Edited by:
Reviewed by:
*Correspondence:
This article was submitted to Human-Media Interaction, a section of the journal Frontiers in Psychology
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Memory is one of the most important cognitive functions in a person’s life as it is essential for recalling personal memories and performing many everyday tasks. Although a huge number of studies have been conducted in the field, only a few of them investigated memory in realistic situations, due to methodological issues. The various tools that have been developed using virtual environments (VEs) have gained popularity in cognitive psychology and neuropsychology because they enable to create naturalistic and controlled situations, and are thus particularly adapted to the study of episodic memory (EM), for which an ecological evaluation is of prime importance. EM is the conscious recollection of personal events combined with their phenomenological and spatiotemporal encoding contexts. Using an original paradigm in a VE, the objective of the present study was to characterize the construction of episodic memories. While the concept of working memory has become central in the understanding of a wide range of cognitive functions, its role in the integration of episodic memories has seldom been assessed in an ecological context. This experiment aimed at filling this gap by studying how EM is affected by concurrent tasks requiring working memory resources in a realistic situation. Participants navigated in a virtual town and had to memorize as many elements in their spatiotemporal context as they could. During learning, participants had either to perform a concurrent task meant to prevent maintenance through the phonological loop, or a task aimed at preventing maintenance through the visuospatial sketchpad, or no concurrent task. EM was assessed in a recall test performed after learning through various scores measuring the what, where and when of the memories. Results showed that, compared to the control condition with no concurrent task, the prevention of maintenance through the phonological loop had a deleterious impact only on the encoding of central elements. By contrast, the prevention of visuo-spatial maintenance interfered both with the encoding of the temporal context and with the binding. These results suggest that the integration of realistic episodic memories relies on different working memory processes that depend on the nature of the traces.
香京julia种子在线播放
Early models of memory made clear distinctions between short-term and long-term memory. In 1890,
While several scientific fields of research have led to a better understanding of these various forms of memory in the lab, the majority of studies seldom targeted realistic situations close to daily life, mainly due to methodological issues. Over the past decades, however, virtual environments (VEs) have gained popularity as a tool in cognitive psychology and neuropsychology because they enable researchers and clinicians to create naturalistic and controlled situations (e.g., for a review,
Several factors have been identified as modulating the integration of episodic memories, e.g., organization learning (
In several models, WM is seen as an interface between short-term perceptual memories and long-term memory, thus being of primary importance in the encoding process of future long-term memories. Models vary in their description of the way they interact, however (
The dual functions of storage and processing characterize WM functioning. Both processing and storage compete for attention, which is a limited resource. The WM model of
In the present study, we investigate the role of WM in the construction of episodic memories using an original paradigm in a VE that enables all the components of EM (what, where, when, and binding) to be assessed. We address the question of whether preventing the verbal or visuospatial mechanism of maintenance in WM will have the same effect on the various EM traces of what, where and when. Although various methods have been developed to assess EM, few address entirely the original definition. Most of the time, EM is assessed with very simple tasks, e.g., remembering a word shown on a computer screen, which does not match the definition of EM as the ability to remember what, where, and when. Recently, some studies have begun to use a VE to assess episodic memories in ecological large-scale environments allowing a multi-component assessment of EM (
Some previous studies focused on the involvement of WM in spatial cognition using VEs. These studies can be considered as good assessments of the where component of EM.
In another virtual reality study, the involvement of WM in the construction of the mental representation of space was investigated (
As far as we know, however, no experiment has yet assessed the role of WM by distinguishing the verbal and visuospatial subcomponents on different measures of episodic memories, that is, on EM in its entirety, i.e., what, where and when. In the present study, two secondary tasks were used. One focused on the verbal component, thus preventing the verbal rehearsal of episodic traces, while the other one focused on the spatial component, preventing the visuospatial refreshing of episodic traces. In the control condition, participants performed no secondary task.
The rationale of the present study is as follows. If an episodic trace (what, where, or when) relies on verbal maintenance and on the phonological loop, then the verbal secondary task performed during learning is expected to interfere with its encoding and hence result in a poorer recall. If an episodic trace relies on visuospatial representations requiring maintenance by refreshing, and the visuospatial sketchpad, the visuospatial secondary task should interfere also with its subsequent recall. More specifically, we assumed that factual traces (what) representing events and objects that could be easily verbalized should be maintained with verbal rehearsal. However, due to their visual nature they should also be maintained with refreshing. Thus, an interfering effect of both the verbal and the visuospatial concurrent tasks was expected. In contrast, the maintenance of spatio-temporal traces (where and when) and binding is probably less verbal and should be predominantly maintained with refreshing. Thus, mainly – if not only – interference with the visuospatial task was expected on performance reflecting the where, when and binding. The objective of the present study was to test these hypotheses in a more ecological paradigm than the ones traditionally used.
Eighty-eight undergraduate psychology students at the University (71 females, mean age = 20.32 years;
The virtual equipment was composed of a computer-generated 3-D model of an artificial environment. This environment was built with Virtools Dev 3.0 software and the novel EditoMem and SimulMem softwares developed in the lab. The environment was run on a PC laptop computer and explored using a video-game steering wheel, a gas pedal, and a brake pedal. It was projected with a video projector onto a screen 85 cm high and 110 cm wide. The participants were seated in a comfortable chair. The VE was projected 150 cm in front of them.
An urban environment simulating French buildings was created. Since the participants were supposed to be sitting in a virtual car, the steering wheel and windshield were part of the images projected during the task (
Picture of a specific area of the virtual town (a newsstand, a man and two benches).
To be used for the secondary tasks, garbage containers were located on the sidewalks of the road. In the numerical secondary task assumed to interfere with the phonological loop the participants had to memorize the number of garbage containers. The containers were either green or yellow. The participants had to maintain the number of green and yellow garbage containers, respectively (there were six yellow and four green altogether). In the visuospatial secondary task, the participants had to memorize the spatial pattern composed by the garbage containers. They were displayed along a line in order to avoid the verbalization of visual forms such as “a square” or “a T.” They had to maintain the spatial arrangement of five containers (e.g., first position: yellow/second position: green/third position: yellow/fourth position: green/fifth position: green) (See
Example of a spatial arrangement of yellow and green garbage containers, all arranged along a straight line.
The condition of encoding was manipulated between-subjects. The same VE was used for all conditions. In all three conditions the participants were asked to drive into the town, without stopping, and to memorize all the elements of various scenes encountered in the town (what), along with the associated spatial locations (where) and the temporal context (when). An example scene not actually shown in the experiment was presented as a picture before the exploration, to ensure that the participants understood what they had to memorize: “If you encounter this scene in the virtual town, you have to memorize that there is a bakery, in the beginning of the town, and that this scene was located on a right-hand turn.”
Depending on the condition while driving in the virtual town the participants were disrupted by a secondary task that was either verbal or visuospatial. In the control condition, no secondary task was given. In the numerical condition, they were asked to memorize the total numbers of yellow and green garbage containers. Participants had thus to update the numbers each time a new garbage container was encountered. In the visuospatial condition they had to memorize the spatial arrangement of each pattern. The immersion ended when participants reached the edge of the town, which took around 3 min. Participants were informed that in the primary task, which involved the memorization of all the elements of the town, it was not necessary to include the garbage containers. Participants were instructed that both tasks, the primary and the secondary, were of equal importance.
Immediately after the immersion, the participants performed a recall test that assessed their performance in the secondary task. The participants of the verbal condition had to recall the total number of green and of yellow garbage containers. Participants of the visuospatial condition had to draw on a blank sheet the specific patterns in which the green and yellow containers were arranged. All recall tasks took 3 min. During this time, the participants of the control condition chatted with the experimenter.
After this first recall, we evaluated the participant’s performance in the EM test. In this test, we used a series of memory tests previously applied to assess EM with the same kind of paradigm (
- “Try to remember all the elements you saw in the town” (e.g., a grocery store, the restaurants) (number of
- “Situate the elements in time: were they at the beginning, the middle, or at the end of the town?” (number of
- “Try to remember if you turned left or right after the element” (number of
The experimenter noted all recalls on a structured grid of responses. We did not take into account the recall of secondary elements (e.g., bench, tree, person) because they are too generic in a town and thus did not reflect the EM, we focused only on central elements (e.g., newsstand, train station, etc.). There was no specific order in the recall of the components. Once the element had been recalled, the participants could then provide contextual recall in any order. In total, 5 min were allowed for the recall.
In addition, we computed a binding score. For each element recalled, we noted whether the participants recalled the associated components (when and/or where). For example, if they recalled “the post office,” did they recall where and when it was presented (max by item = 2)? The binding score for a subject was the sum of all the contextual recalls (number of bindings correctly recalled; max = 20).
Performance in the secondary tasks was expressed as a percentage of correct responses (with 100% for all participants performing the control condition).
Prior to the beginning of the experiment, all participants underwent a training session in an empty environment (i.e., only streets) with a different spatial layout from that of the town subsequently used for the test. They were free to navigate anywhere on the training track. This training session provided the participants with an initial experience of a VE, and familiarized them with control of the virtual car. This session lasted until participants felt familiar with the equipment (on average around 4 min). After the training, the participants were immersed in the VE. The entire experiment lasted around 25 min, including the instructions.
We made the following hypotheses: while the number of
Analyses were performed on the recall of each EM score (
Means and standard deviations of episodic scores for the various experimental conditions and results of ANCOVAs and
Score | No secondary task (1) |
Verbal secondary task (2) |
Visuo-spatial secondary task (3) |
ANCOVA | |
---|---|---|---|---|---|
What | 6.54 (1.17) | 5.60 (1.57) | 4.57 (1.45) | 2 < 1, |
|
When | 4.86 (1.78) | 4.13 (2.13) | 2.70 (1.39) | 3 < 1, |
|
3 < 2, |
|||||
Where | 5.00 (2.64) | 4.30 (2.65) | 2.80 (1.81) | ||
Binding | 9.86 (3.73) | 8.43 (4.11) | 5.5 (2.8) | 3 < 1, |
|
3 < 2, |
Percentage of central memory for the three experimental conditions (with standard deviation). Conditions 2 and 3 led to less recall than condition 1 (1 versus 2, ∗
Percentage of contextual memory (binding) for the three experimental conditions (with standard deviation). Condition 3 led to fewer bindings than condition 1 (∗∗∗
In daily life, we are continuously tasked with a long list of cognitive demands that must often be performed simultaneously. Often this means storing long-term memories while performing short-term tasks. Our aim in this experiment was to use a VE in order to test the role of WM while encoding episodic long-term memories in a naturalistic context. In particular, we tried to determine which component of WM is involved in the encoding of EM traces – distinguishing what, where, when and binding. Three main findings arose from our results. First, we observed that the memory of central information (what) was impaired by both numerical and visuospatial concurrent tasks. Second, the memory of temporal context and binding was impaired only when a visuo-spatial concurrent task was performed. Third, the spatial contextual recall was not influenced by any concurrent task.
Based on the assumption that the concurrent verbal and visuo-spatial tasks we used prevent, respectively, mainly rehearsal and refreshing, then our results indicate that central information is likely maintained by both verbal rehearsal and refreshing, whereas temporal and binding information are mainly maintained by refreshing. According to Baddeley’s model, the phonological loop is involved in the maintenance of verbal information (
In addition, it is interesting to observe that the encoding of contextual long-term memories does not seem to rely heavily on verbal rehearsal, since reducing verbal rehearsal through a verbal memory task did not influence the memory context performance. This was true even when participants were instructed to encode the context. They could have developed a verbal strategy of maintenance (e.g., the newsstand was on my left when I turned), but apparently they did not. It seems that verbal strategies are not useful in the consolidation of contextual memories. Given that only the visuospatial secondary task prevented the encoding of contextual memory, refreshing seems to be the predominant mechanism of maintenance in that case. It is likely that verbal maintenance of contextual information is too costly and that maintaining different scenes through mental imagery is a more efficient strategy.
The memory of temporal and spatiotemporal binding information appears to be impaired only by visuospatial maintenance but the memory of the spatial component itself was not influenced by the visuospatial secondary task. This component was assessed by asking the participants to remember if they turned left or right after the element they recalled. This spatial recall is an egocentric one given that participants probably called upon their own body to answer. Egocentric processes are known to be viewpoint dependent and egocentric locations are updated by self-motion information (
Nevertheless, spatiotemporal binding information was negatively affected by the concurrent visuospatial maintenance.
Our study presents some limitations, and these should be taken into account for future studies. In order to extend our knowledge of the mechanisms of maintenance involved in EM construction, in future work we could prevent and force rehearsal and refreshing more systematically. For example, we could continuously prevent verbal rehearsal by using an articulatory suppression (say “babababa”) or we could prevent attentional refreshing with a continuous auditory detection task. In that way we could separate the primary from the secondary task. In the present study, the primary and the secondary tasks involved both items presented in the VE. We cannot exclude the possibility that participants combined the two tasks. In addition, because the recall for the secondary task was performed before the primary task, it could have an influence on the recall of interest. In the future it would be important for the secondary task not to involve items of the primary task. In addition, to further improve the ecological validity of our assessment, the participants of the EM investigation should not receive any explicit instructions to memorize the episodic information (
Using an original paradigm of memory, our results demonstrate for the first time that preventing verbal maintenance through a concurrent task negatively impacts long-term memory of central information, while preventing visuospatial maintenance decreases central, temporal, and binding memory. WM thus appears central to consolidate EM reflecting everyday life and this maintenance is suggested to occur predominantly through the episodic buffer. Finally, as already demonstrated in long-term memory (
This study was carried out in accordance with the recommendations of APA, with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the committee of Paris Descartes University.
Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work: GP, VG, and PP. Drafted the work or revised it critically for important intellectual content: GP, VG, and PP. Final approval of the version to be published: GP, VG, and PP. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: GP, VG, and PP.
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The authors would like to thank Nayla Debs and Julie Santo for testing participants, as well as all the participants of this study.
Results of the covariate: for what, when, where, and binding all