Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2018.00047 Psychology Original Research The Integration of Realistic Episodic Memories Relies on Different Working Memory Processes: Evidence from Virtual Navigation Plancher Gaën 1 2 3 Gyselinck Valérie 1 4 Piolino Pascale 1 2 5 6 * 1Laboratoire Mémoire et Cognition, Université Paris Descartes, Paris, France 2Institut de Psychologie, Université Paris Descartes, Boulogne Billancourt, France 3Laboratoire d’Etude des Mécanismes Cognitifs, EA 3082, Université Lyon 2, Lyon, France 4IFSTTAR-LPC, Versailles, France 5INSERM U894, Centre de Psychiatrie et Neurosciences, Paris, France 6Institut Universitaire de France, Paris, France

Edited by: Mel Slater, University of Barcelona, Spain

Reviewed by: Rebecca Wiczorek, Technische Universität Berlin, Germany; Farhan Mohamed, Universiti Teknologi Malaysia, Malaysia

*Correspondence: Pascale Piolino, pascale.piolino@parisdescartes.fr

This article was submitted to Human-Media Interaction, a section of the journal Frontiers in Psychology

30 01 2018 2018 09 47 05 07 2017 12 01 2018 Copyright © 2018 Plancher, Gyselinck and Piolino. 2018 Plancher, Gyselinck and Piolino

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Memory is one of the most important cognitive functions in a person’s life as it is essential for recalling personal memories and performing many everyday tasks. Although a huge number of studies have been conducted in the field, only a few of them investigated memory in realistic situations, due to methodological issues. The various tools that have been developed using virtual environments (VEs) have gained popularity in cognitive psychology and neuropsychology because they enable to create naturalistic and controlled situations, and are thus particularly adapted to the study of episodic memory (EM), for which an ecological evaluation is of prime importance. EM is the conscious recollection of personal events combined with their phenomenological and spatiotemporal encoding contexts. Using an original paradigm in a VE, the objective of the present study was to characterize the construction of episodic memories. While the concept of working memory has become central in the understanding of a wide range of cognitive functions, its role in the integration of episodic memories has seldom been assessed in an ecological context. This experiment aimed at filling this gap by studying how EM is affected by concurrent tasks requiring working memory resources in a realistic situation. Participants navigated in a virtual town and had to memorize as many elements in their spatiotemporal context as they could. During learning, participants had either to perform a concurrent task meant to prevent maintenance through the phonological loop, or a task aimed at preventing maintenance through the visuospatial sketchpad, or no concurrent task. EM was assessed in a recall test performed after learning through various scores measuring the what, where and when of the memories. Results showed that, compared to the control condition with no concurrent task, the prevention of maintenance through the phonological loop had a deleterious impact only on the encoding of central elements. By contrast, the prevention of visuo-spatial maintenance interfered both with the encoding of the temporal context and with the binding. These results suggest that the integration of realistic episodic memories relies on different working memory processes that depend on the nature of the traces.

virtual environment episodic memory working memory binding concurrent task

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Early models of memory made clear distinctions between short-term and long-term memory. In 1890, James (1890) distinguished between primary and secondary memory. Primary memory, later renamed short-term memory, reflects current states of consciousness, while secondary memory, now referred to as long-term memory, consists of conscious memory of the past. This distinction was maintained in the majority of memory models (e.g., Waugh and Norman, 1965; Atkinson and Shiffrin, 1968). Since then, each construct has been investigated separately. This gave rise to many different theoretical models, mainly pertaining to the structuralist view. On the one hand, short-term memory evolved into the concept of working memory (WM), classically defined as a system dedicated to the temporary storage and the processing of information (Baddeley and Hitch, 1974). On the other hand, among several forms of long-term memory, the concept of episodic memory (EM) rapidly emerged. Episodic memories are typically described as long-term memories for which the mental experience includes specific information such as time, place, or perceptual details (Johnson and Raye, 1981; Tulving, 2002). Through a process of binding, the various items of information of EM, what-where-when, are linked together, forming connections that give a memory its specificity and distinctiveness (Johnson et al., 1993). Besides EM, different forms of long term memories exist. Semantic memory concerns the store of facts and general knowledge, including the mental lexicon. Implicit or non-declarative memory refers to a heterogeneous collection of non-conscious memory abilities including skills and habits, priming and simple conditioning (Squire, 1992).

      While several scientific fields of research have led to a better understanding of these various forms of memory in the lab, the majority of studies seldom targeted realistic situations close to daily life, mainly due to methodological issues. Over the past decades, however, virtual environments (VEs) have gained popularity as a tool in cognitive psychology and neuropsychology because they enable researchers and clinicians to create naturalistic and controlled situations (e.g., for a review, Kane and Parsons, 2017; Plancher and Piolino, 2017). VEs can be developed for various situations. Depending on the study design, the environment can take the form of a city, an apartment, a store, a garden, etc. Interaction with the environment can be accomplished through a huge variety of devices, from a simple joystick or a keypad to a complex driving simulator. VEs have become a good candidate to study EM because they appear particularly suited to properly consider the various components of EM, for which an ecological evaluation is crucial.

      Several factors have been identified as modulating the integration of episodic memories, e.g., organization learning (Roenker et al., 1971), level of processing (Craik and Lockhart, 1972), emotion (Kensinger and Corkin, 2003), etc. Some factors relate to the encoding stage, some to the consolidation stage, and others to the retrieval or recall stage. However, the interaction at encoding between WM and EM has rarely been directly assessed in naturalistic situations. This is particularly surprising, as the concept of WM has become central for understanding a wide range of cognitive functions. For example, WM capacities have been found to be involved in numerous areas of higher order cognition including language comprehension (Daneman and Carpenter, 1980; Gathercole and Baddeley, 1993), mathematics (Logie and Baddeley, 1987), reasoning (Engle et al., 1999), and spatial model construction (Gyselinck et al., 2007, 2009, 2015). As WM is connected with many cognitive functions, it is sometimes considered as the heart of cognition.

      In several models, WM is seen as an interface between short-term perceptual memories and long-term memory, thus being of primary importance in the encoding process of future long-term memories. Models vary in their description of the way they interact, however (Ericsson and Kintsch, 1995; Cowan, 1999; Baddeley, 2000; Oberauer, 2002; Unsworth and Engle, 2007). Up to now, these models have mainly investigated the role of long-term memory in WM performance. In the present study, we aim rather at investigating the role of WM in the construction of each aspect of episodic traces, i.e., the traces of what, where and when.

      The dual functions of storage and processing characterize WM functioning. Both processing and storage compete for attention, which is a limited resource. The WM model of Baddeley and Hitch (1974) distinguishes several components: the peripheral slave systems and the central executive system. The slave systems include the phonological loop which is necessary for the maintenance and the processing of verbal material, and the visuospatial sketchpad which is necessary for the maintenance and processing of visuospatial material. Finally, the central executive system manages the two slave systems (Baddeley and Hitch, 1974). Maintenance is of primary importance in most of the tasks and activities involving WM since, when both storage and processing are needed, participants usually tend as soon as possible to maintain the items to be remembered before processing them. Two mechanisms of maintenance have been distinguished in WM, articulatory rehearsal and refreshing (Baddeley et al., 1984; Barrouillet and Camos, 2012, respectively). Articulatory rehearsal has been described as being particularly involved in the maintenance of verbal material. The process of rehearsal can be blocked by articulatory suppression, i.e., a concurrent articulation of irrelevant verbal material (e.g., “babababa…”). Articulating this syllable involves a minimal cognitive load, but impairs memory performance of verbal information (Camos et al., 2009). The second maintenance mechanism is refreshing. It is primarily dedicated to visual and spatial material, even if the maintenance of verbal material can also rely on refreshing (Grillon et al., 2008; Camos et al., 2009). It enables the maintenance of memory traces through refocusing, i.e., thinking briefly of a just-activated spatial or visual representation.

      In the present study, we investigate the role of WM in the construction of episodic memories using an original paradigm in a VE that enables all the components of EM (what, where, when, and binding) to be assessed. We address the question of whether preventing the verbal or visuospatial mechanism of maintenance in WM will have the same effect on the various EM traces of what, where and when. Although various methods have been developed to assess EM, few address entirely the original definition. Most of the time, EM is assessed with very simple tasks, e.g., remembering a word shown on a computer screen, which does not match the definition of EM as the ability to remember what, where, and when. Recently, some studies have begun to use a VE to assess episodic memories in ecological large-scale environments allowing a multi-component assessment of EM (Burgess et al., 2001; Sauzéon et al., 2011; Plancher and Piolino, 2017). In Plancher et al.’s studies, the usefulness of VEs has been demonstrated with young adults, healthy elderly and Alzheimer patients. Typically in these studies, participants were immersed in a VE in which they navigated via a video game wheel and followed a route composed of different turns. In addition to navigating, the participants were instructed to memorize all the elements of the scenes that they encountered within the environment, and to remember the temporal and spatial context associated with the elements so that they would be able to recall them at the end of the presentation. Some of the results suggested that assessing EM in a VE is more ecologic because the memory complaint was more highly correlated with the performances on the virtual test than with performances on the classical memory test (Plancher et al., 2012).

      Some previous studies focused on the involvement of WM in spatial cognition using VEs. These studies can be considered as good assessments of the where component of EM. Meilinger et al. (2008) examined the WM involvement in a wayfinding task. Participants learned routes in a VE while they were disrupted by a visual, a spatial or a verbal secondary task. In the visual task, the participants had to imagine a clock with watch hands and indicate if the hands pointed to the same or different halves as the times they had heard. In the spatial task, the participants had to indicate where a sound was coming from (left, right, or front). In the verbal task, the participants had to perform a lexical-decision task. In all secondary tasks, participants received the stimuli via headphones and responded by pressing buttons on a response box. The authors observed that, compared to a control group, all secondary tasks interfered with wayfinding of the routes previously seen, by impacting the encoding of environmental information. The interference was stronger with the visual secondary task. According to the authors, the results indicate that the phonological loop and the visuospatial sketchpad are both involved in the encoding of environmental information. Meilinger et al. (2008) thus put forward a dual coding theory of human wayfinding.

      In another virtual reality study, the involvement of WM in the construction of the mental representation of space was investigated (Gras et al., 2013). During route learning, the participants were asked to do a tapping task (tapping four keys sequentially in a parallelogram shape), or an articulatory suppression task (repeating “babebibobu”), or nothing, depending on the condition. Results showed different interference effects depending on the task (layout task vs. recognition of landmarks for example); in addition, the visuospatial abilities of WM modulated performance in the construction of the spatial model of a VE.

      As far as we know, however, no experiment has yet assessed the role of WM by distinguishing the verbal and visuospatial subcomponents on different measures of episodic memories, that is, on EM in its entirety, i.e., what, where and when. In the present study, two secondary tasks were used. One focused on the verbal component, thus preventing the verbal rehearsal of episodic traces, while the other one focused on the spatial component, preventing the visuospatial refreshing of episodic traces. In the control condition, participants performed no secondary task.

      The rationale of the present study is as follows. If an episodic trace (what, where, or when) relies on verbal maintenance and on the phonological loop, then the verbal secondary task performed during learning is expected to interfere with its encoding and hence result in a poorer recall. If an episodic trace relies on visuospatial representations requiring maintenance by refreshing, and the visuospatial sketchpad, the visuospatial secondary task should interfere also with its subsequent recall. More specifically, we assumed that factual traces (what) representing events and objects that could be easily verbalized should be maintained with verbal rehearsal. However, due to their visual nature they should also be maintained with refreshing. Thus, an interfering effect of both the verbal and the visuospatial concurrent tasks was expected. In contrast, the maintenance of spatio-temporal traces (where and when) and binding is probably less verbal and should be predominantly maintained with refreshing. Thus, mainly – if not only – interference with the visuospatial task was expected on performance reflecting the where, when and binding. The objective of the present study was to test these hypotheses in a more ecological paradigm than the ones traditionally used.

      Materials and Methods Participants

      Eighty-eight undergraduate psychology students at the University (71 females, mean age = 20.32 years; SD = 1.71) received a partial course credit for participating. Each participant was randomly allocated to one of three groups (30 or 28 participants per group). We recorded the frequency with which participants played video games, and whether they had a driver’s license. Forty participants had a driver’s license and 51 participants regularly played video games. They were equally distributed over the three groups. However, to avoid an effect of familiarity with driving and video games on our results, before the presentation of the experimental environment, all the participants trained themselves on an empty track until they all felt comfortable with the apparatus. All participants gave their informed consent to the study, which was performed in compliance with the Declaration of Helsinki and with the approval of the University’s Institutional Review Board.

      Materials The Virtual Equipment

      The virtual equipment was composed of a computer-generated 3-D model of an artificial environment. This environment was built with Virtools Dev 3.0 software and the novel EditoMem and SimulMem softwares developed in the lab. The environment was run on a PC laptop computer and explored using a video-game steering wheel, a gas pedal, and a brake pedal. It was projected with a video projector onto a screen 85 cm high and 110 cm wide. The participants were seated in a comfortable chair. The VE was projected 150 cm in front of them.

      The Virtual Environment

      An urban environment simulating French buildings was created. Since the participants were supposed to be sitting in a virtual car, the steering wheel and windshield were part of the images projected during the task (Figure 1). In the VE, one route connected ten specific scenes. Each specific scene comprised different elements: one central element (e.g., a newsstand or a sandwich shop) and two or three secondary elements (e.g., a man or a bench). The order in which the ten scenes were encountered (identified by the main element in each scene) was the following: a train station, a newsstand, a post office, a roadworks zone, a fountain, an old building, a parking lot, a sandwich shop, a car accident and a set of shops. Specific areas were located at a turn (Figure 1), and a soundtrack of typical city noises (cars, people, birds, etc.) heard through speakers helped the participants to feel immersed in the environment. No other vehicles were presented in the environment and no specific traffic rules had to be respected because, as presented on Figure 1, the spatial environment did not contain decision points (i.e., deciding to turn left or right).

      Picture of a specific area of the virtual town (a newsstand, a man and two benches).

      To be used for the secondary tasks, garbage containers were located on the sidewalks of the road. In the numerical secondary task assumed to interfere with the phonological loop the participants had to memorize the number of garbage containers. The containers were either green or yellow. The participants had to maintain the number of green and yellow garbage containers, respectively (there were six yellow and four green altogether). In the visuospatial secondary task, the participants had to memorize the spatial pattern composed by the garbage containers. They were displayed along a line in order to avoid the verbalization of visual forms such as “a square” or “a T.” They had to maintain the spatial arrangement of five containers (e.g., first position: yellow/second position: green/third position: yellow/fourth position: green/fifth position: green) (See Figure 2). A total of four patterns was used.

      Example of a spatial arrangement of yellow and green garbage containers, all arranged along a straight line.

      Procedure

      The condition of encoding was manipulated between-subjects. The same VE was used for all conditions. In all three conditions the participants were asked to drive into the town, without stopping, and to memorize all the elements of various scenes encountered in the town (what), along with the associated spatial locations (where) and the temporal context (when). An example scene not actually shown in the experiment was presented as a picture before the exploration, to ensure that the participants understood what they had to memorize: “If you encounter this scene in the virtual town, you have to memorize that there is a bakery, in the beginning of the town, and that this scene was located on a right-hand turn.”

      Depending on the condition while driving in the virtual town the participants were disrupted by a secondary task that was either verbal or visuospatial. In the control condition, no secondary task was given. In the numerical condition, they were asked to memorize the total numbers of yellow and green garbage containers. Participants had thus to update the numbers each time a new garbage container was encountered. In the visuospatial condition they had to memorize the spatial arrangement of each pattern. The immersion ended when participants reached the edge of the town, which took around 3 min. Participants were informed that in the primary task, which involved the memorization of all the elements of the town, it was not necessary to include the garbage containers. Participants were instructed that both tasks, the primary and the secondary, were of equal importance.

      Immediately after the immersion, the participants performed a recall test that assessed their performance in the secondary task. The participants of the verbal condition had to recall the total number of green and of yellow garbage containers. Participants of the visuospatial condition had to draw on a blank sheet the specific patterns in which the green and yellow containers were arranged. All recall tasks took 3 min. During this time, the participants of the control condition chatted with the experimenter.

      After this first recall, we evaluated the participant’s performance in the EM test. In this test, we used a series of memory tests previously applied to assess EM with the same kind of paradigm (Plancher et al., 2010, 2012, 2013). Participants were required to perform a written free recall of all the elements they remembered, and when they remembered an element, they had to spell out the associated spatiotemporal context. The instructions were associated with an example as follows (each dependent variable is in brackets, associated with the maximum score):

      - “Try to remember all the elements you saw in the town” (e.g., a grocery store, the restaurants) (number of what correctly recalled; max = 10)

      - “Situate the elements in time: were they at the beginning, the middle, or at the end of the town?” (number of when correctly recalled; max = 10)

      - “Try to remember if you turned left or right after the element” (number of where correctly recalled; max = 10).

      The experimenter noted all recalls on a structured grid of responses. We did not take into account the recall of secondary elements (e.g., bench, tree, person) because they are too generic in a town and thus did not reflect the EM, we focused only on central elements (e.g., newsstand, train station, etc.). There was no specific order in the recall of the components. Once the element had been recalled, the participants could then provide contextual recall in any order. In total, 5 min were allowed for the recall.

      In addition, we computed a binding score. For each element recalled, we noted whether the participants recalled the associated components (when and/or where). For example, if they recalled “the post office,” did they recall where and when it was presented (max by item = 2)? The binding score for a subject was the sum of all the contextual recalls (number of bindings correctly recalled; max = 20).

      Performance in the secondary tasks was expressed as a percentage of correct responses (with 100% for all participants performing the control condition).

      Prior to the beginning of the experiment, all participants underwent a training session in an empty environment (i.e., only streets) with a different spatial layout from that of the town subsequently used for the test. They were free to navigate anywhere on the training track. This training session provided the participants with an initial experience of a VE, and familiarized them with control of the virtual car. This session lasted until participants felt familiar with the equipment (on average around 4 min). After the training, the participants were immersed in the VE. The entire experiment lasted around 25 min, including the instructions.

      We made the following hypotheses: while the number of what recalls should decrease with both secondary tasks, the number of where, when and binding should only decrease with the visuospatial secondary task.

      Results

      Analyses were performed on the recall of each EM score (what, when, where and binding) through a series of ANCOVAs with the condition (verbal, visuospatial, no secondary task) as a between-subjects factor and the performance in the secondary task as a controlled variable. We decided to control this performance in order to avoid any influence of the task difficulty; the performance was expressed as a percentage of correct responses (with 100% for all participants performing the control condition). To determine the direction of the differences, we carried out post hoc Tukey tests. The following Tukey comparisons were analyzed: condition 1 (control) versus 2 (verbal secondary task) and condition 1 versus 3 (visuospatial secondary task). When the verbal or visuospatial secondary task conditions led to a poorer performance than the control condition, this was interpreted as reflecting an involvement of this component in the memorization of the episodic score. When both secondary tasks statistically differed from the control one, we performed the following Tukey comparison: condition 2 (verbal) versus condition 3 (visuospatial).

      Table 1 shows correct recall of the EM components with means and standard deviations by condition and the results of ANCOVAs and post hoc Tukey tests. A main effect of condition on the What recall was observed: as expected, participants performed better in the control condition (1) than in the other two (2 and 3) (Figure 3). This result suggests that memory traces related to central information can be maintained through verbal rehearsal or refreshing. Similarly, a significant effect of condition on the When recall was observed, but as expected only with the “visuospatial” condition (3) giving worse results than the control condition (1), suggesting that the temporal context is maintained through refreshing. Contrary to our predictions, no significant effect was observed on the Where score, which suggests that this score did not rely on WM maintenance. Finally, an effect of condition on Binding indicated that the “visuospatial” condition (3) gave worse results than the control condition (See Figure 4).

      Means and standard deviations of episodic scores for the various experimental conditions and results of ANCOVAs and post hoc Tukey tests.1

      Score No secondary task (1) N = 28 Verbal secondary task (2) N = 30 Visuo-spatial secondary task (3) N = 30 ANCOVA Post hoc Tukey
      What 6.54 (1.17) 5.60 (1.57) 4.57 (1.45) F(2,84) = 6.09, 2 < 1, p = 0.04; 3 < 1,
      p = 0.003 p = 0.0001; 3 < 2, p = 0.02
      When 4.86 (1.78) 4.13 (2.13) 2.70 (1.39) F(2,84) = 3.85, 3 < 1, p = 0.0001
      p = 0.03 3 < 2, p = 0.008
      Where 5.00 (2.64) 4.30 (2.65) 2.80 (1.81) F(2,84) = 1.37,
      p = 0.26.
      Binding 9.86 (3.73) 8.43 (4.11) 5.5 (2.8) F(2,84) = 3.09, 3 < 1, p = 0.0001
      p = 0.049 3 < 2, p = 0.006

      Percentage of central memory for the three experimental conditions (with standard deviation). Conditions 2 and 3 led to less recall than condition 1 (1 versus 2, p < 0.05; 1 versus 3, ∗∗∗p < 0.001).

      Percentage of contextual memory (binding) for the three experimental conditions (with standard deviation). Condition 3 led to fewer bindings than condition 1 (∗∗∗p < 0.001).

      Discussion

      In daily life, we are continuously tasked with a long list of cognitive demands that must often be performed simultaneously. Often this means storing long-term memories while performing short-term tasks. Our aim in this experiment was to use a VE in order to test the role of WM while encoding episodic long-term memories in a naturalistic context. In particular, we tried to determine which component of WM is involved in the encoding of EM traces – distinguishing what, where, when and binding. Three main findings arose from our results. First, we observed that the memory of central information (what) was impaired by both numerical and visuospatial concurrent tasks. Second, the memory of temporal context and binding was impaired only when a visuo-spatial concurrent task was performed. Third, the spatial contextual recall was not influenced by any concurrent task.

      Based on the assumption that the concurrent verbal and visuo-spatial tasks we used prevent, respectively, mainly rehearsal and refreshing, then our results indicate that central information is likely maintained by both verbal rehearsal and refreshing, whereas temporal and binding information are mainly maintained by refreshing. According to Baddeley’s model, the phonological loop is involved in the maintenance of verbal information (Baddeley, 1986). In most of the classical studies investigating the phonological loop, the material to be remembered in the primary task was letters or isolated words, items that are clearly verbal. In our study, the central information concerns objects, buildings and events encountered in our virtual city, which could be either reactivated in WM as images or as words. These items could be easily named (e.g., a train station, a post-office, etc.) and thus maintained through verbal rehearsal. Participants were instructed to intentionally memorize items encountered in the virtual town, as well as their context. It is thus likely that participants verbally rehearsed as soon as they could the name of items previously seen in order to avoid the traces decaying. We also observed that memorization of the central information was negatively affected when participants performed the visuospatial secondary task. As central items were presented visually, it is not surprising that the memory of central items also relied on visuospatial maintenance. This is consistent with the studies demonstrating that both maintenance mechanisms (verbal rehearsal and refreshing) can be run in parallel (e.g., Camos et al., 2009).

      In addition, it is interesting to observe that the encoding of contextual long-term memories does not seem to rely heavily on verbal rehearsal, since reducing verbal rehearsal through a verbal memory task did not influence the memory context performance. This was true even when participants were instructed to encode the context. They could have developed a verbal strategy of maintenance (e.g., the newsstand was on my left when I turned), but apparently they did not. It seems that verbal strategies are not useful in the consolidation of contextual memories. Given that only the visuospatial secondary task prevented the encoding of contextual memory, refreshing seems to be the predominant mechanism of maintenance in that case. It is likely that verbal maintenance of contextual information is too costly and that maintaining different scenes through mental imagery is a more efficient strategy.

      The memory of temporal and spatiotemporal binding information appears to be impaired only by visuospatial maintenance but the memory of the spatial component itself was not influenced by the visuospatial secondary task. This component was assessed by asking the participants to remember if they turned left or right after the element they recalled. This spatial recall is an egocentric one given that participants probably called upon their own body to answer. Egocentric processes are known to be viewpoint dependent and egocentric locations are updated by self-motion information (Burgess, 2006), and even across imagined self-motion (e.g., Burgess et al., 2004). In the present study, the visuospatial secondary task appeared rather to be allocentric in that it required participants to call upon external elements of the environment to encode the positions of the garbage containers. This would explain why our spatial secondary task did not interfere with our primary task. This interpretation is consistent with the findings of Farrell and Thomson (1998) and Farrell and Robertson (2000) which suggest that spatial egocentric information is automatically encoded through displacement in the VE and does not require to be maintained in WM. However, the high standard deviation of the control group may explain why statistical differences between groups difficulty emerged. This result should therefore be interpreted with caution.

      Nevertheless, spatiotemporal binding information was negatively affected by the concurrent visuospatial maintenance. Loaiza and McCabe (2012) showed that refreshing is important for content-context binding in WM, and observed that the more refreshing opportunities an item receives, the more likely it is to be recalled from EM. These results are consistent with our findings suggesting that refreshing promotes memory of context and binding of EM traces. In the study by Loaiza and McCabe (2012), the context associated with central information was temporal in nature. They concluded that an item would be more stably bound to a temporal context when it is refreshed. In addition, previous work demonstrated that the memory of the temporal order in WM was maintained by using spatial mechanisms (e.g., Guida and Lavielle-Guida, 2014). For example, it seems that items to-be-remembered presented sequentially in the center of a screen acquired a spatial dimension: the first words of the sequence has a left spatial value while the last words has a right spatial value (van Dijck and Fias, 2011). Our present findings, which suggest that encoding of temporal memories was disrupted by a visuo-spatial concurrent task, are in accordance with these studies.

      Our study presents some limitations, and these should be taken into account for future studies. In order to extend our knowledge of the mechanisms of maintenance involved in EM construction, in future work we could prevent and force rehearsal and refreshing more systematically. For example, we could continuously prevent verbal rehearsal by using an articulatory suppression (say “babababa”) or we could prevent attentional refreshing with a continuous auditory detection task. In that way we could separate the primary from the secondary task. In the present study, the primary and the secondary tasks involved both items presented in the VE. We cannot exclude the possibility that participants combined the two tasks. In addition, because the recall for the secondary task was performed before the primary task, it could have an influence on the recall of interest. In the future it would be important for the secondary task not to involve items of the primary task. In addition, to further improve the ecological validity of our assessment, the participants of the EM investigation should not receive any explicit instructions to memorize the episodic information (Pause et al., 2013). Finally, it could also be relevant to assess to what extent the degree of interaction between the VE and the participants, using higher immersive virtual navigation and virtual embodiment (Kilteni et al., 2012), mediates the encoding mechanisms of EM. It is conceivable that a greater immersion would give a stronger EM. Also, in our paradigm, participants drove a virtual car, which constituted a third task. It would be interesting to compare our results when participants perform passive navigation in the VE. The negative impact of the concurrent task could be reduced in that condition.

      Conclusion

      Using an original paradigm of memory, our results demonstrate for the first time that preventing verbal maintenance through a concurrent task negatively impacts long-term memory of central information, while preventing visuospatial maintenance decreases central, temporal, and binding memory. WM thus appears central to consolidate EM reflecting everyday life and this maintenance is suggested to occur predominantly through the episodic buffer. Finally, as already demonstrated in long-term memory (Plancher et al., 2008, 2010, 2012, 2013), the ecological feature of a paradigm developed using VEs provides an excellent opportunity for investigating EM in its complexity.

      Ethics Statement

      This study was carried out in accordance with the recommendations of APA, with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved by the committee of Paris Descartes University.

      Author Contributions

      Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work: GP, VG, and PP. Drafted the work or revised it critically for important intellectual content: GP, VG, and PP. Final approval of the version to be published: GP, VG, and PP. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: GP, VG, and PP.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The authors would like to thank Nayla Debs and Julie Santo for testing participants, as well as all the participants of this study.

      References Atkinson R. G. Shiffrin R. M. (1968). “Human memory: a proposed system and its control process,” in The Psychology of Learning and Motivation: Advances in Research and Theory Vol. 2 eds Spence K. W. Spence J. T. (New York, NY: Academic Press), 89195. Baddeley A. (1986). Working Memory. Oxford: Oxford University Press. Baddeley A. Lewis V. J. Vallar G. (1984). Exploring the articulatory loop. Q. J. Exp. Psychol. Hum. Exp. Psychol. 36 233252. 10.1080/14640748408402157 3369966 Baddeley A. D. (2000). The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4 417423. Baddeley A. D. Hitch G. J. (1974). “Working memory,” in The Psychology of Learning and Motivation: Advances in Research and Theory Vol. 8 ed. Bower G. A. (New York, NY: Academic Press), 4789. Barrouillet P. Camos V. (2012). As time goes by: temporal constraints in working memory. Curr. Dir. Psychol. Sci. 21 413419. 10.1177/0963721412459513 Burgess N. (2006). “Computational models of the spatial and mnemonic functions of the hippocampus,” in The Hippocampus, eds Andersen P. Bliss T. O’Keefe J. Morris R. G. M. (Oxford: Oxford University Press). Burgess N. Maguire E. A. Spiers H. J. O’Keefe J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14 439453. 10.1006/nimg.2001.0806 11467917 Burgess N. Spiers H. J. Paleologou E. (2004). Orientational manoeuvres in the dark: dissociating allocentric and egocentric influences on spatial memory. Cognition 94 149166. 10.1016/j.cognition.2004.01.001 15582624 Camos V. Lagner P. Barrouillet P. (2009). Two maintenance mechanisms of verbal information in working memory. J. Mem. Lang. 61 457469. 10.1016/j.jml.2009.06.002 Cowan N. (1999). “An embedded-processes model of working memory,” in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, eds Miyake A. Shah P. (New York, NY: Cambridge University Press), 62101. Craik F. I. M. Lockhart R. S. (1972). Levels of processing: a framework for memory research. J. Verbal Learn. Verbal Behav. 11 671684. 10.1016/S0022-5371(72)80001-X Daneman M. Carpenter P. A. (1980). Individual differences in working memory and reading. J. Verbal Learn. Verbal Behav. 19 450466. 10.1016/S0022-5371(80)90312-6 Engle R. W. Tuholski S. W. Laughlin J. E. Conway A. R. A. (1999). Working memory, short term memory and general fluid intelligence: a latent variable approach. J. Exp. Psychol. Gen. 128 309331. 10.1037/0096-3445.128.3.309 Ericsson K. Kintsch W. (1995). Long-term working memory. Psychol. Rev. 102 211245. 10.1037/0033-295X.102.2.211 Farrell M. J. Robertson I. H. (2000). The automatic updating of egocentric spatial relationships and its impairment due to right posterior cortical lesions. Neuropsychologia 38 585595. 10.1016/S0028-3932(99)00123-2 10689036 Farrell M. J. Thomson J. A. (1998). Automatic spatial updating during locomotion without vision. Q. J. Exp. Psychol. 51 637654. 10.1080/713755776 9745381 Gathercole S. E. Baddeley A. D. (1993). Working Memory and Language. Hove: Erlbaum. Gras D. Gyselinck V. Perrussel M. Orriols E. Piolino P. (2013). The role of working memory components and visuospatial abilities in route learning within a virtual environment. J. Cogn. Psychol. 25 3850. 10.1080/20445911.2012.739154 Grillon M. L. Johnson M. K. Krebs M. O. Huron C. (2008). Comparing effects of perceptual and reflective repetition on subjective experience during later recognition memory. Conscious. Cogn. 17 753764. 10.1016/j.concog.2007.09.004 18023595 Guida A. Lavielle-Guida M. (2014). 2011 space odyssey: spatialization as a mechanism to code order allows a close encounter between memory expertise and classic immediate memory studies. Front. Psychol. 5:573. 10.3389/fpsyg.2014.00573 24959162 Gyselinck V. De Beni R. Pazzaglia F. Meneghetti C. Mondoloni A. (2007). Working memory components and imagery instruction in the elaboration of a spatial mental model. Psychol. Res. 71 373382. 10.1007/s00426-006-0091-1 16983580 Gyselinck V. Grison E. Gras D. (2015). Apprentissage d’itinéraires virtuels: quel codage verbal en mémoire de travail? Can. J. Exp. Psychol. 69 104114. 10.1037/cep0000039 25730644 Gyselinck V. Meneghetti C. De Beni R. Pazzaglia F. (2009). The role of working memory in spatial texts processing: what benefit of imagery strategy and visuospatial abilities? Learn. Individ. Differ. 19 1220. 10.1016/j.lindif.2008.08.002 James W. (1890). The Principles of Psychology. New York, NY: Dover Publications. 10.1037/11059-000 Johnson M. K. Hashtroudi S. Lindsay D. S. (1993). Source monitoring. Psychol. Bull. 114 328. 10.1037/0033-2909.114.1.3 Johnson M. K. Raye C. L. (1981). Reality monitoring. Psychol. Rev. 88 6785. 10.1037/0033-295X.88.1.67 Kane R. Parsons T. (2017). The Role of Technology in Clinical Neuropsychology. Oxford: Oxford University Press. Kensinger E. A. Corkin S. (2003). Effect of negative emotional content on working memory and long-term memory. Emotion 3 378393. 10.1037/1528-3542.3.4.378 14674830 Kilteni K. Groten R. Slater M. (2012). The sense of embodiment in virtual reality. Presence 21 373387. 10.1162/PRES_a_00124 Loaiza V. M. McCabe D. P. (2012). Temporal-contextual processing in working memory: evidence from delayed cued recall and delayed free recall tests. Mem. Cogn. 40 191203. 10.3758/s13421-011-0148-2 21948350 Logie R. Baddeley A. (1987). Cognitive processes in counting. J. Exp. Psychol. Learn. Mem. Cogn. 13 310326. 10.1037/0278-7393.13.2.310 Meilinger T. Knauff M. Bulthoff H. H. (2008). Working memory in wayfinding—a dual task experiment in a virtual city. Cogn. Sci. 32 755770. 10.1080/03640210802067004 21635352 Oberauer K. (2002). Access to information in working memory: exploring the focus of attention. J. Exp. Psychol. Learn. Mem. Cogn. 28 411421. 10.1037/0278-7393.28.3.411 Pause B. M. Zlomuzica A. Kinugawa K. Mariani J. Pietrowsky R. Dere E. (2013). Perspectives on episodic-like and episodic memory. Front. Behav. Neurosci. 7:33. 10.3389/fnbeh.2013.00033 23616754 Plancher G. Barra J. Orriols E. Piolino P. (2013). The influence of action on episodic memory: a virtual reality study. Q. J. Exp. Psychol. 66 895909. 10.1080/17470218.2012.722657 23025821 Plancher G. Gyselinck V. Nicolas S. Piolino P. (2010). Age effect on components of episodic memory and feature binding: a virtual reality study. Neuropsychology 24 379390. 10.1037/a0018680 20438215 Plancher G. Nicolas S. Piolino P. (2008). Apport de la réalité virtuelle en neuropsychologie de la mémoire: étude dans le vieillissement [Contribution of virtual reality to neuropsychology of memory: study in aging]. Psychol. Neuropsychiatr. Vieil. 6 722. 24844468 Plancher G. Piolino P. (2017). “Virtual reality for assessment of episodic memory in normal and pathological aging,” in The Role of Technology in Clinical Neuropsychology, eds Parsons T. Kane R. (Oxford: Oxford University Press). Plancher G. Tirard A. Gyselinck V. Nicolas S. Piolino P. (2012). Using virtual reality to characterize episodic memory profiles in amnestic mild cognitive impairment and Alzheimer’s disease: influence of active/passive encoding. Neuropsychologia 50 592602. 10.1016/j.neuropsychologia.2011.12.013 22261400 Roenker D. L. Thompson C. P. Brown S. C. (1971). Comparison of measures for the estimation of clustering in free recall. Psychol. Bull. 76 4548. 10.1037/h0031355 Sauzéon H. Arvind Pala P. Larrue F. Wallet G. Déjos M. Zheng X. (2011). The use of virtual reality for episodic memory assessment: effects of active navigation. Exp. Psychol. 59 99108. 10.1027/1618-3169/a000131 22044787 Squire L. R. (1992). Memory and the hippocampus: a synthesis of findings with rats, monkeys, and humans. Psychol. Rev. 99 195231. 10.1037/0033-295X.99.2.195 Tulving E. (2002). Episodic memory: from mind to brain. Annu. Rev. Psychol. 53 125. 10.1146/annurev.psych.53.100901.135114 Unsworth N. Engle R. W. (2007). The nature of individual differences in working memory capacity: active maintenance in primary memory and controlled search from secondary memory. Psychol. Rev. 114 104132. 10.1037/0033-295X.114.1.104 17227183 van Dijck J. P. Fias W. (2011). A working memory account for spatial-numerical associations. Cognition 119 114119. 10.1016/j.cognition.2010.12.013 21262509 Waugh N. Norman D. (1965). Primary memory. Psychol. Rev. 72 89104. 10.1037/h0021797

      Results of the covariate: for what, when, where, and binding all F were <1.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016lz1zb.net.cn
      itjwph.com.cn
      www.kmmlkjf.com.cn
      hjqvc.org.cn
      geekkg.com.cn
      jscmid.com.cn
      gzcwuk.com.cn
      szmyty.com.cn
      www.nmqp.com.cn
      postar0.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p