Front. Psychol. Frontiers in Psychology Front. Psychol. 1664-1078 Frontiers Media S.A. 10.3389/fpsyg.2017.01783 Psychology Original Research Montessori Preschool Elevates and Equalizes Child Outcomes: A Longitudinal Study Lillard Angeline S. 1 * Heise Megan J. 1 Richey Eve M. 1 Tong Xin 1 Hart Alyssa 1 Bray Paige M. 2 1Department of Psychology, University of Virginia, Charlottesville, VA, United States 2Department of Education, University of Hartford, Hartford, CT, United States

Edited by: Michael S. Dempsey, Boston University, United States

Reviewed by: Jennifer M. Zosh, Pennsylvania State University, United States; Anna V. Fisher, Carnegie Mellon University, United States

*Correspondence: Angeline S. Lillard, lillard@virginia.edu

This article was submitted to Educational Psychology, a section of the journal Frontiers in Psychology

30 10 2017 2017 08 1783 13 07 2017 25 09 2017 Copyright © 2017 . 2017

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Quality preschool programs that develop the whole child through age-appropriate socioemotional and cognitive skill-building hold promise for significantly improving child outcomes. However, preschool programs tend to either be teacher-led and didactic, or else to lack academic content. One preschool model that involves both child-directed, freely chosen activity and academic content is Montessori. Here we report a longitudinal study that took advantage of randomized lottery-based admission to two public Montessori magnet schools in a high-poverty American city. The final sample included 141 children, 70 in Montessori and 71 in other schools, most of whom were tested 4 times over 3 years, from the first semester to the end of preschool (ages 3–6), on a variety of cognitive and socio-emotional measures. Montessori preschool elevated children’s outcomes in several ways. Although not different at the first test point, over time the Montessori children fared better on measures of academic achievement, social understanding, and mastery orientation, and they also reported relatively more liking of scholastic tasks. They also scored higher on executive function when they were 4. In addition to elevating overall performance on these measures, Montessori preschool also equalized outcomes among subgroups that typically have unequal outcomes. First, the difference in academic achievement between lower income Montessori and higher income conventionally schooled children was smaller at each time point, and was not (statistically speaking) significantly different at the end of the study. Second, defying the typical finding that executive function predicts academic achievement, in Montessori classrooms children with lower executive function scored as well on academic achievement as those with higher executive function. This suggests that Montessori preschool has potential to elevate and equalize important outcomes, and a larger study of public Montessori preschools is warranted.

early childhood education preschool Montessori cognitive development social development theory of mind mastery orientation academic achievement 2 Brady Education Foundation10.13039/100007039

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Optimizing preschool education is important from both economic and developmental standpoints (Heckman, 2006; Blair and Raver, 2016). The human brain undergoes marked development in the first 6 years, and the environment interacts with gene expression producing changes that appear to be permanent (Zhang and Meaney, 2010). Furthermore, neural development proceeds in a hierarchical fashion, with later attainments built on earlier ones (Merzenich, 2001). Economic analyses show that the highest rates of return on educational investments in human capital are derived from preschool programs (Heckman, 2006). Yet the two primary examples of successfull early childhood interventions (Perry Preschool and the Abecedarian Project) are from the 1960s (Campbell et al., 2002; Schweinhart et al., 2005) and were small studies with very intensive interventions that would be very expensive (on the order of $20,000/year per child) to implement in today’s dollars (Minervino and Pianta, 2014). Doing such interventions at scale would be exceedingly difficult. However, some alternative public preschool programs can feasibly be widely implemented; one such program is Montessori. Understanding if such programs provide measurable benefit to young children’s development is a prerequisite to determining whether to attempt implementation at scale.

      Montessori education aligns with principles and practices that a century of research has shown are more optimal for child development than the principles and practices that undergird conventional schooling (Lillard, 2017). Developed by a physician in the first half of the 20th century, the educational method stemmed from close observation of children in relatively free environments. It provides a complex and interrelated set of hands-on materials and lessons across major topic areas and is designed for children ages 0 to 12+ years (Montessori, 1994a). Within a structure created by the materials and teacher oversight, children are free to make constructive choices among activities that they have been taught, to explore personal interests (with the caveat that they also engage broadly), and to decide whether to work alone or with peers in the multi-age classrooms. There are no grades or extrinsic rewards, and learning is situated in real or simulative contexts. Montessori education is aimed at development of the whole child, integrating social and cognitive growth for healthy independent functioning.

      The first studies of Montessori outcomes lacked good controls or had small samples and compromises in program quality; for example, they used single-age classrooms, added non-Montessori activities, and/or had teachers with minimal training (Karnes et al., 1983; Miller and Bizzell, 1984). Program quality is clearly an important consideration, as children in higher-fidelity Montessori classrooms (where children had only Montessori activities) had larger social and cognitive school-year gains than those in lower-fidelity ones (Lillard, 2012). However, the Lillard () study had serious limitations, including that the children were middle-income and not randomly assigned to the schools, which were private. Such limitations are common in the relatively few existing studies of Montessori education (Rathunde and Csikszentmihalyi, 2005; Peng and Md-Yunus, 2014).

      Another study avoided these problems by testing 5-year-olds in a high-fidelity public inner-city Montessori school who had gained admission through a computerized district-level random lottery when they were 3 years old, and compared their outcomes to those of 5-year-olds who had lost that lottery and were at non-Montessori schools (Lillard and Else-Quest, 2006). The Montessori children significantly outperformed the control children on an array of measures. In that study, however, the sample of preschoolers was small (N = 55), and the children were tested just once during the school year. These limitations are also problematic.

      In the present study, children in two high-fidelity public Montessori magnet schools (11 classrooms) who had gained admission via a random computerized district-level lottery at 3 years old were compared to a group who had lost the lottery and attended other non-Montessori schools, over half of which were private schools. Children (N = 141) were tested over the fall semester when they were 3 years old, and then again at the end of the school year for three consecutive years. The tests, described next, assessed a variety of skills known to be important to later success.

      Children’s academic ability is considered of primary importance in school assessments. For young children, initial progress in reading, vocabulary, and numerical understanding are valued indicators. Here we measured these with four Woodcock–Johnson IIIR Tests of Achievement: Letter-Word, Picture Vocabulary, Applied Problems, and Calculation (Woodcock et al., 2001). The Woodcock-Johnson tests have good psychometric properties as described in the manual, and are frequently used to measure school outcomes.

      Academic benefit might have trade-offs in social learning; indeed, Montessori education has been criticized for being “asocial” since the children rarely participate in whole-class activities (DeVries and Gonçu, 1987). Social cognition was measured with the Theory of Mind scale (Wellman and Liu, 2004), which has good internal and external validity (Wellman, 2014); for example, it predicts later social competence (Wellman, 2014). A central construct in the Theory of Mind scale is understanding of false belief, which has garnered considerable attention in developmental psychology and education in the last 30 years (Blair and Razza, 2007). Understanding that someone can have a false belief entails the crucial understanding that minds represent the world, and that people’s behaviors are based not (necessarily) on the way the world actually is, but on how they represent the world to be (Dennett, 1987). The Theory of Mind scale contextualizes this key understanding with steps leading up to it (understanding of perception and its relation to knowledge, and understanding that people can believe different things) and following it (understanding that the emotions we convey might be different from the emotions we actually feel).

      Although theory of mind is related to social competence, they are different constructs. Social competence was measured more directly with stories from the Rubin’s Social Problem-Solving Test - Revised (Rubin, 1988); a different story was used each year, and scoring was modified to home in on the maturity of social competence revealed in children’s responses. In these stories, one child has a coveted resource (like a swing) that another child really wants, and children need to come up with strategies the focal child could use to obtain the resource; responses like “I would ask her to share for 10 min then she could have it for 10 more minutes” are considered highly competent, whereas “I’d tell the teacher” or “I’d say please, please, please” are not. Other studies have shown that children in high-fidelity Montessori preschools show more social competence on this task (as well as better playground interactions) than children in other types of preschools (Lillard and Else-Quest, 2006; Lillard, 2012).

      Theory of mind is also strongly associated with executive function and involves many of the same neural structures (for example the medial and lateral prefrontal cortex and the temporo-parietal junction) (Carlson and Moses, 2001; Koster-Hale and Saxe, 2013; Powell and Carey, 2017). Executive function was measured in this study because it undergirds self-regulatory skills that are important to academic and life success (Blair and Razza, 2007; Diamond, 2013; Vernon-Feagans et al., 2016); in fact, self-regulation at age 4 predicts health, wealth, and criminality outcomes at age 32 (Moffitt et al., 2011). Here executive function was measured with two tasks; a full battery of tests would have been desirable (Willoughby et al., 2011; Lipsey et al., 2017), but time constraints only allowed two. One executive function task was Head-Toes-Knees-Shoulders (HTKS), in which a child must do the opposite of a command (for example, touch their toes when asked to touch their head). To do this, a child must keep a command in mind along with the rule to execute its opposite, must inhibit the opposite response, and must executive the required one. This task has good psychometric properties and is related to other tests of executive function as well as concurrent and later academic success (McClelland et al., 2007; Ponitz et al., 2008, 2009; Lipsey et al., 2017). The second executive function assessment was the Copy Design subtest from the Visuospatial Processing section of the NEPSY-II (Korkman et al., 2007). For this task, children see a design, and must hold it in mind as they transform the visual image into its motor execution and a new resulting visual copy of that image. Thus working memory, attention, inhibitory control, and execution skills are employed. Design copy is highly related to other tests of executive function (Grissmer et al., 2010; Cameron et al., 2012; Fuhs et al., 2014; Lipsey et al., 2017) and has good test-retest reliability (r = 0.72 in Lipsey et al., 2017). Design copy ability is also related to academic achievement (Grissmer et al., 2010). Although both of these tasks require some similar executive function skills, HTKS involves large motor processes whereas Design Copy involves fine motor skills.

      In addition to academic achievement, theory of mind, social competence, and executive function, which have been examined previously, we also used three tasks not previously used in studies of Montessori preschool. The first was the growth of a mastery orientation. Mastery orientation is an important personal quality (Dweck, 2006) indicative of a “growth mindset” (Dweck, 2017): a belief that with effort one can master challenges and increase one’s abilities. People who are mastery oriented want to learn, and take on challenging tasks in order to do so. They are resilient, persisting even in the face of failure. Their implicit theory of intelligence is that it is malleable, such that the harder one works, the better one can be. By contrast, people who are performance oriented seek to look good; their implicit theory of intelligence is that it is fixed, and they tend to give up in the face of failure. About 80% of Americans naturally adopt one orientation or the other, but circumstances can alter those orientations. Clearly if school could increase mastery orientation, this would be positive. Because conventional school practices like extrinsic rewards tend to instead encourage a performance orientation, and Montessori education does not use them, we expected that children might be more mastery oriented by the last 2 years of Montessori preschool. Mastery orientation was measured with a modification of a puzzle task developed by Smiley and Dweck (1994). Children were given an easy and a very difficult (actually, impossible) puzzle to solve, and then later were offered the opportunity to work on either puzzle again. Convergent evidence suggests that children who choose to continue to work on an unsolvable puzzle are “persisters” with a stronger mastery orientation than children who choose to work again on an easy puzzle (Smiley and Dweck, 1994). Having a mastery-oriented mindset predicts achievement over time (Dweck, 2006). Because it would take time for an orientation like this to develop in a school program, and because it involved a 0–1 response, choices at the first two vs. the last two time points were examined.

      The second new construct was feelings about academic tasks. Early academic achievement might occur at the expense of enjoying school tasks, which is undesirable since enjoying kindergarten predicts later school achievement (Ladd et al., 2000). Not liking school tasks could stem from extensive emphasis on academics and could presage burnout, an issue recently raised with regard to a study of Tennessee preschoolers who performed less well by second grade than children who had not gone to preschool (Lipsey et al., 2015; Haskins and Brooks-Gunn, 2016). Therefore we assessed children’s liking of academic tasks such as school lessons and reading. However, because preschool-aged children tend to be very positive about many experiences, how much they professed to like leisure activities like playing and watching movies was also taken into account.

      Another measure not used in prior studies of Montessori outcomes was the Alternate Uses task, which assesses creativity. Creativity is certainly a desirable construct. Because conventional educational methods often require children to answer questions in specific ways (as on multiple choice tests) but Montessori often encourages independent exploration, Montessori might promote more creativity. On the other hand, there are particular ways that children are instructed to use specific Montessori materials, and this could discourage creativity. Alternate Uses (sometimes called Creative or Unusual Uses) is a commonly used task that asks one to come up with as many uses as one can for common items like paper clips and towels (Guilford and Christensen, 1973). It was administered at each time point after the first fall. Many major current innovators, like both founders of Google (Sergei Brin and Larry Page), the founder of Amazon (Jeff Bezos), the creator of Wikipedia (Jimmy Wales) and the designer of the once-revolutionary video game Sim City (Will Wright) attended Montessori schools (McAfee, 2011; Gaylord, 2012), and other studies have shown that Montessori children are more creative in later grades (Lillard and Else-Quest, 2006; Besançon and Lubart, 2008), but not in preschool. To our knowledge, no other study has used Alternate Uses with Montessori preschool children.

      In sum, the study measured children’s academic achievement, theory of mind and social skills, executive function, mastery orientation, relative enjoyment of school, and creativity at four time points to determine whether Montessori education would have a significant influence on those important constructs.

      In addition to examining the overall efficacy of Montessori preschool for these measures, the study (because of its sample size) permitted examination of Montessori’s potential for disrupting the predictive power of certain variables for certain outcomes. One is the predictive power of income for achievement, or the income achievement gap. Childhood poverty is a significant predictor of poor life outcomes (Brooks-Gunn and Duncan, 1997; Yoshikawa et al., 2012). Education is widely viewed as a ladder out of poverty, yet socio-economic status (SES) and school achievement are correlated (National Early Childcare Research Network, 2005; Sirin, 2005). The income achievement gap, which is larger than the racial achievement gap, is present by kindergarten and persists at that high level throughout school (Reardon, 2011). Here we examined Montessori’s potential to address the income achievement gap in preschool. Second, executive function is known to predict many life outcomes (Moffitt et al., 2011); children with poorer executive function generally do not do as well in school (Blair and Razza, 2007; Duncan et al., 2007), and so remedial programs like the Chicago School Readiness Project (Raver et al., 2011) and Tools of the Mind (Diamond et al., 2007) are instituted as costly add-on programs. Montessori is a form of differentiated instruction that can naturally support different levels of executive function. For example, a child who needs more structure can be monitored more closely than a child who needs less structure. This is more difficult to do in conventional schools, since the structure is set up to treat all children in a given class in the same way (Tomlinson, 2014). Because Montessori can more easily and naturally accommodate differences in children, we ask whether executive function might be less predictive in Montessori programs.

      The samples were ethnically diverse and equivalent at the first test point in terms of parent education and income (ranging from $0 to $200,000), child age, and Time 1 scores; this lack of pre-existing differences would be expected given the random lottery assignment. Slight (but non-significant) differences in performance at Time 1 could be due school programs already having influenced children at the first test point, which ranged from mid-September to mid-December. Over the subsequent 30 months, significant differences emerged on several measures, all indicating better outcomes for children in the Montessori program.

      Materials and Methods

      This longitudinal study examined how children in Montessori vs. other preschool environments changed over 3 years. The same basic set of tests were administered to children at each time point. The study was carried out in accordance with the guidelines for human research of the Institutional Review Board for the Social and Behavioral Sciences at the University of Virginia, which approved the protocol.

      Participants

      Sample characteristics are detailed in Table 1. In brief, the final sample included 70 children in Montessori and 71 controls who were at other non-Montessori schools. Children were 41.15 months old on average at the first test point, and each sample was ethnically diverse and had slightly more males than females. Household income ranged widely (because the lottery was for a magnet school) as did parent education; the average parent had some college education, but the range was from 9th grade through post-graduate. The two subsamples did not differ on any measured ethnographic variable.

      Sample characteristics.

      Montessori (n = 70) Control (n = 71)
      Age at Time 1 41.31 months 41.00 months
      Gender 39 Male 38 Male
      Household income $73,208 $68,914
      Income range $0–180,000 $0–200,000
      Mother education 6.70 (1.30) 6.64 (1.12)
      Father education 6.37 (1.38) 6.13 (1.23)
      Ethnicity: subsample percentages
      Caucasian 48% 37%
      African–American 17% 15%
      Hispanic 16% 23%
      Asian 3% 4%
      Multi-ethnic 16% 20%
      Age at subsequent test points: T2: +6 months; T3: +18 months; T4: +30 months. There were no significant group differences in any demographic variable, nor was there a difference in inter-test interval time, as indicated by t-tests. A Chi Square test revealed no significant sample differences in ethnicity (p = 0.63). Income: In both subsamples, 35% of sample < $50K household income; 80% < $100K. One family declined to state income. Parent Education: 1 = less than 9th grade, 2 = 9th grade, 3 = 10th grade; 4 = 11th grade, 5 = High School diploma, 6 = some College, 7 = College degree, and 8 = Post-graduate education.
      Recruitment

      All participants were recruited from Hartford, CT and its outlying suburbs by letters sent home from the school district office following a school choice lottery (see below) in each of 4 years spanning 2010–2013; each participating child was in the study for 3 years, so data collection spanned from fall 2010 through spring 2016. Letters were sent to parents of all 3-year-olds who had been entered in a lottery listing one of two public Montessori magnet schools as their first choice; the letters were accompanied by contact, demographic, and school information forms, a permission letter, and an envelope to return their information to the study coordinator. Parents were sent a $10 gift card as a thank you for returning the information forms. After spring tests each year, children were sent an age-appropriate book and parents were sent a $50 gift card.

      Lottery

      The lottery was done by computer at the Connecticut State Department of Education’s Regional School Choice Office in Hartford, CT in May of each year. A child’s parent or guardian had submitted a lottery application during the period spanning October through February, selecting one of the two Montessori schools as their first of five school choices. The lottery selection was random except for neighborhood, sibling, and staff preferences. Staff children were disqualified from the study but 2 study children were admitted to a Montessori via the sibling preference; their siblings had presumably been admitted at random so the latent parent characteristics the lottery was intended to control for were still present. One control child had been admitted to Montessori but did not attend because the parents “did not like the neighborhood the school was in”; all other participants who gained admission to one of the two Montessori schools did become enrolled there. These two siblings and the admitted non-attender were assigned to the school program group they were actually in, but removing the two siblings and placing the cross-over child in the experimental group (“intent-to-treat”) had no meaningfully effect on results. For example, the ANCOVA on Time 4 academic achievement strengthens slightly when these changes are made, from F(2,119) = 7.24, p = 0.008, ηp2 = 0.06 to F(2,117) = 9.58, p = 0.002, ηp2 = 0.08. For philosophical reasons (such as grouping participants according to the treatment actually received) the study’s original group assignment was retained.

      Schools Control schools

      Forty-three control children attended the same schools for the duration of their time in the study; 26 made one school switch, and 1 switched schools twice. At the beginning of the study, the 71 control children were in 51 schools; most of those schools had 1 child, some had 2–3, and one had 4. Over the course of the entire study (6 school years), control children were at 71 different schools. (Children were tracked at the school, not the classroom level). Thirty of the 71 schools were publicly funded (15 magnet including for example Reggio, Arts, and Environmental Science schools; 8 conventional public schools; and 7 Head Start programs) and 41 were private schools. Thirty-two of the schools attended by control children were in Hartford city (including West Hartford, which is wealthier with an average household income of $120,000) and 39 were in the outlying suburbs. Public early childhood programs in Connecticut must (1) satisfy the NAEYC accreditation standards and (2) be a member of the state’s early childhood professional registry. Connecticut requires an Early Childhood Teaching Credential that entails either (1) being a graduate of an approved higher education program or (2) another higher education degree, teaching experience, and 12 credits in early childhood education.

      Montessori schools

      One of the Montessori schools was the first public Montessori school in Connecticut, established in 1994. The other one opened in 2008. During the study years both Montessori schools were recognized by the Association Montessori Internationale (AMI) for their strict fidelity to original principles. One school had 5 classrooms and the other had 6 classrooms serving 27 three- to six-year-olds. One school also included students to 6th grade and the other to 8th grade; each had about 350 children in total. The teachers all had AMI training, for which a BA/BS degree is preferred but not required. Three of the teachers originally at one school had previously taught conventionally, and agreed to be retrained when the school converted to Montessori in 2008. There was some teacher turnover during the study but these changes were not tracked at either Montessori or conventional schools.

      Missing Data and Exclusions

      Over 4 years, 174 children were admitted to the study; 141 were retained in the final sample. Of these 141, 122 children were tested at all 4 time points, and 19 were tested at 3 time points. Of these 19, one joined the study at Time 2, 2 missed one test session, and 16 moved or crossed over between Time 3 and Time 4. 11 of these were in Montessori and 5 were control children. The control children who were lost had all moved; this lost subset of control children had performed significantly lower in academic achievement at earlier time points than the control children who did not move. The Montessori children who were lost at Time 4 did not significantly differ from those who remained in the study. Thus attrition patterns bias Time 4 results toward better outcomes for the control sample. For the variables reported here and the remaining children, 2.6% of data is missing due to experimenter error, child non-compliance, or interruptions in testing.

      Of the 33 children who were admitted but excluded from the study, 23 children contributed insufficient data; 4 of these (2 Montessori) were lost between Times 1 and 2 and 19 (9 Montessori) were lost between Times 2 and 3. The children who were lost did not differ from other children in terms of parent education, parent income, ethnicity, or gender. The decision not to include these children was based on a preference for actual over imputed data. The other 10 excluded children (6 Montessori) had insufficient English (n = 5), speech delay (n = 3), or other learning disabilities (n = 2).

      Procedure

      All parents provided written informed consent. Testing was conducted one-on-one, usually in the child’s school, but in a few cases in a public library due to lack of school cooperation. Ten trained research assistants tested children over the course of the study (eight graduate students and two project coordinators). Tasks were administered in a fixed order chosen to vary formats for engaging children: Theory of Mind, Letter-Word, Alternate Uses, Design Copy, Puzzle Part 1, Math, Head Toes Knees Shoulders, Social Problem-Solving, Picture Vocabulary, Preference Questionnaire, Puzzle Part 2. Testing was done simultaneously at Montessori and control schools so that test time would not be confounded with school type.

      Participants were administered the same tasks at all test points, except the Preferences Questionnaire and the Alternate Uses creativity task, which were added in the spring of 2011, so these tasks are missing at Time 1 from the 29 participants who enrolled in 2010.

      On some tasks, having exactly the same items at different test points would threaten validity. For these tasks there were four sets of materials, administered on a rotating basis.

      Academic Ability

      Children’s academic ability was assessed using the Woodcock–Johnson IIIR Tests of Achievement according to the instructions in the manual (Woodcock et al., 2001). Because there were no age differences across samples, raw scores were used for all Woodcock–Johnson tests. The Picture Vocabulary subtest assessed vocabulary, and the Letter-Word subtest assessed reading. Because the Montessori schools both taught cursive letters, the printed letters in the earlier items on the Letter-Word subscale were overlaid with cursive letters when testing Montessori students. Ordinary print letters were retained from the point when the test changes from letter to word identification. Early mathematical achievement was measured with the Applied Problems subtest, followed by the Calculation subtest if children scored 19 points or higher. These scores were summed for a Math score. The Math, Letter-Word, and Picture Vocabulary score loaded on a common factor (see Appendix) and were highly correlated (rs > 0.80), so to reduce the number of comparisons in the study, these scores were combined (by adding Z-scores) for an overall Academic Achievement measure (e.g., Lipsey et al., 2017).

      Theory of Mind

      We used four tasks from the Theory of Mind Scale (Wellman and Liu, 2004) omitting the lowest level (Diverse Desires) for brevity since 3-year-olds typically pass this level. As an example, in the Knowledge Access task, children were shown what was hidden in the drawer of a doll-house-sized bureau, and then shown a doll who they were told had not seen inside the drawer. They were asked if the doll knew what was inside the drawer, and if the doll had seen inside the drawer; both answers had to be correct for a child to be given credit. Children were given Knowledge Access first, followed by Contents False Belief, Diverse Beliefs, and Hidden Emotion, for final scores of 0–4. The contents, dolls, and doll names changed for each test session. For example, for contents false-belief task, one year the child saw a Band-Aid box with crayons inside, another year a raisin box with buttons inside, another year a Crayons box with rubber bands inside, and another year a Cheerios box with beads inside. Since children entered the study for four consecutive years, each material set came first for a portion of the sample.

      Social Problem Solving

      One object acquisition story from Rubin’s Social Problem-Solving Test - Revised was administered (Rubin, 1988) each year. In these stories, children were shown two other preschoolers, one of whom had a coveted resource like a swing and had had it for a “long, long time” and the other of whom wanted that resource. Children were asked what the second child could do or say to get the resource, what else they could do or say, and what the child him- or herself would do or say. Children’s use of strategies considering fairness and justice for both parties were coded. Although there is no limit to the number of such solutions a child might give, in reality the range was 0–3 at all four test points. Interrater reliability on 20% of all responses across all years was 0.99.

      Executive Function

      Executive Function was assessed with two tasks. For Head-Toes-Knees-Shoulders (Ponitz et al., 2009), children were first asked to touch their head, then to touch their toes. Children were then told that they were playing an “opposite game” in which they must touch the opposite part of the body than the experimenter said. Children were then administered 10 items, each scored 0–2, with 0 indicating the child followed the command literally, 1 meaning the child touched the incorrect body part first and then corrected themselves without prompting, and 2 meaning the child touched the correct (opposite) body part. If a child scored 10 points or more on the first 10 items, a second series of 10 items was administered which included knees and shoulders; the maximum points a child could earn was 40.

      Second, the Design Copy subtest from the Visuospatial Processing section of the NEPSY-II was administered and scored according to the manual (Korkman et al., 2007). Children were shown a paper with a 4 × 4 grid with four figures across the top and third rows. The first figure was a vertical line; the experimenter showed children how to copy the line in the box below it (first box, second row), saying (for 3- and 4-year-olds), “See this line? I will draw one here. Now you draw one here,” handing the child the pencil and pointing to the second figure (a horizontal line) and the box below it. For 5-year-olds, and for the remaining items, the experimenter simply pointed to the top figure then the blank box below it, saying, “Copy this one here.” This continued for up to 16 figures until a child failed to successfully copy three figures consecutively. An independent coder coded a randomly selected subset of children at each test period, and interrater reliabilities across the two coders were excellent: rs = 0.98 (32 children at Time 1); 0.96 (22 children at Time 2); 0.95 (14 children at Time 3); 0.90 (22 children at Time 4).

      Mastery Orientation

      The puzzle task (modified from Smiley and Dweck, 1994) designed to test mastery orientation was given in two parts. First, children were given a fairly easy puzzle for their age, along with a picture of what the completed puzzle should look like. The picture was turned over while children solved the puzzle. After 2 min or when children completed the puzzle (whichever occurred first), they were given a much more difficult puzzle to solve and its completed picture which was then turned over. However, in this puzzle there were also pieces that had been switched with a similar puzzle, rendering the puzzle unsolvable. Children were again given 2 min to work on the puzzle. Then they completed several other tasks, and finally the experimenter brought out both puzzles again, told children that they had some extra time, and asked which one they wanted to work on and why; children could opt for neither or the easier puzzle (scored 0), or the more difficult puzzle (scored 1).

      School Enjoyment: Preference Questionnaire

      A questionnaire was developed to assess children’s enjoyment of academic (school and reading) and leisure (media and play) tasks; four filler questions were included as well. There were four questions about each of the focal topics, and children rated their enjoyment by pointing to a sad, neutral, or happy face. These responses were coded as 0, 1, or 2, and added together. Since young children often give the highest possible ratings on such scales (Ladd et al., 2000), to get variability, responses at the end of each school year (so they had experience with the school tasks) were summed, and liking for academic tasks was subtracted from liking of recreational tasks, reflecting how much more each child liked recreational than scholastic activities across preschool.

      Creativity

      Alternative Uses was used to assess creativity (Guilford and Christensen, 1973). First, as a warm-up, children were shown a photograph of an object (e.g., a pencil) and the experimenter said, “See this? This is a pencil. Can you tell me as many different things that you can think of that you can do, play or make with this?” If children made no reply in 10 s, the experimenter prompted with one use. The first of two test items was presented in the same way (“See this? This is a bucket…”). Responses were recorded for 1 min, with the experimenter prompting “What else?” If a child was producing responses and then appeared to run out of ideas (did not respond for a few seconds), the second item was shown and the same process repeated. For both test items the total time during which responses counted was 2 min; responses given after 2 min were not included.

      Each intelligible response was scored as standard or non-standard. Categories were exclusive. For example, a standard use for a towel would be to wipe one’s body, and a non-standard use would be to place it over one’s head to pretend that one is a ghost. Analyses were conducted on the number of non-standard uses each child gave, collapsed across both items at each assessment. The actual range of responses was 0 to 5 total non-standard uses. Two coders independently coded a randomly selected subset of the data (ns below). Reliability was r = 0.80 on 16 children who were double-coded at Time 1; 0.73 (45 children at Time 2); 0.79 (46 children at Time 3); 0.82 (40 children at Time 4).

      Statistical Analyses

      Some analyses reported here employed growth curve modeling, one of the most frequently used analytic techniques for longitudinal data analysis with repeated measures. Growth curve modeling can directly analyze intraindividual change over time and interindividual differences in intraindividual change (McArdle and Nesselroade, 2014). Growth curve analysis obtains a description of the mean growth in a population over a specific period of time. Individual variations around the mean growth curve are due to random effects and intraindividual measurement errors.

      A typical growth curve model can be expressed as

      y1=Λbi+ei, bi=f(β,Xi)+ui,

      where yi = (yi1,yi2,...,yiT)′ is a T × 1 vector and yij is an observation for individual i at time j (i = 1, ..., T; j = 1, ..., T where N is the sample size and T is the total number of measurement occasions); Λ is a T ×q factor loading matrix determining the shape of growth trajectories, bi is a q × 1 vector of random effects, and ei is a vector of intraindividual measurement errors. The vector of random effects bi varies for each individual, and its mean, representing the fixed effects, can be interpreted by a function of covariates Xi with parameters β. The residual vector ui represents the random component of bi.

      We use maximum likelihood estimation methods to fit the model. Missing values are believed to be missing completely at random (MCAR) or missing at random (MAR). Thus, Full Information Maximum Likelihood method (FIML) is applied to deal with missing data.

      Data were not nested in control classrooms for the obvious reason that most control schools had only one child, and children’s classrooms and teachers were not tracked because they were not the focus of this study. Data were also not nested within Montessori classrooms, and the reason for this might be less obvious: Every year the 11 Montessori classrooms were differently constituted. First, peers changed: Always, at least 33% of children turned over as the oldest group of 9 moved on and a new group of 9 three-year-olds entered. In addition, several teachers and assistants turned over at some point during the study (although this was not closely tracked, at least three teachers at one school turned over), rendering different teacher experiences for each wave of children entering a given physical class (some had teacher A for 3 years, others for 2, others for 1, and others did not have teacher A at all). For this reason, treating children who entered a given classroom in 2010 and those who entered that classroom in 2013 as being in the same class (as a nested design would do) would not make sense; they had no overlap in peers, and many had different teachers as well. If we treated each entering year as different classrooms, we would have many tiny groups (1.6 children per nested group on average, given the average of 6.36 children per classroom entering over 4 years). Nesting Montessori children in classrooms therefore did not make sense. Analyses comparing results at the two Montessori schools revealed no school differences.

      Time 1 Equivalence

      T-tests were done on all results to determine whether the samples differed already at their initial test (Time 1), conducted at some point during their first 3 months of school. The p-values exceeded 0.05 for all tests, indicating that the samples were equivalent at the start of the study.

      The groups were slightly (although not significantly) different in academic achievement at the first test point. Since the children were randomly assigned to Montessori or the waitlist, it seems most likely that these small differences were due to their respective school programs beginning to have an effect between the time of school entry and the initial test point (which was mid-December for some children, 3 months into the school year). This is further supported by lack of group differences in all the demographic variables.

      Results

      Here we first explain how data were reduced, then discuss the results showing that Montessori preschool elevated performance overall for the whole sample. We next discuss results showing that Montessori equalized performance of subgroups by raising the typically lower-performing subgroups towards the level of the higher-performing subgroups. We end with a comparison of public Montessori with public and private non-Montessori schools.

      Data Reduction

      The Woodcock-Johnson scores loaded on a single factor and were significantly intercorrelated within each time point (rs > 0.80), so were converted to Z-scores and summed for an Academic Achievement score at each test point. The Copy Design and Head-Toes-Knees-Shoulders task also loaded on a single factor and were also significantly correlated (r = 0.66) so were converted to Z-scores and summed for each test point. Figure 1 shows the correlations across the composite variables and Theory of Mind across time points, and the Appendix describes the factor analysis.

      Correlation Table for Academic Achievement, Theory of Mind, and Executive Function across four time points. These variables were selected because their interrelations are of significant interest in preschool research. In this graphic representation, all squares are red because all correlations were positive. The shading legend is on the right. Darker colors (as well as larger squares) represent stronger correlations.

      Overall Findings: Montessori vs. Business-As-Usual Academic Achievement

      Although equal at the start of school, the Montessori group advanced at a higher rate across the study years, as illustrated in Figure 2; ΔB = 0.13 (SE = 0.067), p < 0.05. This initial analysis did not control for demographic variables because there were no differences, as would be expected given random assignment, but to confirm this a second growth model was created controlling for gender, household income, and Time 1 executive function. This confirmed that while both groups were equal at intercept in academic achievement, Montessori predicted a steeper slope of growth, whereas none of the control variables predicted a steeper slope in the overall sample. The result from the growth curve analysis was confirmed by an ANCOVA on Time 4 academic achievement, controlling for academic achievement at Time 1, F(2,119) = 7.24, p = 0.008, ηp2 = 0.06. Independent samples t-tests showed that the groups were not yet different at Time 1 or Time 2, and that significant differences in academic achievement had emerged by the last two time points (approximately 4 and 5 years of age): t(136) = 2.10, p = 0.04, Cohen’s d = 0.36, and t(122) = 2.26, p = 0.03, Cohen’s d = 0.41, respectively.

      Academic achievement across preschool by school type. The figure shows significantly greater growth in academic achievement across preschool for children enrolled in Montessori preschool (dashed blue lines, n = 70) than waitlisted controls (dotted black lines, n = 71). Groups were statistically equivalent at Time 1 (the non-significant difference at Time 1 is likely due the Time 1 tests occurring into mid-December, thus school programs could already have made a difference) and Time 2 (late in the spring of their 1st year in preschool) and significantly different by the end of their 2nd and 3rd years in preschool (Times 3 and 4). Dashed/dotted lines represent actual data and solid lines represent fitted linear growth curves. Standard error bars are shown.

      Theory of Mind

      Although children’s scores were equal at the initial test, a linear growth curve model showed that Montessori children had a significantly steeper rate of growth across the preschool years, ΔB = 0.10 (SE = 0.04), p < 0.05. This result remained in a second growth curve model that controlled for age, household income, and Time 1 Executive Function. Using a different analytic approach, an ANCOVA on Time 4 Theory of Mind scores controlling for Time 1 scores also showed a significant difference favoring the Montessori group, F(2,115) = 4.47 p = 0.04, ηp2 = 0.04. Scores were examined at each time point. For Times 1 and 2 the two groups were not different. At Time 3, the difference was significant, t(135) = 2.09, p = 0.04, Cohen’s d = 0.36, and at the end of kindergarten (Time 4), the difference was a trend, t(122) = 1.74, p = 0.08, Cohen’s d = 0.32. These results show that social cognition developed more rapidly in children attending Montessori schools.

      Social Problem Solving

      Children in the two samples were equivalent throughout the study with respect to their social problem-solving skills; the average number of justice-related responses ranged from 0.24 to 0.97 across the 4 time points. An ANCOVA on Time 4 Social Problem Solving controlling for Time 1 comparing Montessori and control samples was non-significant F(1,117) = 0.20 p = 0.66, ηp2 = 0.002, nor was the group difference significant at any time point with independent samples t-tests.

      Executive Function

      Linear growth curve analyses did not indicate differences in the growth of executive function. An ANCOVA on Time 4 executive function controlling for Time 1 only showed a trend toward a difference, with Montessori children scoring more highly: F(2,118) = 3.00, p = 0.09, ηp2 = 0.03. Only at Time 3 was the difference significant, t(135) = 2.09, p = 0.04, Cohen’s d = 0.35. Evidence that Montessori magnet preschools lead to better executive function as compared to that developed by control children attending other preschools is not strong here.

      Mastery Orientation

      At the first two time points, there were no group differences: 37 of 70 Montessori (53%) and 35 of 71 control children (49%) chose to try a difficult puzzle again on one or both occasions (Fisher’s Exact test, p = 0.74). By the time children were 4 and 5, at Times 3 and 4, school program effects were significant, with Fisher’s Exact test showing more Montessori children made the mastery choice (45 of 69 or 65%) than did control children (33 of 71 or 47%), p = 0.03, two-tailed. Thus, children who were randomly assigned to a Montessori program were more likely to have a growth mindset by the latter half of their preschool years. Children’s explanations for their choices were consistent with the underlying orientation. Easy puzzle choosers said things like, “Because it’s easier,” whereas difficult puzzle choosers said things like, “Because I think I can do it.”

      School Enjoyment

      An ANOVA showed that the Montessori children were relatively more positive about school-related activities than were the control children, F(1,116) = 5.69 p = 0.02, ηp2 = 0.05 (see Figure 3). This suggests that the Montessori children’s achievement gains were not at the expense of their enjoying school.

      Enjoyment of recreational (left panel) and academic (right panel) activities across preschool. Montessori children (n = 55, blue beans, on right side of each panel) were relatively more favorable to academic tasks than control children (n = 63, gray beans). Dots represent children, bars represent means, and shaded areas represent 95% confidence intervals.

      Creativity

      Children in the two samples were equivalent throughout the study with respect to their creativity; average non-standard uses scores ranged from 0.31 to 1.55 across the 4 time points. An ANCOVA on Time 4 Creativity controlling for Time 1 Creativity comparing Montessori and control samples was non-significant F(1,94) = 0.96 p = 0.33, ηp2 = 0.01, nor was the group difference significant at any time point with independent samples t-tests.

      Comparison of Subgroups in Montessori vs. Business-As-Usual Schools

      We examined two sets of subgroups. First, we looked at the association of achievement with household income in Montessori vs. control schools. Because this achievement gap has been of considerable interest in the country historically, we present several analyses of this issue, before examining the influence of different levels of executive function in each sample.

      Levels of Achievement for Children of Different Income Levels

      Income is typically associated with school achievement. This was the case in the control sample, as shown in the right hand side of Figure 4 using data from the final test point (Time 4). The left hand side shows this relation for the Montessori sample. Among children in Montessori, the correlation between academic achievement and household income across the entire study was 0.23, whereas in the control sample it was twice that: 0.46. Using the Fisher transformation, this difference in correlations was significant, Z = 2.46, p = 0.01. To further examine this, 1000 bootstrapped samples were generated; the 95% bootstrap confidence intervals of Δr was (0.04, 0.39), supporting that the correlations between income and academic achievement in the two samples are significantly different. The smaller correlation among Montessori children might be a simple function of their being in magnet schools, since this is in essence the point of magnet schools [although their success at this is mixed (Ballou, 2009)]. However, for the subgroup of 15 control children who were at other magnet schools, the correlation between academic achievement and household income was even stronger, suggesting the mitigated income-achievement correlation for Montessori children is not merely due to their being in magnet schools.

      Relation between academic achievement and household income in Montessori and control children at the end of the kindergarten year. The relation is significantly smaller in Montessori children (n = 58, left panel) than in control children (n = 66, right panel).

      How strong the gains in academic achievement were among just the lower income children is also of interest, because of the income achievement gap. Although the income range was very broad, there was not a sufficiently large subsample to only examine those living below the poverty line, so instead we examined the study subsample with a household income below the median split. For this lower income half of the sample (n = 67), mean household income was $32,627; SD = 18,443; the federal poverty line for a family of 4 in Connecticut was $24,600. At Time 1, an ANCOVA on academic achievement controlling for age (because there was a slight age difference in the subsamples), showed no difference between the Montessori and control lower income subsamples, whereas by Time 4 the lower income Montessori subsample had significantly higher academic achievement than the lower income control subsample, F(1,62) = 6.86, p = 0.01, ηp2 = 0.10; see Figure 5. This result also held when controlling for Time 1 academic achievement: F(1,61) = 7.25, p = 0.009, ηp2 = 0.11.

      Academic achievement across four time points by school condition and income group. Although equal to the lower income control children at Time 1, by Time 4 the lower income children in Montessori showed a strong positive trajectory towards closing the achievement gap with the higher income children in control and Montessori schools. Standard error bars are shown.

      Furthermore, Montessori education greatly reduced the achievement gap across the preschool years. A series of four t-tests compared the lower income Montessori children with the higher income control children at each time point. For the higher income half of the sample (n = 74, including 7 at the median income of 70,000), mean household income was $105,804; SD = 33,123. The higher income control children outperformed lower income Montessori children at Times 1 and 2, t(64) = 2.47, p = 0.02, Cohen’s d = 0.61 and t(61) = 2.43, p = 0.02, Cohen’s d = 0.61, respectively. At Time 3, the difference was reduced by a third in terms of effect size and was no longer significant, t(62) = 1.59, p = 0.12, Cohen’s d = 0.40, and by the end of kindergarten (Time 4), the difference was reduced by yet another third, t(62) = 1.59, p = 0.41, Cohen’s d = 0.21. Thus, the effect size of the income achievement gap went from 3/5 of a standard deviation at age 3, to 2/5 at age 4, and finally to 1/5 at the end of the 3rd year in Montessori. Within the Montessori sample, the same series of tests showed trending (p = 0.06 at Time 1) or significant income-group differences in academic achievement at the first three time points but not at the last one, t(56) = 1.41, p = 0.16, although the difference was still a third of a standard deviation in size, Cohen’s d = 0.37. By contrast, within the control sample, the higher income subgroup performed a full standard deviation better than the lower income subgroup, Cohen’s d = 0.98. The higher income Montessori children were the highest performers in the study by the end of kindergarten (Time 4, see Figure 5), but the lower-income children were doing much better in Montessori classrooms than in control schools by this last time point.

      Outcomes for Children with Different Levels of Executive Function

      Second, we examined the predictive power of executive function for achievement. For both Montessori and control children, higher executive function predicted academic achievement at Time 1 (the intercept). In the control sample, as expected from many studies, executive function also predicted the slope of academic achievement in the latent growth curve model, ΔB = -0.067, SE = 0.03, p = 0.05. By contrast, initial levels of executive function had no influence on the slope of academic achievement for children in the Montessori programs, ΔB = 0.009, SE = 0.03, p = 0.76. Thus, in terms of academic outcomes, in Montessori classrooms children with low executive function do as well as children with high executive function. In other words, special supplementary curricula targeting executive function are not needed to equalize achievement outcomes for children in Montessori programs; academic achievement was higher overall, and children with lower executive function were not at a disadvantage.

      Montessori vs. Public or Private Business-As-Usual

      Because control children were at both private and publically funded schools, we examined how Montessori children compared to both groups on academic achievement, theory of mind, and executive function. Controlling for academic achievement at the first time point, there was a significant school type effect on academic achievement at the final time point, F(2,122) = 3.94, p = 0.022, ηp2 = 0.06. Post hoc tests showed a significant mean difference (favoring Montessori, for all results described here) between public Montessori and public control schools (p = 0.012) and a trend between public Montessori and private control schools (p = 0.055). There was no difference between public and private control schools (p = 0.42). For theory of mind, the same analyses indicated a group difference, F(2,114) = 4.30, p = 0.016, ηp2 = 0.07, which post hoc tests revealed was both between public Montessori and public control schools (p = 0.004) and public and private control schools (favoring private, p = 0.048), but not between public Montessori and private control schools (p = 0.40). Executive function at the final time point controlling for the first time point approached a trend on the omnibus test F(2,117) = 2.27, p = 0.11, ηp2 = 0.04 attributable to a significant difference in growth of children in public Montessori vs. in public control schools (p = 0.04).

      Discussion

      Assisting young children’s development is an essential societal task; the human brain undergoes tremendous development in the early school years, setting in place patterns that predict life trajectories (Moffitt et al., 2011). Yet in the United States, the methods by which we try to help young children oscillate between didactic academic and pure discovery learning approaches, neither of which supports whole-child development in optimal ways (Fisher et al., 2011). Montessori education takes a different, whole-child approach and could feasibly be implemented at scale, but there have been no strong studies of its outcomes.

      Taking advantage of a computerized random lottery for placement in two Montessori magnet preschools, this study compared 70 preschool-aged children who attended Montessori with 71 who did not. This is to our knowledge the first study spanning three years of Montessori education, and the second Montessori study to use a lottery-loser control design; the present study had a much larger sample size, and used new measures.

      Montessori education elevated all children’s performance on several measures, and made the performance of groups that typically do less well more equal. First, academic performance of children in Montessori programs was significantly stronger over time. They performed slightly (but not significantly) better at the first time point, perhaps because children had on average almost 2 months of school program experience at the first test, with some children having a full 3.5 months. By the third and fourth time point, the differences in academic achievement were significant.

      Furthermore, Montessori education made substantial headway in reducing the income gap in achievement across the preschool years. Whereas lower income control children were performing a full standard deviation lower than higher income control children by the end of preschool, the difference in income groups in Montessori was just a third of a standard deviation. Statistically, the lower income Montessori children did not differ from the higher income children in either school group by the fourth time point. In keeping with this, the income-achievement correlation was significantly smaller for children in Montessori than for children in the control group. This is a very important and impressive finding in our national search for ways to better help children born at an economic disadvantage.

      Importantly, the higher achievement in Montessori was not at the expense of social skills or of liking school. Children who had by lottery ended up in Montessori programs performed better on tests of social cognition, were more mastery oriented, and expressed more liking of academic tasks relative to how much they liked recreational tasks. All these variables have predicted better outcomes in other studies, cited earlier. Montessori children fared equally well on tests of social problem solving and creativity, and had better executive function at age 4.

      Finally, many studies have shown better academic and life outcomes for children with higher executive function or self-control. While for the control children in this study as well, executive function predicted academic achievement, this was not the case for children in Montessori. In Montessori classrooms, having lower or higher executive function did not matter for achievement; children with lower executive function performed as well as children with higher executive function in Montessori on academic achievement, which is impressive given that academic achievement in the Montessori sample was higher overall. Next we speculate on some possible reasons for these results, considering first intrinsic program differences in outcomes, followed by the possibility that Montessori teachers are superior.

      Academic Achievement

      Children in Montessori programs excelled in academic achievement. The Montessori materials and presentations are one possible reason. The materials capitalize on the embodiment of cognition, for example having children trace letters as they say the letter sounds, and match cards with words to small objects. Ample research suggests that this is a more effective way to learn than sitting and listening (Lillard, 2017) as children often do in conventional preschool environments (Bassok et al., 2016). Furthermore, the content via which educational topics are approached in Montessori might be helpful. For example, in Montessori environments, children approach math through spatial learning, when Red Rods that systematically vary in length are transformed into Number Rods that name alternately colored segments with unit numbers (Montessori, 1914/1965, 1994b). The purpose of mathematics is to measure the physical world, and spatial and math skills are correlated (Verdine et al., 2017). Conventional education typically begins math education with counting discrete objects; perhaps starting with spatial relations as is done in Montessori is more helpful. In addition, the Montessori curricula and materials are very logical and very interesting (e.g., Montessori, 2016), and this could also be a reason for the difference. Another intrinsic program difference that could result in better learning outcomes is order. The Montessori environment and materials are also highly ordered, and more orderly environments are also associated with better cognitive and academic outcomes (Fisher et al., 2014). These are just a few of many possible reasons for the stronger academic outcomes for children in Montessori classrooms.

      Theory of Mind

      This study aligns with two prior studies in showing that children in authentic (in this case, AMI-recognized) Montessori environments perform better on theory of mind than other children (Lillard and Else-Quest, 2006; Lillard, 2012). One possible reason for this is that Montessori classrooms combine children of three ages. In China, under the one-child policy, children in multi-age classrooms did better on theory of mind tests than children in single-age classrooms (Wang and Su, 2009). Other studies have shown that children with more older siblings also do better on theory of mind (Ruffman et al., 1998; Peterson, 2000). These advantages are believed to stem from the need to consider others’ mental states during conflicts that arise more often with similar-aged siblings or peers (Lillard and Eisen, 2017). A Montessori environment might present even more conflict than a typical preschool classroom, because there is only one of each type of Montessori material—one set of “Pink Tower” blocks, and one set of Musical Bells, for example. This scarcity in the context of 3-year age groupings might create challenges that lead to faster development in theory of mind. Alternatively, Dr. Montessori noted personality changes that accompanied deep concentration on work in preschool classrooms; one of these changes was to become more socially competent (Montessori, 1917/1965), which is associated with theory of mind; note, however, that the more direct measure of social competence (Social Problem Solving) did not show differences in this study.

      Mastery Orientation

      Children in Montessori programs were more mastery oriented by ages 4 and 5 than were children in the control sample. One possible reason for this is the lack of extrinsic rewards in Montessori programs. The reward systems used in conventional school programs tend to lead to ability-oriented theories about oneself (Ames, 1992), which tend to go along with performance goals. People with performance goals tend to choose easier tasks that will make them look good (Dweck, 1999). Montessori programs encourage repetition of exercises to the point of mastery, and feedback comes from the materials rather than a teacher. These differences might explain the findings obtained here with regard to mastery orientation.

      Liking School Enjoyment

      Although the children in this study all really liked recreational activities like watching television and movies and playing, children in Montessori showed relatively more liking of academic tasks like reading and getting lessons from a teacher. One possible reason for this is that children have choices about how they spent their time in Montessori; such choice is increasingly rare in preschool programs generally (Bassok et al., 2016). People are generally happier when they have choices, which provide a sense of self-determination (Deci and Ryan, 2011). Other possible reasons for more school liking dovetail with those given for achievement and mastery orientation.

      Executive Function

      Unlike some other studies (Lillard and Else-Quest, 2006; Lillard, 2012; Kayılı, 2016), this study did not show significantly stronger development of executive function overall for children in Montessori; their executive function was significantly higher only at age 4. It might be that children whose parents enroll them in lottery magnets are different; this is the first study of magnet Montessori preschools. Alternatively, it might be that conventional preschools are improving in these areas because of social-emotional learning programs (Ursache et al., 2012). Further research is needed to tease apart these possibilities.

      The finding concerning executive function and prediction of academic achievement is notable. Many studies have shown that executive function in the early school years predicts academic achievement (Blair and Razza, 2007; Duncan et al., 2007; Fuhs et al., 2014; Cameron et al., 2015), likely because in order for children to learn in conventional school they need to behave in ways that exercise executive function: They need to sit still, listen, follow directions, and inhibit engaging in other activities. But children across the full range of executive function who were in Montessori classrooms grew equally in academic achievement, and overall the Montessori children’s level of academic achievement was higher than that of controls. This suggests that having low executive function is not a disadvantage for children in this type of school program. Whether this translates to executive function being less predictive of later (such as Elementary school) outcomes for children who attended Montessori preschool is topic for further research.

      One possible reason why executive function was not predictive of outcomes within the Montessori preschool program is that Montessori is a form of differentiated instruction. Children are not all treated alike; a child who needs more structure can be given that by the teacher. For example, a child who has not developed an ability to make constructive choices can be given limited, or even no choice, by the teacher, whereas a child who makes good choices (for example, chooses challenging work) is allowed to make their own choices. Closer examination of in-classroom processes, noting whether teachers do in fact scaffold lower executive function more effectively in Montessori programs, would shed light on this.

      One might ask whether executive function near the time of school entry not predicting academic achievement is problematic. It does not seem so, since executive function still developed similarly in both groups and academic achievement was higher overall in the non-predictive group (Montessori).

      Montessori Teachers

      In addition to intrinsic program differences, another possible reason for better Montessori outcomes is that Montessori teachers might be better teachers; if so, perhaps children in their classrooms would excel regardless of what educational program the teachers implemented. The teachers were not the focus of study here, but future research should consider this possibility. It is notable that at one of the two schools, three of six teachers had been teaching in a conventional way prior to 2008, and opted for retraining when the school adopted a Montessori program.

      Considering the possibility that the study is revealing teacher rather than program effects, we note two points at which the Montessori teachers might have become better teachers: prior to their teacher training, or during (and as a result of) the teacher training.

      Possible Pre-existing Differences in Teachers

      First, one might ask whether the standards for entering a program to be a Montessori teacher are higher. Most of the Montessori teachers in this study trained at the AMI teacher training center in Hartford. Up to the time of this study, the training center courses were usually undersubscribed, so the center took virtually all applicants (Hall, personal communication, June, 2017). In addition, virtually all those who take the 9-month course are awarded a diploma. However, it is feasible that people who are attracted to Montessori teacher training interact differently with children, and this difference could be responsible for the results obtained. Other studies have shown non-trivial teacher effects at preschool. For example, a large study of prekindergarten classrooms in states that support pre-K (as does Connecticut) indicated two teacher variables that are most predictive of child achievement (Mashburn et al., 2008): (1) teacher emotional support, which predicts social outcomes and (2) teacher instructional support (asking high-level questions, scaffolding children’s thinking), which supports academic outcomes. It is possible that the Montessori teachers were higher on these variables even prior to their Montessori teacher training. Further research should examine this, perhaps through questionnaires given to people commencing Montessori vs. conventional teacher education programs.

      Teacher Training Causing Teacher Differences

      Second, the teacher training for Montessori might create better teachers. In terms of time and course intensity, the AMI training seems comparable to the training required for an early childhood teaching certificate. It involves 9 months of lectures and practice teaching, creation of a set of notes explaining Montessori theory and curriculum, and a final examination. The AMI “professors”—the people who teach the teacher-trainees—typically had at least 5 years as an AMI-certified classroom teacher followed by about 7 years of apprenticeship to another teacher trainer, so they are also highly trained. However, one difference to early childhood education is that in Montessori teacher training courses, one focuses on just one system and theory (Cossentino, 2005). By contrast, teachers in conventional teacher education programs typically learn many theories and methods. Whether learning a single theory or multiple ones creates better teachers is an empirical question.

      Another possibility, which also needs to be studied, is that Montessori teacher training changes teachers, perhaps by making them more sensitively responsive or higher in instructional support. If this is the case, then Montessori teachers are different but for a reason that is generic to Montessori education. Throughout Dr. Montessori’s books, a warm and loving attitude to children is expressed, and Montessori teachers are expected to come to embody this attitude (Lillard, 2017). In addition, Montessori teachers adopt high expectations of children, for example expecting them to achieve independence in ways that people rarely expect at least in American culture today. Even before age 3, Montessori children are expected to set the table, prepare a meal, and clean up, for example. Five-year-olds multiply and divide 4-digit numbers [see Figure 6; Montessori (2016) describes how this is achieved in high-fidelity Montessori classrooms], and carry out other complex tasks on their own. The combination of warmth, trust, and high expectations that is imparted to teachers during the Montessori teacher training might change them in ways that would make their students have better outcomes even if the teachers did not go on to implement a Montessori curriculum.

      Two children working with Montessori decimal materials, with which preschool children perform multiplication and division of 4-digit numbers. Photograph by Laura Joyce-Hubbard, provided by courtesy of Forest Bluff School.

      Various means should be used in future studies to look at the degree to which teachers might be responsible for better outcomes in Montessori education. First, one could examine attitudes toward and interactions with children prior to, during, and following teacher education courses, comparing those in Montessori and conventional training, to see how each type of teacher training changes people. Second, measures of teacher–child interaction could be used in studies like this, and entered as separate predictors in regression models, to see whether teacher interaction style in Montessori loads as or more strongly on outcomes than it does in studies of conventional teachers, for example using the CLASS (Pianta et al., 2012).

      Value-Added of Montessori Materials and Methods

      Even if Montessori teachers differ in some ways from other teachers that cause better child outcomes, the Montessori materials and the methods with which the materials are used probably also add value. Two studies speak to this issue, both capitalizing on the fact that many Montessori classrooms do not offer exclusively Montessori materials. In one study, among 14 Montessori classrooms, children advanced more across a school year in classrooms that offered only Montessori materials than in “Montessori” classrooms that mixed in conventional materials like commercial puzzles (Lillard, 2012). In another study, conventional materials were removed midyear from two of three Montessori classrooms, and children in those two classrooms experienced significantly greater gains in the subsequent 4 months than children in the third classroom (Lillard and Heise, 2016). Because all the Montessori teachers in these studies were Montessori-trained, these studies suggest there might be something in the Montessori materials and the methods with which they are used that allow for steeper growth.

      Limitations

      A major strength of this study is also a major limitation: It is based on a lottery for admission to two oversubscribed schools. Not all lottery entrants could be located (some had moved and left no forwarding address) and not all who were contacted agreed to enroll. School lottery entrants are not representative of all children, and oversubscribed schools differ from undersubscribed ones. In the real world, lottery designs are often the best available; longitudinal lottery studies are supreme. However, a lottery study is not as good as a true randomized control trial, where everyone is randomly assigned and is made to stay in their assigned group.

      Another major strength that is also a limitation is that the study used high fidelity Montessori schools. Montessori outcomes appear to depend on the quality of the Montessori program (Lillard, 2012); outcomes at lower fidelity Montessori schools might not be the same. The Montessori programs in this study were recognized by the AMI, and we do not know if unrecognized Montessori schools, or ones associated with other Montessori organizations and teacher trainings, or even other AMI Montessori schools, would have similar outcomes. Another limitation is that the Montessori and control schools vary on many dimensions, and it is unclear whether specific dimensions might have contributed to outcomes, or whether Montessori programs must be fully implemented to have benefits. This study does suggest that very rigorous Montessori preschool programs significantly affect outcomes relative to business as usual, but less rigorous Montessori programs might not. Another limitation is that people who choose to become Montessori teachers might be different, and might teach more effectively regardless of program type. Ideally one could randomly assign future teachers to Montessori or conventional teacher training, but in lieu of that, other research strategies should be undertaken.

      Conclusions and Future Directions

      Bearing these limitations in mind, the present study offers evidence that high fidelity Montessori preschool programs are more effective than other business-as-usual school programs at elevating the performance of all children, while also equalizing outcomes for subgroups of children who typically have worse outcomes. First, Montessori programs reduced the income achievement gap, raising achievement of lower income children well beyond the levels achieved by the lower income waitlisted controls. In addition, Montessori programs appeared to work as well for children who were lower in executive function at the outset as for children who were higher in executive function at the outset. Since preschool achievement predicts later achievement (Duncan et al., 2007), these benefits could feasibly extend upward, but whether they do so remains to be tested. Importantly these gains at preschool were not at the expense of “soft skills” that are the most important predictors of life outcomes (Heckman and Kautz, 2012).

      Widespread implementation of Montessori programs would be premature prior to further research to examine the external validity of this study. There are over 450 public schools in the United States that offer Montessori education (National Center for Montessori in the Public Sector, 2014), and many of these admit by lottery. (There are also over 4000 private Montessori schools, but random lottery admission in those is unlikely). A large-scale study should examine outcomes in many more public Montessori schools, with an eye to Montessori implementation fidelity, as well as teachers and their training. The present study supports the legitimacy of such a study to determine more definitively if Montessori education should be implemented at scale.

      Ethics Statement

      The study was carried out in accordance with the recommendations in the guidelines for human research of the Institutional Review Board for the Social and Behavioral Sciences at the University of Virginia, which approved the study protocol. Parents or guardians provided written consent for all children’s participation in accordance with the Declaration of Helsinki.

      Author Contributions

      AL conceived of and obtained funding for the study, arranged with the sites, submitted initial IRBs, chose stimuli, oversaw all aspects of running, led effort in writing and statistical analyses and submissions. MH arranged for and did data collection in final study year, entered and cleaned data, maintained family contacts, assisted with analyses and writing. ER arranged for and did data collection in 5th year, entered data and maintained family contacts for 4 years. XT conducted growth curve and bootstrapping analyses as well as conceptualization of data, assisted with manuscript. AH created procedure manuals and materials sets, and maintained family contacts and data base, trained and maintained contacts with on-site RAs, and arranged for data collection visits in first several years of study. PB supervised RAs on site in Hartford, stored material sets, facilitated local contacts, provided Hartford school information, and assisted with manuscript.

      Appendix

      The following factor model was fitted separately at each time point:

      Table A1 below shows the factor loadings and fit indices with factor loadings freely estimated. All models show excellent fit (from Kenney, 2015: for CFI, values over 0.9 are considered good; for RMSEA, 0.10 is the cut-off; for SRMR, less than 0.08 indicates good fit).

      Factor loadings and fit indices for academic achievement and executive function.

      Time 1 Time 2 Time 3 Time 4
      Academic achievement
      Letter word 0.531 0.541 0.647 0.682
      Math 0.945 0.906 0.785 0.789
      Vocabulary 0.629 0.602 0.560 0.530
      Executive function
      Head toes 0.182 0.639 0.531 0.612
      Copy figures 0.198 0.547 0.498 0.540
      Fit indices
      CFI 0.998 0.993 0.966 0.976
      RMSEA 0.025 0.043 0.091 0.077
      SRMR 0.030 0.029 0.034 0.031

      A further analysis was done to determine fit with factors constrained to be equal; these results are shown in Table A2.

      Factor loadings and fit indices for academic achievement and executive function: constrained.

      Time 1 Time 2 Time 3 Time 4
      Academic achievement
      Letter word 0.726 0.700 0.663 0.678
      Math 0.726 0.700 0.663 0.678
      Vocabulary 0.726 0.700 0.663 0.678
      Executive function
      Head toes 0.195 0.588 0.512 0.575
      Copy figures 0.195 0.588 0.512 0.575
      Fit indices
      CFI 0.916 0.931 0.960 0.962
      RMSEA 0.111 0.107 0.075 0.073
      SRMR 0.072 0.071 0.050 0.058

      In this analysis, for Time 1, when factors are constrained to be equal, model fit is more than adequate by two indices (CFI and SRMR) but by the RMSEA model fit is not good initially, when children are younger and there is more error (some very young children might not understand test instructions, for example); it becomes acceptable by Times 3 and 4.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. Funding for this project was provided by the Brady Education Foundation.

      The authors thank the children, parents, and school administrators as well as the Regional School Choice Office in Hartford for their participation; Tim Nee for facilitating the project; and Hedy L. Azarhooshang, Samantha Cusak, Theresa Heinz, Erin Kenney, Sheila Morely, Ariel Rodriguez, Carmen Trainer, and Ashley Wodzicki for collecting data.

      References Ames C. (1992). Classrooms: goals, structures, and student motivation. J. Educ. Psychol. 84 261271. 10.1037/0022-0663.84.3.261 Ballou D. (2009). “Magnet school outcomes,” in Handbook of Research on School Choice, eds Berends M. Springer M. G. Ballou D. D. Walberg H. J. (New York, NY: Routledge), 409426. Bassok D. Latham S. Rorem A. (2016). Is kindergarten the new first grade? AERA Open 1 131. 10.1177/2332858415616358 Besançon M. Lubart T. (2008). Differences in the development of creative competencies in children schooled in diverse learning environments. Learn. Individ. Dif. 18 381389. 10.1016/j.lindif.2007.11.009 Blair C. Raver C. C. (2016). Poverty, stress, and brain development: new directions for prevention and intervention. Acad. Pediatr. 16 S30S36. 10.1016/j.acap.2016.01.010 27044699 Blair C. Razza R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev. 78 647663. 10.1111/j.1467-8624.2007.01019.x 17381795 Brooks-Gunn J. Duncan G. J. (1997). The effects of poverty on children. Future Child 7 5571. 10.2307/1602387 Cameron C. E. Brock L. L. Hatfield B. E. Cottone E. A. Rubinstein E. LoCasale-Crouch J. (2015). Visuomotor integration and inhibitory control compensate for each other in school readiness. Dev. Psychol. 51 15291543. 10.1037/a0039740 26436872 Cameron C. E. Brock L. L. Murrah W. M. Bell L. H. Worzalla S. L. Grissmer D. (2012). Fine motor skills and executive function both contribute to kindergarten achievement. Child Dev. 83 12291244. 10.1111/j.1467-8624.2012.01768.x 22537276 Campbell F. A. Ramey C. T. Pungello E. Sparling J. Miller-Johnson S. (2002). Early childhood education: young adult outcomes from the abecedarian project. Appl. Dev. Sci. 6 4257. 10.1037/a0026644 22250997 Carlson S. M. Moses L. J. (2001). Individual differences in inhibitory control and children’s theory of mind. Child Dev. 72 10321053. 10.1037/0012-1649.40.6.1105 15535760 Cossentino J. (2005). Ritualizing expertise: a non-montessorian view of the Montessori method. Am. J. Educ. 111 211244. 10.1086/426838 Deci E. L. Ryan R. M. (2011). “Self-determination theory,” in Handbook of Theories of Social Psychology Vol. 1 eds Lange P. A. M. V. Kruglanski A. W. Higgins E. T. (London: Sage), 416433. Dennett D. (1987). The Intentional Stance. Cambridge, MA: MIT Press. DeVries R. Gonçu A. (1987). Interpersonal relations in four-year dyads from constructivist and Montessori programs. J. Appl. Dev. Psychol. 8 481501. 10.1016/0193-3973(87)90035-9 Diamond A. (2013). Executive functions. Annu. Rev. Psychol. 64 135168. 10.1146/annurev-psych-113011-143750 23020641 Diamond A. Barnett W. Thomas J. Munro S. (2007). Preschool program improves cognitive control. Science 318 13871388. 10.1126/science.1151148 18048670 Duncan G. Dowsett C. Claessens A. Magnuson K. Huston A. Klebanov P. (2007). School readiness and later achievement. Dev. Psychol. 43 14281446. 10.1037/0012-1649.43.6.1428 18020822 Dweck C. S. (1999). Self-Theories: Their Role in Motivation, Personality, and Development. Philadelphia, PA: Psychology Press. Dweck C. S. (2006). Mindset: The New Psychology of Success. New York, NY: Random House. Dweck C. S. (2017). The journey to children’s mindsets—and beyond. Child Dev. Perspect. 11 139144. 10.1111/cdep.12225 Fisher A. V. Godwin K. E. Seltman H. (2014). Visual environment, attention allocation, and learning in young children when too much of a good thing may be bad. Psychol. Sci. 25 13621370. 10.1177/0956797614533801 24855019 Fisher K. Hirsh-Pasek K. Golinkoff R. Singer D. Berk L. W. (2011). “Playing around in school: implications for learning and education policy,” in Oxford Handbook of the Development of Play, ed. Peligrini A. (New York, NY: Oxford University Press), 341362. 22826164 Fuhs M. W. Nesbitt K. T. Farran D. C. Dong N. (2014). Longitudinal associations between executive functioning and academic skills across content areas. Dev. Psychol. 50 16981709. 10.1037/a0036633 24749550 Gaylord C. (2012). Maria Montessori and 10 Famous Graduates from Her Schools. The Christian Science Monitor. Avaialble at: http://www.csmonitor.com/Technology/Tech-Culture/2012/0831/Maria-Montessori-and-10-famous-graduates-from-her-schools/Google-founders-Larry-Page-and-Sergey-Brin [accessed November 10 2015] Grissmer D. Grimm K. J. Aiyer S. M. Murrah W. M. Steele J. S. (2010). Fine motor skills and early comprehension of the world: two new school readiness indicators. Dev. Psychol. 46 10081017. 10.1037/a0020104 20822219 Guilford J. Christensen P. R. (1973). The one-way relation between creative potential and IQ. J. Creat. Behav. 7 247252. 10.1002/j.2162-6057.1973.tb01096.x Haskins R. Brooks-Gunn J. (2016). Trouble in the land of early childhood education? The Future of Children. Princeton, NJ: Brookings. Heckman J. J. (2006). Skill formation and the economics of investing in disadvantaged children. Science 312 19001902. 10.1126/science.1128898 16809525 Heckman J. J. Kautz T. (2012). Hard evidence on soft skills. Labour Econ. 19 451464. 10.1016/j.labeco.2012.05.014 23559694 Karnes M. Shewedel A. Williams M. (1983). “A comparison of five approaches for educating young children from low-income homes,” in As the Twig is Bent: Lasting Effects of Preschool Programs, ed. Consortium for Longitudinal Studies (Hillsdale, NJ: Lawrence Elbaum), 133171. Kayılı G. (2016). The effect of Montessori method on cognitive tempo of kindergarten children. Early Child Dev. Care. 10.1080/03004430.2016.1217849 Kenney D. A. (2015). Measuring Model Fit. Available at: http://davidakenny.net/cm/fit.htm [accessed September 13 2017]. Korkman M. Kirk U. Kemp S. (2007). Nepsy-II: Clinical and Interpretive Manual. San Antonio, TX: The Psychological Corporation. Koster-Hale J. Saxe R. (2013). “Functional neuroimaging of theory of mind,” in Understanding Other Minds: Perspectives from Developmental Social Neuroscience, 3rd Edn, eds Baron-Cohen S. Lombardo M. Tager-Flusberg H. (New York, NY: Oxford University Press), 132163. Ladd G. W. Buhs E. S. Seid M. (2000). Children’s initial sentiments about kindergarten: Is school liking an antecedent of early classroom participation and achievement? Merrill Palmer Q. 46 255279. Lillard A. S. (2012). Preschool children’s development in classic Montessori, supplemented Montessori, and conventional programs. J. Sch. Psychol. 50 379401. 10.1016/j.jsp.2012.01.001 22656079 Lillard A. S. (2017). Montessori: The Science behind the Genius, 3rd Edn. New York, NY: Oxford University Press. Lillard A. S. Eisen S. (2017). “Why Montessori is a facilitative environment for theory of mind: three speculations,” in Theory of Mind Development in Context, eds Slaughter V. Rosnay M. de (London: Routledge), 5770. Lillard A. S. Else-Quest N. (2006). Evaluating Montessori education. Science 313 18931894. 10.1126/science.1132362 17008512 Lillard A. S. Heise M. J. (2016). Removing supplementary materials from Montessori classrooms changed child outcomes. J. Montessori Res. 2 1727. 10.17161/jomr.v2i1.5678 Lipsey M. W. Farran D. C. Hofer K. G. (2015). A Randomized Control Trial of a Statewide Voluntary Prekindergarten Program on Children’s Skills and Behaviors through Third Grade. Research Report. Nashville, TN: Peabody Research Institute. Lipsey M. W. Nesbitt K. T. Farran D. C. Dong N. Fuhs M. W. Wilson S. J. (2017). Learning-related cognitive self-regulation measures for prekindergarten children: a comparative evaluation of the educational relevance of selected measures. J. Educ. Psychol. 10.1037/edu0000203 Mashburn A. Pianta R. Hamre B. Downer J. Barbarin O. Bryant D. (2008). Measures of classroom quality in prekindergarten and children’s development of academic, language, and social skills. Child Dev. 79 732749. 10.1111/j.1467-8624.2008.01154.x 18489424 McAfee A. (2011). Montessori builds innovators. Harvard Bus. Rev. Available at: https://hbr.org/2011/07/montessori-builds-innovators McArdle J. J. Nesselroade J. R. (2014). Longitudinal Data Analysis Using Structural Equation Models. Washington, DC: American Psychological Association. McClelland M. M. Cameron C. E. Connor C. M. Farris C. L. Jewkes A. M. Morrison F. J. (2007). Links between behavioral regulation and preschoolers’ literacy, vocabulary, and math skills. Dev. Psychol. 43 947959. 10.1037/0012-1649.43.4.947 17605527 Merzenich M. M. (2001). “Cortical plasticity contributing to child development,” in Mechanisms of Cognitive Development: Behavioral and Neural Perspectives. Carnegie Mellon Symposia on Cognition, eds McClelland J. L. Siegler R. S. (Mahwah, NJ: Lawrence Erlbaum), 6795. Miller L. B. Bizzell R. P. (1984). Long-term effects of four preschool programs: ninth- and tenth-grade results. Child Dev. 55 15701587. 10.2307/1130027 6488964 Minervino J. Pianta R. (2014). “Early learning: the new fact base and cost sustainability,” in Lessons from Research and the Classroom, ed. Minervino J. (Washington, DC: Bill & Melinda Gates Foundation). Moffitt T. E. Arseneault L. Belsky D. Dickson N. Hancox R. J. Harrington H. L. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. U.S.A. 108 26932698. 10.1073/pnas.1010076108 21262822 Montessori M. (1914/1965). Dr. Montessori’s Own Handbook. New York, NY: Schocken. Montessori M. (1917/1965). Spontaneous Activity in Education: The Advanced Montessori Method, trans. F. Simmonds. New York, NY: Schocken. Montessori M. (1994a). Creative Development in the Child I, trans. R. Ramachandran. Madras: Kalakshetra Press. Montessori M. (1994b). Creative Development in the Child II, trans. R. Ramachandran. Madras: Kalakshetra Press. Montessori M. (2016). Psychoarithmetic, Vol. 20. Amsterdam: Montessori-Pierson Publishing. National Center for Montessori in the Public Sector (2014). 2014 Census Data Snapshot. Available at: http://www.public-montessori.org/public-montessori-censussnapshot-2014 National Early Childcare Research Network (2005). Early child care and children’s development in the primary grades: follow-up results from the NICHD study of early child care. Am. Educ. Res. J. 42 537570. 10.3102/00028312042003537 Peng H.-H. Md-Yunus S. (2014). Do children in Montessori schools perform better in the achievement test? A Taiwanese perspective. Int. J. Early Child. 46 299311. 10.1007/s13158-014-0108-7 Peterson C. C. (2000). Kindred spirits: influences of siblings’ perspectives on theory of mind. Cogn. Dev. 15 435455. 10.1016/S0885-2014(01)00040-5 Pianta R. C. Hamre B. K. Allen J. P. (2012). “Teacher-student relationships and engagement: conceptualizing, measuring, and improving the capacity of classroom interactions,” in Handbook of Research on Student Engagement, ed. Christensen C. M. (New York, NY: Springer), 365386. Ponitz C. C. McClelland M. M. Jewkes A. M. Connor C. M. Farris C. L. Morrison F. J. (2008). Touch your toes! Developing a direct measure of behavioral regulation in early childhood. Early Child. Res. Q. 23 141158. 10.1016/j.ecresq.2007.01.004 Ponitz C. C. McClelland M. M. Matthews J. S. Morrison F. J. (2009). A structured observation of behavioral self-regulation and its contribution to kindergarten outcomes. Dev. Psychol. 45 605619. 10.1037/a0015365 19413419 Powell L. J. Carey S. (2017). Executive function depletion in children and its impact on theory of mind. Cognition 164 150162. 10.1016/j.cognition.2017.03.022 28427031 Rathunde K. R. Csikszentmihalyi M. (2005). Middle school students’ motivation and quality of experience: a comparison of Montessori and traditional school environments. Am. J. Educ. 111 341371. 10.1086/428885 Raver C. C. Jones S. M. Li-Grining C. Zhai F. Bub K. Pressler E. (2011). CSRP’s impact on low-income preschoolers’ preacademic skills: self-regulation as a mediating mechanism. Child Dev. 82 362378. 10.1111/j.1467-8624.2010.01561.x 21291447 Reardon S. F. (2011). “The widening academic achievement gap between the rich and the poor: new evidence and possible explanations,” in Whither Opportunity; Rising Inequality, Schools, and Children’s Life Chances, eds Duncan G. Murnane R. (New York, NY: Russell Sage Foundation), 91116. Rubin K. H. (1988). The Social Problem-Solving Test-Revised. Waterloo, ON: University of Waterloo. Ruffman T. Perner J. Naito M. Parkin L. Clements W. (1998). Older (but not younger) siblings facilitate false belief understanding. Dev. Psychol. 34 161174. 10.1037//0012-1649.34.1.161 9471013 Schweinhart L. J. Montie J. Xiang Z. Barnett W. S. Belfield C. R. Nores M. (2005). Lifetime Effects: The High/Scope Perry Preschool Study through Age 40. Ypsilanti, MI: High/Scope. Sirin S. R. (2005). Socioeconomic status and academic achievement: a meta-analytic review of research. Rev. Educ. Res. 75 417453. 10.3102/00346543075003417 Smiley P. A. Dweck C. S. (1994). Individual differences in achievement goals among young children. Child Dev. 65 17231743. 10.2307/1131290 Tomlinson C. A. (2014). Differentiated Classroom: Responding to the Needs of All Learners, 2nd Edn. Alexandria, VA: ASCD. Ursache A. Blair C. Raver C. C. (2012). The promotion of self-regulation as a means of enhancing school readiness and early achievement in children at risk for school failure. Child Dev. Perspect. 6 122128. 10.1111/j.1750-8606.2011.00209.x Verdine B. Golinkoff R. M. Hirsh-Pasek K. Newcombe N. (2017). Links between spatial and mathematical skills across the preschool years. Soc. Res. Child Dev. Monogr. 82 1150. Vernon-Feagans L. Willoughby M. Garrett-Peters P. Project T. F. L. (2016). Predictors of behavioral regulation in kindergarten: household chaos, parenting, and early executive functions. Dev. Psychol. 52 430441. 10.1037/dev0000087 26751500 Wang Y. Su Y. (2009). False belief understanding: children catch it from classmates of different ages. Int. J. Behav. Dev. 33 331337. 10.1177/0165025409104525 Wellman H. M. (2014). Making Minds: How Theory of Mind Develops. New York, NY: Oxford University Press. Wellman H. M. Liu D. (2004). Scaling of theory-of-mind tasks. Child Dev. 75 523541. 10.1111/j.1467-8624.2004.00691.x 15056204 Willoughby M. T. Wirth R. Blair C. B. (2011). Contributions of modern measurement theory to measuring executive function in early childhood: an empirical demonstration. J. Exp. Child Psychol. 108 414435. 10.1016/j.jecp.2010.04.007 20553690 Woodcock R. W. McGrew K. S. Mather N. (2001). Woodcock-Johnson III Tests of Achievement. Rolling Meadows, IL: Riverside Publishing. Yoshikawa H. Aber J. L. Beardslee W. R. (2012). The effects of poverty on the mental, emotional, and behavioral health of children and youth: implications for prevention. Am. Psychol. 67 272284. 10.1037/a0028015 22583341 Zhang T. Meaney M. (2010). Epigenetics and the environmental regulation of the genome and its function. Annu. Rev. Psychol. 61 439466. 10.1146/annurev.psych.60.110707.163625
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016holdzhu.net.cn
      www.haoqian.net.cn
      qychain.com.cn
      www.rnoebh.com.cn
      modetour.com.cn
      two-l.net.cn
      qiangge888.net.cn
      www.qnchain.com.cn
      sdiyes.com.cn
      smoz.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p