Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2018.01313 Psychology Original Research Does Holistic Processing Require a Large Brain? Insights From Honeybees and Wasps in Fine Visual Recognition Tasks Avarguès-Weber Aurore 1 * d’Amaro Daniele 2 Metzler Marita 3 Finke Valerie 1 Baracchi David 1 Dyer Adrian G. 4 5 1Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France 2Institut für Zoologie III (Neurobiologie), Johannes Gutenberg Universität Mainz, Mainz, Germany 3Department of Anatomy II, University of Cologne, Cologne, Germany 4School of Media and Communication, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia 5Department of Physiology, Monash University, Clayton, VIC, Australia

Edited by: Jeffrey A. Riffell,University of Washington, United States

Reviewed by: Lesley J. Rogers, University of New England, Australia; Cinzia Chiandetti, University of Trieste, Italy

*Correspondence: Aurore Avarguès-Weber, aurore.avargues-weber@univ-tlse3.fr

This article was submitted to Comparative Psychology, a section of the journal Frontiers in Psychology

31 07 2018 2018 9 1313 30 03 2018 09 07 2018 Copyright © 2018 Avarguès-Weber, d’Amaro, Metzler, Finke, Baracchi and Dyer. 2018 Avarguès-Weber, d’Amaro, Metzler, Finke, Baracchi and Dyer

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The expertise of humans for recognizing faces is largely based on holistic processing mechanism, a sophisticated cognitive process that develops with visual experience. The various visual features of a face are thus glued together and treated by the brain as a unique stimulus, facilitating robust recognition. Holistic processing is known to facilitate fine discrimination of highly similar visual stimuli, and involves specialized brain areas in humans and other primates. Although holistic processing is most typically employed with face stimuli, subjects can also learn to apply similar image analysis mechanisms when gaining expertise in discriminating novel visual objects, like becoming experts in recognizing birds or cars. Here, we ask if holistic processing with expertise might be a mechanism employed by the comparatively miniature brains of insects. We thus test whether honeybees (Apis mellifera) and/or wasps (Vespula vulgaris) can use holistic-like processing with experience to recognize images of human faces, or Navon-like parameterized-stimuli. These insect species are excellent visual learners and have previously shown ability to discriminate human face stimuli using configural type processing. Freely flying bees and wasps were consequently confronted with classical tests for holistic processing, the part-whole effect and the composite-face effect. Both species could learn similar faces from a standard face recognition test used for humans, and their performance in transfer tests was consistent with holistic processing as defined for studies on humans. Tests with parameterized stimuli also revealed a capacity of honeybees, but not wasps, to process complex visual information in a holistic way, suggesting that such sophisticated visual processing may be far more spread within the animal kingdom than previously thought, although may depend on ecological constraints.

Apis mellifera configural processing face recognition hierarchical stimuli holistic processing hymenopterans Vespula vulgaris visual cognition DP0878968 DP0987989 Fondation Fyssen10.13039/501100003135 Centre National de la Recherche Scientifique10.13039/501100004794 Université Toulouse III - Paul Sabatier10.13039/501100009160 Australian Research Council10.13039/501100000923 Alexander von Humboldt-Stiftung10.13039/100005156 U.S. Air Force10.13039/100006831

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Humans and other primates have a remarkable ability to detect and visually identify conspecifics on the basis of their faces, which is a crucial capacity in our social interactions (Kanwisher et al., 1997; Pascalis et al., 2002; Wilmer et al., 2010; Young and Burton, 2017). A key mechanism of human face processing is that the visual system does not only use salient elemental features like hair, eyes, nose, or mouth to enable recognition, but it is rather the relationships between features or the configuration of a face that potentially allows for the seemingly advanced ability of humans to recognize conspecific faces (Carey and Diamond, 1977; Tanaka and Sengco, 1997; Collishaw and Hole, 2000; Maurer et al., 2002; Peterson and Rhodes, 2003).

      Relationship processing between elemental features, a cognitive ability known as configural processing in visual cognition field, is considered to improve visual recognition accuracy. Three plausible levels of configural processing for face stimuli have been defined based upon human psychophysics experiments and/or neurophysiological recordings (Maurer et al., 2002). These three levels include (i) sensitivity to first-order relations where the spatial relationships between elemental features are processed (e.g., detecting a face because its features comprise a uniformed arrangement in which eyes are located above the nose which is located above a mouth); (ii) holistic processing, in which elemental features are bound together into a gestalt, and (iii) sensitivity to second-order relationships, in which slight variations of distances between features are perceived. Access to the first level of proposed processing is evidenced for example by a capacity to detect faces amongst considerable background noise like inverted two-tone Mooney faces (Maurer et al., 2002) and allow us to categorize stimuli as faces therefore activating specialized brain areas and specific holistic processing (Kanwisher, 2000; Maurer et al., 2002). Experimental access to holistic processing is achieved using stimuli manipulations including the part-whole effect and the composite-face effect (Carey and Diamond, 1977; Tanaka and Sengco, 1997; Collishaw and Hole, 2000; Maurer et al., 2002; Peterson and Rhodes, 2003). Indeed, because upright faces engage holistic processing, it is difficult to extract individual feature information separately. Thus, it is harder to recognize part of a face (e.g., the eyes) when perceived in isolation while the performance is restored when these features are replaced in the context of the full face (Part-Whole effect). Additionally, the creation of a composite face with features from different faces disrupts feature recognition as the composite face is processed holistically as a novel face (Composite face effect) (Carey and Diamond, 1977; Tanaka and Sengco, 1997; Collishaw and Hole, 2000; Maurer et al., 2002; Peterson and Rhodes, 2003). It is then often assumed that holistic representations enable second-order relationship processing that promotes reliable recognition among highly similar faces (Farah et al., 1998; Maurer et al., 2002; McKone et al., 2007; Taubert et al., 2011). Interestingly, it has also been suggested that holistic processing may operate as a general mechanism to aid reliable recognition from other competing objects in a complex visual environment (Tanaka and Gauthier, 1997; Farah et al., 1998; McKone et al., 2007; Taubert et al., 2011). Indeed, whilst the human and primate brain does have dedicated neural circuitry involved in face processing like the fusiform face area (Kanwisher et al., 1997; Kanwisher, 2000; Tsao et al., 2006), such areas do also facilitate recognition of other non-face stimuli when subjects are experts (Gauthier and Tarr, 1997; Gauthier et al., 2000).

      Recently, the question on whether animals with different neural architecture may be able to process faces has received increased interest. There is growing evidence that animals including non-human primates (Sugita, 2008; Parr, 2011), dogs (Huber et al., 2013), sheep (Kendrick et al., 2001; Morton et al., 2018), magpies (Lee et al., 2011), house sparrows (Vincze et al., 2015), or fish species (Levey et al., 2009; Siebeck et al., 2010; Newport et al., 2016; Wang and Takeuchi, 2017) can reliably process images of human faces despite having very different neural architectures, and in many cases no shared evolutionary history to enable experience at viewing human faces [see Leopold and Rhodes (2010) for a review]. However, only a few studies studied the existence of holistic processing of conspecific or human faces in animals (Burke and Sulikowski, 2013). In parallel, the question of configural/holistic processing for other visual objects has been mainly investigated by using Navon-like hierarchical stimuli (stimuli showing a global shape or configuration created by the spatial arrangement of local shapes). Most tested species demonstrated a preference to process local information rather than the global configuration [e.g., baboons (Fagot and Deruelle, 1997), capuchin monkeys (Truppa et al., 2017), or chicks (Chiandetti et al., 2014)]. To date, only Humans (Navon, 1977), a fish species Xenotoca eiseni (Truppa et al., 2010) and honeybees (Avarguès-Weber et al., 2015) showed consistent global preference suggesting a general importance of visual configural processing in these species.

      In this context, some social insects species became promising models of visual configural processing due to experimental access combined with evidence of impressive visual recognition abilities including face processing of conspecifics (Tibbetts, 2002; Sheehan and Tibbetts, 2011), human faces (Dyer et al., 2005; Dyer and Vuong, 2008; Avarguès-Weber et al., 2017), or configural processing of parameterised visual stimuli (Avarguès-Weber et al., 2010b, 2015; Howard et al., 2017). Thus, a paper wasp species (Polistes fuscatus) was shown capable of individual recognition of conspecifics (Tibbetts, 2002). In a follow-up study (Sheehan and Tibbetts, 2011), the recognition ability of P. fuscatus foundresses was evaluated for visual stimuli including conspecific faces, prey items, complex geometric shapes, or conspecific faces where configuration had been manipulated. P. fuscatus wasps’ recognition level for conspecific faces was superior to all other stimuli in particular faces with altered configuration (Sheehan and Tibbetts, 2011). This evidence from P. fuscatus wasps shows that individual recognition via subtle visual discrimination is also possible in insects with potential convergence of visual strategies based on configural processing with mammals (Avarguès-Weber, 2012; Chittka and Dyer, 2012). Further works on wasps suggest that face recognition may have evolved several times in insects depending upon ecological constraints (Baracchi et al., 2015, 2016).

      The fact that paper wasps could recognize conspecifics (Tibbetts, 2002) also lead to research testing whether honeybees might be able to recognize human faces (Dyer et al., 2005). When trained in an appetitive-aversive differential conditioning protocol to discriminate pictures of human faces chosen from a standard face recognition test as difficult to differentiate for human subjects (Warrington, 1996), free-flying honeybees could reliably recognize the rewarded target face even in the presence of very similar and novel distractor faces (Dyer et al., 2005). Subsequent work showed that honeybees could interpolate information from multiple viewpoints of faces to enable face recognition at novel viewpoint angles (Dyer and Vuong, 2008), or use configural mechanisms to enable first order processing of face stimuli (Avarguès-Weber et al., 2010b). Finally, in a recent experiment free flying wasps Vespula vulgaris were shown also capable to learn the same human faces pictures with performance similar to that of honeybees (Avarguès-Weber et al., 2017).

      In the current study, we employ the framework for configural face processing proposed by Maurer et al. (2002) to test the capacity of both the honeybee (Apis mellifera) and the wasp (V. vulgaris) to process greyscale pictures of human faces used in previous studies (Dyer et al., 2005; Avarguès-Weber et al., 2017) as well as Navon-like geometrical hierarchical stimuli using a holistic processing mechanism. These visual objects, classically used in visual cognition studies, were chosen because of their complexity offering better chance to require configural processing to resolve them. In addition, the high perceptual difference between both types of pictures allows investigating whether holistic processing could be a general mechanism. Both of these insect species are visually active foragers, but neither has any evolutionary history of using visual information for recognition of human faces. We employ adaptations of the part-whole effect, and the composite-face effect experiments typically used to evaluate face processing in humans. Importantly, our study does not directly attempt to make inferential analyses between insect and human species, but seeks to understand whether our test model species show evidence of holistic-like processing in an attempt to gain insights into whether holistic processing is a mechanism that is general to visual systems in nature for fine discrimination.

      Materials and Methods Experiment 1: Human Faces Pictures

      Experiments were conducted in 2013 at Mainz University with individually tagged and tested honeybees (A. mellifera L.) and wasps (V. vulgaris) trained by providing sucrose rewards to freely visit the experimental apparatus, a 50 cm diameter vertical screen which could be rotated to vary the spatial arrangement of the stimuli presented on it (Dyer et al., 2005; Dyer and Vuong, 2008) (Figure 1A). Only one individual was present at a time at the apparatus during the training and the tests. Two achromatic human faces from a standard face recognition test (Warrington, 1996) and used previously to investigate human face recognition abilities in bees (Dyer et al., 2005) and wasps (Avarguès-Weber et al., 2017) were chosen as complex visual stimuli to be discriminate. Four stimuli (two identical S+ and two identical S− stimuli; Figures 1A,B) were presented simultaneously on top of landing platforms offering a 10 μL drop of either a 25% (vol/vol) sucrose solution (S+) or a 60 mM quinine hemisulfate solution (S−), which promotes enhanced visual discrimination performances (Avarguès-Weber et al., 2010a). The reinforcement contingency was balanced between tested subjects. The face stimuli were attached on freely rotating 6 cm × 8 cm hangers that could be positioned in a number of random spatial positions and rearranged during the training by a rotation of the whole screen or manual displacements of the hangers (Figure 1A).

      Experiment with human face pictures. (A) Schematic representation of the experimental setup. (B) Stimuli used for training and the non-reinforced tests. (C) Mean ± SEM percentage of choices for the correct stimulus on the 20 total test choices in each of the non-reinforced tests. The black bars show honeybees results (N = 12) while the white bars represent the wasps results (N = 12). The dashed line indicates chance level (p < 0.05). The pictures are used and reproduced with permission from Psychology Press, the original publisher (Warrington, 1996).

      Before returning to the nest to deliver the sucrose collected, the bees or wasps typically made four to six choices (landing on a stimulus platform). Training length was chosen after pilot experiments to assure both species obtained a high level (≈80% of correct choices) of discrimination between the training faces, and a capacity to identify the target when presented with the inner part only of the training faces (Inner Test, see description of the tests below) consistent with previous evidence reported in Avarguès-Weber et al. (2010b). We thus used a training length of 180 choices for each bee, and 90 choices were necessary to reach a similar level of performance with the wasps. However, an inferential interpretation of the effect of training length between species was not a goal of the current study. In particular, experiments with bees and wasps were not conducted in parallel and may therefore have been subjected to differential seasonal effects for example. In this regard, our pilot tests found wasps only reliably forage for sucrose solution in the last weeks of summer which induces very limited experimental opportunity to test this species in free-flying conditions. Stimuli and landing platforms were washed with ethanol between foraging bouts and before the tests.

      After training was completed, three non-reinforced test conditions were presented to the bees and wasps in which the first 20 choices were recorded (Figure 1B). The different test sessions were intermingled by three refreshing foraging bouts with the training conditions to maintain motivation. First, a Learning test presenting the training stimuli allowed accessing S+/S− discrimination level after the training session (Figure 1B). We then analyzed as a control the capacity of bees and wasps to discriminate both training face stimuli when only the stimuli inner parts were available (Inner test; Figure 1B). The comparison of performance level between the Inner test and the Part-Whole Test in which the S+ face was presented against a composed face (S− inner part surrounding by S+ outer features) was used as an indicator of holistic processing in the tested animals (Figure 1B). Both the Inner test and the Part-Whole test could only be resolved by the discrimination of the S+ vs. S− inner parts. The only difference between either test is that the inner parts were replaced in the context of a full image in the Part-Whole test. Thus, if bees’ or wasps’ visual recognition systems are sensitive to the “part-whole” effect, performance of the Part-Whole test should be higher than performance of the Inner test in which inner stimuli features are presented in isolation.

      Finally, the Composite test aimed to investigate a potential composite face effect by offering a choice between a composed stimulus (S+ inner part and the S− outer part) and the S− face stimulus. Performance in this test should be lower than in the Inner test if the tested subjects were relying on holistic processing to solve the discrimination task.

      Experiment 2: Hierarchical Navon-Like Parameterized Stimuli

      This experiment was conducted with individually tagged and tested honeybees (in 2012, Mainz University) and wasps (in 2017, Mainz University) trained to freely visit a Y-maze setup covered by an ultraviolet transparent Plexiglas ceiling (Figure 2A). The entrance of the maze led to a decision chamber, where the flying insect could choose between the two arms of the maze (Figure 2A). One stimulus was presented vertically on each back wall of the arms which were placed at 15 cm from the decision chamber (Figure 2A). Such a setup allows for a controlled viewing distance as choices are recorded when the insect leaves the decision chamber thus entering one arm of the Y-maze. The visual angle subtended by the stimuli at the decision point was consequently controlled so that both small local features and large global features of the hierarchical stimuli were easily perceived by the animals.

      Experiment with Navon-like stimuli. (A) Schematic representation of the experimental setup. (B) Stimuli used for training and the non-reinforced tests. (C) Mean ± SEM percentage of choices for the correct stimulus on the 20 total test choices in each of the non-reinforced tests. The black bars show honeybees results (N = 10) while the white bars represent the wasps results (N = 6). The dashed line indicates chance level (p < 0.05).

      The training phase consisted of a differential conditioning task with two hierarchical compound stimuli including a 11 cm square composed by the spatial arrangement of 12 repetitions of 1-cm up-triangles and a 11 cm diamond (45° rotated square) composed by 12 repetitions of 1-cm down-triangles (Figure 2B). For each tested subject, one of these stimuli was set in a balanced design as the S+ and associated with a 25% sucrose solution while the other was set as the S− and associated with a quinine solution (60 mM). Solutions were delivered in the center of each stimulus by means of transparent micropipettes. Between each foraging bout, the respective side of the S+ and the S− was allocated to the left or the right arm of the maze in a pseudo random fashion (e.g., the same stimulus was not presented in the same side more than twice in a row). If the subject chose the arm in which the S+ was presented, it could drink the sucrose solution ab libitum before returning to the nest. If the subject chose the S− arm, it was allowed to taste the quinine solution and then to fly back freely to the alternative arm where it could drink the sucrose solution; but only the first choice, recorded when the animal entered an arm, was counted. The training lasted 36 choices which correspond to 36 foraging bouts in this setup. This training length assured similar level of performance both for the bees and the wasps.

      After training was completed, the subjects faced a Learning test with fresh S+ and S− stimuli (Figure 2B). Then four different non-reinforced transfer tests were proposed in a random sequence order intermingled by three refreshing training bouts (Figure 2B). During the tests, contacts with the surface of the stimuli were counted for 45 s.

      As a control, global feature learning was assessed by analyzing the insects’ capacity to recognize the S+ global shape (square or diamond) vs. the S− global shape when presented in isolation, i.e., in the absence of the local features thus created by 1-cm wide plain lines (Global test; Figure 2B).

      To evaluate the existence of the part-whole effect as indicator of holistic processing, we compared performance in the Global test to performance in the Part-Whole test offering a choice between the S+ global shape constructed by the S+ local elements (S+ stimulus) versus the S− global shape constructed also by the S+ local elements (composed stimulus S+/S−). In both tests, only the global information could be used as a cue but was presented in isolation in one case (Global Test) and in the whole context of a Navon-like stimulus in the other case (Part-Whole Test) (Figure 2B).

      We then tested whether adding a novel local cue would impede recognition of the global cue (composite effect) in the Composite test (G+/Lnew vs. G-/Lnew) (Figure 2B). The performance in this test was also compared to the recognition level in the Global test where only global cues were available.

      Statistical Analysis

      Performances during the tests (proportion of correct choices out of the 20 test choices; a single value by subject) were analyzed with a generalized linear model (GLM) selecting a binomial distribution and a logit link function. This model only included the intercept term to test for a significant difference between the mean proportion of observed correct choices (p) and the proportion of choices expected by chance (p = 0.5). The stimulus set as rewarded (categorical factor) never had a significant influence on the performance (p > 0.05) and data were, therefore, pooled for the tests analysis. The performances of the different tests were compared with a GLMM in which individuals were considered as a random factor to account for the repeated measurement design while the type of test was set as a categorical variable. The analyses were performed with R software, version 3.3.2 (R Development Core Team), lme4 package (Bates et al., 2014).

      Results Experiment 1: Human Faces Pictures Honeybees

      Honeybees (N = 12) succeeded in learning the discrimination task between the two human faces (S+ vs. S−; Figure 1C). The discrimination performance was significantly higher than chance level in the non-reinforced Learning test where the bees had to choose between the S+ and S− stimuli [N = 12; 86.3 ± 2.6 (mean ± SEM) % of correct choices; GLM: z = 9.80, p < 0.001; Figure 1C]. There was no significant influence of the face used as S+ stimulus (z = 0.19, p = 0.85).

      The bees were still capable of recognizing the training stimuli when only the inner parts were available (Inner test: 60.0 ± 3.8% of correct choices; z = 3.08, p = 0.002; Figure 1C). However, performance was significantly lower than for the whole faces (Inner test versus Learning test: GLMM: z = 6.29, p < 0.001; Figure 1C).

      In the Part-Whole test, adding the S+ outer part to re-create whole faces allowed the restoration of the Learning test performance level although the bees could only rely as in the Inner test on the inner parts to discriminate both stimuli. Indeed, the outer parts were identical for both options (85.5 ± 2.6% of correct choices; z = 9.67, p < 0.001; comparison with the Learning test: z = 0.26, p = 0.79 and with the Inner test: z = 6.09, p < 0.001; Figure 1C). The honeybees seem thus sensitive to the “part-whole” effect as recognition of a part of the training stimulus was facilitated when presented in the context of a whole face.

      When confronted to the Composite test in which the distractor (S−) outer feature was added to the inner part of the S+ face, the bees failed to recognize such composite stimulus as being more similar to the S+ face than the full S− alternative option (44.6 ± 5.6% of correct choices; z = 1.66, p = 0.09; Figure 1C). Results from this test suggest that honeybees are sensitive to the “composite-face” effect as they had greater difficulty to recognize the S+ inner feature when placed in the context of an incorrect whole face than presented in isolation (Composite test versus Inner test: z = 3.40, p < 0.001; Figure 1C).

      Wasps

      The wasps (N = 12) trained to discriminate the S+ and S− human faces successfully learned the task after 90 reinforced choices (77.9 ± 2.2% of correct choices in the Learning test; z = 8.10, p < 0.001; Figure 1C) and were able to use only the inner features of the faces to recognize the S+ stimulus (Inner test: 60.0 ± 2.5% of correct choices; z = 3.08, p = 0.002; Figure 1C) although performance level was significantly lower than with the whole face (Learning test versus Inner test: z = 4.20, p < 0.001; Figure 1C). There was no significant influence of the face used as S+ stimulus (z = 0.25, p = 0.80).

      The wasps also showed restored performance when full faces were presented in the Part-Whole test even if the available information to solve the discrimination task remained the inner features only as for the Inner test (84.6 ± 3.5% of correct choices, z = 9.52, p < 0.001; Part-Whole test versus Learning test: z = 1.86, p = 0.06; Part-Whole test versus Inner test: z = 5.84, p < 0.001; Figure 1C). The wasps seem consequently also sensitive to the “Part-Whole effect” when extensively trained with complex visual stimuli.

      Finally, in the Composite test, the wasps not only failed to recognize the S+ inner features when surrounded by the S− outer features (“Composite-face effect”) but showed significant preference for the S− stimulus suggesting novelty aversion for the composed stimulus (37.1 ± 4.7% of correct choices; z = 3.96, p < 0.001; Composite test versus Inner test: z = 4.98, p < 0.001; Figure 1C). A similar tendency although not significant (44.6% of correct choices, p = 0.09; see above) was also observed in bees.

      Experiment 2: Hierarchical Navon-Like Parameterized Stimuli Honeybees

      Honeybees (N = 10) successfully learned to discriminate the S+ and S− hierarchical stimuli as performance in the Learning test was significantly above chance level (73.3 ± 2.7% of correct choices; z = 6.66, p < 0.001; Figure 2C). There was no significant influence of the stimulus used as S+ (z = 1.18, p = 0.24). The bees were capable to recognize the S+ global shape even when drawn with a solid line (interpolation) instead of distinct local features (Global test: 62.5 ± 2.6% of correct choices; z = 3.82, p < 0.001; Figure 2C) but this transformation resulted in poorer performance than in the Learning test (z = 2.43, p = 0.02; Figure 2C).

      The bees behaved consistently with a sensitivity to the “part-whole effect” with parameterized stimuli as with the face stimuli: adding the same local features (L+) to the global shapes (Part-Whole test: G+L+ versus G-L+), thus re-constructing full hierarchical stimuli while still only offering the global information to allow solving the discrimination task, induced restored performance to a level similar to the Learning test performance (66.4 ± 2.5% of correct choices, z = 4.81, p < 0.001; Part-Whole test versus Learning test: z = 1.62, p = 0.11) although not significantly different from the Global test performance (Part-Whole test versus Global test: z = 0.82, p = 0.41; Figure 2C).

      When facing the stimuli of the Composite test created by using novel local elements (dots), the bees failed to recognize the S+ and S− global features (49.7 ± 2.0% of correct choices, z = 0.20, p = 0.84; Composite test versus Global test: z = 2.85, p = 0.004; Figure 2C) thus suggesting again the influence of the “composite-face effect.”

      Wasps

      The wasps (N = 6) trained to discriminate S+ from S− hierarchical Navon-like stimuli successfully solved the task as shown by their performance in the Learning test (68.0 ± 5.1% of correct choices, z = 3.11, p = 0.002; Figure 2C). There was no significant influence of the stimulus used as S+ (z = 0.55, p = 0.58). They were also capable of interpolating the learnt stimuli to their global shape in the absence of local features (Global test: 71.3 ± 1.9% of correct choices; z = 2.52, p = 0.01; Figure 2C). Interestingly, removing local features did not impede wasps’ performance (Global test versus Learning test: z = 0.44, p = 0.66; Figure 2C). A similar level of performance was obtained when the hierarchical structure was restored by adding the S+ local features to both global information (Part-Whole test: 68.0 ± 5.8% of correct choices; z = 2.20, p = 0.03; Part-Whole test versus Learning test: z = 0.73, p = 0.47; Figure 2C). The wasps also did not appear to experience difficulty in recognizing the global information when novel local features were used (Composite test: 66.5 ± 6.6% of correct choices, z = 4.25, p < 0.001; Composite test versus Learning test: z = 1.22, p = 0.22; Figure 2C). Thus, in this particular experiment, the wasps did not seem to use holistic-like processing mechanism to recognize simplified parameterized stimuli, in contrast to our results with honeybees.

      Discussion

      In this paper, we evaluated whether either of two hymenopteran species with relatively small brains of less than a million neurons might have a capacity for holistic processing of human faces, and parameterized stimuli, following the definitions for configural processing outlined by Maurer et al. (2002). Using the part-whole effect type experiment both honeybees and wasps showed a significant improvement to discriminate between inner features of the faces when they were shown together with identical outer features in a holistic stimulus than when presented in isolation (Figure 1). However, visual processing was totally disrupted when the correct face inner features were combined with the outer features of the distractor, showing that both bees and wasps were sensitive to the composite-face effect in their visual processing of stimuli (Figure 1). Thus, both bee and wasp species showed evidence consistent with holistic processing when having to recognize pictures of human faces, even though neither species has any ecological reason of having experience with human faces.

      In the experiments with parameterized stimuli, honeybees also exhibited choice behavior consistent with holistic processing as performance was lower when bees had only access to the global features than when presented together with the local features (part-whole effect) and the bees’ choices collapsed to chance level when the same global features were shown together with novel local features (composite effect) (Figure 2). However, in wasps, no change in the capacity to recognize global features was observed, neither when presented in isolation, in a whole hierarchical context, nor together with novel local cues (Figure 2). Wasps did not seem consequently to rely on holistic-like processing with these particular stimuli. Different hymenopteran species thus process and implement various forms of configural processing in different ways. Interestingly, honeybees are known to process Navon stimuli with a global preference consistent with configural processing, but this preference could be modulated with priming to local stimulus elements (Avarguès-Weber et al., 2015), showing evidence of plasticity in the application of visual processing rules by honeybees. In bees, the sensitivity to some contextual visual illusions also considered as dependent on configural processing could also be modulated and is in particular under the influence of the conditioning procedure (Howard et al., 2017). The influence of testing procedure might also be at the origin of the difference in Global/Local processing between species as the fish species (Truppa et al., 2010) and bees (Avarguès-Weber et al., 2015) were the only animals tested while having the possibility to move toward the stimuli thus promoting configural processing (Rosa Salva et al., 2014). Thus, differences in visual strategies between different hymenopteran species for specific stimuli may depend upon a variety of factors that remain to be characterized. As both species shared a similar visual system (compound eyes and brain structure) due to their phylogenetic common history, it could be speculated that the difference in the use of holistic processing may be dependent of ecological differences, for example, in foraging (prey for wasps; flowers for honeybees) either through evolutionary adaptation or individual experience. Despite this difference for parameterized stimuli, we did observe some evidence that both species, despite their miniature brain, can holistically process visual information. This result suggests therefore that configural processing could be a more widespread visual solution in nature, and it would thus be of value to explore such a capacity in a wider range of vision-dependent species to understand how environmental and neurobiological contexts may influence visual recognition strategies.

      The fact that two hymenopteran species show some evidence of holistic-like processing of complex visual stimuli leads to the interesting question of where in the insect brain such a process may take place. We hypothesize that mushroom bodies, sharing analogies with the higher cortical centers of vertebrate brains (Farris, 2008) and believed to be strongly linked to learning and memory processed in arthropod brains (Hammer and Menzel, 1995; Mizunami et al., 1998; Strausfeld et al., 1998; Hourcade et al., 2010; Devaud et al., 2015), should be the first structures to test for their implication in configural processing. In addition, Hymenopteran species such as bees and wasps do possess particularly developed mushroom bodies in comparison to other insects (Farris, 2008). For instance, the calyces of the mushroom bodies are doubled and expanded while receiving novel afferences from the visual part of the brain in comparison to Drosophila mushroom bodies (Farris, 2008; Avarguès-Weber and Giurfa, 2013). As the evolutionary development of mushroom bodies started back with ancestral parasitoid wasps (Farris and Schulmeister, 2011) that shared with bees spatial, visual, or olfactory learning need, the mushroom bodies are consequently considered as promoting learning abilities and flexibility (Giurfa, 2003; Chittka and Niven, 2009).

      Finally, our new findings fit with the framework proposed by Chittka and Niven (Chittka and Niven, 2009) that large brains may not be necessary for processing seemingly complex stimuli, like faces, but rather the ecological conditions may enable the capacity to develop a brain that can use sophisticated strategies (Chittka and Niven, 2009; Chittka and Jensen, 2011; Chittka and Dyer, 2012). It is nevertheless likely that this new work has just scratched the surface of how hymenopteran insects, or even other animals may use configural processing, and it will be necessary to explore the very wide range of approaches applied in human psychophysics to build a more comprehensive understanding of these phenomenon in nature and in particular, how the impressive abilities of biological brains are possible, and what might be solutions that could be applied to machine vision (Kleyko et al., 2015; Cyr et al., 2017).

      Ethics Statement

      Our research involves honey bees and wasps that are not animal models for which approval of an ethical committee is required. A minimum number of animals were used to resolve our scientific question. The animals remained free during the whole experiment and were not harmed in our experimental procedure.

      Author Contributions

      AA-W and AD conceived the study and designed the experiments. Dd’A, MM, VF, DB, and AD performed the experiments. AA-W analyzed the data. AA-W and AD wrote the manuscript.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. Our work was supported by the Fyssen Foundation, the French National Research Center (CNRS), and the University Paul Sabatier of Toulouse. AD acknowledges the Australian Research Council DP0878968/DP0987989, the Alexander von Humboldt Foundation, and the USAF AOARD for assistance in developing this work.

      We are grateful for advice and assistance provided by Dr. Jürgen Schramme, Dr. Jair Garcia, Professor Marcello Rosa, and Professor Roland Strauss to help facilitate this research and to Michael Merz for technical assistance.

      References Avarguès-Weber A. (2012). Face recognition: lessons from a wasp. Curr. Biol. 22 R91R93. 10.1016/j.cub.2011.12.040 22321310 Avarguès-Weber A. D’amaro D. Metzler M. Garcia J. Dyer A. G. (2017). Recognition of human face images by the free flying wasp Vespula vulgaris. Anim. Behav. Cogn. 4 314323. 10.26451/abc.04.03.09.2017 Avarguès-Weber A. De Brito Sanchez M. G. Giurfa M. Dyer A. G. (2010a). Aversive reinforcement improves visual discrimination learning in free-flying honeybees. PLoS One 5:e15370. 10.1371/journal.pone.0015370 20976170 Avarguès-Weber A. Portelli G. Benard J. Dyer A. G. Giurfa M. (2010b). Configural processing enables discrimination and categorization of face-like stimuli in honeybees. J. Exp. Biol. 213 593601. 10.1242/jeb.039263 20118310 Avarguès-Weber A. Dyer A. G. Ferrah N. Giurfa M. (2015). The forest or the trees: preference for global over local image processing is reversed by prior experience in honeybees. Proc. Biol. Sci. 282:20142384. 10.1098/rspb.2014.2384 25473017 Avarguès-Weber A. Giurfa M. (2013). Conceptual learning by miniature brains. Proc. Biol. Sci. 280:20131907. 10.1098/rspb.2013.1907 24107530 Baracchi D. Petrocelli I. Chittka L. Ricciardi G. Turillazzi S. (2015). Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders. Proc. Biol. Sci. 282:20142750. 10.1098/rspb.2014.2750 25652836 Baracchi D. Turillazzi S. Chittka L. (2016). Facial patterns in a tropical social wasp correlate with colony membership. Naturwissenschaften 103:80. 10.1007/s00114-016-1406-8 27639728 Bates D. Mächler M. Bolker B. Walker S. (2014). Fitting linear mixed-effects models using lme4. arXiv:1406.5823 [Preprint]. Burke D. Sulikowski D. (2013). The evolution of holistic processing of faces. Front. Psychol. 4:11. 10.3389/fpsyg.2013.00011 23382721 Carey S. Diamond R. (1977). From piecemeal to configurational representation of faces. Science 195 312314. 10.1126/science.831281 831281 Chiandetti C. Pecchia T. Patt F. Vallortigara G. (2014). Visual hierarchical processing and lateralization of cognitive functions through domestic chicks’ eyes. PLoS One 9:e84435. 10.1371/journal.pone.0084435 24404163 Chittka L. Dyer A. G. (2012). Cognition: your face looks familiar. Nature 481 154155. 10.1038/481154a 22237105 Chittka L. Jensen K. (2011). Animal cognition: concepts from apes to bees. Curr. Biol. 21 R116R119. 10.1016/j.cub.2010.12.045 21300275 Chittka L. Niven J. (2009). Are bigger brains better? Curr. Biol. 19 R995R1008. 10.1016/j.cub.2009.08.023 19922859 Collishaw S. M. Hole G. J. (2000). Featural and configurational processes in the recognition of faces of different familiarity. Perception 29 893909. 10.1068/p2949 11145082 Cyr A. Avarguès-Weber A. Thériault F. (2017). Sameness/difference spiking neural circuit as a relational concept precursor model: a bio-inspired robotic implementation. Biol. Inspired Cogn. Archi. 21 5966. 10.1016/j.bica.2017.05.001 Devaud J.-M. Papouin T. Carcaud J. Sandoz J.-C. Grünewald B. Giurfa M. (2015). Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations. Proc. Natl. Acad. Sci. U.S.A. 112 E5854E5862. 10.1073/pnas.1508422112 26460021 Dyer A. G. Neumeyer C. Chittka L. (2005). Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. J. Exp. Biol. 208 47094714. 10.1242/jeb.01929 16326952 Dyer A. G. Vuong Q. C. (2008). Insect brains use image interpolation mechanisms to recognise rotated objects. PLoS One 3:e4086. 10.1371/journal.pone.0004086 19116650 Fagot J. Deruelle C. (1997). Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). J. Exp. Psychol. Hum. Percept. Perform. 23 429442. 10.1037/0096-1523.23.2.429 9104003 Farah M. J. Wilson K. D. Drain M. Tanaka J. N. (1998). What is” special” about face perception? Psychol. Rev. 105 482498. Farris S. M. (2008). Structural, functional and developmental convergence of the insect mushroom bodies with higher brains centers of vertebrates. Brain Behav. Evol. 72 115. 10.1159/000139457 18560208 Farris S. M. Schulmeister S. (2011). Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc. Biol. Sci. 278 940951. 10.1098/rspb.2010.2161 21068044 Gauthier I. Skudlarski P. Gore C. G. Anderson A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3 191197. 10.1038/72140 10649576 Gauthier I. Tarr M. J. (1997). Becoming a “Greeble” expert: exploring mechanisms for face recognition. Vision Res. 37 16731682. 10.1016/S0042-6989(96)00286-6 Giurfa M. (2003). Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr. Opin. Neurobiol. 13 726735. 10.1016/j.conb.2003.10.015 14662375 Hammer M. Menzel R. (1995). Learning and memory in the honeybee. J. Neurosci. 15 16171630. 10.1523/JNEUROSCI.15-03-01617.1995 Hourcade B. Muenz T. M. Sandoz J. C. Rössler W. Devaud J. M. (2010). Long-term memory leads to synaptic reorganization in mushroom bodies: a memory trace in the insect brain? J. Neurosci. 30 64616465. 10.1523/JNEUROSCI.0841-10.2010 20445072 Howard S. R. Avarguès-Weber A. Garcia J. Stuart-Fox D. Dyer A. G. (2017). Perception of contextual size illusions by honeybees in restricted and unrestricted viewing conditions. Proc. Biol. Sci. 284:20172278. 10.1098/rspb.2017.2278 29167368 Huber L. Racca A. Scaf B. Virányi Z. Range F. (2013). Discrimination of familiar human faces in dogs (Canis familiaris). Learn. Motiv. 44 258269. 10.1016/j.lmot.2013.04.005 24187385 Kanwisher N. (2000). Domain specificity in face perception. Nat. Neurosci. 3 759763. 10.1038/77664 10903567 Kanwisher N. Mcdermott J. Chun M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17 43024311. 10.1523/JNEUROSCI.17-11-04302.1997 Kendrick K. M. Costa A. P. Leigh A. E. Hinton M. R. Peirce J. W. (2001). Sheep don’t forget a face. Nature 414 165166. 10.1038/35102669 11700543 Kleyko D. Osipov E. Gayler R. W. Khan A. I. Dyer A. G. (2015). Imitation of honey bees’ concept learning processes using vector symbolic architectures. Biol. Inspired Cogn. Archi. 14 5772. 10.1016/j.bica.2015.09.002 14658059 Lee W. Y. Choe J. C. Jablonski P. G. (2011). Wild birds recognize individual humans: experiments on magpies, Pica pica. Anim. Cogn. 14 817825. 10.1007/s10071-011-0415-4 21614521 Leopold D. A. Rhodes G. (2010). A comparative view of face perception. J. Comp. Psychol. 124 233251. 10.1037/a0019460 20695655 Levey D. J. Londoño G. A. Ungvari-Martin J. Hiersoux M. R. Jankowski J. E. Poulsen J. R. (2009). Urban mockingbirds quickly learn to identify individual humans. Proc. Natl. Acad. Sci. U.S.A. 106 89598962. 10.1073/pnas.0811422106 19451622 Maurer D. Le Grand R. Mondloch C. J. (2002). The many faces of configural processing. Trends Cogn. Sci. 6 255260. 10.1016/S1364-6613(02)01903-4 McKone E. Kanwisher N. Duchaine B. C. (2007). Can generic expertise explain special processing for faces? Trends Cogn. Sci. 11 815. 10.1016/j.tics.2006.11.002 17129746 Mizunami M. Weibrecht J. M. Strausfeld N. J. (1998). Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402 520537. 10.1002/(SICI)1096-9861(19981228)402:4<520::AID-CNE6>3.0.CO;2-K 9862324 Morton A. J. Knolle F. Goncalves R. (2018). Sheep recognise familiar and unfamiliar human faces from 2D images. R. Soc. Open Sci. 171228: 10.1098/rsos.171228 29291109 Navon D. (1977). Forest before trees: the precedence of global features in visual perception. Cogn. Psychol. 9 353383. 10.1016/0010-0285(77)90012-3 Newport C. Wallis G. Reshitnyk Y. Siebeck U. E. (2016). Discrimination of human faces by archerfish (Toxotes chatareus). Sci. Rep. 6:27523. 10.1038/srep27523 27272551 Parr L. A. (2011). The evolution of face processing in primates. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366 17641777. 10.1098/rstb.2010.0358 21536559 Pascalis O. De Haan M. Nelson C. A. (2002). Is face processing species-specific during the first year of life? Science 296 13211323. 10.1126/science.1070223 12016317 Peterson M. A. Rhodes G. (2003). Perception of Faces, Objects, and Scenes: Analytic and Holistic Processes. Oxford: Oxford University Press. Rosa Salva O. Sovrano V. A. Vallortigara G. (2014). What can fish brains tell us about visual perception? Front. Neural Circuits 8:119. 10.3389/fncir.2014.00119 25324728 Sheehan M. J. Tibbetts E. A. (2011). Specialized face learning is associated with individual recognition in paper wasps. Science 334 12721275. 10.1126/science.1211334 22144625 Siebeck U. E. Parker A. N. Sprenger D. Mäthger L. M. Wallis G. (2010). A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 20 407410. 10.1016/j.cub.2009.12.047 20188557 Strausfeld N. J. Hansen L. Li Y. Gomez R. S. Ito K. (1998). Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn. Mem. 5 1137. 10.1101/lm.5.1.11 10454370 Sugita Y. (2008). Face perception in monkeys reared with no exposure to faces. Proc. Natl. Acad. Sci. U.S.A. 105 394398. 10.1073/pnas.0706079105 18172214 Tanaka J. Gauthier I. (1997). “Expertise in object and face recognition,” in The Psychology of Learning and Motivation Vol. 36 eds Goldstone R. L. Medin D. L. Schyns P. G. (San Diego, CA: Academic Press). Tanaka J. M. Sengco J. A. (1997). Features and their configuration in face recognition. Mem. Cogn. 25 583592. 10.3758/BF03211301 Taubert J. Apthorp D. Aagten-Murphy D. Alais D. (2011). The role of holistic processing in face perception: evidence from the face inversion effect. Vision Res. 51 12731278. 10.1016/j.visres.2011.04.002 21496463 Tibbetts E. A. (2002). Visual signals of individual identity in the wasp Polistes fuscatus. Proc. Biol. Sci. 269 14231428. 10.1098/rspb.2002.2031 12137570 Truppa V. Carducci P. De Simone D. A. Bisazza A. De Lillo C. (2017). Global/local processing of hierarchical visual stimuli in a conflict–choice task by capuchin monkeys (Sapajus spp.). Anim. Cogn. 20 347357. 10.1007/s10071-016-1057-3 27858168 Truppa V. Sovrano V. A. Spinozzi G. Bisazza A. (2010). Processing of visual hierarchical stimuli by fish (Xenotoca eiseni). Behav. Brain Res. 207 5160. 10.1016/j.bbr.2009.09.039 19800926 Tsao D. Y. Freiwald W. A. Tootell R. B. H. Livingstone M. S. (2006). A cortical region consisting entirely of face-selective cells. Science 311 670674. 10.1126/science.1119983 16456083 Vincze E. Papp S. Preiszner B. Seress G. Liker A. Bókony V. (2015). Does urbanization facilitate individual recognition of humans by house sparrows? Anim. Cogn. 18 291298. 10.1007/s10071-014-0799-z 25164623 Wang M.-Y. Takeuchi H. (2017). Individual recognition and the ‘face inversion effect’in medaka fish (Oryzias latipes). eLife 6:e24728. 10.7554/eLife.24728 28693720 Warrington E. K. (1996). Short Recognition Memory Test for Faces. Hove: Psychology Press. Wilmer J. B. Germine L. Chabris C. F. Chatterjee G. Williams M. Loken E. (2010). Human face recognition ability is specific and highly heritable. Proc. Natl. Acad. Sci. U.S.A. 107 52385241. 10.1073/pnas.0913053107 20176944 Young A. W. Burton A. M. (2017). Are we face experts? Trends Cogn. Sci. 22 100110. 10.1016/j.tics.2017.11.007 29254899
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016goob.net.cn
      kybjdg.com.cn
      gidnht.com.cn
      www.lrvrtm.org.cn
      talxncp.org.cn
      www.shscbw.com.cn
      www.tkciss.com.cn
      www.rongkee.net.cn
      www.sheye.net.cn
      www.pgchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p