Front. Physiol. Frontiers in Physiology Front. Physiol. 1664-042X Frontiers Media S.A. 1351985 10.3389/fphys.2024.1351985 Physiology Original Research Computational modeling of heart failure in microgravity transitions Wilson et al. 10.3389/fphys.2024.1351985 Wilson Stefan L. Schulte Klaus-Martin Steins Anne Gruen Russell L. Tucker Emma M. van Loon Lex M. * College of Health and Medicine, Australian National University, Canberra, ACT, Australia

Edited by: Kevin Tabury, Belgian Nuclear Research Centre (SCK CEN), Belgium

Reviewed by: Peter Lee, Brown University, United States

Andreas J. Rieth, Kerckhoff Clinic, Germany

*Correspondence: Lex M. van Loon, lexmaxim.vanloon@anu.edu.au
21 06 2024 2024 15 1351985 07 12 2023 06 05 2024 Copyright © 2024 Wilson, Schulte, Steins, Gruen, Tucker and van Loon. 2024 Wilson, Schulte, Steins, Gruen, Tucker and van Loon

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The space tourism industry is growing due to advances in rocket technology. Privatised space travel exposes non-professional astronauts with health profiles comprising underlying conditions to microgravity. Prior research has typically focused on the effects of microgravity on human physiology in healthy astronauts, and little is known how the effects of microgravity may play out in the pathophysiology of underlying medical conditions, such as heart failure. This study used an established, controlled lumped mathematical model of the cardiopulmonary system to simulate the effects of entry into microgravity in the setting of heart failure with both, reduced and preserved ejection fraction. We find that exposure to microgravity eventuates an increased cardiac output, and in patients with heart failure there is an unwanted increase in left atrial pressure, indicating an elevated risk for development of pulmonary oedema. This model gives insight into the risks of space flight for people with heart failure, and the impact this may have on mission success in space tourism.

space medicine cardiovascular mathematical model (MM) digital twin physiology section-at-acceptance Environmental, Aviation and Space Physiology

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1 Introduction

      Space medicine has traditionally focused on studying the effects of microgravity exposure on healthy, professional astronauts. However, with the advent of low-cost, reusable rocketry, space travel is becoming increasingly accessible to the public. This shift in accessibility raises concerns as individuals with underlying medical conditions may be exposed to a microgravity environment. Commercial spaceships typically subject passengers to a period of hypergravity (up to ∼3G) before experiencing an almost instantaneous transition to near microgravity (∼0G) (Jackson, 2017). Such transitions result in cardiovascular hemodynamic changes; at longer duration they cause fluid redistribution from the lower half to the top half of the body, commonly referred to as ‘puffy face bird leg’ syndrome (Williams et al., 2009). This fluid redistribution leads to reduced venous pooling in the lower limbs and increased venous pressures in upper-body compartments (Leach et al., 1996; Schneider et al., 2016).

      The target demographic of privatized space tourism significantly differs from that of professional astronauts, as it is likely to prioritize income over fitness. Consequently, understanding the behaviour of chronic health conditions - such as heart failure-in microgravity transitions becomes crucial to ensure mission safety in space tourism. This study focuses on heart failure due to its impact on the cardiovascular system and its prevalence among the global population. Heart failure is a common scenario, affecting some 100 million people worldwide (Savarese et al., 2022), with a prevalence of 1%–5% in the age group over 18 years (Sahle et al., 2016) and an incidence that increases with age, resulting in an overall lifetime risk of 1 in 5 for both men and women (Lloyd-Jones et al., 2002).

      Heart failure can be classified based on the left ventricular ejection fraction (LVEF). Heart Failure with reduced Ejection Fraction (HFrEF) is characterized by LVEF ≤40%, while Heart Failure with preserved Ejection Fraction (HFpEF) has LVEF >40%. Although these classification groups comprise heterogeneous disorders, certain fundamental cardiovascular and hemodynamic properties within each group can be used to model effects. HFrEF involves systolic dysfunction, characterized by eccentric left ventricular remodeling, left ventricular dilation, and a decrease in systolic left ventricular elastance (i.e., myocardial contraction). On the other hand, HFpEF is characterized by diastolic dysfunction, involving concentric left ventricular remodeling, increased diastolic left ventricular elastance (i.e., myocardial relaxation), and impaired left ventricular filling (Zile et al., 2004; Simmonds et al., 2020).

      To our knowledge, no studies exist on the effects of microgravity specifically on individuals with heart failure. While one recent study observed a decrease in heart failure biomarkers during parabolic flight, this research was limited to healthy adults, and up to now no investigations have explored the cardiovascular hemodynamic effects of microgravity transitions in people with heart failure (Jirak et al., 2020). Given the absence of available data on patients with heart failure in microgravity, the use of mathematical simulations is deemed appropriate to study this topic. Mathematical models have proven valuable in space medicine for predicting physiological changes that occur after exposure to microgravity (Wieling et al., 2002; Mohammadyari et al., 2021; van Loon et al., 2022).

      Therefore, the primary aim of this study is to simulate the effects and assess the risks associated with microgravity transitions for individuals with heart failure.

      2 Methods 2.1 Base model

      This project built upon the work of van Loon, Steins (van Loon et al., 2022), who established a controlled 21-compartment mathematical model of the cardiovascular system. In short, the model consists of four time-varying elastic heart compartments, 5 intra-thoracic compartments, two upper-body compartments, and eight lower-body compartments. The model uses Poiseuille’s Law to calculate pressure in each compartment based on the volume, and Ohm’s aw to describe the fluid mechanics between compartments. Each compartment is characterised with an inflow/outflow resistance, elastance and an unstressed volume. The heart compartments were modelled using time-varying elastances to simulate the heart as a pressure source. The conceptual model is presented in Figure 1. An extensive model description and parameter allocation of this base model can be found here (van Loon et al., 2022).

      Schematic overview of the 21-compartment cardiovascular model. Reproduced from van Loon et al., 2022, licensed under CC BY 4.0 International. Left panel (A): Anatomic model. Dashed square indicates the intrathoracic pressure. Right panel (B): Hydraulic circuit model. The orange circles with numbers are elastic elements with a pre and post resistance in blue and annotated with Roman numbers. The cardiac compartments are illustrated with red circles and represent time-variant elastances, together with their valves (green single triangles). The dashed rectangle outlines the intrathoracic compartments, and the brown wide-dashed line with round arrowheads indicates the lymphatic flow from the lower and upper body to the super vena cava. The green and red apple indicate gravity and its direction (green = added, red = subtracted).

      0: Ascending aorta 7: Renal arteries 14: Thoracic inferior vena cava
      1: Brachiocephalic arteries 8: Renal veins 15: Right atrium
      2: Upper body arteries 9: Splanchnic arteries 16: Right ventricle
      3: Upper body veins 10: Splanchnic veins 17: Pulmonary arteries
      4: Superior vena cava 11: Lower body arteries 18: Pulmonary veins
      5: Thoracic aorta 12: Lower body veins 19: Left atrium
      6: Abdominal aorta 13: Abdominal veins 20: Left ventricle
      2.2 Parameter estimation

      Based on the pathophysiology of HFrEF and HFpEF as previously described, relevant parameters associated with HFrEF (such as left ventricular maximum elastance (LV max elastance, mmHg/mL) and left ventricular end-diastolic volume (LVEDV, ml)) and parameters related to HFpEF (such as left ventricular minimum elastance (LV min elastance, mmHg/mL) and left atrial unstressed volume (mL)) were obtained from the literature. The weighted average of these parameters was calculated based on the participant sample size in each study. This process was conducted separately for HFrEF (Yip et al., 2011; Schwartzenberg et al., 2012; Warriner et al., 2014; Obokata et al., 2017; Charman et al., 2022) and HFpEF (Lam et al., 2009; Penicka et al., 2010; Ohtani et al., 2012; Schwartzenberg et al., 2012; Abudiab et al., 2013; Rommel et al., 2016; Obokata et al., 2017). Detailed parameter information for heart failure can be found in Table 1.

      Parameters of a healthy astronaut (“normal”) and HFrEF and HFpEF. “Normal” literature value ranges in brackets for comparison (Lam et al., 2009; Penicka et al., 2010; Ohtani et al., 2012; Abudiab et al., 2013; Rommel et al., 2016; Ohno, 2018).

      Parameter values Normal HFrEF HFpEF
      LV Emax (mm Hg/mL) 2.50 (2.23–3.7) 0.99 2.50
      LV End systolic volume (mL) 65.9 (23.7–71.8) 184.2 61.1
      LV Emin (mm Hg/mL) 0.10 (0.08–0.17) 0.10 0.21
      LA End Systolic Volume (mL) 32.1 (40–70) 42.4 53.6

      LV, left ventricle; LV, Emax = left ventricular max (systolic) elastance (aka Ees), LV, Emin = left ventricular minimal (diastolic) elastance, LA, left atrial.

      To validate the parameters used in simulating both types of heart failure, the simulation results were compared against established hemodynamic properties of heart failure under normal gravitational conditions. The pressure-volume (PV) loops of heart failure within the model were validated against existing literature under conditions of supine position in normal gravity to ensure consistency.

      In individuals with heart failure, the risk of developing acute pulmonary oedema is associated with left atrial pressure (LAP) (Drake and Doursout, 2002). Therefore, LAP was one of the key output parameters analysed in this study.

      In the construction of our model, we incorporated data reflecting a diverse range of astronaut demographics. The subjects encompassed 33 individuals from various space missions. Among these, 14 crew members, including 11 men and three women, had a mean age at launch of 40 years, ranging from 31 to 50 years. Their average height was reported as 177 cm, with a range from 158 to 189 cm, and an average weight of 77.3 kg, ranging from 58.2 to 95.2 kg (Fritsch et al., 1992; Buckey et al., 1996; Cooke et al., 2000). To simulate the transition into microgravity, the model employed a gradual change from a ‘standing’ position (1G) to a ‘supine’ position (0G), which is a method that has been used previously in the literature in the computational modeling of microgravity transitions (Gerber et al., 2018; van Loon et al., 2022) During this transition the unstressed volumes of specific fluid compartments are altered to mimic the fluid redistribution observed in space, as described in relevant literature. The specific alterations in unstressed volume can be found in the supplemental tables of van Loon, Steins (van Loon et al., 2022).

      The simulated transition into microgravity was performed over a period of 10 s, aiming to replicate the nearly instantaneous shift experienced during actual spaceflight (Jackson, 2017). The initiation of microgravity simulation occurred at 125 s. Data outputs before entry into microgravity were recorded at t = 80 s in the supine position, while the outputs after entry into microgravity were collected at t = 225 s. These time intervals were chosen to allow sufficient stabilization of the model after the simulation initiation and the microgravity transition.

      2.3 Parameter estimation for HFrEF

      Warriner, Brown (Warriner et al., 2014) performed a literature review of PV loops in HFrEF which found that stage C HFrEF (according to American Heart Association (AHA)/American College of Cardiology (ACC) guidelines) was the earliest stage that showed statistically significant changes in parameters of heart failure compared to a healthy population. From this review, it was decided that modeling stage C HFrEF—i.e., a patient with prior or current symptoms, but not experiencing acute refractory heart failure—would be appropriate for this study. The statistically significant cardiovascular parameters that could be modelled were the LV max elastance (mm Hg/mL), and the LV end-systolic and diastolic volume (mL). Both values were substituted into the paper as a change from the data of a healthy astronaut (van Loon et al., 2022). When done so, the proportionally substituted value for Emax was almost identical to the figures from the literature. The change in LV volume from the literature was substituted as a proportional change in LV unstressed volume. When done so, the proportionally substituted value for Emax was almost identical to the figures from the literature (Yip et al., 2011; Schwartzenberg et al., 2012; Warriner et al., 2014; Obokata et al., 2017; Charman et al., 2022). Refer to Table 1 for details of parameter estimates.

      The average patient from which these parameters were estimated is a 58 year old male, with a variety of comorbidities and treatment regimes.

      2.4 Parameter Estimation for HFpEF

      As established by the literature, HFpEF is characterised by an increase in LV diastolic elastance and dilation of the left atrium The LV diastolic elastance was increased proportionally—by a factor of 2—compared to the LV diastolic elastance of healthy astronaut as defined by van Loon, Steins (van Loon et al., 2022), based upon values from the literature (Penicka et al., 2010; Kasner et al., 2015). The left atrial end-diastolic volume was increased proportionally by a factor of ∼1.5 in the same manner (Table 1).

      The average HFpEF patient from which these parameters are estimated is a 70 year old female undergoing treatment.

      2.5 Countermeasures

      We hypothesised that pharmacological countermeasures used in heart failure could potentially increase the safety of people with heart failure entering microgravity. Diuretics are used to effectively decrease total blood volume, and are used to treat heart failure (Casu and Merella, 2015). Freis (Freis, 1983), found that thiazide diuretics caused a decrease in plasma volume by ∼15%. As plasma volume is 60% of total blood volume (van Loon et al., 2022), a countermeasure simulation was run with a decrease in total blood volume of 9%.

      This study altered cardiac parameters from individuals undergoing heart failure treatment, but without modelling the exact effects of a particular treatment regimen. The countermeasure simulation assumes that the patient was not already volume depleted through diuretics.

      3 Results 3.1 Validating heart failure in the computational model

      The PV loop generated from the mathematical model (Figure 2) using the estimated parameters for HFrEF showed characteristics that are consistent in the literature with PV loops of chronic ischaemic cardiomyopathy (Warriner et al., 2014; Ohno, 2018; Bastos et al., 2019; Jain and Borlaug, 2020; Charman et al., 2022). Refer to Tables 2-4 for detailed parameter outputs.

      Pressure-volume loops of the left intraventricular compartment. A healthy astronaut (‘normal’, blue line) to heart failure with reduced (HFrEF, red line) and preserved (HFpEF, green line) ejection fraction under Earth’s gravitational conditions (1G) in the supine position (t = 80 s).

      Simulation output haemodynamic parameters comparing a healthy astronaut (‘normal’) to HFrEF and HFpEF under Earth’s gravitational conditions (1G) in the supine position (t = 80 s). Literature value ranges for comparison (Lam et al., 2009; Penicka et al., 2010; Ohtani et al., 2012; Abudiab et al., 2013; Rommel et al., 2016; Ohno, 2018).

      Outputs Normal simulation output with literature range HFrEF simulation output with literature range HFpEF simulation output with literature range
      CO (L/min) 5.2 (5.3–6.3) 5.1 (3.1–6) 5.3 (2.8–5.4)
      HR (Bpm) 73 (64–75) 77 (70–80) 76 (67–71)
      MAP (mm Hg) 97 (80–105) 97 (80–104) 97 (95–104)
      LAP (mm Hg) 10 (7–10) 17 (25) 19 (16–23)
      SAP (mm Hg) 126 (117–149) 123 (113–143) 122 (125–166)
      DAP (mm Hg) 82 (70–80) 83 (73–83) 84 (68–80)
      LVEDV (mL) 140 (95–139) 249 (159–237) 126 (107.4–140)
      LVESV (mL) 66 (31–68) 184 (112–166) 61 (38–67)
      SV (mL) 71 (50–100) 66 (43–78) 69 (50–92.6)
      EF (%) 51 (54–67.6) 27 (22–32) 55 (58–65)
      Ea (mm Hg/mL) 1.79 (1.5–1.7) 1.87 (1.7–2.8) 1.8 (1.5–2.0)
      Ea/Ees 0.72 (0.5–0.6) 1.89 (2.5–3.3) 0.71 (0.6–0.8)

      CO, cardiac output; HR, heart rate; MAP = mean arterial pressure; LAP, left atrial pressure; SAP = systolic arterial pressure; DAP, diastolic arterial pressure; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume; SV, stroke volume; EF, ejection fraction, Ea = arterial elastance, Ees = left ventricular end systolic elastance.

      Simulation parameter outputs under different conditions.

      Normal HFrEF HFpEF
      Outputs Pre Post Δ Pre Post Δ Pre Post Δ
      CO (L/min) 4.2 5.4 1.2 3.0 4.5 1.4 3.5 5.1 1.7
      HR (Bpm) 86 71 −15 109.7 80.8 −29.0 96.2 76.3 −19.9
      MAP (mm Hg) 94.4 96.6 2.2 88.8 95.8 7.0 91.9 96.8 4.9
      LAP (mm Hg) 5.6 11.3 5.7 15.2 22.1 6.9 9.2 18.7 9.5
      RAP (mm Hg) 0.26 3.0 2.73 −0.7 1.9 2.6 −0.2 2.4 2.7
      SAP (mm Hg) 114.8 127.9 13.1 102.7 119.0 16.3 107.7 121.9 14.2
      DAP (mm Hg) 84.2 81.0 −3.2 81.9 84.2 2.4 84.0 84.3 0.3
      LVEDV (mL) 100.8 147.3 46.5 238.9 298.5 59.6 79.6 122.5 42.9
      LVESV (mL) 52.0 69.0 17.0 208.0 242.4 34.5 41.3 59.2 17.9
      SV (mL) 45.1 76.4 31.3 27.4 55.1 27.7 36.2 67.5 31.3
      EF (%) 44.8 51.9 7.1 11 18 7 45 55 10
      Ea (mm Hg/mL) 2.50 1.6 −.96 3.9 2.2 −1.7 3.1 1.8 −1.3
      Ea/Ees 1.00 0.66 −0.34 5.9 3.3 −2.6 1.1 0.6 −0.4

      Pre = before entry into microgravity (standing, 1G), post = after entry into microgravity (supine, 0G), CO, cardiac output; HR, heart rate; MAP = mean arterial pressure; LAP, left atrial pressure; RAP = right atrial pressure; SAP, systolic arterial pressure; DAP = diastolic arterial pressure; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume; SV, stroke volume; EF, ejection fraction, Ea = arterial elastance, Ees = left ventricular end systolic elastance.

      Simulation parameter outputs of heart failure with and without countermeasures.

      HFrEF HFpEF
      Pre Post Δ Pre Post Δ
      Without Countermeasure CO (L/min) 3 4.5 1.4 3.5 5.1 1.7
      LAP (mm Hg) 15.2 22.1 6.9 9.2 18.7 9.5
      With Countermeasure CO (L/min) 2.64 3.9 1.3 2.8 4.2 1.5
      LAP (mm Hg) 12.5 19.5 7.0 5 15 10.1

      Pre = before entry into microgravity, Post = after entry into microgravity, CO, cardiac output; LAP = left atrial pressure, Countermeasure = simulation with 9% less total blood volume.

      The right shift of the PV loop of HFrEF, with volumes ∼250 mL and the ejection fraction of ∼27% are all consistent with expected values. The left atrial pressure (LAP) is also increased in a manner consistent with the literature (Drake and Doursout, 2002; Miller Wayne et al., 2013).

      Ea/Ees is the ventricular-vascular coupling, a measure of heart contractility coupled with arterial elastance. This was also calculated in HFrEF according to Antonini-Canterin, Poli (Antonini-Canterin et al., 2013) and was shown to be increased in HFrEF compared to normal and HFpEF, which is consistent with the literature (Ohno, 2018; Monge García and Santos, 2020).

      The output from the model after estimating the parameters for HFpEF shows an ejection fraction like that of the healthy astronaut. The end diastolic pressure and the end diastolic pressure-volume relationship (EDPVR) is increased in HFpEF, which can be seen graphically (Figure 3). Left atrial pressure is also increased up to ∼19 mmHg. These findings are all consistent with values from the literature, indicating that the model can simulate some key hemodynamic parameters of HFpEF (Lam et al., 2009; Penicka et al., 2010; Ohtani et al., 2012; Abudiab et al., 2013; Rommel et al., 2016; Ohno, 2018).

      Haemodynamic responses occurring during entry into microgravity under different conditions. Top panel; healthy adult. Middle panel: Heart failure with reduced ejection fraction (HFrEF). Bottom panel: Heart failure with preserved ejection fraction (HFpEF). Line colours: dashed line = start microgravity transition, red = mean arterial blood pressure, dashed green = heart rate, black = cardiac output, and blue = left atrial pressure.

      3.2 Heart failure in the model upon entry into microgravity

      Upon entry into microgravity all simulations exhibited the expected increase in cardiac output (CO), with the highest increase observed in individuals with a healthy heart, followed by those with HFpEF and HFrEF. The simulations successfully achieved appropriate stabilization after the fluid redistribution that occurs during the transition into microgravity.

      In response to the elevated CO, heart rate (HR) decreased due to autonomic reflexes aimed at conserving cardiac output, as visually depicted in the graphs. Mean arterial pressure (MAP) and diastolic arterial pressure (DAP) remained conserved, indicating overall cardiac and hemodynamic stability across all simulations.

      The simulations showed an increase in right atrial pressure (RAP) of approximately 4 mm Hg upon entry into microgravity, which fell within the normal limits previously reported (Beigel et al., 2013). Left atrial pressure (LAP) demonstrated an increase after entering microgravity in all simulations. HFrEF and HFpEF patients demonstrated increases in LAP of 6.9 mm Hg, and 9.5 mm Hg respectively, compared to the healthy adult which increased by 5.7 mm Hg.

      During the transition period, LAP exhibited a spike before the model’s autonomic functions could stabilize. This spike caused LAP to reach approximately 14 mm Hg in the healthy simulation, while in the HFrEF and HFpEF simulations, LAP peaked at around 30 mm Hg. These findings highlight the dynamics of LAP during the transition into microgravity, underscoring the physiological changes experienced by individuals with heart failure.

      3.3 Heart failure upon entry into microgravity with countermeasures

      The countermeasure—a decrease in blood volume by 9% - reduces the overall CO and LAP in HFrEF and HFpEF. However, during the microgravity transition both CO and LAP increase in both types of heart failure, though the post-transitional values are reduced compared to non-countermeasure. In HFrEF, CO is reduced pre-flight to 2.64 L/min.

      4 Discussion

      The key findings of this study are as follows: 1) the developed model successfully simulated the fundamental properties of heart failure. 2) Upon entry into microgravity, left atrial pressure (LAP) increased in all simulations, surpassing a clinically significant threshold associated with a serious risk of pulmonary oedema in individuals with heart failure.

      4.1 Elevated LAP as a risk factor in microgravity entry

      The simulations demonstrated a proportional increase in cardiac output in response to microgravity entry, initially suggesting a potential protective effect against heart failure. In all simulations, LAP increased by a similar magnitude after the transition. As patients with heart failure already had elevated LAP under normal gravity (1G) conditions, the post-transitional LAP levels approached values associated with pulmonary oedema. Specifically, HFrEF exhibited a post-transitional LAP of 22 mmHg, while HFpEF went as high as 19 mmHg. Note that a moderately elevated LAP (<25 mmHg) is associated with long-term pulmonary phase changes (Drake and Doursout, 2002). Therefore, even if an individual’s LAP remains below the threshold for acute pulmonary oedema, prolonged exposure to increased LAP does pose a concern.

      For the purposes of this study, it is assumed that the post-transitional LAP will be maintained throughout the duration of spaceflight. Therefore, an increase in risk for pulmonary oedema is assumed to be maintained during the entirety of the patient’s time in microgravity. During the transition period, there was a spike in LAP before the autonomic system could compensate. However, this spike is of lesser concern compared to the average post-transitional LAP, as acute pulmonary oedema develops over minutes to hours, whereas the LAP spike occurs for approximately 25 s before the autonomic system establishes a new baseline. Furthermore, literature review suggests no evidence of pulmonary oedema occurring in healthy astronauts upon entry into microgravity, despite inconclusive indications of microgravity as a potential risk factor for its development (Prisk, 2019).

      An analogous real-world example of the cardiovascular effects of microgravity transition are those experienced by patients with heart failure undergoing immersion in water. This is analogous due to patients being in a supine position with volume re-distribution whilst immersed—i.e., the two key changes modelled for microgravity simulation (Shah et al., 2019). Two studies found results that were consistent with the simulation. Patients with heart failure had an increase in CO and LAP that was associated with supine immersion in water (Meyer and Bücking, 2004; Shah et al., 2019), indicating a real-world consistency in the cardiovascular parameters of the model. A significant recommendation arising from this study is that individuals with heart failure entering a microgravity environment are at risk of developing pulmonary oedema.

      4.2 Enhancing safety through countermeasures

      The results of countermeasure simulations indicate that a pre-flight reduction in blood volume by approximately 9% using diuretics could sufficiently decrease LAP, reducing the risk of pulmonary oedema in patients with heart failure upon entering microgravity. The countermeasure reduces both pre-flight and post-flight LAP, potentially mitigating the risk of LAP reaching the critical threshold of 25 mmHg (Drake and Doursout, 2002) leading to acute pulmonary oedema. However, the reduction in total blood volume also led to a decrease in pre-flight cardiac output for HFrEF, reaching a cardiac index of 2.01, which is approaching the threshold for risk of developing cardiogenic shock (<1.8 L/min/m2) (Verbraecken et al., 2006; Reynolds and Hochman, 2008). Therefore, while diuretics can decrease the risk of pulmonary oedema in microgravity, there remains a potential risk of developing cardiogenic shock in HFrEF patients with inadequate total blood volume.

      4.3 Implications for internal jugular vein thrombosis

      Astronauts have been reported to experience internal jugular vein thrombosis (Auñón-Chancellor et al., 2020), and although the precise pathophysiology remains unclear, it can be hypothesized that elevated upper body venous pressure plays a role. Our simulations indicated an increase in right atrial pressure upon exposure to microgravity. Raised venous pressure has been associated with venous endothelial damage (Castro-Ferreira et al., 2018), which, in turn, is a risk factor for thrombosis development (Marshall-Goebel et al., 1985; Anderson and Spencer, 2003). This suggests a potential link between increased venous pressure, endothelial damage, and the occurrence of internal jugular vein thrombosis in astronauts. Further investigation is warranted to elucidate the exact pathophysiology of this disease in astronauts.

      4.4 Limitations

      The patient data obtained from the literature for HFrEF and HFpEF often involved individuals undergoing pharmaceutical treatment, resulting in simulations of controlled heart failure. However, it is reasonable to assume that individuals participating in space travel would adhere to their prescribed medication regimens.

      HFrEF encompasses various cardiovascular hemodynamic effects influenced by aetiology, including increased neurohormonal activity (Packer, 1992), which was not accounted for in the model. HFpEF is now recognized as a heterogeneous disorder (Shah et al., 2014), and comprehensively incorporating all HFpEF-related parameters is beyond the scope of both the model and this study. In addition to increased ventricular elastance, HFpEF is associated with abnormal active relaxation of the heart (Kadry et al., 2020) which the current model cannot incorporate. Furthermore, the calculation of E/A ratios and the biphasic non-linear mechanism of left ventricular filling, often used for diagnosing and analysing HFpEF are not considered in this model.

      The autonomic dysfunction accompanying HFrEF and HFpEF was left unchanged in reflex part of this mathematical model. We do however recognize that changes in autonomic reflexes may lead to alterations in orthostatic tolerance upon transitioning from supine to standing in individuals with heart failure. Signs of orthostatic intolerance may result in worse outcomes following exposure to microgravity environments, necessitating further investigation of this topic.

      Heart failure is associated with a wide range of comorbidities, with a substantial proportion of patients attributing their clinical condition primarily to comorbidities (Loosen et al., 2022). Evaluating and simulating comorbidities associated with HFrEF and HFpEF fall outside the scope of this study. Further research should explore the simulation of “holistic” patients with both heart failure and associated comorbidities, considering the cumulative effect of comorbidities on heart failure following exposure to microgravity.

      In the supine position in 1G of healthy astronauts, the ejection fractions were approximately 51%. While this value falls within the normal range according to most classifications, it could be considered mildly abnormal according to certain guidelines (Kanagala and Squire, 2020). This limitation may be attributed to the computational model’s exclusive consideration of the diastolic unstressed volume in cardiac fluid compartments, without accounting for the systolic unstressed volume in these compartments, as done in other hemodynamic models (Neal and Bassingthwaighte, 2007).

      For the purpose of this research, the model’s simulation of microgravity entry has been simplified compared to the actual process experienced by space tourists. The model simulated a 10-s entry into microgravity, whereas reality involves a period of hypergravity lasting minutes before a near-instantaneous sudden transition to microgravity (Jackson, 2017). Future studies could investigate the effects of hypergravity on individuals with heart failure.

      4.5 Future research

      This study focused on elucidating safety concerns during space tourism, specifically during entry into microgravity. However, longer-term space travel, such as journeys to Mars, is associated with cardiac atrophy, alterations in pulmonary volumes and perfusion, electrical abnormalities, and other cardiovascular and hemodynamic changes (Schneider et al., 2016). Future research should explore the potential effects of extended space flight on individuals with cardiac pathologies.

      Additionally, the feasibility of personalized modeling for individuals with underlying medical conditions entering microgravity should be examined to establish an individual’s risk profile for space tourism.

      In conclusion, this study successfully simulated the effects of heart failure in humans going on a short-term spaceflight and determined the impact of these conditions on hemodynamic performance during microgravity entry. These findings might advance our understanding of the risks involved in space travel with heart failure and their implications for the success of space tourism missions.

      Data availability statement

      The raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

      Author contributions

      SW: Data curation, Formal Analysis, Methodology, Software, Validation, Visualization, Writing–original draft, Writing–review and editing. K-MS: Conceptualization, Formal Analysis, Funding acquisition, Resources, Supervision, Validation, Writing–review and editing. AS: Conceptualization, Formal Analysis, Supervision, Validation, Visualization, Writing–review and editing. RG: Conceptualization, Funding acquisition, Resources, Validation, Writing–review and editing. ET: Conceptualization, Formal Analysis, Methodology, Supervision, Writing–review and editing. LL: Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing–original draft, Writing–review and editing.

      Funding

      The author(s) declare that no financial support was received for the research, authorship, and/or publication of this article.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      References Abudiab M. M. Redfield M. M. Melenovsky V. Olson T. P. Kass D. A. Johnson B. D. (2013). Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 15 (7), 776785. 10.1093/eurjhf/hft026 Anderson F. A. Spencer F. A. (2003). Risk factors for venous thromboembolism. Circulation 107 (23_Suppl. l_1), I9I16. 10.1161/01.cir.0000078469.07362.e6 Antonini-Canterin F. Poli S. Vriz O. Pavan D. Bello V. D. Nicolosi G. L. (2013). The ventricular-arterial coupling: from basic pathophysiology to clinical application in the echocardiography laboratory. J. Cardiovasc Echogr 23 (4), 9195. 10.4103/2211-4122.127408 Auñón-Chancellor S. M. Pattarini J. M. Moll S. Sargsyan A. (2020). Venous thrombosis during spaceflight. N. Engl. J. Med. 382 (1), 8990. 10.1056/NEJMc1905875 Bastos M. B. Burkhoff D. Maly J. Daemen J. den Uil C. A. Ameloot K. (2019). Invasive left ventricle pressure–volume analysis: overview and practical clinical implications. Eur. Heart J. 41 (12), 12861297. 10.1093/eurheartj/ehz552 Beigel R. Cercek B. Luo H. Siegel R. J. (2013). Noninvasive evaluation of right atrial pressure. J. Am. Soc. Echocardiogr. 26 (9), 10331042. 10.1016/j.echo.2013.06.004 Buckey J. C. Lane L. D. Levine B. D. Watenpaugh D. E. Wright S. J. Moore W. E. (1996). Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81, 718. 10.1152/jappl.1996.81.1.7 Castro-Ferreira R. Cardoso R. Leite-Moreira A. Mansilha A. (2018). The role of endothelial dysfunction and inflammation in chronic venous disease. Ann. Vasc. Surg. 46, 380393. 10.1016/j.avsg.2017.06.131 Casu G. Merella P. (2015). Diuretic therapy in heart failure - current approaches. Eur. Cardiol. 10 (1), 4247. 10.15420/ecr.2015.10.01.42 Charman S. J. Okwose N. C. Taylor C. J. Bailey K. Fuat A. Ristic A. (2022). Feasibility of the cardiac output response to stress test in suspected heart failure patients. Fam. Pract. 39, 805812. 10.1093/fampra/cmab184 Cooke W. H. Ames J. E. Crossman A. A. Cox J. F. Kuusela T. A. Tahvanainen K. U. O. (2000) Nine months in space: effects on human autonomic cardiovascular regulation. American Physiological Society, 10391045. Drake R. E. Doursout M. F. (2002). Pulmonary edema and elevated left atrial pressure: four hours and beyond. Physiology 17 (6), 223226. 10.1152/nips.01399.2002 Freis E. D. (1983). How diuretics lower blood pressure. Am. Heart J. 106 (1, Part 2), 185187. 10.1016/0002-8703(83)90116-3 Fritsch J. Charles J. B. Bennett B. S. Jones M. M. Eckberg D. L. (1992). Short-duration spaceflight impairs human carotid baroreceptor-cardiac reflex responses. J. Appl. Physiol. (1985) 73, 664671. 10.1152/jappl.1992.73.2.664 Gerber B. Singh J. L. Zhang Y. Liou W. (2018). A computer simulation of short-term adaptations of cardiovascular hemodynamics in microgravity. Comput. Biol. Med. 102, 8694. 10.1016/j.compbiomed.2018.09.014 Jackson E. (2017). “An investigation of the effects of sustained G-forces on the human body during suborbital spaceflight,” in TRITA-AVE, 75. Jain C. C. Borlaug B. A. (2020). Hemodynamic assessment in heart failure. Catheter. Cardiovasc. Interventions 95 (3), 420428. 10.1002/ccd.28490 Jirak P. Wernly B. Lichtenauer M. Paar V. Franz M. Knost T. (2020). Dynamic changes of heart failure biomarkers in response to parabolic flight. Int. J. Mol. Sci. 21 (10), 3467. 10.3390/ijms21103467 Kadry K. Pagoulatou S. Mercier Q. Rovas G. Bikia V. Müller H. (2020). Biomechanics of diastolic dysfunction: a one-dimensional computational modeling approach. Am. J. Physiology-Heart Circulatory Physiology 319 (4), H882H892. 10.1152/ajpheart.00172.2020 Kanagala P. Squire I. B. (2020). Latest British Society of Echocardiography recommendations for left ventricular ejection fraction categorisation: potential implications and relevance to contemporary heart failure management. Echo Res. Pract. 7 (3), L1L4. 10.1530/ERP-20-0029 Kasner M. Sinning D. Burkhoff D. Tschöpe C. (2015). Diastolic pressure–volume quotient (DPVQ) as a novel echocardiographic index for estimation of LV stiffness in HFpEF. Clin. Res. Cardiol. 104 (11), 955963. 10.1007/s00392-015-0863-y Lam C. S. Roger V. L. Rodeheffer R. J. Borlaug B. A. Enders F. T. Redfield M. M. (2009). Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J. Am. Coll. Cardiol. 53 (13), 11191126. 10.1016/j.jacc.2008.11.051 Leach C. S. Alfrey C. P. Suki W. N. Leonard J. I. Rambaut P. C. Inners L. D. (1996). Regulation of body fluid compartments during short-term spaceflight. J. Appl. Physiol. (1985) 81 (1), 105116. 10.1152/jappl.1996.81.1.105 Lloyd-Jones D. M. Larson M. G. Leip E. P. Beiser A. D'Agostino R. B. Kannel W. B. (2002). Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106 (24), 30683072. 10.1161/01.cir.0000039105.49749.6f Loosen S. H. Roderburg C. Curth O. Gaensbacher J. Joerdens M. Luedde T. (2022). The spectrum of comorbidities at the initial diagnosis of heart failure a case control study. Sci. Rep. 12 (1), 2670. 10.1038/s41598-022-06618-5 Marshall-Goebel K. Lee S. M. C. Lytle J. R. Martin D. S. Miller C. A. Young M. (1985). Jugular venous flow dynamics during acute weightlessness. J. Appl. Physiol., 2024. 10.1152/japplphysiol.00384.2023 Meyer K. Bücking J. (2004). Exercise in heart failure: should aqua therapy and swimming be allowed? Med. Sci. Sports Exerc 36 (12), 20172023. 10.1249/01.mss.0000147591.19416.39 Miller Wayne L. Grill Diane E. Borlaug Barry A. (2013). Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 1 (4), 290299. 10.1016/j.jchf.2013.05.001 Mohammadyari P. Gadda G. Taibi A. (2021). Modelling physiology of haemodynamic adaptation in short-term microgravity exposure and orthostatic stress on Earth. Sci. Rep. 11 (1), 4672. 10.1038/s41598-021-84197-7 Monge García M. I. Santos A. (2020). Understanding ventriculo-arterial coupling. Ann. Transl. Med. 8 (12), 795. 10.21037/atm.2020.04.10 Neal M. L. Bassingthwaighte J. B. (2007). Subject-specific model estimation of cardiac output and blood volume during hemorrhage. Cardiovasc Eng. 7 (3), 97120. 10.1007/s10558-007-9035-7 Obokata M. Nagata Y. Kado Y. Kurabayashi M. Otsuji Y. Takeuchi M. (2017). Ventricular-arterial coupling and exercise-induced pulmonary hypertension during low-level exercise in heart failure with preserved or reduced ejection fraction. J. Cardiac Fail. 23 (3), 216220. 10.1016/j.cardfail.2016.10.001 Ohno M. (2018). The pathophysiology of chronic cardiorenal disease based on central hemodynamics. J. Cardiovasc. Med. Cardiol., 027035. 10.17352/2455-2976.000067 Ohtani T. Mohammed S. F. Yamamoto K. Dunlay S. M. Weston S. A. Sakata Y. (2012). Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. Eur. Heart J. 33 (14), 17421749. 10.1093/eurheartj/ehs135 Packer M. (1992). The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J. Am. Coll. Cardiol. 20 (1), 248254. 10.1016/0735-1097(92)90167-l Penicka M. Bartunek J. Trakalova H. Hrabakova H. Maruskova M. Karasek J. (2010). Heart failure with preserved ejection fraction in outpatients with unexplained dyspnea: a pressure-volume loop analysis. J. Am. Coll. Cardiol. 55 (16), 17011710. 10.1016/j.jacc.2009.11.076 Prisk G. K. (2019). Pulmonary challenges of prolonged journeys to space: taking your lungs to the moon. Med. J. Aust. 211 (6), 271276. 10.5694/mja2.50312 Reynolds H. R. Hochman J. S. (2008). Cardiogenic shock: current concepts and improving outcomes. Circulation 117 (5), 686697. 10.1161/CIRCULATIONAHA.106.613596 Rommel K.-P. von Roeder M. Latuscynski K. Oberueck C. Blazek S. Fengler K. (2016). Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 67 (15), 18151825. 10.1016/j.jacc.2016.02.018 Sahle B. W. Owen A. J. Mutowo M. P. Krum H. Reid C. M. (2016). Prevalence of heart failure in Australia: a systematic review. BMC Cardiovasc Disord. 16, 32. 10.1186/s12872-016-0208-4 Savarese G. Becher P. M. Lund L. H. Seferovic P. Rosano G. M. C. Coats A. J. S. (2022). Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 118, 32723287. 10.1093/cvr/cvac013 Schneider V. S. Charles J. Conkin J. (2016). “Cardiopulmonary system: aeromedical considerations,” in Space physiology and medicine: from evidence to practice. Editor Nicogossian A. E. (New York, NY: Springer New York), 227244. Schwartzenberg S. Redfield M. M. From A. M. Sorajja P. Nishimura R. A. Borlaug B. A. (2012). Effects of vasodilation in heart failure with preserved or reduced ejection fraction implications of distinct pathophysiologies on response to therapy. J. Am. Coll. Cardiol. 59 (5), 442451. 10.1016/j.jacc.2011.09.062 Shah P. Pellicori P. Kallvikbacka-Bennett A. Zhang J. Pan D. Clark A. L. (2019). Warm water immersion in patients with chronic heart failure: a pilot study: Shah immerse: HF. Clin. Res. Cardiol. 108 (5), 468476. 10.1007/s00392-018-1376-2 Shah S. J. Katz D. H. Deo R. C. (2014). Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin. 10 (3), 407418. 10.1016/j.hfc.2014.04.008 Simmonds S. J. Cuijpers I. Heymans S. Jones E. A. V. (2020). Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells 9 (1), 242. 10.3390/cells9010242 van Loon L. M. Steins A. Schulte K. M. Gruen R. Tucker E. M. (2022). Computational modeling of orthostatic intolerance for travel to Mars. npj Microgravity 8 (1), 34. 10.1038/s41526-022-00219-2 Verbraecken J. Van de Heyning P. De Backer W. Van Gaal L. (2006). Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metabolism 55 (4), 515524. 10.1016/j.metabol.2005.11.004 Warriner D. R. Brown A. G. Varma S. Sheridan P. J. Lawford P. Hose D. R. (2014). Closing the loop: modelling of heart failure progression from health to end-stage using a meta-analysis of left ventricular pressure-volume loops. PLoS One 9 (12), e114153. 10.1371/journal.pone.0114153 Wieling W. Halliwill J. R. Karemaker J. M. (2002). Orthostatic intolerance after space flight. J. Physiol. 538 (Pt 1), 1. 10.1113/jphysiol.2001.013372 Williams D. Kuipers A. Mukai C. Thirsk R. (2009). Acclimation during space flight: effects on human physiology. Cmaj 180 (13), 13171323. 10.1503/cmaj.090628 Yip G.W.-K. Zhang Q. Xie J. M. Xie J. M. Liang Y. J. Liu Y. M. (2011). Resting global and regional left ventricular contractility in patients with heart failure and normal ejection fraction: insights from speckle-tracking echocardiography. Heart 97 (4), 287294. 10.1136/hrt.2010.205815 Zile M. R. Baicu C. F. Gaasch W. H. (2004). Diastolic heart failure--abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 350 (19), 19531959. 10.1056/NEJMoa032566
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hqyixin.com.cn
      linshukx.org.cn
      www.jyrrpq.com.cn
      mida.net.cn
      www.lznucb.com.cn
      www.nbqs.com.cn
      r7dx1.net.cn
      tjfhs.org.cn
      www.nqchain.com.cn
      xaychwy.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p