heart of learning the instrumental technique. This approach, although motivated by virtuosity achievement, does not integrate other types of body movements, which coexist with the gestures involved in the production of the sound. To investigate how body movements are connected to musical expression and structural parameters, previous studies used different experimental conditions with gradual levels of expression. Davidson (1993) and Davidson (1994) asked violinists and pianists to perform in three conditions denoted as deadpan, projected and exaggerated. The exaggerated condition was defined as a performance where musicians would exaggerate the acoustic parameters, whereas the deadpan condition would refer to a performance with limited expressive content. In the exaggerated condition, musicians' movements were larger than in the projected one. Moreover, Davidson and Correia (2002) found that while the swaying motion that emanates from the hip region may not be easily visible when pianists perform in a deadpan performance, the motion was still present but at a much smaller scale. However, the relationship between the pianists' swaying action and the musical structure was still not clear (Davidson, 2007). A strong relationship was also observed between pianists' facial expression and body movements, which were linked to specific structural elements of the music (Davidson, 2012). In another study where pianists were asked to play an excerpt from the Beethoven Sonata No.4, Op.102/1, in different modes (i.e., personal, sad, allegro, overly expressive, serene), the quantity of motion was not influenced significantly by the performance modes, whereas the velocity of the head motion was (Castellano et al., 2007). Wanderley et al. (2005) observed the movements of clarinetists while they were asked to perform Stravinsky's Three Pieces for Solo Clarinet in a standard, expressive and immobile manner. The immobile performance consisted of playing the piece with as little movement as possible. The results showed that clarinetists had not suppressed completely their movements, which suggests that certain movements are too ingrained in performers' technique and mental representation to be modified or removed totally. Bell motion in clarinet playing has also been associated to the reinforcement of idiomatic acoustic events at phrase boundaries and at places with harmonic tension (Teixeira et al., 2015). Similarly, Thompson and Luck (2012) used the same three conditions as in Wanderley et al. (2005) and added the deadpan condition previously used in Davidson's research, to examine pianists' movements in relation to the musical structure of the Chopin's Prelude in E minor Op. 28, No. 4. The authors showed that the quantity of motion was modified in specific regions such as the ones with articulations, dynamic markings and at the piece's climax, and that the exaggerated condition was performed with larger quantity of motion in sections with these specific characteristics.

      The following studies suggest that musicians' movements are often related to the rhythmic and phrasing structure of an excerpt, as well as to its technical difficulty and character. In order to identify the relationships between the rhythmic structure and similarity in upper body movements, pianists played two Chopin Preludes, similar in character, but different in terms of the phrasing structure (MacRitchie et al., 2009, 2013). Pianists performed different phrases, with analogous rhythmical patterns, from Chopin's preludes using similar motion profiles. This suggests that different pianists shape their movements with respect to the phrasing structure and to the rhythm of the piece. However, while pianists' swaying movements were synchronized with the rhythmical patterns in simple piano pieces, it was suggested that this may not be the case for more complex excerpts (Camurri et al., 2003). Indeed, the periodic swaying motion observed in a pianist's head while performing a Scriabin Etude did not synchronize with the two-bar phrasing structure but was rather correlated with the emotional intensity. The difficulty and the structural characteristics of the different pieces may have had an impact on the synchronization of the movements with the rhythm, as well as on the recurrence of movements between performers.

      Other studies investigated the impact of movements on auditors' judgment of musical performances and assessed which parts of the body better convey the expressive intention or emotion of the performance. In piano performance, head and upper torso movements provided meaningful information to auditors, who were asked to discriminate between performance conditions, while the hand movements did not (Davidson, 1994). Camurri et al. (2003) analyzed the expressive movements of a pianist performing a Scriabin Etude in normal and exaggerated conditions and identified that the most efficient auditory and visual cues for the pianist to communicate his expressive intentions were key-velocity, inter-onset-intervals (IOIs) and head movement velocity. Similarly, studies conducted on marimba players investigated the extent to which emotional intentions (i.e., happy, sad, angry, fearful) were conveyed through musicians' movements (Dahl and Friberg, 2007; Dahl et al., 2010). By itself, the head movements appeared to provide sufficient information for observers to recognize the emotions conveyed by the performer. Nusseck and Wanderley (2009) analyzed observers' perception of clarinetists' performances of the Brahms Clarinet Sonata Op. 120, No. 1, when clarinetists' movements are modified. For instance, the motion of different body parts in a video recording was frozen while auditors were judging different parameters. It appeared that freezing the motion of the arms or torso in kinematic displays of clarinet performances do not affect observers' perception of fluency, tension and intensity of the performances (Nusseck and Wanderley, 2009). Moreover, the authors showed that, although performers' movements present consistencies, the total amount of movement and the velocity differ for different body parts. For instance, when one player used larger arm motions, another one performed with more body sway. It was also shown that, during technically challenging passages, the movements seemed to be localized to certain body parts and their amplitude were reduced (Wanderley et al., 2005; Nusseck and Wanderley, 2009). It was suggested that this might possibly prevent fatigue and injury, or may facilitate precise execution.

      Expressive manipulations and musical individuality of music performances have been linked mainly to temporal variations (Palmer, 1989; Gingras et al., 2011). Gagnon and Peretz (2003) found that fast tempi were related to expressions of excitement and surprise, while slow tempi were associated with calmness, boredom and sadness. Moreover, a covariation of timing and dynamics tends to occur at the beginning (Clarke, 1987) and the end of phrases (Repp, 1996; Palmer, 1997). Because expression was associated with the magnitude of tempo variations, different expressive conditions were used to evaluate performers' rhythmical strategies to convey these expressions. In their 2005 study of clarinetists' movements, Wanderley et al. (2005) found that the immobile condition was performed faster than the standard and exaggerated conditions, suggesting that motion is associated with the rhythmic structure of phrases. Thompson and Luck (2012) revealed that pianists' tempo was also affected when performing a Chopin Prelude. They looked at each measure separately and found that the exaggerated performances were played slower on average, whereas the deadpan ones were the fastest compared to the standard performances. These tempo variations occurred during specific moments, such as phrase boundaries, or passages with harmonic tension. Contrary to Wanderley and colleagues' findings, the immobile and standard performances were quite similar in duration and pianists could still use tempo variations to perform in an immobile performance. The fact that the deadpan condition was not used in Wanderley et al. (2005)'s study and that the respective complexity of the excerpts in both experiments was different may explain these different results.

      Although previous research has focused on the expressive intentions a performer conveys to an audience, it is not clear yet how the structural parameters of musical excerpts with various technical difficulties are embodied in pianists' physical gestures. The study of different Romantic excerpts with various levels of complexity performed by a group of pianists may yield different results that may eventually clarify how auditors perceive and react to musical gestures and expression. This study seeks to understand better how experienced pianists use body movements and timing in relation to structural parameters of pieces with varied difficulties and contexts. First, we evaluate how pianists modulate their performances in terms of duration and quantity of motion (QoM) when asked to play excerpts from the Romantic period in different performance conditions. Second, we investigate how both the structural characteristics of the pieces and the conditions impact the pianists' body movements. Third, we analyze the recurrent patterns of head movement among all pianists when performing in a normal condition. The aim is to visualize where in the score do pianists tend to move in a similar way to understand whether certain movements are dependent on the musical parameters or the physical constraints brought by the instrument. Finally, we assess whether pianists are aware of the way they use body movements in relation to the musical structure and the various expressive conditions. The goal of this research is not to assess whether pianists express their ideas intentionally or not, but to observe the trends and differences among a group of pianists and how various musical excerpts influence body movements and expression. The survey provided us with additional information as regard pianists' expressive decisions and intentions. We hypothesize that the movements from the extremities of the body, such as the ones from the hand or head, will be more accentuated when exaggerating or limiting the expression and that they will vary according to the excerpt performed. We propose that changes in amplitude of movements will be restrained in more demanding passages, such as chromatic passages, and that tempo will be more affected in the deadpan and exaggerated conditions than in the immobile one.

      2. Methods 2.1. Participants and Musical Tasks 2.1.1. Participants

      Ten pianists (average of 29.6 years old, SD = 5.8, 6 Female 4 Male) participated in this study. The participants were all graduate or post-graduate students (3 doctoral, 3 master's and 4 bachelor's degrees). All participants signed a consent form approved by the University ethics committee.

      2.1.2. Pilot Study

      In a pilot study, which sought to evaluate pianists' body movements when performing different excerpts in terms of their structural features and technical levels, eleven pianists performed different Romantic excerpts three times in the following order: normal, deadpan, exaggerated and immobile conditions. Similarly to Davidson (1993), Wanderley (2002), and Thompson and Luck (2012), the deadpan condition was described as playing with a reduced level of expression, whereas the exaggerated one, as playing with an exaggerated level of expression. An immobile performance consisted of playing with only the essential movements to produce a normal performance. The high number of excerpts provided data to evaluate multiple parameters of expression such as rhythm, harmony, phrasing, articulation, timing and sound dynamic. Pianists performed each expressive condition three times for a total of 12 performances per pianist. For each pianist, no significant difference in quantity of motion (QoM) was found between all the performances of the same expressive condition. This pilot study allowed us to select three excerpts that demonstrated diverse and contrasting: (1) difficulties, characters and structural characteristics, and (2) data results.

      2.1.3. Choices of Excerpts

      The three 30-s Romantic excerpts chosen for the current study are listed below:

      Medtner Sonata Reminiscenza Op.38 (mes. 253–274)

      Chopin 4th Ballade (mes. 152–160)

      Chopin Impromptu (mes. 43–51)

      Table 1 shows an analysis, conducted by the authors, of the structural characteristics for each excerpt and summarizes the results obtained for each pianist who performed the three excerpts as part of the pilot study.

      Analysis performed by the authors of each excerpt's structural characteristics and summary of results from previous measurements.

      Medtner Sonata Reminiscenza Chopin 4th Ballade Chopin Impromptu
      STRUCTURAL CHARACTERISTICS
      -Very dynamic and changing character-Many ascending movements and long arpeggios-Crescendo dynamic-Many accentuated chords and notes-Varied rhythm-Dominant chords-Chromatic passages-Repetitions and modulations -Impetuous and constant character-Polyrhythm between the hands (constant ternary rhythm at the left hand vs rhythmically unstable melody at the right hand)-Few moments of rest-Chromatic melody with few 8ve intervals that create tension-Repetitions and modulations -Peaceful and gentle character-Simple melody-Slow and regular rhythm-Smooth dynamics and articulations-Ornaments-Repetitions and modulations
      RESULTS FROM THE PILOT STUDY
      -All conditions performed faster than normal-Large variations in QoM in the deadpan and immobile performances as compared to the normal condition-Hand movements in the z-axis vary more than other body parts between expressive conditions-Variations in amplitude of hand movement related to the loud dynamic level and accentuated chords-Similar QoM in the normal and exaggerated performances -All conditions performed slower than normal-Smallest variations in QoM between the normal, deadpan and immobile conditions-Large variations in QoM between the normal and exaggerated conditions-Large amplitude of head motion observed in the exaggerated condition during the return of the main theme and 8ve interval in the melody-Head movement is periodic and follows the rhythm at the left hand, even in the immobile condition -Exaggerated and immobile performance performed faster than normal and deadpan conditions-Largest differences in QoM between the conditions-Large amplitude of the head motion in the normal performance in the middle of phrases, and at the beginning of phrases for the exaggerated performance-Deadpan and immobile conditions are performed with almost no variations in amplitude of head movement

      For the rest of the article, each excerpt will be referred to as the “Sonata,” the “Ballade” and the “Impromptu.” Each excerpt was performed in the same four expressive conditions as used in the pilot study (normal, deadpan, exaggerated and immobile conditions). The pianists played each excerpt once in each expressive condition (for total of 12 performances per pianist). Participants could choose the tempo they found appropriate to convey the expressive conditions. The order of excerpts was randomized for each participant.

      2.2. Measurements

      At the beginning of the experiment, pianists filled in a demographic questionnaire and, at the end of the measurement session, pianists completed a survey to assess how they experienced body movements. Participants were asked questions on their understanding of the structure of the excerpts and how it influenced their musical interpretation. Performances were video recorded with a Sony Wide Angle video camera and audio recorded with a Sennheiser MKH microphone. Motion data were collected, at a rate of 240 frames per second, with a 17-camera Qualisys motion capture system, using 49 passive reflective markers put on the pianists' hands, elbows, shoulders, torso, head, and pelvis. The placement of markers on pianists' upper body and head is shown in Figure 1A. In order to perform the analysis and to extract different kinematic parameters, a set of 16 markers was derived from the marker locations, Figure 1B. The midpoint of a joint was obtained by averaging the location of two or more markers using the MATLAB Motion Capture (MoCap) Toolbox (Burger and Toiviainen, 2013). The beginning of each frame was time-stamped (SMPTE timecode) at 25 Hz, and a Rosendahl Nanosyncs HD word clock, sampled at 48 kHz, generated the clock signals for all the digital devices. The Rosendahl Nanosyncs was connected to the video camera, the Qualisys Sync Unit and the Fireface audio interface. The Qualisys Sync Unit converted the SMPTE signals so that it may be recorded by the mocap cameras. The audio recording was slaved to the video signal. The control computer recorded the audio and MIDI data from the MIDI keyboard with Reaper software and was connected to the same network as the Qualisys computer, which triggered the recordings of both Qualisys Track Manager (QTM) and the audio and MIDI from the keyboard using the OSC protocol.

      (A) Anterior view of the location of markers attached to the pianists' upper body. (B) Anterior view of the joint representation of the pianists' upper body.

      3. Data Analysis

      As discussed earlier, previous studies have shown that acoustical and kinematic parameters are important indicators of expression in piano performance. The term kinematics is used to describe the spatial details of the movement itself. Kinematics is not concerned with the internal or external forces that cause the movement (Winter, 2009). The present kinematic analysis focuses on the total QoM and the position data in relation to each excerpt's structural parameters. The durations of the performances are also examined with regard to the performance conditions.

      3.1. Note Extraction and Audio Analysis

      To measure the duration of each excerpt in each condition for every pianist, a filter was applied to the absolute value of the audio signal, using the Matlab function movmean, which calculates the moving average across a sliding window. The length of the window used was 200 frames for every participant. Then a sound intensity threshold of 0.001 dB was applied to the signal to mark the beginning and end of each performance. Since pianists could choose the tempo in which to perform each excerpt, the signals also needed to be temporally aligned to the musical structure. Therefore, the exact time of each important gestural event (i.e., notes or beats) was identified and annotated with the audio editor Audacity. The time coordinates of the position data were aligned to their corresponding musical events using a time-warping algorithm (Verron, 2005). All pianists' position data were averaged, time warped and aligned to the score.

      3.2. Movement Analysis

      First, we used principal component analysis (PCA) to determine which body parts vary the most across the performance conditions for each individual pianist. We calculated the cumulative QoM for all the body parts (i.e., head, torso, shoulders, elbows, hands and pelvis) using the MATLAB Motion Capture (Mocap) Toolbox (Burger and Toiviainen, 2013). The QoM of each body part was measured from the joint location data, for each performance condition, in the three axes of the coordinate system. The x-axis represents the motion along the keyboard, the y-axis accounts for the movement toward and away from the keyboard, and the z-axis represents the movement of the body going up and down. This yielded a total of 27 variables for each of the ten pianists playing in the four expressive conditions. We applied PCA on the matrix of kinematic values to reduce the number of relevant features (i.e., body parts and directions of the movements) required to identify which body parts fluctuate the most across conditions for each individual pianist. We identified the first PC and its corresponding feature with the highest coefficient for each pianist. The coefficient is a measure of how each variable contributes to the principal components.

      After identifying these body parts, we measured the absolute difference in the total QoM between each condition and the normal condition. We calculated the cumulative distance traveled by the markers to analyze the differences between the expressive conditions. All pianists' cumulative QoM values were averaged together. For each excerpt, the QoM of the normal performances was taken as a reference point (0%) to compare against the values obtained in the other conditions. Then, a series of one-way ANOVAs was conducted for each measure to identify whether there were significant differences between the conditions.

      3.3. Movement Recurrence

      In order to identify the sections of the score in which pianists perform with similar movements and to find the common patterns within the time-series of the position data, we used the instantaneous correlation algorithm developed by Barbosa et al. (2012). The algorithm measures the correlation coefficient between pairs of signals for each frame and generates a bi-dimensional correlation map that reveals the regions of high recurrence between all pairs of signal (i.e., recurrence of movement patterns). The same threshold used in Teixeira et al. (2015) was applied to the map, removing all values below 0.75. We examined the Euclidean norm of the position data together with the correlation map to facilitate the display of the pianists' movement patterns.

      4. Results

      This section reports the results on a) the overall duration of the performance, b) the quantity of motion, and c) the recurrence of movements.

      4.1. Overall Duration of the Performances

      To evaluate how pianists vary the tempi in relation to the levels of expression and the different excerpts, we calculated the duration of every performance (total of 12 per pianist). The lengths of the performances are indicated in Table 2 per pianist and per excerpt. We did not observe any clear pattern between the pianists and conditions in terms of tempi and excerpt lengths: each pianist employed different tempi to perform the excerpts and conditions. Overall, 63% of the deadpan performances and 47% of the immobile performances were performed faster than the normal ones. The exaggerated performances were mostly performed at a slower tempo than the normal ones for all the excerpts (i.e., 8 pianists in the Sonata and in the Ballade, and 7 pianists in the Impromptu). Pianist 2 was the only one to perform all the excerpts slower in the deadpan performance with a percentage difference of 15.33% for the Sonata, 13.52% for the Ballade and 23.77% for the Impromptu, which also corresponds to the largest difference in duration among all pianists.

      Timing of performances of each condition for all pianists.

      Medtner Sonata Reminiscenza Chopin 4th Ballade Chopin Impromptu
      Performance conditions Time (s) % difference compared to normal Time (s) % difference compared to normal Time (s) % difference compared to normal
      P1 Normal 43.32 25.89 31.97
      Deadpan 39.21 –9.98 25.08 –3.20 28.57 –11.23
      Exaggerated 48.50 +11.27 28.98 +11.24 34.87 +8.68
      Immobile 41.29 –4.80 23.59 –9.30 30.85 –3.57
      P2 Normal 47.88 29.25 31.21
      Deadpan 55.83 +15.31 33.49 +13.52 39.64 +23.77
      Exaggerated 44.71 –6.86 29.57 +1.09 32.75 +4.81
      Immobile 50.2 +4.73 30.79 +5.13 28.28 –9.88
      P3 Normal 40.45 26.98 32.29
      Deadpan 45.74 +12.27 27.10 +0.45 30.77 –4.82
      Exaggerated 40.53 +0.19 23.95 –11.88 30.01 –7.33
      Immobile 42.44 +4.81 25.86 –4.22 31.33 –3.04
      P4 Normal 39.12 24.12 32.60
      Deadpan 36.48 –6.99 21.28 –12.51 27.74 –16.10
      Exaggerated 41.44 +5.76 26.40 +9.03 34.73 +6.31
      Immobile 39.01 –0.28 24.25 +0.54 33.35 +2.28
      P5 Normal 35.59 25.70 39.93
      Deadpan 38.56 +8.00 25.55 –0.60 38.26 –4.27
      Exaggerated 42.59 +17.90 27.05 +5.12 42.44 +6.11
      Immobile 36.93 +3.69 26.56 +3.28 38.32 –4.12
      P6 Normal 37.40 25.85 35.16
      Deadpan 34.85 –7.07 24.27 –6.32 31.95 –9.57
      Exaggerated 39.55 +5.57 26.38 +2.02 35.46 +0.84
      Immobile 39.25 +4.82 25.80 –0.19 35.95 +2.21
      P7 Normal 43.11 39.91 39.27
      Deadpan 41.06 –4.87 41.51 +3.91 38.95 –0.82
      Exaggerated 42.79 –0.75 45.86 +13.86 40.53 +3.15
      Immobile 43.67 +1.30 42.01 +5.13 39.92 +1.63
      P8 Normal 41.20 35.74 36.39
      Deadpan 43.11 +4.53 37.05 +3.58 36.15 –0.67
      Exaggerated 45.08 +8.98 35.78 +0.10 35.87 –1.43
      Immobile 45.34 +9.55 39.79 +10.72 36.25 –0.38
      P9 Normal 47.36 34.74 39.71
      Deadpan 46.37 –2.11 34.36 –1.08 33.76 –16.21
      Exaggerated 47.38 +0.04 33.15 –4.67 38.20 –3.86
      Immobile 46.65 –1.51 33.90 –2.45 37.49 –5.75
      P10 Normal 42.64 41.31 35.47
      Deadpan 46.07 +7.73 44.12 +6.59 34.56 –2.61
      Exaggerated 48.03 +11.9 47.02 +12.94 38.47 +8.12
      Immobile 43.63 +2.30 43.28 +4.67 33.70 –5.12

      Bold values represented the largest difference as compared to the normal performance.

      Figure 2 shows the mean duration of performances and the associated standard deviations between participants and Figure 3 indicates the differences in duration for each measure per condition. The duration of the normal performances, represented by the red line, was taken as a reference (0%) to compare against the values obtained in the other conditions.

      Mean duration of performances for each condition and excerpt. The purple squares show the mean duration and the yellow bars the standard deviation between participants. The blue stars represent the longest performances, while the pink diamonds show the shortest ones. (N, Normal; D, Deadpan; E, Exaggerated; I, Immobile).

      Absolute difference in percentage of duration for each measure per condition. The red line represents the reference point, the normal condition, against which the other conditions are compared.

      4.1.1. Tempo and Musical Excerpts 4.1.1.1. Medtner Sonata Reminiscenza

      As demonstrated in Figure 2, the largest average duration for the Sonata occurs in the exaggerated performances (M = 44.06, SD = 3.19), with a mean percentage difference of 5.24 as compared to the normal performance and the discrepancy among pianists is greater in the deadpan condition (M = 42.71, SD = 6.14). The smallest deviations in duration from the normal performance occur in the immobile condition with a mean difference of 2.46% slower than the normal condition. The majority of the pianists played the exaggerated (n = 8) and immobile (n = 7) conditions slower than the normal condition, whereas only half (n = 5) of them played the deadpan condition faster. For seven pianists, the smallest variations in duration are observed between the immobile and normal conditions. Although no significant differences were found between the conditions, Figure 3 indicates that the deadpan and exaggerated performances vary more from the normal condition than the immobile performance, but not necessarily at the same places. For instance, while pianists perform the exaggerated condition faster during bars 13 and 14 (fast arpeggio in a crescendo dynamic), these measures are played almost with the same duration in the deadpan condition as in the normal one, whereas the opposite occurs during bars 15–18 (series of accentuated chords).

      4.1.1.2. Chopin 4th Ballade

      As shown in Figure 2, the durations differ greatly among pianists for all the conditions as exemplified by the high standard deviations, and especially in the exaggerated condition (M = 32.41, SD = 8.16). The mean duration of the Ballade performed in the four conditions demonstrates smaller differences than for the other excerpts, with a maximum percentage difference of 4.62 in the exaggerated condition (Figure 3). Similarly to the Sonata, most of the pianists performed the immobile (n = 6) and exaggerated (n = 8) conditions at a slower tempo, whereas five only played the deadpan condition faster. As Figure 3 demonstrates, almost no changes in the measure lengths are perceptible between the expressive conditions.

      4.1.1.3. Chopin Impromptu

      Contrary to the other two excerpts, pianists tend to perform the immobile condition faster (n = 7) in the Impromptu. Most pianists (n = 9) performed the deadpan condition faster than the normal condition, with a percentage difference of 4.25. The duration of performances varies almost equally between pianists and conditions, but slightly more in the deadpan performance (M = 34.04, SD = 4.25). Statistical variations were found for bar 7 only in the Impromptu [F(3, 36) = 3.3, p < 0.05] as indicated with a Tukey's Honest Significant Test (HSD) (Figure 3). The discrepancy in duration which occurs between the deadpan and exaggerated performances may be explained by the ornaments and rubato during that passage.

      4.2. Head Quantity of Motion

      PCA was used in order to verify which body parts were the most altered when pianists perform in various expressive conditions. Table 3 indicates the first PC and its corresponding component feature with the highest coefficient for all pianists and each excerpt, as well as their respective level of variance across the expressive conditions. The percent variability explained by the first PC provides a sufficiently complex profile to differentiate between the expressive conditions, with a minimum percentage of variance of 85.18 for pianist 10. For the three excerpts, the main component feature that varies the most in terms of QoM across the conditions is the head, and more specifically in the y-axis, that is toward and away from the piano. However, for pianist 2, the right hand is the body part that shows more variations in movement amplitude, in the z-axis (up and down) during the performances of the Sonata, while pianist 10 moves the left elbow with more variations in the x-axis (along the keyboard) during the Impromptu. Moreover, the amplitude of the head in the x-axis differs more for three pianists in the Sonata, for five in the Ballade and for four in the Impromptu. As the PCA revealed that, in general, pianists modulate the amplitude of the head movement when performing various expressive conditions, we decided to analyze more carefully these head movements as relate to the structural characteristics of each excerpt.

      First PC's component feature and level of variance (in %) across all expressive conditions and excerpts for all pianists.

      Medtner Sonata Reminiscenza Chopin 4th Ballade Chopin Impromptu
      Pianists PC1 component Variance (%) PC1 component Variance (%) PC1 component Variance (%)
      P1 Head x-axis 95.89 Head x-axis 95.69 Head x-axis 94.82
      P2 Rhand z-axis 94.62 Head y-axis 84.45 Head y-axis 89.41
      P3 Head y-axis 95.95 Head y-axis 96.12 Head x-axis 94.56
      P4 Head y-axis 96.79 Head x-axis 93.63 Head y-axis 91.66
      P5 Head y-axis 95.94 Head y-axis 94.78 Head y-axis 98.01
      P6 Head y-axis 98.88 Head y-axis 98.44 Head y-axis 98.48
      P7 Head x-axis 91.18 Head x-axis 96.66 Head y-axis 98.66
      P8 Head y-axis 89.88 Head x-axis 93.03 Head x-axis 96.95
      P9 Head y-axis 97.53 Head y-axis 98.17 Head y-axis 99.00
      P10 Head x-axis 85.18 Head x-axis 94.72 Lelbow x-axis 96.50
      4.2.1. Head QoM and Musical Excerpts

      Figure 4 illustrates the mean QoM and standard deviation for each condition and excerpt. Figure 5 shows the absolute difference of QoM for each measure between the expressive conditions and the normal one. To identify the regions in the score where the amplitude of the head movement differs significantly between the normal and the other expressive conditions, we conducted a series of one-way ANOVAs on the head position data for each excerpt and each measure. A Tukey's Honest Significant Test (HSD) showed which of the expressive conditions differed significantly. The results of the one-way ANOVAs are shown in Tables 46 and the corresponding regions where statistical differences between the conditions occur are displayed in Figure 6. For all excerpts, there was no significant difference between the normal and exaggerated conditions, and between the deadpan and immobile conditions.

      Mean cumulative head QoM for each condition and excerpt. The purple squares show the mean QoM and the yellow bars the standard deviation between participants. The blue stars represent the largest values, while the pink diamonds show the smallest ones. (N, Normal; D, Deadpan; E, Exaggerated; I, Immobile).

      Absolute difference in percentage of head QoM for each measure per condition. The red line represents the reference point, the normal condition, against which the other conditions are compared.

      Medtner Sonata Reminiscenza - Results from the one-way ANOVA performed on the cumulative distance traveled by the head marker for the regions presenting significant differences between the normal condition and the other expressive conditions.

      Tukey's HSD comparisons
      F(3, 36) p Conditions
      Region A Bar 1 11.6 0.009 Normal-Deadpan
      0.01 Normal-Immobile
      Bar 2 11.9 0.05 Normal-Deadpan
      0.04 Normal-Immobile
      Bar 3 10.5 0.007 Normal-Deadpan
      0.03 Normal-Immobile
      Bar 4 12.3 0.003 Normal-Deadpan
      0.01 Normal-Immobile
      Bar 5 11.1 0.01 Normal-Deadpan
      Bar 6 8.9 0.01 Normal-Deadpan
      Bar 7 12.8 0.05 Normal-Deadpan
      Region B Bar 13 11.9 0.004 Normal-Deadpan
      0.01 Normal-Immobile
      Region C Bar 16 6.2 0.03 Normal-Deadpan
      Bar 17 9.2 0.005 Normal-Deadpan
      Region D Bar 19 9.4 0.02 Normal-Deadpan
      0.02 Normal-Immobile
      Bar 20 14.7 <0.001 Normal-Deadpan
      0.001 Normal-Immobile
      Bar 21 13.2 0.002 Normal-Deadpan
      0.007 Normal-Immobile

      The last two rows indicate pair-wise comparisons (Tukey-Kramer) significant at p < 0.05.

      Musical examples for Tables 46 corresponding to each excerpt and each region that are significantly different between the expressive conditions.

      4.2.1.1. Medtner Sonata Reminiscenza

      During performances of the Sonata, pianists used on average 20.61% more QoM in the exaggerated condition than in the normal one, significantly higher than for the other two excerpts. Figure 4 shows that the largest discrepancies in head QoM between pianists occur in the exaggerated condition (M = 7774.23, SD = 2402.15). Differences in mean cumulative QoM between the deadpan and normal, and immobile and normal conditions are larger than between the exaggerated and normal conditions, more specifically between bars 4 and 6 for the deadpan condition, and between bars 16 and 17 (Figure 5). As shown in Table 4, the normal performance varies significantly with the deadpan and immobile conditions in region A (bars 1–4), region B (bar 13) and region D (bars 19–21), and with the deadpan condition only in region A (bars 5–7) and region C (bars 16 and 17). Sections A, B, and D contain ascending chromatic movements in a crescendo dynamic, and the climax of the excerpt is found in section B (Figure 6). Section D starts with a series of fast and accentuated chords, followed by a German sixth chord and a long ascending motion that finishes on a high pitch note at the beginning of measure 21. For all these regions, the head QoM is more reduced in the deadpan performance than in the immobile condition as compared to the normal performance. Pianists did not modulate significantly their movements in the exaggerated condition as compared to the normal condition.

      4.2.1.2. Chopin 4th Ballade

      As revealed in Figure 4, the smallest variations, across all excerpts, between the exaggerated and normal conditions occur in the Ballade (M = 4247.36, SD = 1535.17). Moreover, pianists reduce the movement and move the head similarly in the immobile and deadpan conditions (Figure 5). Both conditions mark a clear distinction with the normal and exaggerated conditions. Table 5 shows that significant differences in the amplitude of the head movement between the deadpan and immobile conditions and the normal one occur in three regions. In these three regions, the normal performance differs significantly from both the deadpan and immobile performances, except in bar 3 where it differs significantly with the deadpan condition only. As shown in Figure 6, section A is characterized by the exposition of the theme, section B by a short moment of rest at the right hand before the return of the melody, and section C by a large interval (8ve) in the melody adding tension. The exaggerated condition does not differ significantly from the normal performance.

      Chopin 4th Ballade-Results from the one-way ANOVA performed on the cumulative distance traveled by the head marker for the regions presenting significant differences between the normal condition and the other expressive conditions.

      Tukey's HSD comparisons
      F(3, 36) p Conditions
      Region A Bar 1 7.1 0.02 Normal-Deadpan
      0.01 Normal-Immobile
      Region B Bar 3 6.2 0.04 Normal-Deadpan
      Bar 4 16.3 0.001 Normal-Deadpan
      <0.001 Normal-Immobile
      Bar 5 9.8 0.008 Normal-Deadpan
      0.01 Normal-Immobile
      Bar 6 6.2 0.05 Normal-Deadpan
      0.03 Normal-Immobile
      Region C Bar 8 26.9 <0.001 Normal-Deadpan
      <0.001 Normal-Immobile

      The last two rows indicate pair-wise comparisons (Tukey-Kramer) significant at p < 0.05.

      4.2.1.3. Chopin Impromptu

      As shown in Figure 4, deviations in the head QoM between pianists' performances of the Impromptu are smaller in the normal, deadpan and immobile conditions than for other excerpts (normal: M = 3616.89, SD = 1163.57; deadpan: M = 1265.65, SD = 585.02; immobile: M = 1291.60, SD = 422.96). As shown in Figure 5, the deadpan and immobile conditions require less movement than the normal one, with respectively 89.55 and 88.22% of the movement used during the normal performance. The head QoM in the normal performance differs significantly from both the deadpan and immobile performances for the whole excerpt (Table 6). The excerpt is characterized by a slow modulating melody (region B) and a reiteration of the main theme in the original key (region C) (Figure 6). Surprisingly, for that excerpt, pianists did not modify the head motion significantly between the exaggerated and normal performances.

      Chopin Impromptu-Results from the one-way ANOVA performed on the cumulative distance traveled by the head marker for the regions presenting significant differences between the normal condition and the other expressive conditions.

      Tukey's HSD comparisons
      F(3, 36) p Conditions
      Region A Bar 1 17.1 0.002 Normal-Deadpan
      0.003 Normal-Immobile
      Bar 2 22.6 <0.001 Normal-Deadpan
      <0.001 Normal-Immobile
      Bar 3 18.8 <0.001 Normal-Deadpan
      <0.001 Normal-Immobile
      Region B Bar 4 14.6 0.004 Normal-Deadpan
      0.005 Normal-Immobile
      Bar 5 9.1 0.04 Normal-Deadpan
      0.02 Normal-Immobile
      Bar 6 12.1 0.001 Normal-Deadpan
      0.001 Normal-Immobile
      Bar 7 8.9 0.004 Normal-Deadpan
      0.002 Normal-Immobile
      Bar 8 10.5 0.01 Normal-Deadpan
      0.002 Normal-Immobile
      Region C Bar 9 17.0 <0.001 Normal-Deadpan
      0.001 Normal-Immobile
      Bar 10 11.8 <0.001 Normal-Deadpan
      0.003 Normal-Immobile

      The last two rows indicate pair-wise comparisons (Tukey-Kramer) significant at p < 0.05.

      4.3. Head Movement Recurrence

      To assess whether several pianists embody the musical structure in a similar way, the head position data and the motion recurrence map analysis were used jointly. In the top graphs of Figures 79, the Euclidean norm of the head position averaged and time-warped are shown in the four different conditions while all the pianists were playing the Sonata, the Ballade and the Impromptu. The bottom graphs show the correlation map which indicates the regions where the pianists used similar head movements. For instance, a large offset in certain regions means that the movement may have been initiated sooner or later depending on the pianist, but that all of the pianists performed with similar movements.

      Medtner Sonata Reminiscenza-Top plot: average time-warped amplitude of the head movement in the four expressive conditions. The arrows delimitate the regions of interest. Bottom plot: motion recurrence map indicating the regions with high recurrence (red regions).

      4.3.1. Medtner Sonata Reminiscenza

      Figure 7 top graph shows that the changes in head amplitude for the Sonata coincides with rhythmical sections in the excerpts, at bars 13 and 20, which also display high recurrence in the head movement. Bar 13 starts with a large accentuated chord followed by an arpeggio and the last three bars (20–22) are characterized by two arpeggios that span five octaves. Four large offsets of one second are seen at the end of the excerpt, suggesting that pianists initiated the movement with either a delay or a lead of 0.5 s.

      4.3.2. Chopin 4th Ballade

      The beginning of the Ballade is marked with several regions of recurrent movement patterns, as shown in Figure 8, which coincide with short rests in the melody. Pianists' head movement follows the rhythmic structure at the left hand, a ternary rhythm composed of sixteenth notes grouped in two segments for each measure in the four conditions with amplitude changing on every beat. This effect is more pronounced in the normal and exaggerated conditions than in the deadpan and immobile performances, mainly at the beginning of the excerpt and in the middle of bar 5. Another area where similar head movements are found is in the middle of bar 6, which corresponds to a sixteenth rest.

      Chopin 4th Ballade-Top plot: average time-warped amplitude of the head movement in the four expressive conditions. The arrows delimitate the regions of interest. Bottom plot: motion recurrence map indicating the regions with high recurrence (red regions).

      4.3.3. Chopin Impromptu

      As Figure 9 shows, the Impromptu yields large variations in amplitude of the head motion between the conditions, and the deadpan and immobile conditions are performed with a reduced QoM. Only two short regions are performed with recurrent patterns of movements, which is not surprising given the great variations between the conditions. The first region at bar 1 coincides with the beginning of the main theme, which is repeated toward the end at bar 9. The second region is performed similarly among pianists and marks the end of the excerpt on the dominant chord.

      Chopin Impromptu-Top plot: average time-warped amplitude of the head movement in the four expressive conditions. The arrows delimitate the regions of interest. Bottom plot: motion recurrence map indicating the regions with high recurrence (red regions).

      4.4. Survey

      Pianists filled in a survey about their perception of how they move in relation to the musical score. The survey includes open-ended questions related to the strategies pianists employed to convey the different expressive conditions, as well as to the types of movements they used to communicate the musical structure. Pianists' answers to the survey were then used to compare the movement data with pianists' personal assessment of their movements.

      Question 1. While performing, do you solicit a specific part of the body? If so, why?

      Most of the pianists mentioned that the arms are important for a better control of the fingers and the keys, and to play in a more natural and fluid manner. Using arm weight helps staying connected with the rest of the body and the instrument. The torso and head are generally used to communicate creativity and emotional investment. The hips, although less often mentioned than arms, help project the sound and are used for openness.

      Question 2. Are you aware of any specific movements you used to communicate the different expressions?

      Most of the pianists stated that during the deadpan performance they decreased the QoM by restricting mainly the motion from the head and arms. The exaggerated condition required them to move with more amplitude, more arm motion and weight, and more hip movement. One pianist perceived that playing in the exaggerated condition created useless tension and imprecision in movements for all the excerpts, but particularly during the Ballade. For the same excerpt, two pianists reported that the immobile condition was easier to perform than the exaggerated condition because for that excerpt, playing with less movement is closer to a natural performance than playing with exaggerated ones. However, for the two other excerpts, pianists found that the immobile manner felt generally unnatural and prevented them from playing fluidly. To perform the immobile condition, they tried to limit the head and torso movements. However, playing with a restricted amount of movements while trying to be natural in the expression helped one pianist identify the regions in the score where excessive efforts were normally made. That pianist mentioned that, while restricting the movements, the focus was put on listening to the performance.

      Question 3. For each excerpt, do you think you moved according to the structure of the piece you performed? If so, how?

      Pianists said that they used specific movement strategies to convey the respective structural parameters of each excerpt. Overall, pianists mentioned that the movements are mainly connected to the phrase structure, the dynamic shape and the melodic and rhythmic form, and that these parameters influence the amplitude of motion.

      4.4.1. Medtner Sonata Reminiscenza

      According to the pianists, the Sonata was performed with more hip and torso movements in passages that required playing a series of chords. For them, larger movements from the forearms and elbows were needed for crescendos in this excerpt, while the hips were more implicated before accentuated chords or notes and for attacks.

      4.4.2. Chopin 4th Ballade

      Three pianists specified that it was difficult to exaggerate the expression in very energetic passages, since these moments already required an investment from the whole body. For instance, for the Ballade, pianists found that the polyrhythm between the hands and the fast displacements of the left hand made it difficult to exaggerate the performance. Many variations in tempo make it difficult to keep a stable rhythmical precision. One pianist mentioned that because of the figurations (i.e., short succession of notes) contained in the excerpt and the many repetitive patterns, special attention on the finger and hand movements was necessary.

      4.4.3. Chopin Impromptu

      Because of its rhythmic simplicity and uniform writing, most of the pianists found that the Impromptu was the easiest excerpt to perform in different expressive intentions. They also claimed that the expressive variations were mainly done in very melodic parts, which naturally induce larger amplitude of motion in an exaggerated performance. Three pianists specified that fluid and larger arm movements are often used in rubato sections. The moderate tempo of this excerpt therefore gives more flexibility in the movements.

      Question 4. Did playing in different expressive conditions affect any particular expressive parameters? If so, which ones?

      Pianists revealed that playing in a deadpan manner affected their sense of phrasing and several other expressive parameters, such as tempo and dynamics. Five mentioned that they noticed that their tempo was faster and more stable. They reduced the rubatos, the variations in nuances, as well as the contrasts naturally present between the hands. These same parameters were accentuated in the exaggerated conditions. Four pianists noted that certain regions might have been emphasized, while other passages might have been disrupted by an exaggerated expression because this condition made it difficult to control the sound. Again, most pianists found it difficult to play in the immobile condition, saying that it prevented them from rendering the appropriate expressive result. They mentioned feeling rigid and tense, and as a consequence, they did not perform the dynamic contrasts as well as they would have wanted. On the other hand, one pianist noted that she had the impression that she could play more efficiently while still achieving similar or better sound results.

      5. Discussion

      This paper focused on the kinematic analysis of pianists' body movements in order to understand better how experienced pianists use body movements when performing different Romantic excerpts and when asked to play different performance conditions. We measured the duration and QoM of each performance and identified the regions in the score where pianists use common patterns of head movement.

      5.1. Duration

      We first looked at the variations in duration between the conditions for each excerpt. Although no distinct pattern was found among pianists regarding the overall duration of the performances of each expressive condition and excerpt, we found that the deadpan performances were generally played faster and the exaggerated performances slower as compared to the normal condition. Similarly to the results found in Thompson and Luck (2012), and as post hoc pair-wise comparisons showed, the variation in duration between the deadpan and exaggerated conditions was only statistically significant in one measure of the Impromptu. The largest differences between the conditions in tempo were found in the deadpan condition for the Impromptu, whereas the smallest temporal deviations were found between the immobile and normal conditions, more specifically in the Ballade. This suggests that the restricted movement in the immobile condition did not affect the tempo as much as the level of expression in playing. From the questionnaire's results, pianists explained that when they were asked to reduce the level of expression, they used specific strategies, such as keeping a stable rhythm, removing the rubato and reducing the variations at the beginning and ending of phrases, whereas these same parameters were amplified in the exaggerated performances. As opposed to the results found in Wanderley et al. (2005)'s study, the immobile conditions were not necessarily performed faster than the normal ones. This difference may be explained by the fact that the deadpan condition was not used in Wanderley's study. Therefore, the immobile condition, defined as performance with “little movement as possible” where no mention of expression was made could be interpreted differently in their study.

      The similarity between the results of the present study, in which pianists performed three Romantic excerpts with contrasting difficulties and those found in Thompson and Luck (2012), where pianists played one Chopin Prelude, indicates that the tempo is generally less affected by the QoM of movement used than by the level of expression regardless of the technical complexity of the piece. It is important to note that not all pianists varied the tempo in the same way to perform the excerpts and the conditions, suggesting that variations are the result of personal interpretative decisions.

      5.2. Head QoM

      Another purpose of the current study was to examine the effect of different pieces with various technical levels on pianist' head QoM and expression. By applying PCA on the pianists' position data, we showed that pianists' head QoM is an important parameter for communicating different expressions and the structural features of various excerpts from the Romantic period, which corroborates results from other studies (i.e., Davidson, 1993; Camurri et al., 2003; Nusseck and Wanderley, 2009; Thompson and Luck, 2012). All pianists performed all the excerpts with less head QoM in the deadpan and immobile conditions as compared to the normal one. Although no specific information as regard the movements was given to the participants for the deadpan condition, pianists considerably reduced their movement, as they did in the immobile condition, which is in agreement with results found in Davidson (1994). This indicates that playing in a deadpan manner may naturally restrict the movements and that movements are intrinsically connected to the expression of pianists. While the duration of the immobile condition was not affected as much as in the other conditions, the QoM, however, was affected in all the excerpts. Interestingly, the pianists used the same amount of head movement during the deadpan and immobile performance of the Impromptu and the Ballade, but not in the Sonata, for which less head QoM was used in the deadpan performance. This result is reinforced by the pianists' answers to the survey which state that remaining static during the immobile performance was facilitated by the fact that the technical challenges of the Sonata already limited the movements during a natural performance.

      Davidson (1994) found that pianists performed the exaggerated condition with more amplitude of motion. Although most pianists in this study also performed with more total QoM of the head in the exaggerated condition as compared to the other conditions, it was not the case for each pianist. For instance, the normal condition was performed with more QoM by one pianist in the Impromptu and by two pianists in the Ballade comparatively to the exaggerated condition. Although pianists still varied their movements in the exaggerated condition, the difference with the normal condition was not statistically significant. Since very few indications were given to pianists regarding the execution of the deadpan and the exaggerated conditions, some pianists may have been more reluctant to overly exaggerate the performance than to reduce its expression. As pianists observed in the survey, the technical complexity of the excerpt, such as in the Ballade, may have prevented them from performing with exaggeration without disrupting the flow of the performance.

      5.3. Musical Structure and Motion Recurrence

      Similarly to Camurri et al. (2003), Thompson and Luck (2012), MacRitchie et al. (2013), and Teixeira et al. (2015), we found that pianists' movements and expressive possibilities depend on the underlying structure of the excerpt, but also on its technical level. Variations in amplitude within the time-series of head position data between the conditions and the recurrent patterns in specific regions of the score suggest that certain movements are strongly associated with the structural features of the piece or with the physical constraints of the instrument. The Sonata, which contains more variations in sound dynamics and articulations than the two other excerpts, was performed with more accentuations in the exaggerated condition. Amplitude in head motion between conditions was significantly different in passages with ascending movements and crescendo dynamics. Recurrent head movements were observed when pianists performed wide arpeggios and passages with a chordal texture. Indeed, at certain moments the pianists' movements were dependent on the structure, which created postural constraints and resulted in body weight shifts to the extreme right for all pianists. On the other hand, the technical difficulty of the Ballade, attributed to the complex polyrhythm between the hands, the multiple chromatic passages, and the few moments of rest, prevented pianists from exaggerating the expression and the movements. Although reduced in the deadpan and immobile performances, the movement of the head was synchronized with the periodicity found in the rhythm in all conditions. Pianists moved in similar ways more often during the Ballade, which suggests that the technical level of this excerpt may require specific movements that leave less place for personal interpretative decisions. On the contrary, the Impromptu, characterized by a slow rhythm, smooth dynamics and articulations, gave the pianists the opportunity to emphasize different structural parameters when playing in different conditions. For the Impromptu, large difference in movements between the conditions were observed at the beginning of the melody of the main theme and at the repetition of the same theme, in the deadpan and immobile performances. The correlation map for this excerpt showed that only the beginning of the melodic theme and the end of the excerpt were marked with similar head movements. This means that pianists used distinct expressive movements to perform the conditions and express their personal musical ideas.

      5.4. Survey

      Pianists' answers to the questionnaire gave us important insights regarding the physical and acoustic strategies they can use to convey different levels of expression potentially associated with the musical structure. For most of the pianists, the arms movement and weight are considered as important motion cues to communicate their expressive ideas in a normal performance. Most of them found it difficult to exaggerate the performance in the Ballade, and found that performing in an immobile manner while trying to produce a normal expression was difficult for the Sonata and the Impromptu. For them, it was almost impossible to produce an accurate performance by restricting their movements the way they did.

      5.5. Conclusion and Further Studies

      This research provided new knowledge regarding the types of strategies pianists used to convey expressive intentions and structural parameters through body movements. Although pianists used varied strategies in terms of tempo and QoM to communicate different expressions, we identified similar trends in specific areas of the score. Our results indicated that when ten pianists performed three excerpts from the Romantic repertoire in difference expressive conditions (normal, deadpan, exaggerated and immobile): (a) the duration of performances was less affected by the QoM used than the level of expression regardless of the technical level of the excerpt, (b) the head QoM communicated well different expressions and structural features, and was only significantly different in the immobile and deadpan conditions when compared to the normal condition for all the excerpts, but mainly during the Impromptu, (c) the Sonata allowed more variations in amplitude of the head movements in the exaggerated condition than the two other excerpts due to the variety of elements in the writing, whereas the complex polyrhythm and melody in the Ballade prevented pianists from performing with exaggeration in the movements, and (d) recurrent head movements were found in specific regions of the score for the Sonata and the Ballade only. The results of this kinematic analysis, combined with common piano teaching methods, can benefit the field of piano pedagogy by helping teachers implement and integrate a more systematic approach in instrumental studio lessons in terms of accurate feedback related to movements and musical expression. Learners would be able to compare their movements to those of experienced pianists and become aware of the effect of that movement on the communication of expressive and structural parameters. Providing more systematic feedback in instrumental lessons can help students transfer teachers' explanations to various musical contexts so they may make independent creative choices, and aim to increase their musical communicative abilities.

      Further studies investigating the ability of auditors to discriminate between a normal and immobile conditions could help evaluate whether reducing the movements in a performance affects auditors' perception of musical expression. The authors of this article have shown that even a slight modification in movements, such as the amplitude or acceleration of head motion can influence the sound parameters in a way that is noticeable for auditors (Massie-Laberge et al., unpublished manuscript). Additional work is also needed to identify whether there are distinct groups of pianists who tend to perform with similar body movements and whether these groups differ in terms of individual musical formation, influences and pianistic styles. Extensions of this work could also consider the impact of pieces from various musical periods on pianists' movements. Finally, expressive parameters, such as loud sound dynamics, accents, fast rhythms and rich texture, can be heavily dependent on the motion coming from the hip region. Complementary studies may examine the co-variations between the force applied on the piano stool and body movements to understand further the mechanisms involve in the movements, as well as weight compensation strategies used by pianists.

      Data Availability Statement

      The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.

      Ethics Statement

      This study was carried out in accordance with the recommendations of the McGill University Policy on the Ethical Conduct of Research Involving Human Participants and the Tri-Council Policy Statement: Ethical Conduct For Research Involving Humans, McGill University Research Ethics Board II (REB-II). All participants gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the McGill University Research Ethics Board II, a unit within the Office of the Vice-Principal (Research&Innovation). REB File number: 101-0815.

      Author Contributions

      CM-L, IC, and MW: design of the experiment; CM-L accomplishment of the experiment, data processing and analysis, and writing of report; IC and MW: research supervision and review of the report.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The authors would like to thank the performers for their participation and collaboration.

      References Barbosa A. V. Déchaine R. M. Vatikiotis-Bateson E. Yehia H. C. (2012). Quantifying time-varying coordination of multimodal speech signals using correlation map analysis. J. Acoust. Soc. Am. 131, 21622172. 10.1121/1.368204022423712 Burger B. Toiviainen P. (2013). MoCap Toolbox – A Matlab toolbox for computational analysis of movement data, in Proceedings of the 10th Sound and Music Computing Conference, ed Bresin R. (Stockholm: KTH Royal Institute of Technology), 172178. Cadoz C. Wanderley M. M. (2000). Gesture-music, in Trends in Gestural Control of Music, Vol. 12, (Paris: Ircam), 7191. Camurri A. Mazzarino B. Ricchetti M. Timmers R. Volpe G. (2003). Multimodal analysis of expressive gesture in music and dance performances, in Gesture-Based Communication in Human-Computer Interaction, eds Camurri A. Volpe G. (Berlin: Springer Verlag), 2039. Castellano G. Villalba S. D. Camurri A. (2007). Recognising human emotions from body movement and gesture dynamics, in International Conference on Affective Computing and Intelligent Interaction (Berlin: Springer Verlag), 7182. Clarke E. F. (1987). Levels of structure in the organization of musical time. Contemp. Music Rev. 2, 211238. Dahl S. Bevilacqua F. Bresin R. Clayton M. Leante L. Poggi I. . (2010). Gestures in performance, in Musical Gestures: Sound, Movement, and Meaning, eds Godøy R. I. Leman M. (New York, NY: Routledge), 3668. Dahl S. Friberg A. (2007). Visual perception of expressiveness in musicians' body movements. Music Percept. Interdisc. J. 24, 433454. 10.1525/mp.2007.24.5.433 Davidson J. W. (1993). Visual perception of performance manner in the movements of solo musicians. Psychol. Music 21, 103113. 10.1177/030573569302100201 Davidson J. W. (1994). What type of information is conveyed in the body movements of solo musician performers. J. Hum. Move. Stud. 6, 279301. Davidson J. W. (2007). Qualitative insights into the use of expressive body movement in solo piano performance: a case study approach. Psychol. Music 35, 381401. 10.1177/0305735607072652 Davidson J. W. (2012). Bodily movement and facial actions in expressive musical performance by solo and duo instrumentalists: two distinctive case studies. Psychol Music 40, 595633. 10.1177/0305735612449896 Davidson J. W. Correia J. S. (2002). Body movement, in The Science and Psychology of Music Performance, eds Parncutt R. McPherson G., (New York, NY: Oxford University Press), 237250. Delalande F. (1988). Le Geste, outil d'analyse: quelques enseignements d'une recherche sur la gestique de Glenn Gould. Anal. Music. 10, 4346. Gagnon L. Peretz I. (2003). Mode and tempo relative contributions to “happy-sad” judgements in equitone melodies. Cogn. Emot. 17, 2540. 10.1080/0269993030227929715736 Gingras B. Lagrandeur-Ponce T. Giordano B. L. McAdams S. (2011). Perceiving musical individuality: performer identification is dependent on performer expertise and expressiveness, but not on listener expertise. Perception 40, 12061220. 10.1068/p6891 Godøy R. I. (2010). Gestural affordances of musical sound, in Musical Gestures: Sound, Movement, and Meaning eds Godøy R. I. Leman M. (New York, NY: Routledge), 103125. Godøy R. I. (2013). Understanding coarticulation in musical experience, in Sound, Music, and Motion, eds Aramaki M. Derrien O. Kronland-Martinet R. Ystad S. (Berlin: Springer Verlag), 535547. Godøy R. I. Jensenius A. R. Nymoen K. (2010). Chunking in music by coarticulation. Acta Acust Unit Acust. 96, 690700. 10.3813/AAA.918323 Jensenius A. R. Wanderley M. Godoy R. I. Leman M. (2010). Musical gesture: concepts and methods in research, in Musical Gestures: Sound, Movement and Meaning, eds Godøy R. I. Leman M. (New York, NY: Routledge), 1235. Juslin P. N. Persson R. S. (2002). Emotional communication, in The Science and Psychology of Music Performance: Creative Strategies for Teaching and Learning, eds Parncutt R. McPherson G. E. (New York, NY: Oxford University Press), 219236. Karlsson J. Juslin P. N. (2008). Musical expression: an observational study of instrumental teaching. Psychol. Music 36, 309334. 10.1177/0305735607086040 Kullak A. (1893). The Aesthetics of Pianoforte-Playing. ed Schirmer G. (New York, NY). Leman M. (2008). Embodied Music Cognition and Mediation Technology. Cambridge, MA: Mit Press. Levinskaya M. (1930). The Levinskaya System of Pianoforte Technique and Tonecolor through Mental and Muscular Control: A New Conception of General Education Revealing, through Conscious Control, the Latent Powers of the Mind and Fostering Full Expression of Personality. London; Toronto, ON: J. M. Dent and Sons, Ltd. MacRitchie J. Buck B. Bailey N. J. (2009). Visualising musical structure through performance gesture, in Proceedings of the 10th International Society for Music Information Retrieval Conference (ISMIR) (Kobe), 237242. MacRitchie J. Buck B. Bailey N. J. (2013). Inferring musical structure through bodily gestures. Musicae Sci. 17, 86108. 10.1177/1029864912467632 Nijs L. Lesaffre M. Leman M. (2018). The musical instrument as a natural extension of the musician. In Proceedings of the 5th Conference of Interdisciplinary Musicology (Paris: LAM-Institut jean Le Rond d'Alembert). 132133. Nusseck M. Wanderley M. M. (2009). Music and motion—how music-related ancillary body movements contribute to the experience of music. Music Percept. Interdiscip. J. 26, 335353. 10.1525/mp.2009.26.4.335 Palmer C. (1989). Mapping musical thought to musical performance. J. Exper. Psychol. Hum. Percept. Perform. 15:331. 2525602 Palmer C. (1997). Music performance. Ann. Rev. Psychol. 48, 115138. 9046557 Repp B. H. (1996). Patterns of note onset asynchronies in expressive piano performance. J. Acoust. Soc. Am. 100, 39173932. 8969489 Teixeira E. C. Loureiro M. A. Wanderley M. M. Yehia H. C. (2015). Motion analysis of clarinet performers. J. New Music Res. 44, 97111. 10.1080/09298215.2014.925939 Thompson M. R. Luck G. (2012). Exploring relationships between pianists' body movements, their expressive intentions, and structural elements of the music. Music. Sci. 16, 1940. 10.1177/1029864911423457 Verron C. (2005). Traitement et Visualisation de données Gestuelles captées Par Optotrak. Technical report, Input Devices and Music Interaction Laboratory (Idmil), McGill University, Montreal, QC. Vines B. W. Wanderley M. M. Krumhansl C. L. Nuzzo R. L. Levitin D. J. (2003). Performance gestures of musicians: what structural and emotional information do they convey? in Gesture-Based Communication in Human-Computer Interaction, eds Camurri A. Volpe G. (Berlin: Springer Verlag), 468478. Wanderley M. M. (2002). Quantitative analysis of non-obvious performer gestures, in Gesture and Sign Language in Human-Computer Interaction, eds Wachsmuth I. Sowa T. (London, UK: Routledge), 241253. Wanderley M. M. Vines B. W. Middleton N. McKay C. Hatch W. (2005). The musical significance of clarinetists' ancillary gestures: an exploration of the field. J New Music Res. 34, 97113. 10.1080/09298210500124208 Weiss A. E. Nusseck M. Spahn C. (2018). Motion types of ancillary gestures in clarinet playing and their influence on the perception of musical performance. J. New Music Res. 47, 129142. 10.1080/09298215.2017.1413119 Wheatley-Brown M. Comeau G. Russell D. (2014). The role and management of tension in pedagogical approaches to piano technique. Arts Biomech. 2, 117. Available online at: https://proxy.library.mcgill.ca/login?url=https://search.proquest.com/docview/1650375681?accountid=12339 Winter D. A. (2009). Biomechanics and Motor Control of Human Movement. Waterloo, ON: John Wiley & Sons. Young V. Burwell K. Pickup D. (2003). Areas of study and teaching strategies instrumental teaching: a case study research project. Music Educ. Res. 5, 139155. 10.1080/1461380032000085522

      Funding. This work was supported by the Social Sciences and Humanities Research Council of Canada (Grant number: 767-2014-1546).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.l93fh.net.cn
      kgchain.com.cn
      jjyygo.com.cn
      jkpa.com.cn
      lwsegb.com.cn
      qiyilrs.com.cn
      www.mwbitx.com.cn
      www.mjggc.com.cn
      www.rhchain.com.cn
      www.x-nv.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p