Edited by:
Reviewed by:
*Correspondence:
This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer’s disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD). The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg) counterparts with normal aging. Animals were treated (water or caffeine in drinking water) from adulthood (6 months of age) until middle-aged (13 months of age), that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml) was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical indicator of their impaired peripheral immune system, and trended to increase their corticosterone levels. Our observations of adverse caffeine effects in an Alzheimer’s disease model together with previous clinical observations suggest that an exacerbation of BPSD-like symptoms may partly interfere with the beneficial cognitive effects of caffeine. These results are relevant when coffee-derived new potential treatments for dementia are to be devised and tested.
香京julia种子在线播放
Caffeine, a non-selective A1 and A2A receptor antagonist, is one of the most consumed drugs all over the world. The average consumption of caffeine in humans is around 300–400 mg/day (three to four cups of coffee) and its effects in several physiological functions, such as locomotion, sleep, and cardiovascular function, depend on the dose and duration of the consumption (
In the last decade, a neuroprotective role of caffeine and other compounds of coffee such as theophylline has been postulated and it is of a growing interest (
The role of caffeine as a possible protective agent is supported by the pharmacological action of caffeine blocking adenosine A2A receptors, which show an aberrant expression and function in aging and related diseases (
The main clinical manifestation of dementia is a decline in cognitive function. However, neuropsychiatric symptoms (NPS) are quite prevalent among the patients since early stages of Alzheimer’s disease (
In our focus of interest, the 3xTg-AD mice and their non-transgenic (NTg) counterparts with normal aging may be useful to investigate whether the aging process or the presence of an anxiety-like BPSD profile may modify the output of the potential therapeutic benefits of caffeine. The effects of caffeine on sensorimotor performance (open field, balance beam, string agility) and anxiety level [elevated plus-maze (EPM)] have been addressed by
Homozygous triple-transgenic 3xTg-AD mice harboring PS1/M146V, APPSwe, and tauP301L transgenes were genetically engineered at the University of California, Irvine, as previously described (
Thirty-eight 6-month-old 3xTg-AD mice and C57BL/6 x 129 mice from 15 l of a breeding program that was established in our laboratory at the Medical Psychology Unit, Universitat Autònoma de Barcelona, were used in this study. All the animals were housed three to four per cage and maintained (Makrolon, 35 × 35 × 25 cm) under standard laboratory conditions (12 h light:dark, cycle starting at 8:00 h, food and water available
This study was carried out in accordance with the recommendations of Animals in Research: Reporting In Vivo Experiments (ARRIVE) guidelines developed by the NC3Rs (
Mice were allowed to consume
It has been previously confirmed that this treatment regimen leads to a 1.5 mg daily dose in a mouse and it is equivalent to an approximately 500 mg daily caffeine intake (approximately five cups of coffee) by a human (
The effects of the chronic caffeine treatment on physical and behavioral profile of 3xTg-AD mice and their NTg counterparts were assessed at 13 months of age, considered advanced stages of disease in this animal model. The battery of behavioral tests consisted in the evaluation of sensorimotor functions and a series of classical unconditioned tasks measuring locomotion and exploratory activity, anxiety-like behaviors, and cognitive functions.
Neophobia was evaluated in the corner test (CT) for 30 s. Animals were individually placed in the center of a clean standard home cage, filled with wood shave bedding. Number of corners visited, latency to realize the first rearing, and the number of rearings were recorded.
Immediately after the CT, mice were placed in the center of an open field (homemade woodwork, white box, 50 × 50 × 20 cm) and observed for 5 min. The temporal profile of the following sequence of behavioral events was recorded: duration of freezing behavior, latency to leave the central square and that of entering the peripheral ring, as well as latency and total duration of self-grooming behavior. Horizontal (crossings of 10 × 10 cm squares) and vertical (rearings with a wall support) locomotor activities were also measured. Bizarre behaviors observed in this test were also measured according to the previous reported criterion (
Mice were placed in the center of the apparatus (woodwork white box of 32 × 32 × 32 cm) with four holes (3 cm diameter) equally spaced in the floor of the HB. In the exploratory behavior, non-goal-directed (rearings) and goal-directed (head-dips) exploratory activities were measured for 5 min. Moreover, the time spent head-dipping, the latencies of first movement, first dipping, and to explore the four different holes (this last one was established as criterion of the four holes exploration) were also measured. Repetition of already visited holes before reaching the criterion was considered as errors and the total number was measured. Defecation boli were also recorded.
The dark–light box (DLB) test (Panlab, S.L., Barcelona, Spain) consists of a two-compartment box (black and dark, 27 × 18 × 27 cm; white and illuminated 20 W, 27 × 27 × 27 cm) connected by an opening (7 × 7 cm). The mice were placed into the dark compartment and observed for 5 min. Latency to enter into the lit compartment (all four paws criterion), number of entries, total time spent, and distance covered as well as number of rearings and groomings in this compartment were noted. Risk assessment was measured by means of the latency and number of stretch attendances toward the lit area. Defecation boli and urination in each of both compartments were measured.
The plus-maze (woodwork, black Plexiglass) consisted of two enclosed arms (EAs, 30.3 × 5.3 × 15 cm, transparent walls) and two open arms (OAs, 30.3 × 5 cm) forming a square cross with a 5.3 × 5 cm square center piece. The apparatus was elevated 40 cm above the floor. The animal was placed in the center of the plus-maze facing one of the OAs. The number of entries (all four paws criterion) into OA and EA, the time spent in each arm, and defecation boli were recorded for 5 min. The anxiety index TOA/(TOA+TEA) was calculated as time in the OA/(time in the OA + time in the EA).
The apparatus consists in a T-shaped maze (two short arms of 25 × 8 cm and a long arm of 30 × 8 cm). The working memory paradigm assessed in the T-maze (TM) consisted in two consecutive trials: one forced choice in the first trial and one free choice (recall trial) in the second trial, with a 90-s intertrial interval. In the forced choice, only one of the arms according to a random order and contrabalanced in each group was accessible. The animal was placed inside the “vertical” arm of the maze with its head facing the end wall and it was allowed to explore the maze. After spending 20 s in the accessible arm, the animal was put back into the home cage starting box. This 20 s period was established as the learning criterion. In the recall trial, the animal was allowed to explore the maze in a free choice trial where both arms were accessible. The arm chosen by the mice and the time spent in each arm during the free choice was recorded. The choice of the already visited arm in the previous trial before exploring the arm that was inaccessible was considered as an error and the total number was calculated. Also the time spent to explore the three arms of the maze was recorded. Finally, defecation boli and urination were also recorded.
The procedure for marble test (MB) was adopted with minor modifications from that originally described by
The physical condition of the mice was evaluated by their BW and sensorimotor functions. Visual reflex and posterior legs extension reflex were measured three times by holding the animal by its tail and slowly lowering it toward a black surface. Motor coordination and equilibrium were assessed twice (20-s trials) in two consecutive rod tasks of increasing difficulty. The distance covered and the latency to fall off a wooden (1.3 cm wide) and a metal wire (1 cm diameter) rod (both, 1 m long) were recorded. The hanger test was used to measure prehensibility and motor coordination by the distance covered and the number of elements of support and the latency to fall. The animal was allowed to cling with its forepaws from the middle of a horizontal wire (2 mm diameter, 40 cm length, divided into eight 5 cm segments) for two trials of 5 s. A third trial of 60 s was used to complement these measures with that of muscle strength or resistance. All the apparatus were suspended 40 cm above a padded table.
Three mice per day were tested for 23 consecutive hours (beginning at 15.00 h, periods of 30 min) in a multicage activity meter system (three cages simultaneously, Actitrack, Panlab, S.L., Barcelona, Spain) set to measure spontaneous locomotor activity. Each testing cage (Macrolon, 35.3 × 35.3 × 25 cm) contained clean sawdust and had food and water available. Weight of animals was recorded before and after the test. Food intake (FI) also was measured.
Animals were tested for spatial learning and memory in the MWM test consisting of 1 day of cue learning and 4 days of place learning for spatial reference memory, followed by one probe trial. Mice were trained to locate a hidden platform (7 cm diameter, 1 cm below the water surface) in a circular pool for mice (Intex Recreation Corp., Long Beach, CA, United States; 91 cm diameter, 40 cm height, 25°C opaque water), located in a completely black painted 6 m2 test room. Mice failing to find the platform were placed on it for 10 s, the same period as the successful animals. The protocol (
On the first day, the animals were tested for the cue learning of a visual platform consisting of four trials in 1 day. In each trial, the mouse was gently released (facing the wall) from one randomly selected starting point (E or W) and allowed to swim until it escaped onto the platform, elevated 1 cm above the water level in the N position and indicated by a visible striped flag (5.3 × 8.3 × 15 cm). Extra maze cues were absent in the black painted walls of the room.
On the following day, the place learning task consisted of four trial sessions per day for 4 days with trials spaced 30 min apart. The mouse was gently released (facing the wall) from one randomly selected starting point (E or W, as these are equidistant from the target) and allowed to swim until escaped onto the hidden platform which was now located in the middle of the S quadrant. Mice that failed to find the platform within 60 s were placed on it for 10 s, the same period as was allowed for the successful animals. White geometric figures, one hung on each wall of the room, were used as external visual clues.
One hour thirty minutes after the last trial of the place learning task, the platform was removed from the maze and the mice performed a “probe trial” of 60 s to evaluate their spatial memory for the platform position.
Behavior was evaluated by both direct observation and analysis of videotape-recorded images. Variables of time (escape latency, quadrant preference), distance covered, and swimming speed were analyzed in all the trials of the tasks. The escape latency was readily measured with a stopwatch by an observer unaware of the animal’s genotype and confirmed during the subsequent video-tracking analysis. A video camera placed above the water maze recorded the animal’s behavior and thereafter an automated system (Smart, Panlab S.L., Barcelona, Spain) enabled computerized measurement of the distance traveled by the animal during the trials. The swimming speed (cm/s) of the mice during each trial was calculated. In the probe trial, the time spent in each of the four quadrants, the distance traveled along them, and the number of crossings over the removed platform position (annulus crossings) were also measured retrospectively by means of the automated video-tracking analysis.
Finally, the swim paths for each mouse in each trial of the cue learning task, place learning task, and probe trial were analyzed following the swimming strategies described by
Mortality was recorded from 6 to 13 months of age. The effects of caffeine on the neuroimmunoendocrine status (
Mice were sacrificed and samples of about 0.5 ml of whole trunk blood were collected into heparinized tubes and centrifugated immediately at 10,000 ×
Statistical analyses were performed using SPSS 17.0 software. All data are presented as mean ± SEM or percentage. To evaluate the effects of genotype and caffeine treatment a 2 × 2 factorial analysis design was applied. Differences were studied through Multivariate General Lineal model analysis, followed by
Effects of chronic caffeine treatment assessed in NTg and 3xTg-AD mice at 13-months of age in the corner (CT) and open-field (OF) tests. Horizontal
Genotype and treatment effects were found in the CT (
Genotype differences were found in the ethogram (
Regarding the locomotor activity (
Finally, the NTg+caff group showed an increase in defecation behavior whereas it was reduced in the 3xTg-AD+caff group [(NTg-Veh: 2.00 s ± 0.20; NTg-Caff: 3.50 ± 0.20; Tg-Veh: 3.67 ± 1.0; Tg-Caff: 2.50 ± 0.62) GxT,
Significant changes in the exploratory activity were detected in the HB test (
Effects of chronic caffeine treatment assessed in the HB, DLB, and EPM tests in NTg and 3xTg-AD mice at 13 months of age. Data are expressed as mean ± SEM.
Grooming behavior was advanced in time in 3xTg-AD the spent more time on it [G,
Stretch attendance activity (
The incidence of animals that entered into the lit area ranged 50–70% in the NTg mice and increased to the 90–100% in the 3xTg-AD mice [G,
Finally, a genotype and a genotype × treatment interaction effect was found in total defecation [G,
The latency to enter into the OA [G,
In the forced trial, 3xTg-AD groups spent less time to reach the intersection point of the TM [G,
Effects of chronic caffeine treatment assessed in NTg and 3xTg-AD mice at 13 months of age in the T-maze (TM) and marble (MB) tests.
The 3xTg-AD mice buried a higher number of marbles [G,
At 6 months of age, before the treatment was started, the 3xTg-AD mice were overweighed (+20.26%) [t,
At 13 months of age, the genotype × treatment interaction effects [GxT,
In the sensory-motor functions, no deficits were found in the reflexes assessed, with all the animals obtaining the maximum score. In the wood rod test, most animals petrified (no distance covered) and this response determined a high latency to fall. Still, 3xTg-AD mice exhibited longer latencies to fall than NTg animals [G,
Effects of chronic caffeine treatment on body weight, sensorimotor functions, percentage of weight of spleen, and plasmatic corticosterone levels in NTg and 3xTg-AD mice at 13 months of age.
A circadian temporal course was found in the 23 h motor activity period studied [t,
Effects of chronic caffeine treatment in the home-cage on circadian motor activity in NTg and 3xTg-AD mice at 13 months of age. Data are expressed by mean ± SEM or percentage (%). Veh, vehicle: Caff, caffeine. The vertical axis shows motor activity counts during the time intervals of the 23 h continuous recording
3xTg-AD+veh mice showed a reduced total motor activity [G,
Effects of chronic caffeine treatment assessed in the CUE and PT, place learning tasks, and the probe trial of the Morris water maze test in NTg and 3xTg-AD mice at 13 months of age. Data are expressed by mean ± SEM in the cue and learning tasks
In the cue learning task (
In the place learning task (PT), when the cue was removed and the platform was hidden, animals exhibited a different genotype- and treatment-dependent acquisition curves, with 3xTg-AD animals finding faster the hidden platform along the 4 days of the test [G,
“Trial-by-trial” analysis revealed that time, genotype, and treatment factors frequently showed mutual interactions [
In the probe trial (
Qualitative analysis of the non-search behaviors and search strategies allowed to find caffeine effects (
Qualitative analysis of the non-search and search strategies assessed “trial by trial” in the paradigms of the MWM test in NTg and 3xTg-AD mice at 13 months of age. Flotation behavior
Moreover, in the cue learning task, caffeine reduced the incidence of floating [T,
In the probe trial, all the vehicle animals (100%) swam “directly” to the platform quadrant during the place task, whereas nearly 50% of the 3xTg-AD+caff animals used “random search.” When the animals failed to find the platform, NTg+veh mice alternated different strategies. In contrast, 3xTg-AD mice persisted in their behavior. A higher variety of strategies was shown by both genotypes of treated animals.
All NTg+veh mice survived until the age of 13 months, whereas the survival rate in the 3xTg-AD+veh and NTg+caff groups of the same age decreased to 80%. However, the differences were not significant when analyzed statistically.
The weight of the spleen was increased in 3xTg-AD mice [G,
Corticosterone levels showed slight increases due to genotype [G,
This study analyzes, in a translational scenario, the long-term effects of a chronic low dose of caffeine started at the onset of disease (6 months of age) in 3xTg-AD mice, an animal model for Alzheimer’s disease characterized by cognitive but also BPSD-like profile (
The anxiogenic effects induced by caffeine were observed, in general, as an increase of neophobia and the anxious profile. In the NTg genotype, the reduction in the exploratory behavior in CT, the increased latency to reach the protected areas (thigmotaxis) in the OF, and the delay in the risk assessment activity in the DLB demonstrated these anxiogenic effects. The increase in defecation observed in the NTg+caff group suggests an increased emotionality induced by caffeine. These results agree with those obtained in animals treated with high doses of caffeine, which were more emotionally reactive and showed more immobility, defecation, and urination than control animals (
As introduced before, here it is interesting to note that a depressive-like profile paired to monoaminergic alterations has been recently reported in the 3xTg-AD mice using two models of stress-coping behavior (FST, Porsolt forced swim test, and Tail suspension test) and with an anhedonia test such as the sucrose preference test (
Regarding sensorimotor functions, the results obtained in the balance of 3xTg-AD mice cannot exclude the presence of a false positive, since the innate fear of heights made that group showing more petrifaction (i.e., genotype 3xTg-AD treated with caffeine) were those that stayed longer on the rod. This is in agreement with prior results obtained at the same age, in female 3xTg-AD mice (
It has been shown that chronic caffeine treatment prevents weight gain in rodents that were fed a high fat diet (
The MWM showed that the increased latency, distance, and speed that chronic caffeine indiscriminately exerts over both genotypes in the cue learning task does not correspond to the expected cognitive effects, quite the contrary. In the first experience in the maze, the benefits attributed to caffeine improving attention (
The anxiogenic conditions that the MWM represents for mice were also reflected in the high level of floating observed in NTg animals and the sustained increase in the speed of 3xTg-AD mice. As we have extensively discussed in a precedent report’ (
The possible masking that the presence of flotation could exert on the measures of latency and distance was also considered. The analysis of these variables including the time invested in flotation indicated that results did not differ from those obtained when the total floating time was excluded. Regarding this “non-search behavior,” caffeine reduced the incidence of floating in the cue learning task in both genotypes. This action could be explained by its effects increasing attention or motivation in this learning and memory visual perceptive task. The effects of increasing the incidence of “thigmotaxis,” that is a non-goal-directed swimming around the wall of the pool, would be consistent with the horizontal locomotor hyperactivity induced by caffeine in the OF.
In order to better understand the results shown in the MWM, we analyzed the swimming strategies developed along the different trials of the three paradigms (
In the probe trial, two intervals could be distinguished: the first section of navigation until the animals arrive to the previous location of the platform, and the remaining interval in which the animals could look for it or not in a new location. While in the first interval, all animals, 3xTg-AD and NTg, swam directly to the platform, caffeine treatment reduced in 50% the use of this strategy in the 3xTg-AD+caff group. In the second interval could be hypothesized that the animals are facing a problem similar to the first day of the place task, with the exception that now there have already fulfilled the acquisition process. Here, the 3xTg-AD mice showed a poor cognitive flexibility using steadily a single strategy, which could be considered an inefficient response to solve this situation. Interestingly, we have reported poor cognitive flexibility shown as persistence of behaviors in the forced swim test at more advanced stages of disease (17 months of age) (
Regarding mortality data in this study, the number of animals is far from the minimum necessary to reliably assess the degree of survival and the effects of caffeine on it. Still, what our results suggest is that the data are congruent with the increased vulnerability of male 3xTg-AD mice at neuroimunoendocrine level, that could explain an important 40% of mortality at 12–13 months of age (
Since our first report (
At the endocrine level, slight increases of corticosterone were observed due to genotype and treatment, without reaching statistical significance. This trend would be in agreement with our first report on the increase of glucocorticoid levels in male 3xTg-AD mice at more advanced stages of disease, concomitantly to increased anxiety and peripheral immune dysfunction (
Immunomodulatory effects of caffeine by the decrease of cytokines (
The present results provide evidence of the adverse effects of caffeine in 3xTg-AD mice with a BPSD-like profile that raises the concern for its general recommendation to AD patients. These results confirm that caffeine, despite its everyday use and relative lack of government regulation, is a potent compound with multifaceted effects. Our study adds to the evidence for caffeine and other adenosine-receptor blockers have distinct physiological effects. Some ways to deal with these multi-effects are to optimize the dose, to use active substances in coffee other than caffeine, and to use synthetic drugs modeled after caffeine, such as subtype-selective adenosine receptor antagonists, rather caffeine itself. We speculate that over a chronic treatment with caffeine, the exacerbation of anxiety-like BPSD symptoms may partially interfere with the beneficial cognitive effects to the extent that they can be in the opposite direction.
LG-L the concept development, the study design, the study conduct, and the data collection. RB-C data analysis. RB-C and LG-L data interpretation and drafting the manuscript. BJ scientific discussions and critical revision of the manuscript and figures content. All authors approved final version of the manuscript. LG-L and BJ supported for financial resources.
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.