Front. Physiol. Frontiers in Physiology Front. Physiol. 1664-042X Frontiers Media S.A. 10.3389/fphys.2018.01729 Physiology Original Research Effect of Sublethal Doses of Imidacloprid on the Biological Performance of Aphid Endoparasitoid Aphidius gifuensis (Hymenoptera: Aphidiidae) and Influence on Its Related Gene Expression Kang Zhi-Wei 1 2 Liu Fang-Hua 3 Pang Rui-Ping 1 Tian Hong-Gang 1 * Liu Tong-Xian 1 * 1State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling, China 2Department of Entomology, University of Georgia, Athens, GA, United States 3State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China

Edited by: Bin Tang, Hangzhou Normal University, China

Reviewed by: Abid Ali, University of Agriculture, Faisalabad, Pakistan; Thorben Müller, Bielefeld University, Germany; Rakesh Kumar Seth, University of Delhi, India

*Correspondence: Hong-Gang Tian tianhg@nwsuaf.edu.cn Tong-Xian Liu txliu@nwsuaf.edu.cn.

This article was submitted to Invertebrate Physiology, a section of the journal Frontiers in Physiology

†These authors have contributed equally to this work

11 12 2018 2018 9 1729 06 07 2018 16 11 2018 Copyright © 2018 Kang, Liu, Pang, Tian and Liu. 2018 Kang, Liu, Pang, Tian and Liu

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The integrated pest management (IPM) strategy was developed and used in combination with pesticides and beneficial biological control agents. To further develop IPM efficiency, it is important to evaluate the side effects of pesticides on biological control agents. Aphidius gifuensis is one of the most important aphid natural enemies and has been successfully used to control Myzys persicae and other aphid species. Imidacloprid (IMD) is a popular pesticide used worldwide and is highly toxic to non-target arthropods. Here, we investigated the short-term sublethal toxicity of IMD in Aphidius gifuensis and its impact on the biological performance and gene expression of this parasitoid. We found that sublethal IMD doses had a significant negative effect on the life history traits of female A. gifuensis, including shortening the lifespan and lowering parasitic capacity. Moreover, exposure to sublethal IMD also adversely affected the response of A. gifuensis to aphid-infested plant volatiles. Based on the transcriptome analysis, we found that the exposure to sublethal IMD doses significantly affected expression of genes involved in the central nervous system, energy metabolism, olfactory, and detoxification system of A. gifuensis. RT-qPCR also revealed that short term expose to sublethal IMD doses significantly induced the gene expression of genes related to the central nervous system (nAChRa7, nAChRa9, TbH, OAR1, NFR, TYR, and DAR1), olfactory system (OR28 and IR8a1), and detoxification system (CYP49p3, CYP6a2, and POD), while it suppressed the expression of genes involved in the central nervous system (nAChRa4 and nAChRb1), olfactory system (Orco1, IR8a2, and GR1), and detoxification system (GST2). Furthermore, exposure to sublethal doses of IMD also significantly increased the activities of CarEs and POD, whereas we observed no influence on the activities of CAT, GST, and SOD. Our results indicate that sublethal IMD doses might adversely affect the biological performance of A. gifuensis by altering gene expression related to the function of olfactory, nervous, energy metabolism, and detoxification systems. Thus, how the use of pesticides directly affect insect population should be considered when used in conjunction with natural pest parasitoids in IPM strategies.

Aphidius gifuensis imidacloprid biological performance transcriptome integrated pest management

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Over the past decade, numerous pesticides have been developed and introduced into agriculture, forestry, horticulture, grain storage, and public/personal health. Around the world, more than 2 million tons of pesticides are used annually (De et al., 2014). About 24.3, 18.2, and 9.7 kg/ha of pesticides were used in 12 villages in six counties in Guangdong, Jiangxi, and Hebei provinces, in China (Zhang et al., 2015)w. The global pesticide cost is estimated to be $81.1 billion by 2021. However, the intensive use of pesticides has posed selective pressure on targeted pest species to develop pesticide resistance or pest resurgence (Desneux et al., 2007; Tabashnik et al., 2009). Over 500 species are resistant to at least one type of pesticide (De et al., 2014). For example, the diamondback moth (Plutella xylostella) has developed a resistance to over 91 pesticides, all within 3 years (2015–2017), Dysdercus koenigii has developed a very high resistance to acetamiprid (from 33 to 433-fold) and imidacloprid (from 21 to 173-fold) in Punjab, Pakistan (Zhang et al., 2016; Saeed et al., 2018). P. xylostella is also resistant to Bacillus thuringiensis and its derivatives. This higher resistance of pests lead to the development of novel pesticides and an increase in the quantity and frequency of pesticide application, which not only facilitates the resistance in the target pests but also results in environment contamination. In Thailand, the average pesticide residues found in surface water was 1.3757 ± 0.5014 mg/L (dicrotophos in summer) and 0.3629 ± 0.4338 mg/L (ethion in winter), and the average ethion residues in soil was 42.2893 ± 39.0711 mg/kg (summer), and 90 ± 24.16443 mg/kg (winter) (Harnpicharnchai et al., 2013). The persistent nature of pesticides has entered into various food chains and has bioaccumulated in higher trophic levels inlcuding bees, birds, and mammals (Bayen et al., 2005; Desneux et al., 2007; Kapoor et al., 2011; Dicks, 2013). Thus, to some extent, the adverse effects of pesticides have outweighed the benefits associated with their use.

      To minimize chemical pesticides use, various candidate biological control agents have been evaluated, such as the application of trap crop systems, and entomopathogenic fungi, bacteria, predators, and parasitoids (Shah and Pell, 2003; Shelton and Badenes-Perez, 2006; Yang et al., 2009; Walker et al., 2017). For example, blue fluorescent light is widely used in rice paddy fields to control the rice stem borer, Chilo suppressalis Walker, and Tryporyza incertulas Walker moths (Ishikura, 1950). Alfalfa and mungbean are used as a trap crop in cotton fields for managing lygus bugs, Lygus Hesperus, and the mirid Apolygus lucorum, respectively (Godfrey and Leigh, 1994; Lu et al., 2009). Two parasitic wasps Trichogrammatoidea bactrae fumata Nagaraja and Trichogrammatoidea cojuangcoi Nagaraja are successfully applied to control the cocoa pod borer, Conopomorpha cramerella Snellen, in the field (Lim and Chong, 1987; Alias et al., 2005). However, these biological control agents such as trap crop systems and commercial inundated releases of parasitoids and predators may not be capable of reducing pest densities to levels that avoid economic losses in a timely manner (Yang et al., 2011). Thus, the proper amalgamation of various control techniques into a unified system may provide a powerful tool to keep pest population levels low and to avoid economic damage. However, amalgamation of various pest control techniques also poses a major challenge: how do we take advantage of each biological technique?

      The pesticides that are used in pest management programs must be effective in controlling pests and have a low impact on non-target organisms, such as natural enemies (Desneux et al., 2007; Lu et al., 2009). To determine the residual period of control for an insecticide, is essential to plan insect management strategies, which will influence the spraying frequency and the release time of natural enemies, and in turn, affect the pest control cost. Thus, the residual and toxic effects of pesticides are the most serious bottlenecks in the successful use of pesticides and natural enemies.

      Aphids are key insect pests that are responsible for major agricultural losses, particularly because they are vectors of various plant viruses (Van Emden and Harrington, 2017). In the Australian grain industry alone, aphid-related plant injuries, either through direct feeding or virus transfer, represent a potential economic cost of $200–480 million/year (Murray et al., 2013; Valenzuela and Hoffmann, 2015). Current management strategies for broadacre aphids rely primarily on pesticides, either through seed dressings or foliar applications (Dedryver et al., 2010; Chollet et al., 2014). However, due to the strong adaptation and fecundity of aphids, they have developed strong resistance to various pesticides. For example, the green peach aphid (Myzus persicae) is resistant to more than 70 different types of synthetic insecticides (Silva et al., 2012).

      Imidacloprid (IMD) is one of the most extensively used pesticides in the world (Li et al., 2018). It is sprayed directly onto plants or used as a seed or soil treatment on a number of agricultural products to control a variety of insect pests including plant- and leafhoppers, aphids, termites, whiteflies, and thrips (Li et al., 2018). However, IMD is highly persistent and toxic to non-target animals, including bees (Dicks, 2013). When a bumblebee (Bombus terrestris) colony was treated with IMD at a sublethal concentration, it significantly reduced the growth rate and production of queens and workers (Laycock et al., 2012; Whitehorn et al., 2012). In addition, there was a significant decrease in the fecundity of Orius insidiosus, Orius tristicolor, Hippodamia convergens, and Chrysoperla carnea, which are natural enemies of aphids, when treated with sublethal concentrations of IMD (Mizell and Sconyers, 1992; Sclar et al., 1998; Studebaker and Kring, 2003; Rogers et al., 2007; Funderburk et al., 2013).

      Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) is one of the most widely distributed and dominant endoparasitoid of pest aphids, including M. persicae and Sitobion avenae (Fabricius), and are successfully applied in greenhouses for controlling vegetable aphids and in fields for tobacco aphid (M. persicae, also known as green peach aphid) management in China (Yang et al., 2009, 2011; Ali et al., 2016; Kang et al., 2017a; Yang F. et al., 2017). Furthermore, Yang et al. (2009) reported that after augmentative releases of A. gifuensis, the frequency and quantity of pesticide application could be sustained at a low level for 8 years. However, A. gifuensis is sensitive to various agrochemicals (Ohta and Takeda, 2015). For example, after 14 days of exposure to residual permethrin and IMD, also showed high toxicities to A. gifuensis (Kobori and Amano, 2004). In this work, we not only evaluated the toxicity of IMD in A. gifuensis, but also investigated the biological performance of A. gifuensis exposed to sublethal doses of IMD. We hypothesized that sublethal doses of IMD would disrupt parasitoids performance through regulating some genes on the molecular level. Transcriptome technology was applied to explore which of the parasitoid genes could be modulated by IMD and how A. gifuensis adjusts its detoxification system to respond to the exposure of IMD.

      Materials and Methods Insect Species

      Aphidius gifuensis used in this work were maintained on M. persicae, which was reared on chili pepper (Capsicum annuum L., var. “Lingxiudajiao F1”) at 25 ± 1°C with a 16 h light: 8 h dark photoperiod and a relative humidity of 60 ± 5% in an air-conditioned insectary.

      Performance of <italic>A. gifuensis</italic> Exposure to IMD

      We used three different dilution magnifications to evaluate the toxicity of IMD on A. gifuensis, and distilled water was used as a control. Five plastic vials (length: 8 cm; diameter: 4 cm) were treated with 1 ml IMD or H2O. The IMD was swirled inside the vials for 30 s and allowed to air-dry in a hood to simulate the pesticide residues. At the time of exposure, twenty 2-day old A. gifuensis female adults were introduced into a vial. Twenty-four hours later, the mortality of A. gifuensis was counted and living parasitoids (at least 15) were individually collected to test the effects of IMD on the parasitism, longevity and sex ratio of offspring as described by Kang et al. (2017a) with little modification. Chili pepper plant with 200 second- or third- instar M. persicae were placed into a plastic cage (diameter: 13 cm; height: 30 cm) with screen mesh caps. Then, five females of A. gifuensis from different treatments (control (CK) or IMD), were introduced into each rearing cage for 8 h. After the parasitism, the aphids and Chili pepper complex was maintained in an incubator. Ten days later, the number of mummified aphids and the sex ratio of all wasps emerging from these mummified aphids were recorded. Five biological replicates were conducted in this work.

      To analyze the effect of sublethal doses of IMD on the orientation behavior and gene expression of A. gifuensis, the LC20 of IMD was used and 24 h later, surviving parasitoids were collected and separated into two groups: one group with thirty living parasitoids was flash-frozen in liquid nitrogen and stored at −80°C for the gene expression analysis; the remaining parasitoids were placed into a PCR tube for orientation behavior. Y-tube olfactometers were used to assess the oriented responses of A. gifuensis toward healthy and aphid-infested plants. Y-tube was conducted as described by Kang et al. (2018a,b). In total, 100 living parasitoids were tested for the orientation behavior.

      RNA Sequencing

      Total RNA was extracted from whole bodies of five female A. gifuensis using RNAiso Plus (Takara Bio, Tokyo, Japan), following the manufacturer's instructions. The high quality RNA was used for the further cDNA synthesis and Illumina library generation, which was completed at the Novogene Bioinformatics Technology Co., Ltd. (Beijing, China).

      <italic>De novo</italic> Assembly and Gene Annotation

      Transcriptome de novo assembly was conducted using a short read assembling program—Trinity with min_kmer_cov set to 2 by default and all other parameters set to default (Grabherr et al., 2011). In order to get comprehensive information about the genes, we aligned the unigenes larger than 150 bp to nr, Nt, KEGG, Swiss-Prot, and COG databases, with e-value < 10−5. With nr annotation, we used the Blast2GO program to get GO annotation of unigenes (Conesa et al., 2005). The WEGO software was used next to perform GO functional classification for all unigenes (Ye et al., 2006). The unigene expression levels were calculated by fragments per kb per million reads (FPKM) method, using the formula, FPKM (A) = 103 (106 C)/NL (A: Unigene A; C: number of fragments that uniquely aligned to Unigene A; N: the total number of fragments that uniquely aligned to all Unigenes; L: the base number in the CDS of Unigene A). The FPKM method eliminates the influence of different gene lengths and sequencing levels on the calculation of gene expression; therefore, the calculated gene expression can be directly used for comparing differences in gene expression across samples.

      Expression Analysis

      Heat map analysis was performed by the R package of pheatmap (http://www.r-project.org/; R Foundation for Statistical Computing, Wien, Austria). Heatmap plots present the binary log of fold-change of IMD/CK for each gene with a three-color scale (navy, white and firebrick).

      RT-qPCR was performed to validate the expression of several genes in A. gifuensis. Total RNA was extracted from five whole bodies of 2-day old female A. gifuensis, and cDNA was then synthesized from 1 μg total RNA using a PrimeScript® RT reagent Kit with gDNA Eraser (perfect Real Time) (Takara, Tokyo, Japan) according to the manufacturer's protocol. Specific gene primers were designed by Primer Premier 6 (PREMIER Biosoft International, Palo Alto, CA, USA), which are presented in Table S1. In total, three biological replicates, with three technical replicates were conducted, and the qPCR was performed as previously described (Kang et al., 2017b). However, in this study, we used a 2−ΔCt method to evaluate the expression of selected genes (Eakteiman et al., 2018).

      Enzyme Activity Assay

      The activities of CarE, SOD, CAT, POD, and GST were measured using commercially available assay kits (Nanjing Jiancheng Bioengineering Institute, Jiangsu, China) as described previously (Kang et al., 2017a).

      Data Analyses

      The comparison of performance parameters was subjected to a one-way analysis of variance (ANOVA) followed by the separation of means by the Fisher's protected least significant difference (LSD) test at P = 0.05. The gene expression profiles were determined by a student's t-test at P < 0.05. The orientation behavior of A. gifuensis under the different treatments was separated by the Chi-square test (P < 0.05). A generalized linear mixed-effects model (GLMM) with a binomial family with the cbind function was then performed to analyze the response to the treatment: yes or no. Except for GLMM, SPSS 22.0 (SPSS Inc., Chicago, IL, USA) was used for the data analyses. GLMMs were performed in the R programming environment (version 3.5.1).

      Results Exposure of Sublethal Does of IMD Impaired the Performance of <italic>A. gifuensis</italic>

      The influence of IMD on the mortality, parasitism, longevity and female proportion in offspring of A. gifuensis are shown in Table 1. Exposure to IMD significantly increased the mortality of female and male adults, and decreased the longevities of surviving female and male adults, as well as the parasitism of surviving female adults (Mortality: Female: F = 152.071, P < 0.001; Male: F = 62.448, P < 0.001; Longevity: Female: F = 27.952, P < 0.001; Male: F = 26.069, P < 0.001; Parasitism: F = 19.991, P < 0.001). However, exposure to IMD did not influence the female proportion of offspring produced by surviving female adults, compared to healthy female adults (F = 0.725, P < 0.504). Furthermore, IMD significantly reduced the sensitivity of A. gifuensis to the volatiles from aphid infested plants (Healthy wasps: χ2 = 20.045, P < 0.001; IMD treated wasps: χ2 = 0.636, P = 0.425, Figure 1). The GLMM analysis also revealed that IMD changed the response of A. gifuensis to these volatiles (P = 0.009).

      The side effects of IMD on the parasitism, longevity, and female proportion in offspring of A. gifuensis.

      Treatmenta Survival rate (%) Parasitism (%) Longevity/day Female proportion in offspring (%)
      Female Male Female Male
      CK 100.00 ± 0.00a 99.00 ± 0.78a 70.40 ± 2.50a 12.73 ± 0.51a 11.07 ± 0.57a 59.20a
      2,000 0 0
      4,000 40.00 ± 3.54c 43.00 ± 5.39c 29.20 ± 6.67c 6.60 ± 0.59c 5.20 ± 0.50c 56.60a
      8,000 83.20 ± 2.44b 79.20 ± 3.02b 45.20 ± 3.73b 9.47 ± 0.63b 7.93 ± 0.64b 55.20a

      Treatment: dilution magnification.

      Means followed by different letters within a column indicate significant difference among the treatments (P < 0.05).

      Effects of IMD exposure on the orientation behavior of aphid endoparasitoid, Aphidius gifuensis on aphid infested and control plants. Asterisk over the bars designate a significant difference based on GLMM and Chi-square test: *P < 0.05, **P < 0.01, ***P < 0.001. N = 100.

      An Overview of the Transcriptome

      The transcriptome assembly was performed using the Trinity program, with an optimal K-mer length set to 25. A total of 48,033,980 and 53,409,010 raw reads were obtained from CK and IMD treatment groups, respectively. After removing adaptor sequences, low quality sequences and N-containing sequences, 46,760,944, and 51,668,492 clean reads were generated form the CK and IMD raw data, respectively. The assemblies produced 81,727 transcripts with a maximum sequence length of 19,224 bp and a N50 transcript length of 1,284 bp (Table 2). Furthermore, the GC content of the CK and IMD treatment groups were 31.47 and 30.76%, respectively. The quality of RNA samples and the expression file of genes were supplied as Table S2 and Datasheet 1.

      Assembly summary of the A. gifuensis transcriptome.

      Complete assembly Samples
      CK IMD
      Total raw reads 48,033,980 53,409,010
      Total clean reads 46,760,944 51,668,492
      N50 transcript length 1,284 bp
      N90 transcript length 272 bp
      GC content 31.47% 30.76%
      Functional Gene Annotation and Classification

      GO enrichment indicated that genes involved in the cellular process, metabolic process, single-organism process, biological regulation and the regulation of the biological process in the category of the biological process, cell, cell part, membrane and organelle in the category of cellular component, and binding and catalytic activity in the category of molecular function were dominant (Figure 2). The neuroactive ligand-receptor interaction, cAMP signaling pathway and MAPK signaling pathway were the major enrichment pathways in the IMD treatment group (Figure 3).

      Functional annotation of Aphidius gifuensis transcripts based on gene ontology (GO) categorization.

      Top 20 enriched Kyoto Encyclopedia of Genes and Genomics (KEGG) pathways of Aphidius gifuensis after the exposure of sublethal does of IMD.

      Genes Involved in the Central Nervous and Olfactory Systems Are Differentially Expressed in Response to Sublethal Doses of IMD

      The first gene groups we examined focused on the central nervous and olfactory systems, which are the target of the IMD and influence target insect behavior. For the target of the IMD, we identified 15 acetylcholine receptors: 11 neuronal acetylcholine receptors and four muscarinic acetylcholine receptors (Table 3). Among these target genes, nAChRα4 and nAChRβ1 were significantly down-regulated in response to the IMD. Only nAChRα7 and nAChRα9 exhibited higher transcript abundances in the IMD treated A. gifuensis when compared to CK samples. Furthermore, no significant differences were detected in the rest of the nAChRs genes.

      The identified acetylcholine receptors in A. gifuensis.

      Gene name Unigene reference Log2* Blast P hit E-value Identify (%)
      NEURONAL ACETYLCHOLINE RECEPTOR
      nAChRa1 Cluster-9767.40203 0.11103 XP_015110344.1|PREDICTED: acetylcholine receptor subunit alpha-like 1 [Diachasma alloeum] 6e-90 69
      nAChRa2 Cluster-9767.38760 0.13179 XP_014297158.1|PREDICTED: acetylcholine receptor subunit alpha-like 2 isoform X1 [Microplitis demolitor] 0 88
      nAChRa4 Cluster-9767.22382 −1.3319 XP_008544424.1|PREDICTED: acetylcholine receptor subunit alpha-like isoform X1 [Microplitis mediator] 0 89
      nAChRa5 Cluster-9767.30271 0.3851 XP_008555383.1|PREDICTED: neuronal acetylcholine receptor subunit alpha-5-like [Microplitis demolitor] 7e-175 56
      nAChRa6 Cluster-9767.30497 0.34071 XP_008554100.2|PREDICTED: neuronal acetylcholine receptor subunit alpha-5-like [Microplitis demolitor] 3e-115 41
      nAChRa7 Cluster-2049.3 1.5261 XP_015127141.1|PREDICTED: neuronal acetylcholine receptor subunit alpha-7 [Diachasma alloeum] 0 85
      nAChRa8 Cluster-9767.29889 −0.0077548 XP_011307149.1|PREDICTED: neuronal acetylcholine receptor subunit alpha-7-like [Fopius arisanus] 0 92
      nAChRa9 Cluster-9767.41854 1.6125 XP_023287837.1|neuronal acetylcholine receptor subunit alpha-5 isoform X1 [Orussus abietinus] 9e-90 40
      nAChRa10 Cluster-9767.17337 0.55778 XP_008544424.1|PREDICTED: acetylcholine receptor subunit alpha-like isoform X1 [Microplitis demolitor] 0 92
      nAChRb1 Cluster-9767.40511 −1.0589 EFN70707.1|Acetylcholine receptor subunit beta-like 1 [Camponotus floridanus] 4e-86 88
      nAChRb2 Cluster-916.0 −0.016081 XP_015512110.1|PREDICTED: acetylcholine receptor subunit beta-like 2 [Neodiprion lecontei] 0 90
      MUSCARINIC ACETYLCHOLINE RECEPTOR
      mAChR1 Cluster-9767.13216 0.37407 XP_008547263.1|PREDICTED: muscarinic acetylcholine receptor DM1 [Microplitis demolitor] 1e-76 54
      mAChR2 Cluster-9767.25708 Inf XP_011304151.1|PREDICTED: muscarinic acetylcholine receptor M2 isoform X2 [Fopius arisanus] 0 79
      mAChR3 Cluster-9767.33389 0.011496 XP_014295111.1|PREDICTED: muscarinic acetylcholine receptor M3 [Microplitis demolitor] 8e-23 57
      mAChR4 Cluster-2018.0 Inf XP_011304149.1|PREDICTED: probable muscarinic acetylcholine receptor gar-1 isoform X1 [Fopius arisanus] 1e-40 78

      Log2, Log2IMD/CK. Inf means this gene only expressed in IMD treated A. gifuensis.

      Apart from the potential target genes, we also analyzed the impact of IMD exposure on olfactory systems to explain the impaired orientation behavior we observed in A. gifuensis treated with IMD. We found that a very low proportion of olfactory related genes exhibited significant differences between the treatments and control samples (Figure 4). The decrease in the mean FPKM values for the odorant co-receptor (Cluster-8038.0), odorant receptors (Cluster-1578.0, Cluster-4221.1, and Cluster-3108.1), chemosensory protein (Cluster-8527.0), gustatory receptors (Cluster-7667.0 and Cluster-4878.0), and ionotropic receptors (Cluster-9767.24401 and Cluster-1662.0) was particularly striking. On the contrary, exposure to IMD significantly up-regulated the expression of the odorant-binding protein (Cluster-1704.0), odorant receptor (Cluster-3211.0), gustatory receptor (Cluster-9767.3034), and the ionotropic receptor (Cluster-6117.0), which were effected the most by IMD treatment in their gene group.

      Heatmaps of expressions for genes with neuron and odorant related functions. (A) Genes identified as odorant-binding proteins, chemosesory proteins, gustatory receptors, and ionotropic receptors. (B) Genes identified as odorant receptors. (C) Genes involved in neuron functions.

      Furthermore, exposure to IMD also influenced the expression of genes involved in the central neurons. The dopamine receptor 1 (Cluster-9767.1884), tryptophan 5-hydroxylase (Cluster-1083.0), neuropeptide FF receptor (Cluster-9767.40897) were significantly higher in IMD treatments compared to CK treatments.

      Effects of Sublethal Doses of IMD on Detoxification Progress, Antioxidant System, and Biomolecule Damage Genes in <italic>A. gifuensis</italic>

      We found that defense genes, such as cytochrome P450 (CYP4c1: Cluster-5030.0 and Cluster-9767.42126; CYP6a2: Cluster-9767.4090; CYP9p3: Cluster-9767.18925), cyt b5 (Cluster-6200.1), peroxidase (POD: Cluster-9767.17490), carboxylesterase (CarE, Cluster-9767.29708), glutathione S-transferaes (GSTs, Cluster-9767.30914), and heat shock proteins (HSPs, Cluster-9767.16364, and Cluster-9767.39176), were highly expressed in the IMD treated A. gifuensis (Figure 5), while three P450s (Cluster-9767.38298, Cluster-9767.30384, and Cluster-9767.36002), POD (Cluster-9767.24511), and HSP (Cluster-9767.32708) exhibited lower transcript abundances in the IMD treated A. gifuensis than in the CK group (Figure 5).

      Heatmaps of expressions for genes with detoxification and stress response. (A) Genes involved in cytochrome P450. (B) Genes identified as carboxylesterase. (C) Genes identified as glutathione S-transferees. (D) Genes involved in antioxidant enzymes. (E) Gene identified as heat-shock proteins.

      Sublethal Doses of IMD Altered Expression of Genes Involved in Metabolic Signaling

      To investigate the impact of IMD on energy metabolism, we analyzed the expression of genes involved in fatty acid, sugar, and amino acid metabolism (Figure 6). We found that almost all the genes involved in fatty acid metabolism were expressed at a higher level in the IMD treated A. gifuensis (Figure 6A), while only Cluster-9767.37118 and Cluster-6642.1 were expressed at a lower level of the IMD treatment. Consistent with fatty acid metabolism, the majority of genes that regulate sugar and amino acid metabolism, also exhibited higher mean FPKM values in the IMD treated A. gifuensis, whereas the expression of Cluster-9767.30238, Cluster-9767.39562, Cluster-8931.0, and Cluster-9767.35416 in sugar metabolism and Cluster-2788.0, Cluster-6624.0, Cluster-6867.0, Cluster-9767.27231, Cluster-9767.29443, Cluster-9767.39986, and Cluster-9767.5013 in amino acid metabolism, were down-regulated in response to the IMD treatment (Figures 6B,C).

      Heatmaps of expressions for genes with energy metabolic signaling. (A) Genes with functions in fatty acid metabolism. (B) Genes with functions in sugar metabolism. (C) Genes with functions in amino acid metabolism.

      Validation of Transcriptome Data by qPCR

      To confirm the transcriptome data, we conducted the RT-qPCR of several genes identified in the transcriptome that were IMD-sensitive. Exposure to IMD significantly increased the expression of CYP6a2, CYP9P3, POD, OR28, IR8a1, nAChRa7, nAChRa9, TbH, OAR1, NFR, TYR, and DAR1, whereas the expression of GST2, nAChRa4, nAChRb1, ORco, IR8a2, and GR1 decreased (Figure 7). Furthermore, exposure to IMD did not influence the expression of GST5, SOD1, and SOD2 (Figure S1).

      Validation of expression of selected genes using qPCR. DAR1, dopamine receptor 1; SNF, short neuropeptide F; NFR, neuropeptide FF receptor 2; TYR, putative tyramine receptor 2; TbH, tyramine beta-hydroxylase. Asterisk over the bars designate a significant difference based on student's t-test: *P < 0.05, **P < 0.01, ***P < 0.001, and the error bars is ± SE bars. N = 3.

      Activities of CarEs, POD, and GSTs in <italic>A. gifuensis</italic> After IMD Exposure

      Exposure to IMD significantly induced the activities of POD and CarEs, while it had no significant influence on SOD, CAT and GST activity (POD: t = −11.648, df = 4, P < 0.001; CarE: t = −10.552, df = 4, P = 0.003; SOD: t = 0.843, df = 4, P = 0.4467; CAT: t = 0.6523, df = 4, P = 0.2298; GST: t = 1.886, df = 4, P = 0.1323; Figure 8 and Figure S2).

      Activities of CarE and POD. Asterisk over the bars designate a significant difference based on student's t-test: *P < 0.05, **P < 0.01, ***P < 0.001, and the error bars is ± SE bars. N = 3.

      Discussion

      IPM program improvements requires an understanding of how pesticides influence natural enemies of the pests that are being targeted. Therefore, the effects of sublethal doses of pesticides are important for improving IPM programs. In this work, we found that oral ingestion of sublethal doses of IMD, adversely affected parasitoid performance, including the survival rate, parasitic capacity, and longevity of female adults, which was consistent with the performance of the Aphidius colemani, Microplitis mediator, O. insidiosus, C. flavipes, and Trichogramma species exposed to pesticides (D'Avila et al., 2018; Fontes et al., 2018). In the M. mediator, exposure to flonicamid, pymetrozine, spinosad, and thiacloprid reduced its parasitization activity, percentage of parasitism and female longevity. In addition, IMD impaired the longevity and parasitic capacity of Trichogramma species including Trichogramma achaeae, T. chilonis, T. platneri, and T. pretiosum (Khan and Ruberson, 2017; Fontes et al., 2018). The exposure to pesticides also adversely affected the biocontrol efficiency of pest predators (Moscardini et al., 2013; Nawaz et al., 2017). For example, IMD significantly repressed egg hatching, nymph survival and adult fecundity of the predatory bug, Orius albidipennis (Sabahi et al., 2010; Moscardini et al., 2013). Similarly, sublethal doses of diazinon, fenitrothion, and chlorpyrifos exhibited adverse effects on the biological performance of Andrallus spinidens, which is a predator of rice lepidopterous larvae (Gholamzadeh-Chitgar et al., 2015). Similar to chemical pesticides, other biological agents like entomopathogenic fungi and bacteria also adversely affect the biological performance of parasitoids and predators (Potrich et al., 2017). In addition, a high occurrence of wing deformities was observed when mummies of A. gifuensis were exposed to IMD (44.44%), acetamiprid (67.25%), and thiamethoxam (33.33%) (Sun et al., 2014). All of these results indicated that pesticide exposure adversely influenced the performance of natural enemies, which also means that the effectiveness of natural enemies can be reduced by the application of pesticide.

      In addition to biological performance, we also investigated the side effects of IMD on the orientation behaviors of A. gifuensis after IMD treatment. We found that exposure of IMD significantly reduced the sensitivity of A. gifuensis to the volatiles produced by aphid infested plants. Consistent with this results, consuming IMD or aldicarb contaminated floral nectar, also reduced the response of Microplitis croceipes to the odors from its host Helicoverpa zea infested cotton (Stapel et al., 2000). In Anagrus nilaparvatae, survivors of IMD exposure had no response to volatiles from Nilaparvata lugens-infested rice (Liu et al., 2010). In addition, exposure to pyrethroids impaired the host-searching and oviposition behavior of the aphid parasitoids Aphidius ervi and Aphidius colemani, and Trissolcus basalis, which is an egg parasitic wasp of the southern green stinkbug, Nezara viridula (Ahmad and Hodgson, 1998; Salerno et al., 2002; Desneux et al., 2004a). Furthermore, Wang D. et al. (2017) found that exposure to beta-cypermethrin significantly decreased pheromone perception in male Trichogramma chilonis. All of these results indicate that IMD exposure impairs or reduces the sensitivity of the A. gifuensis olfactory system, thereby disrupting host searching and parasitizing.

      To explore the potential mechanism of the negative effects of IMD on A. gifuensis, transcriptome technology was used to comprehensively analyze the gene expression of A. gifuensis in response to sublethal doses of IMD exposure. Our transcriptomic analysis pointed to a profound regulation of genes principally related to the olfactory and neuronal systems. The most down-regulated genes were the odorant co-receptor (Cluster-8038.0), which is the most important odorant receptor in the detection of odorants; gustatory receptor 1 (Cluster-7667.0), a sugar receptor that is associated with host aphid discrimination; and the neuropeptides capa receptor (Cluster-9767.10302), a G protein-coupled receptor for the capa peptides and an important signaling molecule in the regulation of a wide range of physiological processes (Kang et al., 2017b; Schoofs et al., 2017). These results are generally consistent with recent studies of the interaction of neonicotinoid with OBPs and CSPs. For example, CSP3 and OBP21 were downregulated in honey bees exposed to thiamethoxam (Shi et al., 2017). Furthermore, a sublethal dose of IMD inhibited the binding affinity of OBP2 and CSP1 to a floral volatile β-ionone in Apis cerana and GOBP2 to a tea volatile E-2-hexenal in Agrotis ipsilon (Li et al., 2015, 2017a,b). Interestingly, in addition to these down-regulated genes, a considerable number of genes were up-regulated, such as the odorant-binding protein (Cluster-1704.0), gustatory receptor (Cluster-9767.3034), ionotropic receptor (Cluster-6117.0), and odorant receptor (Cluster-3211.0). Similarly, a single brief exposure to pesticides dramatically increased CSP expression in Bombyx mori (abamectin) and Bemisia tabaci (thiamethoxam) (Xuan et al., 2015; Liu G. et al., 2016). All of these results indicate that the impairment of olfactory systems from sublethal doses of some pesticides could be involved the disordered orientation behavior.

      As a neurotoxin and agonist of nAChRs, IMD had high binding affinity for nAChRs, thereby disrupting neurotransmission (Ffrench-Constant et al., 2016). IMD was thought to impede information receiving and processing in N. vitripennis, which led to the disruption of sexual communication and foraging behavior (Cook et al., 2016; Tappert et al., 2017). Furthermore, in Solenopsis invicta, when treated with 0.25 μg/ml IMD, there was a significant reduction in food consumption, digging and foraging behavior, while the neurotoxins flubendiamide and indoxacarb increased the walking time of Copidosoma truncatellum (Wang L. et al., 2015; Ramos et al., 2018). In the current work, we found that nAChRa4 and nAChRb1 were down-regulated, which was consistent with the expression of nAChRs in Rhopalosiphum padi (Wang K. et al., 2017). Similar to the findings of Desneux et al. (2004b) in A. ervi, we also found that some of the IMD exposed females bended their abdomen forward as they were attacking aphid, while no aphids were present. All of these results revealed that sublethal doses of IMD not only impaired the olfactory system of A. gifuensis, but also disrupted the neurotransmission that influences their behavior. Furthermore, these results also indicate that the development of specific and environmentally safe pesticides, that present little or no harm to natural enemies of pest insects, are needed.

      In addition to the effect IMD had on the olfactory and neuron systems, we also investigated the impact of IMD on the detoxification systems in A. gifuensis. Cytochrome P450 monooxygenases (P450s), carboxyl esterases (CarEs), and glutathione S-transferees (GSTs) are three major multiline enzyme families that are responsible for xenobiotic metabolism in most insect species (Li et al., 2007; Hsu et al., 2012; Chaimanee et al., 2016; Gong and Diao, 2017; Magesh et al., 2017; Traverso et al., 2017).

      P450s are a group of important stress response-related genes that play significant roles in several physiological processes, including hormone metabolism, the adaptation to natural and synthetic toxins, and insecticide detoxification. As we know, overexpression of the gene coding of the P450 clades (CYP4, CYP6, and CYP9), contributes considerably to insecticide-resistance (Li et al., 2007; Bass et al., 2014). For example, in B. tabaci and M. persicae, over-expression of the cytochrome P450 genes CYP6CM1 and CYP6CY3, contribute to neonicotinoid insecticide resistance, as these enzymes can catalyze a more rapid conversion of imidacloprid to its less active form, 5-hydroxy-imidacloprid (Karunker et al., 2008; Puinean et al., 2010). Furthermore, CYP6AY1 and CYP6ER1 were highly overexpressed in the IMD resistant strain of N. lugens compared to the susceptible strain (Yang Y. X. et al., 2017). In A. mellifera, coumaphos and IMD treatment significantly decreased the expression of CYP306A1, CYP4G11, and CYP6AS14, whereas pyrethroid bifenthrin induced the expression of CYP9Q1 and CYP9Q2 but repressed the expression of CYP9Q3 (Mao et al., 2011; Chaimanee et al., 2016). In-vitro, CYP9Q1, CYP9Q2, and CYP9Q3 detoxify coumaphos independently and tau-fluvalinate with the cooperation of CarEs (Mao et al., 2011). Additionaly, CYP9Q1 and CYP9Q3 also contributed to the metabolism of quercetin (Mao et al., 2011). In this work, the most up-regulated genes were CYP4c1 and CYP6a2 (Cluster-9767.42126), which are associated with the IMD resistance in N. lugens; and cyt b5 (Cluster-6200.1), which is the electron transfer partners of P450 proteins and which modify the catalytic activity of P450 proteins (Paine et al., 2005; Ding et al., 2013).

      CarEs are involved in the metabolic detoxification of dietary and environmental xenobiotics in insects (Xie et al., 2017; Wu et al., 2018). A higher expression or activity of CarEs have been reported in the insecticide resistance strains of many insect species such as M. persicae, R. padi, Aphis gossypii, Pediculus humanus capitis, P. xylostella, and Bactrocera dorsalis (Hsu et al., 2012; Gong et al., 2013, 2014; Kwon et al., 2014; Wang L. et al., 2015; Wang L. L. et al., 2015; Xie et al., 2017). In A. mellifera, the induction of CarE activity by IMD, acetamiprid, pymetrozine, and pyridalyl was observed, while malathion and permethrin significantly inhibited CarE activity (Yu et al., 1984; Suh and Shim, 1988; Badawy et al., 2014; Li Z. et al., 2017). Furthermore, in P. xylostella, CarEs activity was positively correlated with resistance to spinosyn, beta-cypermethrin, chlorpyrifos, and abamectin (Gong et al., 2013). Moreover, RNA interference-mediated gene silencing (RNAi) tests revealed that the knock-down of CarE genes led to a decreased tolerance to some pesticides (Wang L. L. et al., 2015). In B. dorsalis, the knock-down of CarE4 and CarE6 significantly decreased the resistance to malathion, and the detoxification of malathion was observed when CarE4 and CarE6 were heterologously expressed (Wang L. L. et al., 2015). Furthermore, in Lygus lineolaris, IMD exposure significantly increased the expression of 13 esterase genes (Zhu and Luttrell, 2015). In this work, we found that the expression and enzyme activity of CarEs in IMD treated A. gifuensis were significantly higher than that in CK treatment, especially carboxylesterase (Cluster-9767.29708).

      GSTs are part of another important detoxification enzyme family. GST activity in larvae, pupae, and nurse bees, but not in foragers, was induced by pyrethroid flumethrin (Nielsen et al., 2000). In the eastern honey bee Apis cerana cerana, the sigma-class AccGSTS1 was up-regulated by phoxim, cyhalothrin and acaricide and the theta-class GST gene GSTT1 and omega-class GST gene GSTO2 was induced by cyhalothrin, phoxim, pyridaben, and paraquat, indicating that they might be involved in the stress response to pesticides (Yan et al., 2013; Zhang et al., 2013; Liu S. et al., 2016). Furthermore, formetanate increased the activity of GST, whereas IMD and dimethoate had no influence on GST activity in A. mellifera (Li Z. et al., 2017; Staron et al., 2017). However, in this work, only one GST (Cluster-9767.30914) was found to be highly expressed in the IMD treated A. gifuensis compared to the CK treatment, while the rest of the GSTs did not show any response to sublethal doses of IMD treatment. Similarly, in Lygus lineolaris, only four of the 19 GSTs were significantly down-regulated after IMD exposure, while the rest of these genes did not show any detectable difference in expression (Zhu and Luttrell, 2015). All of these results indicate that GST might not be responsible for IMD resistance in A. gifuensis.

      In addition to these three major detoxification pathways, other interrelated pathways might also contribute to the response of xenobiotics, such as superoxide dismutase (SOD), catalase, POD, and HSPs (Chaimanee et al., 2016). In honeybee queens, exposure to IMD and coumaphos significantly depressed the expression of SOD and thioredoxin peroxidase (Chaimanee et al., 2016). Conversely, the expression of catalase, SOD and thioredoxin peroxidase was significantly increased in worker bees (Chaimanee et al., 2016). In this work, POD (Cluster-9767.17490) and HSPs (Cluster-9767.16364 and Cluster-9767.39176) were up-regulated in IMD treated A. gifuensis, which is consistent with the HSP expression profiles in beta-cypermethrin treated R. padi (Li Y. T. et al., 2017). Further, exposure to IMD significantly decreased the expression of GSTs. Together, these results indicate that detoxification and stress response systems are critical for protecting A. gifuensis from IMD damage.

      To support or drive detoxification processes, the increased energy production through the up-regulation of enzymes involved in ATP synthesis, sugar metabolism, fatty acid metabolism, glycolysis, and the tricarboxylic acid (TCA) cycle were investigated. Our transcriptome data revealed that IMD treatment altered the expression of genes in energy-producing metabolic pathways such as fatty acid metabolism and sugar metabolism. Consistent with this finding, exposure to neonicotinoid also led to increased energy usage in honey bees (du Rand et al., 2017). Furthermore, exposure to a sublethal dose of beta-cypermethrin, led to an increase in respiratory quotient and respiratory rates in Harmonia axyridis, which is often coupled with the status of energy metabolism (Xiao et al., 2017). All of these results suggest that insects increase their energetic cost when undergoing detoxification after pesticide exposure. The increase in their energetic cost might result in the decrease of longevity and parasitism.

      With the wide use of pesticides in agriculture and horticulture, understanding how pesticides impair, and influence biological efficiency of natural enemy insect species and how natural enemies adjust their detoxification mechanisms to metabolize pesticides is very important. In this work, we found that exposure to sublethal doses of IMD significantly affected the biological performance of A. gifuensis, potentially through changes in the expression of genes involved in the nervous, olfactory, detoxification systems and energy metabolism. Our results indicated that pesticides may block some physiological or biochemical processes that lead to the disruption of the survival, growth, development, reproduction, and behavior of the natural enemies of insect pests. Based on these results, we not only elucidated the sublethal effects of pesticides on the natural enemies, but also contributed to a better understanding of how residual pesticides influence the biological performance of natural enemies and how natural enemies respond to environmental xenobiotics. Our results provide an insight on how to improve experimental approaches, to investigate IPM.

      Author Contributions

      Z-WK and T-XL designed the study. Z-WK, R-PP, and F-HL performed research. Z-WK, F-HL, and H-GT analyzed data. Z-WK wrote the manuscript. H-GT and T-XL edited the manuscript. Z-WK revised the manuscript.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We are grateful for Dr. Shun-Hua Han (University of Georgia) for GLMM analysis and the assistance of all staff and students in the Key Laboratory of Applied Entomology, Northwest A&F University at Yangling, Shaanxi, China.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fphys.2018.01729/full#supplementary-material

      qPCR results of SNF, GST5, SOD1 and SOD2. ns over the bars mean no significant difference, and the error bars is ± SE bars. N = 3.

      Activities of SOD, CAT, and GST. ns over the bars mean no significant difference, and the error bars is ± SE bars. N = 3.

      Primers used for target genes and reference genes in qPCR.

      RNA quality of transcriptomic samples.

      Gene expression differences between IMD and CK.

      References Ahmad M. Hodgson C. (1998). The searching efficiency of Aphidius colemani Viereck after visiting insecticide treated plants at different time intervals. Entomon. 23, 185190. Ali A. Desneux N. Lu Y. H. Liu B. Wu K. M. (2016). Characterization of the natural enemy community attacking cotton aphid in the Bt cotton ecosystem in Northern China. Sci. Rep. 6:24273. 10.1038/srep2427327075171 Alias A. Schilthuizen M. Sulaiman H. (2005). Biodiversity of egg parasitoids of the cocoa pod borer, Conopomorpha cramerella (Snellen) in cocoa smallholders' fields in Sabah, Malaysia, in Proceedings of 4th Malaysian International Cocoa Conference, eds Denamany G. K. Ling L. Maisin A. N. Che A. Nuraziawati S. B. Yazik M. (Kuala Lumpur: Malaysian Cocoa Board), 486489. Badawy M. E. I. Nasr H. M. Rabea E. I. (2014). Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46, 177193. 10.1007/s13592-014-0315-0 Bass C. Puinean A. M. Zimmer C. T. Denholm I. Field L. M. Foster S. P. . (2014). The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51, 4151. 10.1016/j.ibmb.2014.05.00324855024 Bayen S. Giusti P. Lee H. K. Barlow P. J. Obard J. P. (2005). Bioaccumulation of DDT pesticide in cultured Asian seabass following dietary exposure. J. Toxicol. Environ. Health A 68, 5165. 10.1080/1528739059052403715739804 Chaimanee V. Evans J. D. Chen Y. Jackson C. Pettis J. S. (2016). Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J. Insect Physiol. 89, 18. 10.1016/j.jinsphys.2016.03.00426979384 Chollet J. F. Couderchet M. Bonnemain J. L. (2014). Crop protection: new strategies for sustainable development. Environ. Sci. Pollut. Res. 21, 47934796. 10.1007/s11356-014-2567-724488554 Conesa A. Götz S. García-Gómez J. M. Terol J. Talón M. Robles M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 36743676. 10.1093/bioinformatics/bti61016081474 Cook N. Green J. Shuker D. M. Whitehorn P. R. (2016). Exposure to the neonicotinoid imidacloprid disrupts sex allocation cue use during superparasitism in the parasitoid wasp Nasonia vitripennis. Ecol. Entomol. 41, 693697. 10.1111/een.12344 D'Avila V. A. Barbosa W. F. Guedes R. N. C. Cutler G. C. (2018). Effects of spinosad, imidacloprid, and lambda-cyhalothrin on survival, parasitism, and reproduction of the aphid parasitoid Aphidius colemani. J. Econ. Entomol. 111, 10961103. 10.1093/jee/toy05529528456 De A. Bose R. Kumar A. Mozumdar S. (2014). Targeted Delivery of Pesticides Using Biodegradable Polymeric Nanoparticles. New Delhi: Springer, 5981. 10.1007/978-81-322-1689-6 Dedryver C. A. Le Ralec A. Fabre F. (2010). The conflicting relationships between aphids and men: a review of aphid damage and control strategies. CR Biol. 333, 539553. 10.1016/j.crvi.2010.03.00920541165 Desneux N. Decourtye A. Delpuech J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81106. 10.1146/annurev.ento.52.110405.09144016842032 Desneux N. Pham-Delegue M. H. Kaiser L. (2004a). Effects of sub-lethal and lethal doses of lambda-cyhalothrin on oviposition experience and host-searching behaviour of a parasitic wasp, Aphidius ervi. Pest Manag. Sci. 60, 381389. 10.1002/ps.82215119601 Desneux N. Rafalimanana H. Kaiser L. (2004b). Dose-response relationship in lethal and behavioural effects of different insecticides on the parasitic wasp Aphidius ervi. Chemosphere 54, 619627. 10.1016/j.chemosphere.2003.09.00714599507 Dicks L. (2013). Bees, lies and evidence-based policy. Nature 494:283. 10.1038/494283a23426287 Ding Z. P. Wen Y. C. Yang B. J. Zhang Y. X. Liu S. H. Liu Z. W. . (2013). Biochemical mechanisms of imidacloprid resistance in Nilaparvata lugens: over-expression of cytochrome P450 CYP6AY1. Insect Biochem. Mol. Biol. 43, 10211027. 10.1016/j.ibmb.2013.08.00523994173 du Rand E. E. Human H. Smit S. Beukes M. Apostolides Z. Nicolson S. W. . (2017). Proteomic and metabolomic analysis reveals rapid and extensive nicotine detoxification ability in honey bee larvae. Insect Biochem. Mol. Biol. 82, 4151. 10.1016/j.ibmb.2017.01.01128161469 Eakteiman G. Moses-Koch R. Moshitzky P. Mestre-Rincon N. Vassão D. G. Luck K. . (2018). Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests. Insect Biochem. Mol. Biol. 100, 1021. 10.1016/j.ibmb.2018.05.00829859812 Ffrench-Constant R. H. Williamson M. S. Davies T. G. Bass C. (2016). Ion channels as insecticide targets. J. Neurogenet. 30, 163177. 10.1080/01677063.2016.122978127802784 Fontes J. Roja I. S. Tavares J. Oliveira L. (2018). Lethal and sublethal effects of various pesticides on Trichogramma achaeae (Hymenoptera: Trichogrammatidae). J. Econ. Entomol. 111, 12191226. 10.1093/jee/toy06429579240 Funderburk J. Srivastava M. Funderburk C. McManus S. (2013). Evaluation of imidacloprid and cyantraniliprole for suitability in conservation biological control program for Orius insidiosus (Hemiptera: Anthocoridae) in field pepper. Fla. Entomol. 96, 229231. 10.1653/024.096.0131 Gholamzadeh-Chitgar M. Hajizadeh J. Ghadamyari M. Karimi-Malati A. Hoda H. (2015). Effects of sublethal concentration of diazinon, fenitrothion and chlorpyrifos on demographic and some biochemical parameters of predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae) in laboratory conditions. Int. J. Pest Manage. 61, 204211. 10.1080/09670874.2015.1035772 Godfrey L. Leigh T. (1994). Alfalfa harvest strategy effect on Lygus bug (Hemiptera: Miridae) and insect predator population density: implications for use as trap crop in cotton. Environ. Entomol. 23, 11061118. 10.1093/ee/23.5.1106 Gong Y. Diao Q. (2017). Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology 26, 112. 10.1007/s10646-016-1742-727819118 Gong Y. H. Yu X. R. Shang Q. L. Shi X. Y. Gao X. W. (2014). Oral delivery mediated RNA interference of a carboxylesterase gene results in reduced resistance to organophosphorus insecticides in the cotton Aphid, Aphis gossypii Glover. PLoS ONE 9:e102823. 10.1371/journal.pone.010282325140535 Gong Y. J. Wang Z. H. Shi B. C. Kang Z. J. Zhu L. Jin G. H. . (2013). Correlation between pesticide resistance and enzyme activity in the diamondback moth, Plutella xylostella. J. Insect Sci. 13:135. 10.1673/031.013.1350124766444 Grabherr M. G. Haas B. J. Yassour M. Levin J. Z. Thompson D. A. Amit I. . (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644652. 10.1038/nbt.188321572440 Harnpicharnchai K. Chaiear N. Charerntanyarak L. (2013). Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam chlo, Khon Kaen, Thailand. Southeast Asian. J. Trop. Med. Public Health 44, 10881097. Hsu J. C. Chien T. Y. Hu C. C. Chen M. J. Wu W. J. Feng H. T. . (2012). Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome. PLoS ONE 7:e40950. 10.1371/journal.pone.004095022879883 Ishikura S. (1950). Subsequent fluorescent light trap. J. Agric. Sci. 5, 1519. Kang Z. W. Liu F. H. Liu X. Yu W. B. Tan X. L. Zhang S. Z. . (2017a). The potential coordination of the heat-shock proteins and antioxidant enzyme genes of Aphidius gifuensis in response to thermal stress. Front. Physiol. 8:976. 10.3389/fphys.2017.0097629234290 Kang Z. W. Liu F. H. Tan X. L. Zhang Z. F. Zhu J. Y. Tian H. G. . (2018a). Infection of powdery mildew reduces the fitness of grain aphids (Sitobion avenae) through restricted nutrition and induced defense response in wheat. Front. Plant Sci. 9:778. 10.3389/fpls.2018.0077829967627 Kang Z. W. Liu F. H. Zhang Z. F. Tian H. G. Liu T. X. (2018b). Volatile β-ocimene can regulate developmental performance of peach aphid Myzus persicae through activation of defense responses in Chinese cabbage Brassica pekinensis. Front. Plant Sci. 9:708. 10.3389/fpls.2018.0070829892310 Kang Z. W. Tian H. G. Liu F. H. Liu X. Jing X. F. Liu T. X. (2017b). Identification and expression analysis of chemosensory receptor genes in an aphid endoparasitoid Aphidius gifuensis. Sci. Rep. 7:3939. 10.1038/s41598-017-03988-z28638084 Kapoor U. Srivastava M. K. Srivastava L. P. (2011). Toxicological impact of technical imidacloprid on ovarian morphology, hormones and antioxidant enzymes in female rats. Food Chem. Toxicol. 49, 30863089. 10.1016/j.fct.2011.09.00921946071 Karunker I. Benting J. Lueke B. Ponge T. Nauen R. Roditakis E. . (2008). Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem. Mol. Biol. 38, 634644. 10.1016/j.ibmb.2008.03.00818510975 Khan M. A. Ruberson J. R. (2017). Lethal effects of selected novel pesticides on immature stages of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Pest Manag. Sci. 73, 24652472. 10.1002/ps.463928600808 Kobori Y. Amano H. (2004). Effects of agrochemicals on life-history parameters of Aphidius gifuensis Ashmead (Hymenoptera: Braconidae). Appl. Entomol. Zool. 39, 255261. 10.1303/aez.2004.255 Kwon D. H. Kim J. H. Kim Y. H. Yoon K. S. Clark J. M. Lee S. H. (2014). Identification and characterization of an esterase involved in malathion resistance in the head louse Pediculus humanus capitis. Pestic. Biochem. Physiol. 112, 1318. 10.1016/j.pestbp.2014.05.00624974112 Laycock I. Lenthall K. M. Barratt A. T. Cresswell J. E. (2012). Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumble bees (Bombus terrestris). Ecotoxicology 21, 19371945. 10.1007/s10646-012-0927-y22614036 Li H. Tan J. Song X. Wu F. Tang M. Hua Q. . (2017a). Sublethal doses of neonicotinoid imidacloprid can interact with honey bee chemosensory protein 1 (CSP1) and inhibit its function. Biochem. Biophys. Res. Commun. 486, 391397. 10.1016/j.bbrc.2017.03.05128315331 Li H. Wu F. Zhao L. Tan J. Jiang H. Hu F. (2015). Neonicotinoid insecticide interact with honeybee odorant-binding protein: implication for olfactory dysfunction. Int. J. Biol. Macromol. 81, 624630. 10.1016/j.ijbiomac.2015.08.05526318218 Li H. Zhao L. Fu X. Song X. Wu F. Tang M. . (2017b). Physicochemical evidence on sublethal neonicotinoid imidacloprid interacting with an odorant-binding protein from the tea geometrid moth, Ectropis obliqua. J. Agric. Food Chem. 65, 32763284. 10.1021/acs.jafc.7b0059728366004 Li X. Schuler M. A. Berenbaum M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231253. 10.1146/annurev.ento.51.110104.15110416925478 Li Y. F. An J. J. Dang Z. H. Pan W. L. Gao Z. L. (2018). Systemic control efficacy of neonicotinoids seeds dressing on English grain aphid (Hemiptera: Aphididae). J. Asia-Pac. Entomol. 21, 430435. 10.1016/j.aspen.2018.01.003 Li Y. T. Zhao Q. Duan X. L. Song C. Chen M. H. (2017). Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure. Comp. Biochem. Physiol. A 205, 4857. 10.1016/j.cbpa.2016.12.02128025068 Li Z. Li M. He J. Zhao X. Chaimanee V. Huang W. F. . (2017). Differential physiological effects of neonicotinoid insecticides on honey bees: a comparison between Apis mellifera and Apis cerana. Pestic. Biochem. Physiol. 140, 18. 10.1016/j.pestbp.2017.06.01028755688 Lim G. T. Chong T. C. (1987). Biological control of cocoa pod borer by periodic release of Trichogrammatoidea bactrae fumata Nagaraja in Sabah, Malaysia, in Management of the Cocoa Pod Borer, eds Ooi P. A. C. Chan L. G. Chong K. K. Hai T. C. Mamat M. J. Tuck H. C. Soon L. G. (Kuala Lumpur: The Malaysian Plant Protection Society), 7180. Liu F. Bao S. W. Song Y. Lu H. Y. Xu J. X. (2010). Effects of imidacloprid on the orientation behavior and parasitizing capacity of Anagrus nilaparvatae, an egg parasitoid of Nilaparvata lugens. BioControl 55, 473483. 10.1007/s10526-010-9276-z Liu G. Ma H. Xie H. Xuan N. Guo X. Fan Z. . (2016). Biotype characterization, developmental profiling, insecticide response and binding property of Bemisia tabaci chemosensory proteins: role of CSP in insect defense. PLoS ONE 11:e0154706. 10.1371/journal.pone.015470627167733 Liu S. Liu F. Jia H. Yan Y. Wang H. Guo X. . (2016). A glutathione S-transferase gene associated with antioxidant properties isolated from Apis cerana cerana. Naturwissenschaften 103:43. 10.1007/s00114-016-1362-327126403 Lu Y. H. Wu K. M. Wyckhuys K. A. G. Guo Y. Y. (2009). Potential of mungbean, Vigna radiatus as a trap crop for managing Apolygus lucorum (Hemiptera: Miridae) on Bt cotton. Crop Prot. 28, 7781. 10.1016/j.cropro.2008.08.018 Magesh V. Zhu Z. Tang T. Chen S. Li L. Wang L. . (2017). Toxicity of Neonicotinoids to honey bees and detoxification mechanism in honey bees. IOSR J. Environ. Sci. Toxicol. Food Technol. 11, 102110. 10.9790/2402-110401102110 Mao W. Schuler M. A. Berenbaum M. R. (2011). CYP9Q-mediated detoxification of acaricides in the honey bee (Apis mellifera). Proc. Natl. Acad. Sci. U.S.A. 108, 1265712662. 10.1073/pnas.110953510821775671 Mizell R. F. Sconyers M. C. (1992). Toxicity of imidacloprid to selected arthropod predators in the laboratory. Fla. Entomol. 75, 277280. 10.2307/3495632 Moscardini V. F. Gontijo Pda C. Carvalho G. A. Oliveira R. L. Maia J. B. Silva F. F. (2013). Toxicity and sublethal effects of seven insecticides to eggs of the flower bug Orius insidiosus (Say) (Hemiptera: Anthocoridae). Chemosphere 92, 490496. 10.1016/j.chemosphere.2013.01.11123481303 Murray D. A. Clarke M. B. Ronning D. A. (2013). Estimating invertebrate pest losses in six major Australian grain crops. Aust. J. Entomol. 52, 227241. 10.1111/aen.12017 Nawaz M. Cai W. Jing Z. Zhou X. Mabubu J. I. Hua H. (2017). Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Chemosphere 178, 496503. 10.1016/j.chemosphere.2017.03.08228347913 Nielsen S. A. Brodsgaard C. J. Hansen H. (2000). Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). Altern. Lab. Anim. 28, 437443. 25419923 Ohta I. Takeda M. (2015). Acute toxicities of 42 pesticides used for green peppers to an aphid parasitoid, Aphidius gifuensis (Hymenoptera: Braconidae), in adult and mummy stages. Appl. Entomol. Zool. 50, 207212. 10.1007/s13355-015-0323-1 Paine M. J. Scrutton N. S. Munro A. W. Gutierrez A. Roberts G. C. Wolf C. R. (2005). Electron transfer partners of cytochrome P450, in Cytochrome P450: Structure, Mechanism, and Biochemistry, ed Ortiz De Montellano P. (New York, NY: Kluwer Academic/Plenum Publishers), 115138. Potrich M. Alves L. F. A. Lozano E. R. Bonini A. K. Neves P. M. O. J. (2017). Potential side effects of the entomopathogenic Fungus Metarhizium anisopliae on the egg parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) under controlled conditions. J. Econ. Entomol. 110, 23182324. 10.1093/jee/tox25729029118 Puinean A. M. Foster S. P. Oliphant L. Denholm I. Field L. M. Millar N. S. . (2010). Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet. 6:e1000999. 10.1371/journal.pgen.100099920585623 Ramos R. S. de Araujo V. C. R. Pereira R. R. Martins J. C. Queiroz O. S. Silva R. S. . (2018). Investigation of the lethal and behavioral effects of commercial insecticides on the parasitoid wasp Copidosoma truncatellum. Chemosphere 191, 770778. 10.1016/j.chemosphere.2017.10.11329080538 Rogers M. A. Krischik V. A. Martin L. A. (2007). Effect of soil application of imidacloprid on survival of adult green lacewing, Chrysoperla carnea (Neuroptera: Chrysopidae), used for biological control in greenhouse. Biol. Control 42, 172177. 10.1016/j.biocontrol.2007.05.006 Sabahi Q. Talebi K. Kavousi A. Sheikhi Garjan A. (2010). Effects of imidacloprid, dichlorvos, pymetrozine and abamectin, on life table parameters of the predatory bug, Orius albidipennis (Hemiptera: Anthocoridae). J. Entomol. Soc. Iran. 30, 111. Saeed R. Abbas N. Razaq M. Mahmood Z. Naveed M. Rehman H. M. U. (2018). Field evolved resistance to pyrethroids, neonicotinoids and biopesticides in Dysdercus koenigii (Hemiptera: Pyrrhocoridae) from Punjab, Pakistan. Chemosphere 213, 149155. 10.1016/j.chemosphere.2018.09.04230216815 Salerno G. Colazza S. Conti E. (2002). Sub-lethal effects of deltamethrin on walking behaviour and response to host kairomone of the egg parasitoid Trissolcus basalis. Pest Manag. Sci. 58, 663668. 10.1002/ps.49212146166 Schoofs L. De Loof A. Van Hiel M. B. (2017). Neuropeptides as regulators of behavior in insects. Annu. Rev. Entomol. 62, 3552. 10.1146/annurev-ento-031616-03550027813667 Sclar D. C Gerace D. Cranshaw W. S. (1998). Observations of population increases and injury by spider mites (Acari: Tetranychidae) on ornamental plants treated with imidacloprid. J. Econ. Entomol. 91, 250255. 10.1093/jee/91.1.250 Shah P. A. Pell J. K. (2003). Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413423. 10.1007/s00253-003-1240-812764556 Shelton A. M. Badenes-Perez F. R. (2006). Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51, 285308. 10.1146/annurev.ento.51.110104.15095916332213 Shi T. F. Wang Y. F. Liu F. Qi L. Yu L. S. (2017). Sublethal effects of the neonicotinoid insecticide thiamethoxam on the transcriptome of the honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 110, 22832289. 10.1093/jee/tox26229040619 Silva A. X. Jander G. Samaniego H. Ramsey J. S. Figueroa C. C. (2012). Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: a transcriptomic survey. PLoS ONE 7:e36366. 10.1371/journal.pone.003636622685538 Stapel J. O. Cortesero A. M. Lewis W. J. (2000). Disruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol. Control 17, 243249. 10.1006/bcon.1999.0795 Staron M. Sabo R. Sobekova A. Sabova L. Legath J. Lohajova L. . (2017). Formetanate toxicity and changes in antioxidant enzyme system of Apis mellifera larvae. Environ. Sci. Pollut. Res. Int. 24, 1406014070. 10.1007/s11356-017-8966-928409431 Studebaker G. E. Kring T. J. (2003). Effects of insecticides on Orius insidiosus (Hemiptera: Anthocoridae), measured by field, greenhouse and petri dish bioassays. Fla. Entomol. 86, 178185. 10.1653/0015-4040(2003)086[0178:EOIOOI]2.0.CO;2 Suh Y.T. Shim J. H. (1988). Enzyme activities of a honeybee Apis-mellifera l. associated with the degradation of some insecticides. Agric. Chem. Biotechnol. 31, 241248. Sun Z. J. Chen D. Jia F. Z. Zhang C. H. Tang S. H. Ren G. W. . (2014). Effect of six conventional insecticides on Aphidius gifuensis Ashmead in tobacco fields. Plant Prot. 40, 185189. 10.3969/j.issn.0529-1542.2014.04.038 Tabashnik B. E. Van Rensburg J. B. J. Carrière Y. (2009). Field-evolved insect resistance to Bt crops: definition, theory, and data. J. Econ. Entomol. 102, 20112025. 10.1603/029.102.060120069826 Tappert L. Pokorny T. Hofferberth J. Ruther J. (2017). Sublethal doses of imidacloprid disrupt sexual communication and host finding in a parasitoid wasp. Sci. Rep. 7:42756. 10.1038/srep4275628198464 Traverso L. Lavore A. Sierra I. Palacio V. Martinez-Barnetche J. Latorre-Estivalis J. M. . (2017). Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families. PLoS Negl. Trop. Dis. 11:e0005313. 10.1371/journal.pntd.000531328199333 Valenzuela I. Hoffmann A. A. (2015). Effects of aphid feeding and associated virus injury on grain crops in A ustralia. Aust. Entomol. 54, 292305. 10.1111/aen.12122 Van Emden H. F. Harrington R. (2017). Aphids as Crop Pests. Wallingford: CAB International. 10.1079/9781780647098.0000 Walker J. T. Suckling D. M. Wearing C. H. (2017). Past, present, and future of integrated control of apple pests: the New Zealand experience. Annu. Rev. Entomol. 62, 231248. 10.1146/annurev-ento-031616-03562628141966 Wang D. L. He Y. (2017). Effects of insecticides on sex pheromone communication and mating behavior in Trichogramma chilonis. J. Pest Sci. 91, 6578. 10.1007/s10340-017-0864-x Wang K. Zhang M. Huang Y. Yang Z. Su S. Chen M. H. (2017). Characterisation of imidacloprid resistance in the bird cherry-oat aphid, Rhopalosiphum padi, a serious pest on wheat crops. Pest Manag. Sci. 74, 14571465. 10.1002/ps.483429266699 Wang L. Zeng L. Chen J. (2015). Sublethal effect of imidacloprid on Solenopsis invicta (Hymenoptera: Formicidae) feeding, digging, and foraging behavior. Environ. Entomol. 44, 15441552. 10.1093/ee/nvv12726314029 Wang L. L. Huang Y. Lu X. P. Jiang X. Z. Smagghe G. Feng Z. J. . (2015). Overexpression of two alpha-esterase genes mediates metabolic resistance to malathion in the oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Mol. Biol. 24, 467479. 10.1111/imb.1217325940547 Whitehorn P. R. O'connor S. Wackers F. L. Goulson D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351352. 10.1126/science.121502522461500 Wu X. M. Xu B. Y. Si F. L. Li J. Yan Z. T. Yan Z. W. . (2018). Identification of carboxylesterase genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera: Culicidae). Pest Manag. Sci. 74, 159169. 10.1002/ps.467228731595 Xiao D. Tan X. Wang W. Zhang F. Desneux N. Wang S. (2017). Modification of flight and locomotion performances, respiratory metabolism, and transcriptome expression in the lady beetle Harmonia axyridis through sublethal pesticide exposure. Front. Physiol. 8:33. 10.3389/fphys.2017.0003328239355 Xie M. Ren N. N. You Y. C. Chen W. J. Song Q. S. You M. S. (2017). Molecular characterisation of two alpha-esterase genes involving chlorpyrifos detoxification in the diamondback moth, Plutella xylostella. Pest Manag. Sci. 73, 12041212. 10.1002/ps.444527717121 Xuan N. Guo X. Xie H. Y. Lou Q. N. Lu X. B. Liu G. X. . (2015). Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. Insect Sci. 22, 203219. 10.1111/1744-7917.1211624677614 Yan H. Jia H. Gao H. Guo X. Xu B. (2013). Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana. Cell Stress Chaperon. 18, 415426. 10.1007/s12192-012-0394-723250585 Yang F. Wu Y. K. Xu L. Wang Q. Yao Z. W. Zikic V. . (2017). Species composition and richness of aphid parasitoid wasps in cotton fields in northern China. Sci. Rep. 7:9799. 10.1038/s41598-017-10345-728852186 Yang S. Wei J. N. Yang S. Y. Kuang R. P. (2011). Current status and future trends of augmentative release of Aphidius gifuensis for control of Myzus persicae in China's Yunnan province. J. Entomol. Res. Soc. 13, 8799. Yang S. Yang S. Y. Zhang C. P. Wei J. N. Kuang R. P. (2009). Population dynamics of Myzus persicae on tobacco in Yunnan Province, China, before and after augmentative releases of Aphidius gifuensis. Biocontrol Sci. Techn. 19, 219228. 10.1080/09583150802696525 Yang Y. X. Yu N. Zhang J. H. Zhang Y. X. Liu Z. W. (2017). Induction of P450 genes in Nilaparvata lugens and Sogatella furcifera by two neonicotinoid insecticides. Insect Sci. 25, 401408. 10.1111/1744-7917.1244028092127 Ye J. Fang L. Zheng H. Zhang Y. Chen J. L. Zhang Z. J. . (2006). WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 34, W293W297. 10.1093/nar/gkl03116845012 Yu S. J. Robinson F. A. Nation J. L. (1984). Detoxication capacity in the honey bee, Apis mellifera L. pestic. Biochem. Physiol. 22, 360368. 10.1016/0048-3575(84)90029-4 Zhang C. Hu R. F. Shi G. M. Jin Y. H. Robson M. G. Huang X. S. (2015). Overuse or underuse? An observation of pesticide use in China. Sci. Total Environ. 538, 16. 10.1016/j.scitotenv.2015.08.03126296070 Zhang S. Z. Zhang X. L. Shen J. Mao K. K. You H. Li J. H. (2016). Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pestic. Biochem. Physiol. 132, 3846. 10.1016/j.pestbp.2016.01.00727521911 Zhang Y. Yan H. Lu W. Li Y. Guo X. Xu B. (2013). A novel Omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterisation of GSTO2 and its protective effects in oxidative stress. Cell Stress Chaperon. 18, 503516. 10.1007/s12192-013-0406-223382010 Zhu Z. J. Luttrell R. (2015). Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris. Pest Manag. Sci. 71, 4057. 10.1002/ps.376124515672

      Funding. This work was supported by the National Key Basic Research Program of China (973 Program) (No. 2013CB127600), China Agriculture Research System (CARS-23-D06), and the China Scholarship Council (award to Z-WK for two year's study abroad at the University of Georgia: 201706300121).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jynknp.com.cn
      www.jo15.com.cn
      jiediji.com.cn
      sqxfgg.com.cn
      pxchain.com.cn
      www.txtx.org.cn
      www.mskvt.com.cn
      www.wcnzne.com.cn
      wolfeye.com.cn
      www.jnswmb.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p