Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2017.02026 Psychology Original Research The Sound of Success: Investigating Cognitive and Behavioral Effects of Motivational Music in Sports Elvers Paul 1 * Steffens Jochen 2 1Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany 2Audio Communication Group, Technische Universität Berlin, Berlin, Germany

Edited by: Timothy L. Hubbard, Arizona State University, United States

Reviewed by: Barbara Colombo, Champlain College, United States; Laura Elizabeth Thomas, North Dakota State University, United States

*Correspondence: Paul Elvers paul.elvers@ae.mpg.de

This article was submitted to Cognition, a section of the journal Frontiers in Psychology

21 11 2017 2017 8 2026 14 08 2017 06 11 2017 Copyright © 2017 Elvers and Steffens. 2017 Elvers and Steffens

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Listening to music before, during, or after sports is a common phenomenon, yet its functions and effects on performance, cognition, and behavior remain to be investigated. In this study we present a novel approach to the role of music in sports and exercise that focuses on the notion of musical self-enhancement (Elvers, 2016). We derived the following hypotheses from this framework: listening to motivational music will (i) enhance self-evaluative cognition, (ii) improve performance in a ball game, and (iii) evoke greater risk-taking behavior. To evaluate the hypotheses, we conducted a between-groups experiment (N = 150) testing the effectiveness of both an experimenter playlist and a participant-selected playlist in comparison to a no-music control condition. All participants performed a ball-throwing task developed by Decharms and Davé (1965), consisting of two parts: First, participants threw the ball from fixed distances into a funnel basket. During this task, performance was measured. In the second part, the participants themselves chose distances from the basket, which allowed their risk-taking behavior to be assessed. The results indicate that listening to motivational music led to greater risk taking but did not improve ball-throwing performance. This effect was more pronounced in male participants and among those who listened to their own playlists. Furthermore, self-selected music enhanced state self-esteem in participants who were performing well but not in those who were performing poorly. We also discuss further implications for the notion of musical self-enhancement.

music motivation self-enhancement self-esteem sports risk taking motor coordination

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Many people across the world, from occasional runners and gym goers to world-class athletes, integrate music into their competitions and workout routines. While people's reasons and motivations for listening to music before, after, or during sports are manifold and diverse (Laukka and Quick, 2011), one salient function of music is to help athletes gain self-confidence and motivation (Karageorghis and Priest, 2012a,b), of which numerous examples exist (see e.g., Terry and Karageorghis, 2011). For example, during the Olympic games in Beijing 2008, the American swimmer Michael Phelps listened to music on his portable music device until 2 min before his competition to get himself into the right mindset (Terry and Karageorghis, 2011). Another example is the Maori battle cry “Haka,” which is regularly performed by the New Zealand national rugby team prior to competitions (World-Rugby, 2015). It serves as a display of power and confidence and also allows the players to get into the right mindset prior to competitions. Although a concise theory of the motivational function of music in sports is still lacking, some conceptual efforts have been made: Karageorghis and Priest (2012a) argue that the motivational function of music relies on both intrinsic musical factors such as rhythm, melody, and harmony, and external factors such as cultural impact and extra-musical associations. However, the mechanisms that explain how music exerts a motivational function are as yet poorly understood (Karageorghis and Priest, 2012a).

      We suggest that the psychological processes that are linked to motivation and emotion play an important role for understanding the functions and effects of music in sports and exercise. We follow up on a novel conception of motivational music connecting it to self-enhancement processes: It has been suggested that the empowering function of listening to music may be an esthetic surrogate for social interaction that allows self-regulative processes to occur (Elvers, 2016). While previous research has documented the use of music for mood and emotion regulation (Saarikallio, 2010; Krueger, 2014), Elvers (2016) suggests that self-evaluative attitudes and cognitive processes are also influenced by music. More specifically, this account suggests that listening to music fulfills self-enhancement needs, providing listeners with enhanced self-esteem, optimism, and self-worth. Initial experimental evidence suggests that listening to powerful music activates power-related cognition and behavior (Hsu et al., 2014) and that listening to empowering music enhances momentary self-esteem (Elvers et al., 2017). Following from this initial evidence, we assume that motivational music also exerts a positive influence on self-evaluative cognition and subsequent behavior.

      Musical self-enhancement

      While the role of music in evoking emotional responses (Scherer and Zentner, 2001, 2008; Juslin and Västfjäll, 2008; Zentner et al., 2008) and its use for mood regulation (Saarikallio, 2008, 2010; Skanland, 2013; Carlson et al., 2015) have been a subject of considerable scientific interest, the question of how listening to music relates to changes in self-evaluative cognitions has rarely been discussed. This is surprising, given that self-evaluative cognitions and attitudes such as self-esteem (Rosenberg, 1965), self-confidence (Woodman and Hardy, 2003), and self-efficacy (Bandura, 1977) are considered to be sensitive to external stimuli, such as music. One exception can be found in Brown and Mankowski (1993), who showed that music-induced changes in mood affect self-evaluative cognitions. The notion of musical self-enhancement employs the idea that various external resources can be used to conduct self-enhancement processes (Sedikides and Gregg, 2008) and that music is one means of doing so (Elvers, 2016). Self-enhancement generally refers to the motive to see oneself positively as well as the process of gaining self-worth and self-esteem (Swann et al., 1989; Sedikides and Gregg, 2008). Within the framework of musical self-enhancement, we hypothesize that music that expresses a positive self-evaluative attitude will be most effective for self-enhancement. However, the self-enhancement effects are moderated by the listener's response to the music in terms of liking, familiarity, and empathy. While empirical evidence has been gathered with regard to changes in momentary (explicit) self-esteem (Elvers et al., 2017), it remains to be investigated how behavioral aspects relating to the notion of self-enhancement are influenced by listening to motivational music.

      Music and performance enhancement

      Regarding the improvement of performance through music listening, empirical evidence corroborates the ergogenic effects of listening to music in a variety of activity domains (for a review see Karageorghis and Priest, 2012a,b). It has been found that synchronous music improves performance in strenuous motor tasks such as treadmill walking (Karageorghis et al., 2009) and 400 m treadmill running (Terry et al., 2012). When physical exercise is combined with the intentional modulation of sound, this may further reduce the perceived effort of performing the task (Fritz et al., 2013). However, in the majority of studies that have investigated the role of music in simple endurance tasks, either the number of repetitions or the time needed for completing the task have served as the dependent measure (Karageorghis and Priest, 2012a,b). The role of music in complex sport activities that involve not only endurance but also motor coordination and accuracy (e.g., tennis, football, basketball) remains to be investigated. There is a need for study designs that test the effectiveness of music during the performance of complex tasks involving some kind of motor coordination.

      Only a limited number of studies provide evidence in favor of an ergogenic effect of music on the performance of complex tasks involving motor coordination. One qualitative study on the use of music by tennis players suggests that music is frequently used for pre-performance enhancement in ball sports (Bishop et al., 2007). Other evidence comes from research on motor rehabilitation interventions for patients who suffer from Parkinson disease: it was found that music interventions can improve motor coordination and the accuracy of movements, not only in Parkinson patients but also in healthy control participants (Bernatzky et al., 2004). Further, two studies with small sample sizes (N = 3 and 15) provide evidence that music interventions can improve performance in netball shooting (Pates et al., 2003) and ball kicking (Silliman and French, 1993). How listening to music improves motor coordination by music has proved difficult to explain. One explanation stems from the fact that there is a strong connectivity between the auditory cortex and motor cortex areas, so that music might stimulate the brain areas responsible for motor coordination (Bernatzky et al., 2004). Rhythmic entrainment has also been proposed as a mechanism to explain how music improves motor coordination (Thaut et al., 2014). Performance enhancement in ball-throwing or ball-kicking tasks might also be explained by the induction of flow states (Pates et al., 2003) or improved self-confidence (Woodman and Hardy, 2003).

      Music and risk behavior

      Another behavioral aspect that has received considerably less attention but is linked to both sport performance and self-evaluative cognition is risk behavior. Certain aspects of self-enhancement, such as a greater sense of power, may lead to riskier behavior (Anderson and Galinsky, 2006) and overconfident decision making (Fast et al., 2012). It has also been observed that on the trait level, self-esteem is associated with higher engagement in risky behaviors (Wild et al., 2004). As prospect theory (Kahneman and Tversky, 1979) suggests, people's risk preferences differ when mathematically identical options are framed positively as gains (increased risk preference) or negatively as losses (decreased risk preference). Prospect theory posits that framing effects account for the differences in risk preferences under positive and negative scenarios. It has been found that when given a choice between framing decisions involving risk positively or negatively, individuals with high self-esteem are more likely to impose a positive frame (McElroy et al., 2007). Thus, motivational music may lead to enhanced self-esteem, which in turn allows framing decisions regarding risks more positively, as gains rather than as losses. While a number of studies have investigated the effect that listening to music has on risk behavior, none of these have tested risk taking in a sports setting. Dey et al. (2006) and Brodsky (2002) showed that listening to music led to riskier behavior during a car-driving simulation. Halko and Kaustia (2015) showed, based on a gambling paradigm, that participants made riskier choices when listening to music they personally liked compared to music they personally disliked. Neuroscientific evidence suggests that personally liked music decreases loss aversion via differences in the value encoding of decisions under risk that correspond to enhanced activity in the amygdala and the striatum (Halko et al., 2015). When investigating risk behavior, gender differences also need to be taken into account. Across different domains and age groups, men are more likely than women to engage in risky behavior (Byrnes et al., 1999). These gender differences are even more pronounced when participants perform tasks involving physical skills such as playing shuffleboard or tossing rings onto pegs (Byrnes et al., 1999). Men are particularly more likely to take the opportunity to compete when given a choice between competing and not competing (Niederle and Vesterlund, 2007).

      The present study

      In the present study, we seek to contribute to the notion of listening to music as self-enhancement by investigating the behavioral consequences of listening to motivational music. The aim was to test three main hypotheses, namely, that listening to motivational music (i) has a positive influence on performance in a ball game, (ii) enhances self-evaluative cognitions, and (iii) leads to riskier behavior. A between-groups experiment was designed to test the effectiveness of two different treatments of motivational music—experimenter-selected vs. self-selected—compared to a control group. For one condition, the selection of motivational music was guided by current scientific standards and musicological expertise, while the other condition had the individual participants select their own music, which would ensure greater ecological validity. In accordance with previous research on the psychological effects of listening to music (Chanda and Levitin, 2013), we further hypothesized that the effect would be more pronounced in the self-selected music condition. Since previous research suggests that there are gender differences in choices regarding risks, we also hypothesized that the influence of motivational music on risk behavior would be more pronounced in men. As a behavioral measure, a simple ball-throwing task was adopted from Decharms and Davé (1965). This paradigm was especially suitable since it allowed assessing both motor task performance and risk behavior. The task required throwing a volleyball from seven different distances into a funnel basket. While the distances were fixed in the first phase of the experiment, the participants themselves could choose the distances in the second phase.

      Methods Ethics statement

      All experimental procedures were ethically approved by the Ethics Council of the Max Planck Society and were undertaken with the written informed consent of each participant.

      Recruitment and participants

      The study was advertised through flyers and handouts at the Goethe University campus in Frankfurt am Main and in fitness gyms around the city. The flyers indicated that participants would receive 10 € per hour for their participation in the study. The target age span for the recruitment was between 18 and 35 years. Based on a pilot study (N = 10), the sample size was targeted to 150 by means of a power analysis using G*Power 3 (Faul et al., 2007). The final sample consisted of 150 participants (69.3% female; Mage = 23.40, range = 18–33). The majority (N = 136) of the participants were students (90.7%). Thirty-three (22%) of the participants indicated that they engaged in sports that involved handling a ball (e.g., volleyball, basketball, or handball) on a regular basis.

      Selection of motivational music

      We decided to employ two different experimental conditions with motivational music, one in which the musical pieces were selected by the experimenters based on the expertise of musicologists and in line with current scientific approaches for selecting motivational music, and another in which the participants themselves selected the motivational music. While the former allowed more methodological rigor in terms of selecting musical pieces that would appropriately fit the intended function, the latter allowed more ecological validity and would ensure that the motivational music was appreciated by the listeners. For compilation of the self-selected playlist, a short online survey in which the participants compiled playlists containing 12 pieces of self-selected motivational music was administered to each participant prior to the study. The description of the survey task can be found in the Supplementary Material. An additional publication that considers auditory and semantic features of self-selected motivational music in detail is currently in preparation. For the experimenter-selected playlist, we had five music experts1 compile playlists of motivational music. Each expert was asked to consider aspects of motivational music stemming from previous approaches, such as the Brunel Music Rating Inventory (BMRI; Karageorghis et al., 1999) and the Brunel Music Rating Inventory-2 (BMRI-2; Karageorghis et al., 2006). The BMRI-2 guidelines for the selection of motivational music suggest that the following criteria are relevant: familiarity, fast tempo, pronounced rhythm and melody, associations with sports, or physical activity, and lyrics communicating self-competence, determination, and strength. Since the selection of motivational music and responses to it are highly idiosyncratic, we aimed to maximize participants' familiarity with and liking of the music by selecting songs that would match the cultural background of the population from which the participants were recruited. In subsequent group discussions, the five individual playlists were condensed to one playlist of motivational music containing 11 musical pieces (Table 1). The order of musical pieces was controlled by compiling five randomized playlists that were assigned to participants in a balanced order.

      List of musical pieces used for the experimenter playlist.

      Artist Title Album Year Duration
      Coldplay Viva La Vida Viva La Vida 2008 4:02
      Ke$ha TiK ToK Animal + Cannibal 2010 3:19
      Katy Perry Roar Prism 2013 3:42
      Survivor Eye of the Tiger Rocky IV 1982 4:03
      Limp Bizkit Take A Look Around Chocolate Starfish and the Hot Dog Flavored Water 2000 5:19
      Eminem Lose Yourself, Soundtrack Version Curtain Call 2005 5:26
      Queen We Will Rock You, Remastered 2011 News Of The World 1977 2:02
      Kanye West Stronger Graduation 2007 5:12
      American Authors Best Day of My Life Best Day of My Life 2014 3:14
      Capital Cities Safe and Sound Safe and Sound 2013 3:13
      David Guetta Titanium (feat. Sia) Nothing But the Beat Ultimate 2012 4:05
      Procedure

      The data were collected from January to September 2016 in the laboratory rooms of the Max Planck Institute for Empirical Aesthetics in Frankfurt am Main, Germany. Participants were randomly assigned to one of the three experimental conditions, i.e., (i) experimenter-selected playlist, (ii) participant-selected playlist, or (iii) no-music control. Participants were invited to a room where the ball-throwing task was set up. For participants who were assigned to one of the music conditions, the playlist was already playing when they entered the room and was kept playing throughout the entire procedure until they were debriefed. The music was played at a medium level of loudness [≈70 dB(A)] that was kept constant across participants and throughout the procedure. The stereo loudspeaker system consisted of two Fohhn LX-150 speakers and two Fohhn X-22 active subwoofer. The experiment consisted of two main phases of the ball-throwing task, with overall performance being assessed during the first phase and risk taking during the second. Three questionnaires were also administered before, during, and after the ball throwing task. For an overview of the entire experimental procedure, see Figure 1.

      Illustration of the experimental procedure.

      Measures

      The behavioral ball-throwing paradigm allowed assessing two dependent variables: ball-throwing performance and risk taking. Both variables were assessed and calculated as documented in Decharms and Davé (1965). The experiment consisted of two main phases. In each phase, participants were asked to throw a volleyball into a funnel basket from seven different distances (4, 7, 10, 13, 16, 19, and 22 feet). For the assessment of ball-throwing performance, participants were asked to throw the ball 10 times from each distance, in the following order: 4, 10, 16, 22, 7, 13, and 19 feet. Since the number of trials, the distances, and the order were the same for all participants, their overall performance across the 70 trials could be compared between the experimental conditions. Before the beginning of the second phase, the experimenter calculated the average hitting ratio for each participant for each distance based on the participant's performance in the first phase. This weighing method allowed individual differences in ball-throwing accuracy to be accounted for. The hitting ratio was calculated for each of the seven distances as the number of successful trials divided by the overall number of trials. During the second phase, which aimed at assessing risk taking, participants had 20 trials (single ball tosses) for which they themselves chose the distances. After each ball toss, participants could choose the same, or another distance until all 20 trials were completed. For each successful trial, participants received incentivized points (0.05 € cents per point) corresponding to their previously determined hitting ratio. A hitting ratio of 100% would yield one point, 90% two points, and so on, up to 10 points for a 10% or 0% hitting ratio. The more difficult it was for participants to hit the basket from a given distance during the first phase, the more points they would receive for hitting it from that distance during the second phase. Risk taking was defined based on the participant's average hitting ratio during the first phase for the distance chosen for each of the twenty trials in the second phase. Additionally, we also assessed each participant's performance during the second phase as the sum of incentivized points the participant received for each successful trial in this phase. This would allow examining the relationship between choices regarding risk and overall gains in points.

      In addition to the behavioral task, we obtained several subjective measures. Since the participants' training history appeared to be an important variable that could influence the effect of the motivational music (Brownley et al., 1995), the participants were asked whether they had previous experience in ball games (years of experience, experience level) and how they perceived their ball-throwing efficacy (α = 0.81). We also assessed trait risk aversion by using a domain-specific measure for risk in “sports and leisure,” the Risk Aversion–SOEP (RA-S; Dohmen et al., 2011). Two measures were administered to assess changes in self-evaluative cognitions. Both of these were administered as pre- and post-test measures before the first phase and again before the second phase; these were the German version of the State Self-Esteem Scale (SSES; Heatherton and Polivy, 1991; Rudolph et al., in preparation) (α = 0.81) and the German Version of the Revised Competitive State Anxiety Inventory (Cox et al., 2003), the “Wettkampfangst-Inventar-State” (WAI-S; Ehrlenspiel et al., 2009) (α = 0.75). The WAI-S consists of 12 items on three separate dimensions: cognitive (α = 0.79), bodily anxiety (α = 0.75), and self-confidence (α = 0.86). After completing the ball-throwing task, participants filled out another questionnaire evaluating their task-related motivation (α = 0.54), confidence (α = 0.64), risk taking (α = 0.54), and degree of distraction (α = 0.83), each assessed with two items on five-point Likert scales. Participants assigned to one of the music conditions were also asked about their liking of and familiarity and identification with the music, assessed with single items on a five-point Likert scale.

      Results

      Our analytic strategy was to approach each of the hypotheses individually before comparing potential interaction effects or relationships between them. Therefore, we conducted three independent analyses of variance (ANOVAs) for each of the hypothesized effects. Additional post-hoc analyses allowed us to further explore our findings and to formulate new hypotheses. Also, music ratings were investigated, which allowed us to compare both music conditions in terms of liking, familiarity, and identification. First, we investigated whether important covariates were equally distributed between the experimental conditions. No significant differences were observed with regard to age, gender, experience with ball-throwing activities (e.g., handball or volleyball), perceived ball-throwing efficacy, or risk propensity in sports and leisure, age: F(2, 147) = 0.17, p = 0.85; gender: χ(2, N=149)2=2.02, p = 0.36; previous ball-throwing activities: χ(2, N=150)2=0.59, p = 0.74; perceived ball-throwing efficacy: F(2, 143) = 0.19, p = 0.83; risk propensity F(2, 147) = 0.39, p = 0.68. In addition, with regard to the task evaluation, no significant differences between experimental conditions were observed, motivation: F(2, 146) = 1.16, p = 0.20; confidence: F(2, 146) = 1.16, p = 0.20; risk taking: F(2, 147) = 1.87, p = 0.16; distraction: F(2, 147) = 2.45, p = 0.09.

      Self-evaluative cognition

      To test whether motivational music enhanced self-evaluative cognitions, gain scores for each of the two self-report measures were calculated by subtracting pre-test scores from the scores obtained at the midpoint of the behavioral task (before the second phase of the study). An ANOVA revealed no significant differences in changes of state self-esteem between the control group (M = −2.46, SD = 6.56), experimenter-selected music (M = −1.06, SD = 5.85), and self-selected music (M = −1.59, SD = 6.60) conditions, F(2, 140) = 0.63, p = 0.54, ηp2 = 0.009. Also, no significant differences were found on any of the WAI-S scales across experimental conditions, cognitive anxiety: F(2, 144) = 0.53, p = 0.59, ηp2 = 0.007; bodily anxiety: F(2, 146) = 1.18, p = 0.18, ηp2 = 0.023; self-confidence: F(2, 146) = 0.63, p = 0.53, ηp2 = 0.009.

      An additional post-hoc analysis was conducted to test whether success during the first phase of the behavioral task influenced self-evaluations. To this end, a new median split factor was computed based on the hitting scores obtained in the first phase of the task. A two-way ANOVA revealed a significant interaction of changes in self-esteem by ball-throwing success across experimental conditions (see Figure 2), F(2, 137) = 3.347, p = 0.038, ηp2 = 0.047. No significant main effects for condition [F(2, 137) = 0.776, p = 0.46, ηp2 = 0.011] or ball-throwing success [F(2, 137) = 2.361, p = 0.13, ηp2 = 0.017] were observed.

      Estimated marginal means and standard error bars for state self-esteem gain scores by hitting success (high/low) across three conditions.

      Performance

      A participant's success in ball-throwing performance was defined as the average performance across all 70 trials of the first phase of the task, measured as the sum of all successful trials. Thus, in order to analyze the effect of the experimental treatment on performance, sum scores for successful trials per participant for the first phase of the ball-throwing task were calculated. A one-way ANOVA did not indicate any significant differences in hitting scores between the control group (M = 23.82, SD = 6.34), the experimenter-selected music condition (M = 25.29, SD = 6.95), and the self-selected music condition (M = 24.65, SD = 5.17), F(2, 147) = 0.70, p = 0.50, ηp2 = 0.009. Although important covariates with regard to performance (e.g., ball-game experience, ball-throwing efficacy) were equally distributed between conditions, we conducted an additional analysis of covariance (ANCOVA) controlling for previous ball-throwing experience (yes/no) to reduce any type II error. The results revealed no increase in the effect of motivational music on performance [F(2, 146) = 0.37, p = 0.69, ηp2 = 0.005], but previous experience significantly predicted performance [F(1, 146) = 5.30, p = 0.02, ηp2 = 0.035].

      Risk taking

      Risk taking was assessed using the mean hitting ratio from the first phase of the ball-throwing task corresponding to the distance participants chose during the second phase. Since the mean hitting ratio would become smaller when choices were riskier, a “risk index” was computed as the inversed score of the mean hitting ratio per participant, for practical reasons. A two-way ANOVA of the risk index by experimental condition and gender was conducted. The results indicated a significant main effect for condition, F(2, 143) = 3.11, p = 0.048, ηp2 = 0.042. There was no significant main effect for gender, F(1, 143) = 0.12, p = 0.73, ηp2 = 0.001. However, there was a significant interaction of risk-taking behavior and gender across conditions F(2, 143) = 3.12, p = 0.047, ηp2 = 0.042. Fischer's least significant difference method (LSD) was used for post-hoc comparisons of means between groups (see Figure 3). The results revealed no significant differences between the experimenter-selected music condition (M = 60.68, SE = 2.62), the no-music condition (M = 57.47, SE = 2.75) and the self-selected music condition (M = 66.32, SE = 2.40). The difference between the no-music condition and the self-selected music condition was marginally significant (p = 0.06).

      Estimated marginal means and standard error bars of success probability during the second phase of the ball-throwing task displayed for the whole sample and separately for male and female participants.

      Additional analyses of male and female subsets were conducted to resolve the interaction effect. Two independent ANOVAs indicated a significant simple effect of risk behavior across conditions for men but not for women, men: F(2, 42) = 4.37, p = 0.02, ηp2 = 0.319, women: F(2, 101) = 1.15, p = 0.32, ηp2 = 0.022. Using Fisher's LSD method, post-hoc comparisons of the estimated marginal means in the male subsample indicated that mean risk taking was significantly higher in the self-selected music condition (M = 69.58, SE = 3.59) than in the no-music condition (M = 52.54, SE = 4.52). However, there were no significant differences between the experimenter-selected music condition (M = 63.86, SE = 4.18) and either of the other two conditions (see Figure 3).

      Another analysis was conducted to test how the level of risk affected overall success during the second phase of the task. A simple linear regression showed that a higher score on the risk index significantly predicted the total number of points earned, R2 = 0.07, F(1, 148) = 12.03, p = 0.001. Thus, taking higher risks during the second phase predicted a higher gain in incentivized points and thus a higher reward for participants.

      Music ratings

      For the music ratings we found significant differences between conditions, with consistently higher ratings for the self-selected music with regard to liking (MExperi. = 3.79, SD = 1.16; MSelf−selected = 4.67, SD = 0.71), familiarity (MExperi. = 4.35, SD = 0.81; MSelf−selected = 4.87, SD = 0.52), and identification (MExperi. = 3.25, SD = 1.04; MSelf−selected = 4.33, SD = 1.00), liking: F(1, 98) = 21.27, p < 0.001, ηp2 = 0.18; familiarity: F(1, 98) = 14.19, p < 0.001, ηp2 = 0.13; identification: F(1, 98) = 27.69, p < 0.001, ηp2 = 0.22. We also tested for a potential relationship between the music ratings and the two main outcome variables ball-throwing success and risk behavior. Bivariate Pearson correlations revealed no significant associations between music ratings and ball-throwing success (rliking = 0.01, N = 100, p = 0.93; rfamiliarity = −0.01, N = 100, p = 0.93; ridentification = −0.08, N = 100, p = 0.40) or risk behavior (rliking = -0.14, N = 100, p = 0.17; rfamiliarity = −0.15, N = 100, p = 0.13; ridentification = −0.05, N = 100, p = 0.60).

      Discussion

      Use of music in sports and exercise has become a ubiquitous practice to enhance motivation, mood, and positive self-evaluations. While motivational music has proven to be ergogenic when applied during endurance tasks (Karageorghis and Priest, 2012a,b), the present study contributes to the existing literature by testing the effect of motivational music on (i) self-evaluative cognitions, (ii) performance, and (iii) risk-taking behavior. The ball-throwing paradigm allowed us to assess the effects of motivational music in a more naturalistic setting while retaining control over random allocation, music selection, and important covariates such as ball-throwing efficacy and trait risk taking.

      Our main findings can be summarized as follows: First, music did not influence self-evaluative cognitions—neither trait self-esteem nor sport-related anxiety. However, music elevated state self-esteem among participants who were performing well in the ball-throwing task. Second, no performance-enhancing effect of motivational music for the ball-throwing task could be observed. But even though music did not improve performance, it also did not influence it negatively. Music could also have been distracting, preventing participants from focusing on the task. Yet music had no influence on overall performance, neither positive nor negative. Third, listening to motivational music enhanced risk-taking behavior, with self-selected playlists having a stronger effect than the experimenter-selected playlist. The effect was also more pronounced in men. Additionally, participants who made riskier choices earned higher monetary rewards.

      Self-evaluative cognitions

      Although there is evidence in favor of a positive effect of music listening on self-esteem (Brown and Mankowski, 1993; Elvers et al., 2017), this study found neither a direct effect of motivational music on the enhancement of state self-esteem nor a reduction of cognitive and bodily anxiety. Since mean gain scores for state self-esteem were negative across conditions, the ball-throwing task itself seems to have had a negative impact on self-evaluative cognitions. It thus appears that the task had a stronger influence on self-evaluative cognitions and potentially overrode any positive effects of the music. Since the task appeared to be cognitively demanding, it might also have been the case that participants were not able to fully appreciate the music they were listening to, which might have further inhibited a positive effect of the music on the listeners.

      Our finding that music had a positive impact on state self-esteem only when participants performed successfully during the first phase of the task highlights another interesting aspect of musical self-enhancement: It appears that music effectively amplified self-esteem only when congruent with a positive task performance and, in contrast, decreased state self-esteem among participants who were performing poorly. It might have been the case that listening to motivational music while performing the task poorly reminded participants that they could do better and emphasized the discrepancy between their expected and actual performance. This finding of a “congruency effect” with regard to state self-esteem aligns with other research that has identified congruency effects with regard to mood (Heimpel et al., 2002; Wood et al., 2009; Lee et al., 2013). It also converges with the theory of cognitive dissonance (Festinger, 1962), which posits that holding two or more incongruent cognitive beliefs leads to cognitive discomfort (i.e., mental stress). Cognitive dissonance has frequently been linked to self-evaluation processes and is assumed to influence momentary self-esteem (Steele and Liu, 1983; Tesser and Cornell, 1991). Listening to motivational music while performing poorly might have induced cognitive dissonance in participants, which led to lowered self-esteem.

      Performance enhancement

      Although a considerable number of studies have investigated the effect of music in sports, there is little understanding of how music might exert ergogenic effects in sports performance. Here our aim was to extend previous findings by employing a study design that focusses on accuracy and motor coordination instead of endurance during a maximum-performance task (Karageorghis and Priest, 2012a,b). The ball-throwing task was more complex and involved both action planning and motor coordination. Here we did not find evidence for the hypothesis that motivational music would improve performance in a ball-throwing task, which was measured by the number of successful trials during the first phase of the ball-throwing task. We were able to confirm the robustness of this finding by ruling out potential confounds due to differences in ball-throwing efficacy or previous ball-throwing experience. Our findings do not align with qualitative accounts of the role of music in enhancing performance in ball sports (Bishop et al., 2007) or with studies with small sample sizes that suggest a performance-enhancing effect in ball sports (Silliman and French, 1993; Pates et al., 2003). Rather, they suggest that the performance-enhancing effect of music that has been documented in other domains appears not to be generalizable to tasks that are more focused on accuracy and motor coordination than on endurance. In comparison to maximum-performance tasks, the ball-throwing task involved more cognitive processing, mental focus, and attention, whereas running or cycling involve relatively little concentration. It therefore appears that a performance-enhancing effect of music is more likely to take place when performance of the task is relatively autonomous and does not require a lot of mental effort (Terry and Karageorghis, 2011). This would suggest that the induction of flow states may account for performance-enhancing effects of music (Silliman and French, 1993) but may have been inhibited in this study due to the relative complexity of the ball-throwing task.

      Risk-taking behavior

      Several studies provide evidence that certain types of music evoke cognitive and affective changes in the listener that are likely to result in greater risk-taking behavior. Enhanced risk-taking induced by music has been observed in driving simulations (Brodsky, 2002; Dey et al., 2006) and also when a behavioral economics bidding paradigm was employed (Halko and Kaustia, 2015; Halko et al., 2015). Our findings converge with these studies and support the claim that listening to music promotes making risky decisions. Our study found the risk-promoting effect in response to motivational music that has specific characteristics (in the experimenter-selected music condition, e.g., motivational lyrics, fast tempi, high level of energy, positive emotional expression, etc.; see further Karageorghis et al., 1999, 2006) or that was selected for the specific purpose of motivation (self-selected music condition). We found that, compared to the no-music control condition, the self-selected music condition was most effective in promoting risky decision making, and this effect was more pronounced among male participants. Furthermore, a regression analysis showed that the overall earnings of incentivized points were positively predicted by the level of risk taking. This suggests that taking higher risks may be beneficial, since in our study taking higher risks led to higher monetary rewards. Being motivated to reach the threshold of one's own competency when making risk-related decisions may be especially important in the domain of sports. Based on our findings, we conclude that music presumably has an advantageous function in sports by promoting greater risk taking without exceeding the range of an athlete's abilities.

      The risk-enhancing effect of music presumably relies on a different perception of risk-related decisions. Based on prospect theory (Kahneman and Tversky, 1979), this can be explained as follows: Listening to music may lead to a perception of choices involving risks in terms of potential gains rather than potential losses. This effect may be explained via some form of empathy (Zentner et al., 2008; Singer and Lamm, 2009; Clarke et al., 2015) or identification (Cohen, 2001). In a broader sense, motivational music can be characterized as expressing a high sense of self-confidence and risk-averse attitudes (e.g., see songs in Table 1), and when listening to such music, the listener empathizes and identifies with the singer and to a certain extent adopts these attitudes her- or himself (Elvers, 2016). A similar relationship has been documented in the field of media studies, where a positive association between the consumption of risk-promoting media content and risky driving behavior was found across different types of studies (correlational, experimental, longitudinal (Beullens et al., 2016). Mimetic and empathetic responses to music and other media content may, however, not always occur and may have different degrees of intensity. Preference judgements have been identified as important predictors of empathic responses (Egermann and McAdams, 2013), suggesting that the reward value of the music plays an important role in determining whether and to what extent the expressed attitude and behavior will be adopted by the listener.

      According to Lang (2006) Limited Capacity Model of Motivated Mediated Message Processing (LC4MP), “some messages can be considered to be more motivationally relevant, namely, those that are implicitly or explicitly associated with pleasure or danger” (Beullens et al., 2016, p. 185). Thus, behavioral approach/inhibition tendencies that are responsive to music-derived pleasure may count as potential mediators of the effect of motivational music on risk behavior. Neuroscientific studies have documented the relationship between music-induced pleasure and reward (Blood and Zatorre, 2001; Salimpoor et al., 2013, 2015), and recent correlational evidence has shown that high reward sensitivity is linked to higher involvement with and stronger positive responses to music (Loxton et al., 2016). Thus, in our study, listening to music may have evoked empathic responses to the overt positive self-portrayals conveyed by the music, which in turn may have promoted riskier decision making, with this relationship moderated by how pleasurable the music was experienced as being. This interpretation is supported by our finding that in the self-selected music condition, both higher liking ratings and higher degrees of risk taking were observed than in the experimenter-selected playlist condition.

      The gender differences in risk-taking behavior that we found in our study align with what previous studies have documented. In a meta-analysis, Byrnes et al. (1999) showed in that risk taking across domains, men take higher risks than women. These differences are even more pronounced when the risk taking involves physical skills. Research from behavioral economics has identified gender differences with regard to the willingness to compete. Niederle and Vesterlund (2007) found that men select the option of competing in a tournament when they have the opportunity to do so twice as much as women do. Niederle and Vesterlund (2007) explained these gender differences in terms of men being more overconfident than women. Since we found no main effect of gender on risk taking, it is likely that differences in confidence evaluations were responsible for the effects identified in our study.

      Conclusion

      Music is a ubiquitous and pervasive cultural artifact that serves as a resource for pleasurable experiences (Zatorre and Salimpoor, 2013) and allows us to fulfill various types of psychosocial needs (DeNora, 1999, 2000). It interferes with our affective and cognitive attitudes and dispositions and eventually influences how we behave and interact with one another. This power of music was already recognized in antiquity (Woerther, 2008) and has stimulated scholars ever since to explore and investigate this phenomenon. We aimed to contribute to an understanding of this power by investigating a contemporary practice of music listening wherein people use music to stimulate their cognitions and behaviors. The use of motivational music in sports and exercise to self-enhance, improve performance, and increase risky behavior is well-documented by ample anecdotal evidence as well as correlational and qualitative accounts. However, our findings reflect the intricateness of these phenomena, as only one of our three hypotheses was confirmed. Although we gathered evidence in favor of a risk-enhancing effect of music, more research is needed in order to improve the robustness of this finding. Another issue is the administration of motivational music in experimental settings. In this study, it was decided to present the music during the task. However, another option would be to only present motivational music before the task that is examined. Furthermore, research is also needed to address the potential mechanisms that may account for the finding; we believe that music's ability to induce pleasure as well as its function with respect to self-enhancement serve as promising candidates for future investigations.

      Author contributions

      PE and JS both contributet significantly to the design of the study the data collection and analysis. PE wrote most of the manuscript but JS critically revised important parts of the manuscript.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to thank Melanie Wald-Fuhrmann for her comments on an earlier version of the manuscript. Further, we are thankful to Felix Bernoully, Mia Kuch, Sophia Lehner, Claudia Lehr, and Freya Materne, whose support has been of great value for the realization of this study.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fpsyg.2017.02026/full#supplementary-material

      References Anderson C. Galinsky A. D. (2006). Power, optimism, and risk-taking. Eur. J. Soc. Psychol. 36, 511536. 10.1002/ejsp.324 Bandura A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 191215. 10.1037/0033-295X.84.2.191847061 Bernatzky G. Bernatzky P. Hesse H. P. Staffen W. Ladurner G. (2004). Stimulating music increases motor coordination in patients afflicted with Morbus Parkinson. Neurosci. Lett. 361, 48. 10.1016/j.neulet.2003.12.02215135879 Beullens K. Rhodes N. Eggermont S. (2016). Behavioral activation and inhibition as moderators of the relationship between music video-viewing and joyriding attitudes. Media Psychol. 19, 181202. 10.1080/15213269.2014.950756 Bishop D. T. Karageorghis C. I. Loizou G. (2007). A grounded theory of Young Tennis Players' use of music to manipulate emotional state. J. Sport Exerc. Psychol. 29, 584607. 10.1123/jsep.29.5.58418089894 Blood A. J. Zatorre R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. U.S.A. 98, 1181811823. 10.1073/pnas.19135589811573015 Brodsky W. (2002). The effects of music tempo on simulated driving performance and vehicular control. Transport. Res. F 4, 219241. 10.1016/S1369-8478(01)00025-0 Brown J. D. Mankowski T. A. (1993). Self-Esteem, mood, and self-evaluation: changes in mood and the way you see you. J. Pers. Soc. Psychol. 64, 421430. 10.1037/0022-3514.64.3.4218468670 Brownley K. A. McMurray R. G. Hackney A. C. (1995). Effects of music on physiological and affective responses to graded treadmill exercise in trained and untrained runners. Int. J. Psychophysiol. 19, 193201. 10.1016/0167-8760(95)00007-F7558986 Byrnes J. P. Miller D. C. Schafer W. D. (1999). Gender differences in risk taking: a meta-analysis. Psychol. Bull. 125, 367383. 10.1037/0033-2909.125.3.367 Carlson E. Saarikallio S. Toiviainen P. Bogert B. Kliuchko M. Brattico E. (2015). Maladaptive and adaptive emotion regulation through music: a behavioral and neuroimaging study of males and females. Front. Hum. Neurosci. 9:466. 10.3389/fnhum.2015.0046626379529 Chanda M. L. Levitin D. J. (2013). The neurochemistry of music. Trends Cogn. Sci. 17, 179193. 10.1016/j.tics.2013.02.00723541122 Clarke E. DeNora T. Vuoskoski J. (2015). Music, empathy and cultural understanding. Phys. Life Rev. 15, 6188. 10.1016/j.plrev.2015.09.001 Cohen J. (2001). Defining identification: a theoretical look at the identification of audiences with media characters. Mass Commun. Soc. 4, 245264. 10.1207/S15327825MCS0403_01 Cox R. H. Martens M. P. Russell W. D. (2003). Measuring anxiety in athletics: the revised competitive state anxiety inventory−2. J. Sport Exerc. Psychol. 25, 519533. 10.1123/jsep.25.4.519 Decharms R. Davé P. N. (1965). Hope of success, fear of failure, subjective probability, and risk-taking behavior. J. Pers. Soc. Psychol. 1, 558568. 10.1037/h002202114300231 DeNora T. (1999). Music as a technology of the self. Poetics 27, 3156. 10.1016/S0304-422X(99)00017-0 DeNora T. (2000). Music in Everyday Life. Cambridge: Cambridge University Press. Dey M. Gschwend B. Baumgartner T. Jäncke P. Jäncke L. (2006). Effekte von Musik auf das Fahrverhalten. Z. Ver. 1, 3236. Dohmen T. KFalk A. Huffmann D. Sunde U. Schupp J. Wagner G. G. (2011). Indidivual risk attitudes: measurement, determinants and behavioral consequences. J. Eur. Econ. Assoc. 3, 522550. 10.1111/j.1542-4774.2011.01015.x Egermann H. McAdams S. (2013). Empathy and emotional contagion as a link between recognized and felt emotions in music listening. Music Percept. Interdiscip. J. 31, 139156. 10.1525/mp.2013.31.2.139 Ehrlenspiel F. Brand R. Graf K. (2009). Das Wettkampfangst-Inventar–State Das Wettkampfangst-Inventar Manual. Bonn: Sportverlag Strau. Elvers P. (2016). Songs for the ego: theorizing musical self-enhancement. Front. Psychol. 7:2. 10.3389/fpsyg.2016.0000226834675 Elvers P. Fischinger T. Steffens J. (2017). Music listening as self-enhancement: effects of empowering music on momentary explicit and implicit self-esteem. Psychol. Music. [Epub ahead of print]. 10.1177/0305735617707354 Fast N. J. Sivanathan N. Mayer N. D. Galinsky A. D. (2012). Power and overconfident decision-making. Organ. Behav. Hum. Decis. Process. 117, 249260. 10.1016/j.obhdp.2011.11.009 Faul F. Erdfelder E. Lang A. G. Buchner A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175191. 10.3758/BF0319314617695343 Festinger L. (1962). A Theory of Cognitive Dissonance. Stanford, CA: Stanford University Press. Fritz T. H. Hardikar S. Demoucron M. Niessen M. Demey M. Giot O. . (2013). Musical agency reduces perceived exertion during strenuous physical performance. Proc. Natl. Acad. Sci. U.S.A. 110, 1778417789. 10.1073/pnas.121725211024127588 Halko M. L. Kaustia M. (2015). Risk ON/Risk OFF: risk-taking varies with subjectively preferred and disliked music. PLoS ONE 10:e0135436. 10.1371/journal.pone.013543626301776 Halko M. L. Mäkelä T. Nummenmaa L. Hlushchuk Y. Schürmann M. (2015). Hedonic context modulates risky choices and reward responses in amygdala and dorsal striatum. J. Neurosci. Psychol. Econ. 8, 100115. 10.1037/npe0000036 Heatherton T. F. Polivy J. (1991). Development and validation of a scale for measuring state self-esteem. J. Pers. Soc. Psychol. 60, 895910. 10.1037/0022-3514.60.6.895 Heimpel S. A. Wood J. V. Marshall M. A. Brown J. D. (2002). Do people with low self-esteem really want to feel better? Self-esteem differences in motivation to repair negative moods. J. Person. Soc. Psychol. 82, 128147. 10.1037/0022-3514.82.1.12811811630 Hsu D. Y. Huang L. Nordgren L. F. Rucker D. D. Galinsky A. D. (2014). The music of power: perceptual and behavioral consequences of powerful music. Soc. Psychol. Personal. Sci. 6, 7583. 10.1177/1948550614542345 Juslin P. N. Västfjäll D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci. 31, 559575; discussion 575–621. 10.1017/S0140525X0800529318826699 Kahneman D. Tversky A. (1979). Prospect theory: an analysis of decision under risk. Econometrica 47, 313327. 10.2307/1914185 Karageorghis C. I. Mouzourides D. A. Priest D. L. Sasso T. A. Morrish D. J. Walley C. J. (2009). Psychophysical and ergogenic effects of synchronous music during treadmill walking. J. Sport Exerc. Psychol. 31, 1836. 10.1123/jsep.31.1.1819325186 Karageorghis C. I. Priest D. L. (2012a). Music in the exercise domain: a review and synthesis (Part I). Int. Rev. Sport Exerc. Psychol. 5, 4466. 10.1080/1750984X.2011.631026 Karageorghis C. I. Priest D. L. (2012b). Music in the exercise domain: a review and synthesis (Part II). Int. Rev. Sport Exerc. Psychol. 5, 6784. 10.1080/1750984X.2011.63102722577473 Karageorghis C. I. Priest D. L. Terry P. C. Chatzisarantis N. L. D. Lane A. M. (2006). Redesign and initial validation of an instrument to assess the motivational qualities of music in exercise: the Brunel Music Rating Inventory-2. J. Sport Sci. 24, 899909. 10.1080/0264041050029810716815785 Karageorghis C. I. Terry P. C. Lane A. M. (1999). Development and initial validation of an instrument to assess the motivational qualities of music in exercise and sport: the brunel music rating inventory. J. Sport Sci. 17, 713724. 10.1080/02640419936557910521002 Krueger J. (2014). Affordances and the musically extended mind. Front. Psychol. 4:1003. 10.3389/fpsyg.2013.0100324432008 Lang A. (2006). Using the limited capacity model of motivated mediated message processing to design effective cancer communication messages. J. Commun. 56, S57S80. 10.1111/j.1460-2466.2006.00283.x Laukka P. Quick L. (2011). Emotional and motivational uses of music in sports and exercise: a questionnaire study among athletes. Psychol. Music 41, 198215. 10.1177/0305735611422507 Lee J. S. Andrade E. B. Palmer S. E. (2013). Interpersonal relationships and preferences for mood-congruency in aesthetic experiences. J. Consum. Res. 40, 382391. 10.1086/670609 Loxton N. J. Mitchell R. Dingle G. A. Sharman L. S. (2016). How to tame your BAS: reward sensitivity and music involvement. Pers. Individ. Dif. 97, 3539. 10.1016/j.paid.2016.03.018 McElroy T. Seta J. J. Waring D. A. (2007). Reflections of the self: how self-esteem determines decision framing and increases risk taking. J. Behav. Decis. Mak. 20, 223240. 10.1002/bdm.551 Niederle M. Vesterlund L. (2007). Do women shy away from competition? Do men compete too much? Q. J. Econ. 122, 10671101. 10.1162/qjec.122.3.1067 Pates J. Karageorghis C. I. Fryer R. Maynard I. (2003). Effects of asynchronous music on flow states and shooting performance among netball players. Psychol. Sport Exerc. 4, 415427. 10.1016/S1469-0292(02)00039-0 Rosenberg M. (1965). Society and the Adolescent Self-Image. Princeton, NJ: Princeton University Press. Saarikallio S. (2008). Music in mood regulation: initiial scale development. Musicae Sci. 12, 291309. 10.1177/102986490801200206 Saarikallio S. (2010). Music as emotional self-regulation throughout adulthood. Psychol. Music 39, 307327. 10.1177/0305735610374894 Salimpoor V. N. van den Bosch I. Kovacevic N. McIntosh A. R. Dagher A. Zatorre R. J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science 340, 216219. 10.1126/science.123105923580531 Salimpoor V. N. Zald D. H. Zatorre R. J. Dagher A. McIntosh A. R. (2015). Predictions and the brain: how musical sounds become rewarding. Trends Cogn. Sci. 19, 8691. 10.1016/j.tics.2014.12.00125534332 Scherer K. Zentner M. (2001). Emotional effects of music: production rules, in, Music and Emotion: Theory and Research, eds Juslin P. N. Sloboda J. A. (Oxford: University Press), 361392. Scherer K. Zentner M. (2008). Music evoked emotions are different–more often aesthetic than utilitarian. Behav. Brain Sci. 31, 595596. 10.1017/S0140525X08005505 Sedikides C. Gregg A. P. (2008). Self-Enhancement. Perspect. Psychol. Sci. 3, 102116. 10.1111/j.1745-6916.2008.00068.x26158877 Silliman L. M. French R. (1993). Use of selected reinforcers to improve the ball kicking of youths with profound mental retardation. Adapt. Phys. Act. Q. 10, 5369. 10.1123/apaq.10.1.52 Singer T. Lamm C. (2009). The social neuroscience of empathy. Ann. N. Y. Acad. Sci. 1156, 8196. 10.1111/j.1749-6632.2009.04418.x19338504 Skånland M. S. (2013). Everyday music listening and affect regulation: the role of MP3 players. Int. J. Qual. Stud. Health Well-being 8:20595. 10.3402/qhw.v8i0.2059523930987 Steele C. M. Liu T. J. (1983). Dissonance processes as self-affirmation. J. Pers. Soc. Psychol. 45, 519. 10.1037/0022-3514.45.1.5 Swann W. B. Pelham B. T. Krull D. S. (1989). A greeable Fancy or Disagreeable Truth? Reconciling Self-Enhancement and Self-Verification. J. Person. Soc. Psychol. 57, 782791. 10.1037/0022-3514.57.5.7822810025 Terry P. C. Karageorghis C. I. (2011). Music in Sport and Excercise the New Sport and Excercise Psychology Companion. Morgantown, WV: Fitness Information Technology. Terry P. C. Karageorghis C. I. Mecozzi Saha A. D'Auria S. (2012). Effects of synchronous music on treadmill running among elite triathletes. J. Sci. Med. Sport 15, 5257. 10.1016/j.jsams.2011.06.00321803652 Tesser A. Cornell D. (1991). On the confluence of self processes. J. Exp. Soc. Psychol. 27, 501526. 10.1016/0022-1031(91)90023-Y Thaut M. H. McIntosh G. C. Hoemberg V. (2014). Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front. Psychol. 5:1185. 10.3389/fpsyg.2014.0118525774137 Wild L. G. Flisher A. J. Bhana A. Lombard C. (2004). Associations among adolescent risk behaviours and self-esteem in six domains. J. Child Psychol. Psychiatry 45, 14541467. 10.1111/j.1469-7610.2004.00330.x Woerther F. (2008). Music and the education of the soul in plato and aristotle: homoeopathy and the formation of character. Classical Q. 58, 89103. 10.1017/S0009838808000074 Wood J. V. Heimpel S. A. Manwell L. A. Whittington E. J. (2009). This mood is familiar and I don't deserve to feel better anyway: mechanisms underlying self-esteem differences in motivation to repair sad moods. J. Pers. Soc. Psychol. 96, 363380. 10.1037/a001288119159137 Woodman T. Hardy L. (2003). The relative impact of cognitive anxiety and self-confidence upon sport performance: a meta-analysis. J. Sports Sci. 21, 443457. 10.1080/026404103100010180912846532 World-Rugby P. (2015). The Greatest Haka EVER? YouTube Video. Available online at: https://www.youtube.com/watch?v=yiKFYTFJ_kw Zatorre R. J. Salimpoor V. N. (2013). From perception to pleasure: music and its neural substrates. Proc. Natl. Acad. Sci. U.S.A. 110, 1043010437. 10.1073/pnas.130122811023754373 Zentner M. Grandjean D. Scherer K. (2008). Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8, 494521. 10.1037/1528-3542.8.4.49418729581

      1Three musicologists, a sound engineer, and an expert on popular music.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.ielrtn.com.cn
      gkchain.com.cn
      www.louisadam.com.cn
      www.tqiuwc.com.cn
      www.nbapeilu.com.cn
      shimoo.com.cn
      www.pwchain.com.cn
      www.ufcekj.com.cn
      www.pgchain.com.cn
      www.wxstest.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p