Front. Pharmacol. Frontiers in Pharmacology Front. Pharmacol. 1663-9812 Frontiers Media S.A. 10.3389/fphar.2018.00079 Pharmacology Original Research Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer’s Disease and Affects Mice with Normal Aging Baeta-Corral Raquel 1 2 Johansson Björn 3 4 Giménez-Llort Lydia 1 2 * 1Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain 2Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain 3Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, Sweden 4Department of Geriatrics, Karolinska University Hospital, Solna, Sweden

Edited by: Francisco Ciruela, University of Barcelona, Spain

Reviewed by: Maria Grazia Morgese, University of Foggia, Italy; Tommaso Cassano, University of Foggia, Italy

*Correspondence: Lydia Giménez-Llort, lidia.gimenez@uab.cat

This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

15 02 2018 2018 9 79 16 11 2017 24 01 2018 Copyright © 2018 Baeta-Corral, Johansson and Giménez-Llort. 2018 Baeta-Corral, Johansson and Giménez-Llort

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer’s disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD). The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg) counterparts with normal aging. Animals were treated (water or caffeine in drinking water) from adulthood (6 months of age) until middle-aged (13 months of age), that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml) was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical indicator of their impaired peripheral immune system, and trended to increase their corticosterone levels. Our observations of adverse caffeine effects in an Alzheimer’s disease model together with previous clinical observations suggest that an exacerbation of BPSD-like symptoms may partly interfere with the beneficial cognitive effects of caffeine. These results are relevant when coffee-derived new potential treatments for dementia are to be devised and tested.

aging anxiety memory NPS BPSD circadian activity translational long-term effects ISC3 PI10/00283 Instituto de Salud Carlos III10.13039/501100004587

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Caffeine, a non-selective A1 and A2A receptor antagonist, is one of the most consumed drugs all over the world. The average consumption of caffeine in humans is around 300–400 mg/day (three to four cups of coffee) and its effects in several physiological functions, such as locomotion, sleep, and cardiovascular function, depend on the dose and duration of the consumption (Fredholm et al., 1999, 2017; Fredholm, 2007). A large part of the cognitive enhancing properties of caffeine is due to its indirect action on arousal, mood, and concentration (reviewed by Nehlig, 2010). Thus, low doses of caffeine (20–200 mg/day) have been associated with positive effects on subjective mood: wellbeing, confidence, motivation, alert, security, efficiency, concentration, and desire for socialization (see Griffiths et al., 1990; Silverman et al., 1994). In this low range, caffeine (up to 300–400 mg) has also a stimulating action with biphasic motor effects (Fredholm et al., 1999). However, restraint from moderate or high intake of coffee (more than four cups a day) is recommended due to negative effects of caffeine on pregnancy, risk of osteoporosis, cardiovascular problems, anxiety, sleep disturbances, and alterations in physiological functions such as locomotion (Fredholm et al., 1999; Johansson et al., 2001; Giménez-Llort et al., 2005; Fredholm, 2007; Hermansen et al., 2012).

      In the last decade, a neuroprotective role of caffeine and other compounds of coffee such as theophylline has been postulated and it is of a growing interest (Maia and de Mendonça, 2002; Chen et al., 2010; Eskelinen and Kivipelto, 2010; Cao et al., 2012). For instance, the study “Cardiovascular Risk Factors, Aging and Dementia” (Eskelinen et al., 2009) indicated that consumption of three to five cups of coffee daily average age of the population is associated in 65% of cases, with a lower risk of developing dementia in the future. Although the whole complexity of aging process is still unknown, the use of caffeine to treat cognitive deficits associated with natural aging and those in Alzheimer’s disease is foreseen as promising. With that, a substantial number of studies have been published suggesting preventive effects of coffee or caffeine on Alzheimer’s disease (e.g., Arendash et al., 2006; Solfrizzi et al., 2015; Kolahdouzan and Hamadeh, 2017; Oñatibia-Astibia et al., 2017; Wierzejska, 2017).

      The role of caffeine as a possible protective agent is supported by the pharmacological action of caffeine blocking adenosine A2A receptors, which show an aberrant expression and function in aging and related diseases (Marques et al., 2011). At the experimental level, long-term caffeine treatment has been demonstrated to ameliorate cognitive impairment in animal models of Alzheimer disease: βA-injection mouse models (Dall’Igna et al., 2007; Canas et al., 2009) and transgenic mouse models including APP (Arendash et al., 2006; Cao et al., 2009; Chu et al., 2012), APP/PS1 (Cao et al., 2011; Han et al., 2013), and more recently in a tau transgenic model (Laurent et al., 2014). Most importantly, because among the underlying mechanisms the reduction of amyloid beta production is postulated (Arendash et al., 2006). Interestingly, age-like HPA-axis dysfunction has been related to overactivation of caffeine-binding adenosine A2A receptors in rats mimicking the upregulation found in the forebrain of aged and AD patients, and their direct regulatory action on glucocorticoid receptor function (Batalha et al., 2016).

      The main clinical manifestation of dementia is a decline in cognitive function. However, neuropsychiatric symptoms (NPS) are quite prevalent among the patients since early stages of Alzheimer’s disease (Reisberg et al., 1987) and show a clear trend toward increasing their frequency with the progress of the disease (Piccininni et al., 2005). The symptoms, also referred as “Behavioral and Psychological Symptoms of Dementia” (BPSD), may include depression, apathy, hallucinations, delusions, agitation, aggression, and sleep disturbances. This wide array of NPS or BPSD is considered a strong source of distress and burden for AD patients and caregivers. The treatment of these NPS is a major challenge (Wang et al., 2016) as it is the understanding of the pathophysiology underlying their comorbidity in Alzheimer’s disease (e.g., reviewed by Corrêa-Velloso et al., 2018). At the experimental level, research in animal models of Alzheimer’s disease has focused on the cognitive deficits while few of them have also considered their non-cognitive profile (reviewed by Giménez-Llort et al., 2007). Since 2006, our laboratory has been devoted to characterize the cognitive but also the non-cognitive symptoms (i.e., anxiety, phobias, bizarre behaviors, hyperactivity, disinhibition, apathy and motivation, persistence of behaviors, and diurnal rhythm disturbances) in the homozygous 3xTg-AD mice created by LaFerla (Oddo et al., 2003). As we have consistently reported (e.g., Giménez-Llort et al., 2006, 2008, 2010; Baeta-Corral and Giménez-Llort, 2014, 2015; Torres-Lista and Giménez-Llort, 2014, 2015; Manuel et al., 2016), these animals show a noticeable BPSD-like profile. Recently, depressive-like profile has also been reported in the 3xTg-AD mice (Romano et al., 2015), early symptoms bearing some resemblance to bipolar disorder have also been noticed (Corrêa-Velloso et al., 2018), and the effects of preventive/therapeutical strategies on such BPSD-like symptoms have began to be studied (García-Mesa et al., 2011, 2012; Blázquez et al., 2014; Cañete et al., 2015; Torres-Lista and Giménez-Llort, 2015; Sabogal-Guáqueta et al., 2017).

      In our focus of interest, the 3xTg-AD mice and their non-transgenic (NTg) counterparts with normal aging may be useful to investigate whether the aging process or the presence of an anxiety-like BPSD profile may modify the output of the potential therapeutic benefits of caffeine. The effects of caffeine on sensorimotor performance (open field, balance beam, string agility) and anxiety level [elevated plus-maze (EPM)] have been addressed by Arendash and Cao (2010), in the APPSwe mice. In the present work, we explored the effects of a long-term (7 months) chronic treatment with a very low oral dose of caffeine (0.3 mg/kg) starting at the adulthood until the middle age (from 6 to 13 months of age) of 3xTg-AD mice, and as compared to age-matched NTg mice. In the transgenic mice, these ages correspond to the onset and advanced stages of the disease, respectively (Oddo et al., 2003). Since adenosine receptors are involved in neuronal but also non-neuronal mechanisms, including immunoendocrine responses, the effects of chronic treatment were assessed on sensorimotor functions, physiology [body weight (BW), circadian motor activity, and survival], immunoendocrine system (spleen size and corticosterone), and behavior (exploratory activity, bizarre movements, emotional and anxiety-like behaviors, risk assessment, visual perceptual learning, and reference spatial learning and memory). The effects of caffeine on other BPSD such as apathy/depression were indirectly monitored by means of opposed behaviors [exploration in the activity tests (ACT), floating in the Morris water maze (MWM)] and tests [hole-board (HB) for novelty seeking, cue learning with a visual platform in the water maze].

      Materials and Methods Animals

      Homozygous triple-transgenic 3xTg-AD mice harboring PS1/M146V, APPSwe, and tauP301L transgenes were genetically engineered at the University of California, Irvine, as previously described (Oddo et al., 2003). Briefly, two independent transgenes (encoding human APPSwe and human tauP301L, both under control of the mouse Thy1.2 regulatory element) were co-injected into single-cell embryos harvested from homozygous mutant PS1M146V knock-in (PS1KI) mice. The PS1 knock-in mice were originally generated as a hybrid C57BL/6 x 129.

      Thirty-eight 6-month-old 3xTg-AD mice and C57BL/6 x 129 mice from 15 l of a breeding program that was established in our laboratory at the Medical Psychology Unit, Universitat Autònoma de Barcelona, were used in this study. All the animals were housed three to four per cage and maintained (Makrolon, 35 × 35 × 25 cm) under standard laboratory conditions (12 h light:dark, cycle starting at 8:00 h, food and water available ad libitum, 22 ± 2°C, 50–60% humidity). The circadian activity was recorded during one whole light–dark (LD) period, and the rest of the tests from 9:00 to 13:00 h.

      This study was carried out in accordance with the recommendations of Animals in Research: Reporting In Vivo Experiments (ARRIVE) guidelines developed by the NC3Rs (Kilkenny et al., 2010) and the Spanish legislation on “Protection of Animals Used for Experimental and Other Scientific Purposes” and the European Communities Council Directive (2010/63/EU) on this subject. The protocol CEEAH 2481/DMAH 8700 entitled “Risk factors and preventive/therapeutical strategies in Alzheimer’s disease: studies in triple-transgenic 3xTg-AD mice” was approved by Departament de Medi Ambient i Habitatge, Generalitat de Catalunya.

      Caffeine Treatment

      Mice were allowed to consume ad libitum either drinking water or caffeinated drinking water at 0.3 mg/ml (Sigma, St. Louis, MO, United States) beginning at 6 months of age, considered the age of onset of cognitive symptoms in this animal model. The experimental design consisted in the following groups: NTg vehicle, NTg caffeine, Tg vehicle, and Tg caffeine (n = 8–10, in each group). Caffeine treatment was continued throughout behavioral testing until the end of the experiment (13 months of age).

      It has been previously confirmed that this treatment regimen leads to a 1.5 mg daily dose in a mouse and it is equivalent to an approximately 500 mg daily caffeine intake (approximately five cups of coffee) by a human (Johansson et al., 1996; Arendash et al., 2006). A plasma concentration of caffeine about 30 μM (circa three cups of coffee daily) has been recommended to probe the beneficial effects of caffeine on cognition (Costenla et al., 2010).

      Behavioral Assessments

      The effects of the chronic caffeine treatment on physical and behavioral profile of 3xTg-AD mice and their NTg counterparts were assessed at 13 months of age, considered advanced stages of disease in this animal model. The battery of behavioral tests consisted in the evaluation of sensorimotor functions and a series of classical unconditioned tasks measuring locomotion and exploratory activity, anxiety-like behaviors, and cognitive functions.

      Day 1. Corner Test (CT) and Open-Field (OF) Test

      Neophobia was evaluated in the corner test (CT) for 30 s. Animals were individually placed in the center of a clean standard home cage, filled with wood shave bedding. Number of corners visited, latency to realize the first rearing, and the number of rearings were recorded.

      Immediately after the CT, mice were placed in the center of an open field (homemade woodwork, white box, 50 × 50 × 20 cm) and observed for 5 min. The temporal profile of the following sequence of behavioral events was recorded: duration of freezing behavior, latency to leave the central square and that of entering the peripheral ring, as well as latency and total duration of self-grooming behavior. Horizontal (crossings of 10 × 10 cm squares) and vertical (rearings with a wall support) locomotor activities were also measured. Bizarre behaviors observed in this test were also measured according to the previous reported criterion (Baeta-Corral and Giménez-Llort, 2014). During the tests, defecation boli and urination were also recorded.

      Day 2. Hole-Board (HB) Test

      Mice were placed in the center of the apparatus (woodwork white box of 32 × 32 × 32 cm) with four holes (3 cm diameter) equally spaced in the floor of the HB. In the exploratory behavior, non-goal-directed (rearings) and goal-directed (head-dips) exploratory activities were measured for 5 min. Moreover, the time spent head-dipping, the latencies of first movement, first dipping, and to explore the four different holes (this last one was established as criterion of the four holes exploration) were also measured. Repetition of already visited holes before reaching the criterion was considered as errors and the total number was measured. Defecation boli were also recorded.

      Day 3. Dark–Light Box (DLB) Test

      The dark–light box (DLB) test (Panlab, S.L., Barcelona, Spain) consists of a two-compartment box (black and dark, 27 × 18 × 27 cm; white and illuminated 20 W, 27 × 27 × 27 cm) connected by an opening (7 × 7 cm). The mice were placed into the dark compartment and observed for 5 min. Latency to enter into the lit compartment (all four paws criterion), number of entries, total time spent, and distance covered as well as number of rearings and groomings in this compartment were noted. Risk assessment was measured by means of the latency and number of stretch attendances toward the lit area. Defecation boli and urination in each of both compartments were measured.

      Day 4. Elevated Plus-Maze (EPM) Test

      The plus-maze (woodwork, black Plexiglass) consisted of two enclosed arms (EAs, 30.3 × 5.3 × 15 cm, transparent walls) and two open arms (OAs, 30.3 × 5 cm) forming a square cross with a 5.3 × 5 cm square center piece. The apparatus was elevated 40 cm above the floor. The animal was placed in the center of the plus-maze facing one of the OAs. The number of entries (all four paws criterion) into OA and EA, the time spent in each arm, and defecation boli were recorded for 5 min. The anxiety index TOA/(TOA+TEA) was calculated as time in the OA/(time in the OA + time in the EA).

      Day 5. T-Maze (TM) Test

      The apparatus consists in a T-shaped maze (two short arms of 25 × 8 cm and a long arm of 30 × 8 cm). The working memory paradigm assessed in the T-maze (TM) consisted in two consecutive trials: one forced choice in the first trial and one free choice (recall trial) in the second trial, with a 90-s intertrial interval. In the forced choice, only one of the arms according to a random order and contrabalanced in each group was accessible. The animal was placed inside the “vertical” arm of the maze with its head facing the end wall and it was allowed to explore the maze. After spending 20 s in the accessible arm, the animal was put back into the home cage starting box. This 20 s period was established as the learning criterion. In the recall trial, the animal was allowed to explore the maze in a free choice trial where both arms were accessible. The arm chosen by the mice and the time spent in each arm during the free choice was recorded. The choice of the already visited arm in the previous trial before exploring the arm that was inaccessible was considered as an error and the total number was calculated. Also the time spent to explore the three arms of the maze was recorded. Finally, defecation boli and urination were also recorded.

      Day 6. Marble Test (MB)

      The procedure for marble test (MB) was adopted with minor modifications from that originally described by Broekkamp et al. (1986). Mice were placed individually in a standard home cage (Macrolon, 35 × 35 × 25 cm). The cage contained six glass marbles (dimensions 1 × 1 × 1 cm) evenly spaced making a triangle (three rows of three, two, and one marbles per row only in the left area of the cage) on a 5-cm thick layer of sawdust. The mice were left in the cage with marbles for a 30-min period after which the test was terminated by removing the mice and counting the number of marbles: intact (the number of marbles untouched), rotated (the number of marbles rotated 90° or 180°), half-buried (the number of marbles at least ½ buried by sawdust), and buried (the number of marbles 100% buried by sawdust).

      Day 7. Body Weight (BW) and Sensorimotor Functions (SMT)

      The physical condition of the mice was evaluated by their BW and sensorimotor functions. Visual reflex and posterior legs extension reflex were measured three times by holding the animal by its tail and slowly lowering it toward a black surface. Motor coordination and equilibrium were assessed twice (20-s trials) in two consecutive rod tasks of increasing difficulty. The distance covered and the latency to fall off a wooden (1.3 cm wide) and a metal wire (1 cm diameter) rod (both, 1 m long) were recorded. The hanger test was used to measure prehensibility and motor coordination by the distance covered and the number of elements of support and the latency to fall. The animal was allowed to cling with its forepaws from the middle of a horizontal wire (2 mm diameter, 40 cm length, divided into eight 5 cm segments) for two trials of 5 s. A third trial of 60 s was used to complement these measures with that of muscle strength or resistance. All the apparatus were suspended 40 cm above a padded table.

      Days 8–15. Circadian Motor Activity Test (ACT)

      Three mice per day were tested for 23 consecutive hours (beginning at 15.00 h, periods of 30 min) in a multicage activity meter system (three cages simultaneously, Actitrack, Panlab, S.L., Barcelona, Spain) set to measure spontaneous locomotor activity. Each testing cage (Macrolon, 35.3 × 35.3 × 25 cm) contained clean sawdust and had food and water available. Weight of animals was recorded before and after the test. Food intake (FI) also was measured.

      Days 16–21. Morris Water Maze (MWM) Test

      Animals were tested for spatial learning and memory in the MWM test consisting of 1 day of cue learning and 4 days of place learning for spatial reference memory, followed by one probe trial. Mice were trained to locate a hidden platform (7 cm diameter, 1 cm below the water surface) in a circular pool for mice (Intex Recreation Corp., Long Beach, CA, United States; 91 cm diameter, 40 cm height, 25°C opaque water), located in a completely black painted 6 m2 test room. Mice failing to find the platform were placed on it for 10 s, the same period as the successful animals. The protocol (Giménez-Llort et al., 2007) was used as follows: 1 day of cue learning, 4 days of place learning followed by a probe trial.

      Cue learning with a visible platform

      On the first day, the animals were tested for the cue learning of a visual platform consisting of four trials in 1 day. In each trial, the mouse was gently released (facing the wall) from one randomly selected starting point (E or W) and allowed to swim until it escaped onto the platform, elevated 1 cm above the water level in the N position and indicated by a visible striped flag (5.3 × 8.3 × 15 cm). Extra maze cues were absent in the black painted walls of the room.

      Place learning with a hidden platform

      On the following day, the place learning task consisted of four trial sessions per day for 4 days with trials spaced 30 min apart. The mouse was gently released (facing the wall) from one randomly selected starting point (E or W, as these are equidistant from the target) and allowed to swim until escaped onto the hidden platform which was now located in the middle of the S quadrant. Mice that failed to find the platform within 60 s were placed on it for 10 s, the same period as was allowed for the successful animals. White geometric figures, one hung on each wall of the room, were used as external visual clues.

      Probe trial

      One hour thirty minutes after the last trial of the place learning task, the platform was removed from the maze and the mice performed a “probe trial” of 60 s to evaluate their spatial memory for the platform position.

      Quantitative and qualitative analyses

      Behavior was evaluated by both direct observation and analysis of videotape-recorded images. Variables of time (escape latency, quadrant preference), distance covered, and swimming speed were analyzed in all the trials of the tasks. The escape latency was readily measured with a stopwatch by an observer unaware of the animal’s genotype and confirmed during the subsequent video-tracking analysis. A video camera placed above the water maze recorded the animal’s behavior and thereafter an automated system (Smart, Panlab S.L., Barcelona, Spain) enabled computerized measurement of the distance traveled by the animal during the trials. The swimming speed (cm/s) of the mice during each trial was calculated. In the probe trial, the time spent in each of the four quadrants, the distance traveled along them, and the number of crossings over the removed platform position (annulus crossings) were also measured retrospectively by means of the automated video-tracking analysis.

      Finally, the swim paths for each mouse in each trial of the cue learning task, place learning task, and probe trial were analyzed following the swimming strategies described by Janus (2004) and classified according to three criteria: the objective (non-search behaviors, namely floating and circling, vs. search strategies), the direction (goal-directed vs. non-goal-directed strategies), and the variety (single vs. mixed strategies) (see Baeta-Corral and Giménez-Llort, 2015).

      Survival and Immunoendocrine Status

      Mortality was recorded from 6 to 13 months of age. The effects of caffeine on the neuroimmunoendocrine status (Giménez-Llort et al., 2014) were monitored by means of the levels of corticosterone and the size (weight in milligram) and relative size (% vs. BW) of the spleen (Giménez-Llort et al., 2008). Splenomegaly was used as a physical indicator of the altered status of the peripheral immune system in 3xTg-AD mice (Giménez-Llort et al., 2012; Marchese et al., 2014).

      Mice were sacrificed and samples of about 0.5 ml of whole trunk blood were collected into heparinized tubes and centrifugated immediately at 10,000 × g for 2 min. The plasma obtained was stored at -20°C. Corticosterone content (nanogram per milliliter) was analyzed using a commercial kit (Corticosterone EIA Immunodiagnostic Systems Ltd., Boldon, United Kingdom) and ELISA EMS Reader MF V.29.-0.

      Statistics

      Statistical analyses were performed using SPSS 17.0 software. All data are presented as mean ± SEM or percentage. To evaluate the effects of genotype and caffeine treatment a 2 × 2 factorial analysis design was applied. Differences were studied through Multivariate General Lineal model analysis, followed by post hoc Duncan’s test comparisons. P < 0.05 was taken as statistically significant.

      Results

      Figures 17 summarize the behavioral phenotype exhibited by male 3xTg-AD and NTg at 13 months of age and the effects of caffeine on these behaviors.

      Effects of chronic caffeine treatment assessed in NTg and 3xTg-AD mice at 13-months of age in the corner (CT) and open-field (OF) tests. Horizontal (A) and vertical (B,C) activities in the corner test. Ethogram (D), horizontal (E,G), and vertical (F,H) activities in the OF test. Data are expressed by mean ± SEM. Veh, vehicle; Caff, caffeine. The text at the top of each graph refers to the p-values of the 2 × 2 ANOVA: G, genotype effect; T, treatment effect; GxT, genotype × treatment interaction; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Post hoc comparisons are shown in the graphs as: g p < 0.05, gg p < 0.01 vs. the corresponding NTg group; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. the corresponding non-treated group.

      Corner Test (CT)

      Genotype and treatment effects were found in the CT (Figures 1AC). Horizontal locomotor activity measured by number of corners visited was reduced in the 3xTg-AD mice [G, F(1,30) = 4.760; p < 0.05] as compared to the NTg animals. Vertical activity was influenced by caffeine, with treated animals showing higher latencies to perform a first rearing [T, F(1,30) = 4.676; p < 0.05] and a reduction in the total number of rearings [T, F(1,30) = 4.571; p < 0.05].

      Open-Field Test

      Genotype differences were found in the ethogram (Figure 1D), the behavioral sequence of events, pointing out to increased thigmotaxis. 3xTg-AD animals spent more time leaving the center of the apparatus [G, t(1,14) = -2.785; p < 0.05] and arriving at the periphery [G, F(1,30) = 4.366; p < 0.05]. Caffeine increased the time spent in the center in NTg+caff animals whereas it was reduced in the 3xTg-AD group [GxT, F(1,30) = 4.936; p < 0.05]. Once the animals arrived to the periphery, self-grooming behavior was delayed in time in NTg+caff mice as compared to their control group [T, F(1,30) = 7.158; p < 0.05 and GxT, F(1,30) = 8.194; p < 0.01] although the total duration of self-grooming (NTg-Veh: 2.25 s ± 0.48; NTg-Caff: 1.00 s ± 0.50; Tg-Veh: 1.50 s ± 0.50; Tg-Caff: 1.75 s ± 0.52) was not modified.

      Regarding the locomotor activity (Figures 1EH), 3xTg-AD mice showed a reduced number of crossings as compared to NTg animals [G, F(1,30) = 12.132; p < 0.01]. Moreover, caffeine had a bidirectional effect increasing this horizontal component in the NTg genotype whereas reducing it in the 3xTg-AD treated animals [minute 4; GxT, F(1,30) = 8.994; p < 0.01]. In the vertical activity, 3xTg-AD mice showed a reduced number of rearings as compared to the NTg mice [G, F(1,30) = 10.944 p < 0.01]. No stereotyped rearing was observed in NTg mice (NTg-Veh: none) and their presence was scarce in the other groups (NTg-Caff: 0.33 ± 0.30; Tg-Veh: 0.17 ± 0.10; Tg-Caff: 1.25 s ± 0.90).

      Finally, the NTg+caff group showed an increase in defecation behavior whereas it was reduced in the 3xTg-AD+caff group [(NTg-Veh: 2.00 s ± 0.20; NTg-Caff: 3.50 ± 0.20; Tg-Veh: 3.67 ± 1.0; Tg-Caff: 2.50 ± 0.62) GxT, F(1,30) = 4.681; p < 0.05].

      Hole-Board Test

      Significant changes in the exploratory activity were detected in the HB test (Figures 2AD) All groups showed similar latencies in the first movement and to explore the first hole. The reduction in the exploratory activity in the 3xTg-AD groups was the most significant difference observed in this test [G, F(1,30) = 13.492; p < 0.001]. Treatment reduced vertical activity in both genotypes [T, F(1,30) = 5.290; p < 0.05]. The 3xTg-AD groups performed more head dippings [G, F(1,30) = 4.750; p < 0.05] and total time spent in this activity was higher as compared to the NTg groups [G, F(1.30) = 4.818; p < 0.05]. Hundred percent of the 3xTg-AD groups reached the criterion of the four holes exploration [G, t(1,14) = -3.055; p < 0.05] and faster than NTg groups [G, F(1,30) = 4.893 p < 0.05]. Independently of the genotype, caffeine reduced the percentage of animals that reached the criterion [T, F(1,30) = 11.904; p < 0.01]. Moreover, the treatment increased the number of errors in the 3xTg-AD genotype whereas it was reduced in the NTg+caff animals [GxT, F(1,30) = 5.652; p < 0.05].

      Effects of chronic caffeine treatment assessed in the HB, DLB, and EPM tests in NTg and 3xTg-AD mice at 13 months of age. Data are expressed as mean ± SEM. (A–H) Behavioral variables (as indicated) of the hole-board test (A–D), the dark and light test (E,F) and the elevated plus maze (D–H). The text at the top of each graph refers to the p-values of the 2 × 2 ANOVA: G, genotype effect; T, treatment effect; GxT, genotype × treatment interaction; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Post hoc comparisons are shown in the graphs as: g p < 0.05, gg p < 0.01 vs. the corresponding NTg group; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. the corresponding non-treated group. SA, stretch attendance.

      Grooming behavior was advanced in time in 3xTg-AD the spent more time on it [G, F(1,30) = 7.649; p < 0.01 and G, F(1,30) = 7.179; p < 0.05, respectively]. Finally, caffeine reduced the number of defecation boli [T, F(1,30) = 5.457; p < 0.05] especially in the 3xTg-AD mice [GxT, F(1,30) = 6.365; p < 0.05].

      Dark–Light Box Test

      Stretch attendance activity (Figures 2E,F) was present in NTg but not in 3xTg-AD mice [G, F(1,30) = 17.690; p < 0.001] and caffeine increased the latency of stretch attendance in the NTg mice [T, F(1,30) = 11.842; p < 0.01 and GxT, F(1,30) = 11.842; p < 0.01].

      The incidence of animals that entered into the lit area ranged 50–70% in the NTg mice and increased to the 90–100% in the 3xTg-AD mice [G, F(1,30) = 9.098; p < 0.01]. The disinhibitory behavior of the 3xTg-AD groups was shown as a reduced latency to enter into the lit area [Figure 4B; G, F(1,30) = 4.859; p < 0.05], more than double of crossings between the two compartments [G, t(1,14) = -3.049; p < 0.01], and less time into the lit area [G, F(1,30) = 4.158; p < 0.05].

      Finally, a genotype and a genotype × treatment interaction effect was found in total defecation [G, F(1,30) = 4.158; p < 0.05 and GxT, F(1,30) = 6.794; p < 0.05, respectively].

      Elevated Plus Maze

      The latency to enter into the OA [G, F(1,30) = 20.029; p < 0.001] and the anxiety index TOA/(TOA+TEA) [G, F(1,30) = 43.619; p < 0.001] indicated that 3xTg-AD animals were more anxious than NTg mice (Figures 2G,H). All groups showed a similar number of entries in all the arms and the central piece [all Fs(1,30) < 3.583; p > 0.068, n.s.]. A genotype and a genotype × treatment interaction effects were found in defecation behavior [G, F(1,30) = 4.536; p < 0.05 and GxT, F(1,30) = 6.648; p < 0.05, respectively].

      T-Maze Test

      In the forced trial, 3xTg-AD groups spent less time to reach the intersection point of the TM [G, F(1,30) = 5.729; p < 0.05] and to reach the criterion of the 20 s exploration [G, F(1,30) = 56.375; p < 0.05]. In the recall, the number of errors before choosing the unexplored arm in the previous trial was lower in the 3xTg-AD genotype [G, F(1,30) = 6.111; p < 0.05]. However, 3xTg-AD-treated animals reduced their efficiency to explore both arms since they spent more time to reach the goal [GxT, F(1,30) = 4.188; p < 0.05] (Figures 3AD).

      Effects of chronic caffeine treatment assessed in NTg and 3xTg-AD mice at 13 months of age in the T-maze (TM) and marble (MB) tests. (A–E) Behavioral variables (as indicated) of the T-maze test (A–D) and the marble test (E). Data are expressed by mean ± SEM. Veh, vehicle; Caff, caffeine. The text at the top of each graph refers to the p-values of the 2 × 2 ANOVA: G, genotype effect; T, treatment effect: GxT, genotype × treatment interaction; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Post hoc comparisons are shown in the graphs as: g p < 0.05, gg p < 0.0l vs. the corresponding NTg group: p < 0.059, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. the corresponding non-treated group.

      Marble Test

      The 3xTg-AD mice buried a higher number of marbles [G, F(1,28) = 20.802; p < 0.001] whereas NTg animals left them intact [G, F(1,28) = 8.660; p < 0.01]. Caffeine reduced the number of marbles buried in the 3xTg-AD genotype [GxT, F(1,28) = 5.565; p < 0.05] (Figure 3E).

      Body Weight and Sensorimotor Functions

      At 6 months of age, before the treatment was started, the 3xTg-AD mice were overweighed (+20.26%) [t, F(1,32) = -5.603, p < 0.000]. The genotype effect was maintained till the end of the treatment (+20.09%) [G, F(1,30) = 68.826; p < 0.001].

      At 13 months of age, the genotype × treatment interaction effects [GxT, F(1,30) = 7.383; p < 0.05] pointed out a reduction of the BW induced by caffeine in the 3xTg-AD animals (Duncan’s test, p < 0.05 vs. 3xTg-AD+veh group) but the treatment did not correct the overweight of 3xTg-AD mice (Duncan’s test, p < 0.05 vs. NTg+caff).

      In the sensory-motor functions, no deficits were found in the reflexes assessed, with all the animals obtaining the maximum score. In the wood rod test, most animals petrified (no distance covered) and this response determined a high latency to fall. Still, 3xTg-AD mice exhibited longer latencies to fall than NTg animals [G, F(1,30) = 12.037; p < 0.01]. Caffeine increased the latency to fall in the NTg genotype [T, F(1,30) = 4.841; p < 0.05]. When the complexity of the task was increased (metal wire test) all groups showed worse equilibrium, but no differences were found between the groups neither in the latency to fall nor in the distance covered. In the Hanger test, the 5 s trial showed genotype-dependent differences in the latency to fall [G, F(1,30) = 7.879; p < 0.01]. This effect was confirmed in the 60 s trial [G, F(1,30) = 6.561; p < 0.05] (Figures 4AE).

      Effects of chronic caffeine treatment on body weight, sensorimotor functions, percentage of weight of spleen, and plasmatic corticosterone levels in NTg and 3xTg-AD mice at 13 months of age. (A) Body weight and (B–G) behavioral variables (as indicated) on the wood rod test (B), metal rod test (C) and the two hanger tests (D,E). The relative weight of spleen (F) and corticosterone levels (G). Data are expressed by mean ± SEM or percentage (%). Veh, vehicle; Caff, caffeine. The text at the top of each graph refers to the p-values of the 2 × 2 ANOVA: G, genotype effect; T, treatment effect; GxT, genotype × treatment interaction; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Post hoc comparisons are shown in the graphs as: g p < 0.05, gg p < 0.01 vs. the corresponding NTg group; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs. the corresponding non-treated group.

      Circadian Motor Activity Test

      A circadian temporal course was found in the 23 h motor activity period studied [t, F(23,690) = 29.732; p < 0.001] that differed between genotype [txG, F(23,690) = 4.570; p < 0.001], treatment [txT, F(23,690) = 5.360; p < 0.001], and the interaction between these two factors [txGxT, F(23,690) = 2.858; p < 0.001] (Figure 5A). During the first hour of habituation, time [t, F(11,330) = 78.341; p < 0.001] and genotype [G, F(11,330) = 9.395; p < 0.01] effects were found. Besides, “time × genotype” [txG, F(11,330) = 7.984; p < 0.001], “time × treatment” [txT, F(11,330) = 2.591; p < 0.01], and “time × genotype × treatment” [txGxT, F(11,330) = 4.083; p < 0.001] interaction effects were found (Figure 5B) with treated 3xTg-AD mice showing a reduced locomotor activity as compared to their non-treated group.

      Effects of chronic caffeine treatment in the home-cage on circadian motor activity in NTg and 3xTg-AD mice at 13 months of age. Data are expressed by mean ± SEM or percentage (%). Veh, vehicle: Caff, caffeine. The vertical axis shows motor activity counts during the time intervals of the 23 h continuous recording (A), 1-min intervals (right-hand graphs) during a period of l h (B), or 5-min intervals (inset of B). Total activity counts during the 23 h (C), the light (D), and the dark (E) cycles are detailed. Data are expressed by mean ± SEM. The text at the top of each graph refers to the p-values of the 2 × 2 ANOVA: G, genotype effect; GxT, genotype × treatment interaction; t, time effect; txG, time × genotype interaction; txT, time × treatment interaction; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Post hoc comparisons are shown in the graphs as: g p < 0.05, gg p < 0.01, ggg p < 0.00l vs. the corresponding NTg group; p < 0.05 vs. the corresponding non-treated group.

      3xTg-AD+veh mice showed a reduced total motor activity [G, t(1,15) = 6.591; p < 0.01]. Caffeine increased the overall spontaneous motor activity along a 23-h LD period in the 3xTg-AD genotype [Figure 5C; GxT, F(1,30) = 11.525; p < 0.01], and more significantly, during the dark cycle [Figure 5E; F(1,30) = 15.311; p < 0.001].

      Morris Water Maze Test

      Figures 6AC illustrate the “day-by-day” (left panel) and “trial-by-trial” (right panels) acquisition curves.

      Effects of chronic caffeine treatment assessed in the CUE and PT, place learning tasks, and the probe trial of the Morris water maze test in NTg and 3xTg-AD mice at 13 months of age. Data are expressed by mean ± SEM in the cue and learning tasks (A–C) and by distance covered in the platform (P), adjacent left (Al), opposite (O), and adjacent right (Ar) quadrants (D). ANOVA 2 × 2: G, genotype effect; T, treatment effect; GxT, genotype × treatment interaction; p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Post hoc: g p < 0.05 vs. the NTg group. ANOVA, p < 0.05, ∗∗∗p < 0.001 P vs. all quadrants.

      In the cue learning task (Figure 6A, CUE), genotype and treatment effects were found, with 3xTg-AD mice reaching the visible platform faster than NTg [G, F(1,30) = 17.727; p < 0.001]. Independently of the genotype, treated animals spent more time [T, F(1,30) = 30.891; p < 0.001] and showed longer distance covered [T, F(1,30) = 28.171; p < 0.001] to find the platform than non-treated mice. 3xTg-AD mice showed an increased swimming speed [G, F(1,30) = 68.397; p < 0.001] and caffeine increased the swimming speed in both treated groups [T, F(1,30) = 5.394; p < 0.05].

      In the place learning task (PT), when the cue was removed and the platform was hidden, animals exhibited a different genotype- and treatment-dependent acquisition curves, with 3xTg-AD animals finding faster the hidden platform along the 4 days of the test [G, F(1,30) = 6.920; p < 0.05]. Caffeine increased the time spent [T, F(1,30) = 11.449; p < 0.01] and the distance covered [T, F(1,30) = 15.566; p < 0.001] to reach the platform as compared to their non-treated groups. Swimming speed showed a consistent genotype effect [G, F(1,30) = 21.239; p < 0.001]. Caffeine modified the swimming speed in an opposite manner, since it was increased in the NTg and reduced in the 3xTg-AD animals [GxT, F(1,30) = 9.540; p < 0.05].

      “Trial-by-trial” analysis revealed that time, genotype, and treatment factors frequently showed mutual interactions [Figures 6AC, right panels; RMA, F(3,90) > 2.984; p < 0.05]. Between all the differences found, it is interesting to note that caffeine effects were found both in long-term (T1) and short-term (T3 and T4) memory trials. The acquisition level achieved at the end of the place task (distance PT4 and PT4.4) was similar in all the groups [G and T, F(1,30) < 1.631; p > 0.05, n.s.].

      In the probe trial (Figure 6D), all the groups showed similar ability to distinguish the platform quadrant during the place task [all ANOVAs, F(3,28) > 25.522; p < 0.001] despite the NTg+caff group did it with one or two lower scale [all ANOVAs, F(3,28) > 3.667; p < 0.05].

      Qualitative analysis of the non-search behaviors and search strategies allowed to find caffeine effects (Figure 7) based on the distinctive characteristics of both genotypes: presence of floating and the use of “single-” and “goal-directed” strategies in the NTg genotype in contrast to “circling” and “mixed” and “non-goal-directed” strategies in the 3xTg-AD mice. Caffeine modified these swimming patterns, reducing differences between genotypes. Thus, the NTg+caff group showed a higher proportion of “mixed” and “non-goal-directed” strategies whereas the 3xTg-AD group showed more “single-” and “goal-directed” strategies.

      Qualitative analysis of the non-search and search strategies assessed “trial by trial” in the paradigms of the MWM test in NTg and 3xTg-AD mice at 13 months of age. Flotation behavior (A), circling (B), single vs. mixed strategies (C), and goal- vs. non-goal-directed strategies (D). Data are expressed by frequency or total number of episodes (n). RMA: G, genotype effect; D, day effect; p < 0.05, ∗∗p < 0.01. Post hoc: p < 0.05, ∗∗p < 0.0l vs. the corresponding NTg group.

      Moreover, in the cue learning task, caffeine reduced the incidence of floating [T, F(1,30) = 7.660; p < 0.01] and increased the incidence of “thigmotaxis” (test exacte de Fisher; p < 0.05) in both treated groups.

      In the probe trial, all the vehicle animals (100%) swam “directly” to the platform quadrant during the place task, whereas nearly 50% of the 3xTg-AD+caff animals used “random search.” When the animals failed to find the platform, NTg+veh mice alternated different strategies. In contrast, 3xTg-AD mice persisted in their behavior. A higher variety of strategies was shown by both genotypes of treated animals.

      Survival and Immunoendocrine Status

      All NTg+veh mice survived until the age of 13 months, whereas the survival rate in the 3xTg-AD+veh and NTg+caff groups of the same age decreased to 80%. However, the differences were not significant when analyzed statistically.

      The weight of the spleen was increased in 3xTg-AD mice [G, F(1,30) = 6.549; p < 0.05]. In the treated groups, caffeine showed a tendency to reduce the weight of the spleen [T, F(1,30) = 2.721; p = 0.109, n.s.]. In 3xTg-AD+caff mice, this reduction was sufficient to restore the normal weight of the spleen [G, t(1,16) = -1.145; p = 0.269, n.s. vs. the control group NTg+veh] (Figure 4F).

      Corticosterone levels showed slight increases due to genotype [G, F(1,30) = 1.983; p = 0.169, n.s.] that did not reach statistical significance. If any, treatment [T, F(1,30) = 0.728; p = 0.400, n.s., GxT, F(1,30) = 0.311, p = 0.400, n.s.] slightly trend to increase corticosterone levels in 3xTg-AD+caff mice.

      Discussion

      This study analyzes, in a translational scenario, the long-term effects of a chronic low dose of caffeine started at the onset of disease (6 months of age) in 3xTg-AD mice, an animal model for Alzheimer’s disease characterized by cognitive but also BPSD-like profile (Giménez-Llort et al., 2006). The behavioral effects were assessed at advanced stages (13 month of age) when both amyloid and tau pathologies are present (Oddo et al., 2003). At this age, we have consistently reported that survival male 3xTg-AD mice starts to be compromised (Giménez-Llort et al., 2008, 2010; García-Mesa et al., 2016; Torres-Lista et al., 2017). Effects were compared to age-matched NTg mice with normal aging, that according to the background strain represent overcoming the middle age. The results showed significant effects of caffeine in most of the variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. Thus, anxiogenic effects were seen in middle-aged animals and that effect, in the 3xTg-AD model, resulted in an aggravation of its BPSD-like pattern. The groups treated with caffeine did not improve their long-term memory until they completed the behavioral spatial reference memory paradigm in the water maze, and the short-term memory, in any case, was disadvantaged. It was only in the second time interval of the probe trial, where the 3xTg-AD group treated with caffeine was able to use search strategies similar to those exhibited by both groups of NTg mice. In addition, the behavioral analysis pointed at distinct genotype-dependent functional capacity of caffeine-treated animals to meet task-dependent performance demands. Thus, selective effects of caffeine for the 3xTg-AD genotype were observed in the increase of the circadian motor activity and the reduction of body and spleen weights, indicators of the functional and neuroimmune status. Caffeine also exerted bidirectional effects: stimulating motor activity in NTg mice in the open-field (OF) test but reducing it in the 3xTg-AD; increasing the emotionality of NTg mice and decreasing it in the 3xTg-AD in the OF, EPM, and HB; and finally, modifying the navigation strategies in the learning tasks of the MWM, making them more similar.

      The anxiogenic effects induced by caffeine were observed, in general, as an increase of neophobia and the anxious profile. In the NTg genotype, the reduction in the exploratory behavior in CT, the increased latency to reach the protected areas (thigmotaxis) in the OF, and the delay in the risk assessment activity in the DLB demonstrated these anxiogenic effects. The increase in defecation observed in the NTg+caff group suggests an increased emotionality induced by caffeine. These results agree with those obtained in animals treated with high doses of caffeine, which were more emotionally reactive and showed more immobility, defecation, and urination than control animals (Anderson and Hughes, 2008). In 3xTg-AD animals, increased anxiety profile induced by chronic caffeine treatment led to a worsening BPSD pattern, where the behavioral response varied depending on the level of anxiety that each test involves. In this regard, direct exposure to an open and illuminated field caused a reduction in motor activity, almost completely. Conversely, in mild stressful environments such as the case of the motor ACT, the anxious response was reflected as an increase in the hyperactive pattern characteristic of 3xTg-AD animals (Giménez-Llort et al., 2007). In the cue learning task of the MWM, this increase of the hyperactivity pattern induced by caffeine was also observed as an increase in the swimming speed as compared to the 3xTg-AD+veh group, that may explain the reduction of floating behavior. The stimulating effects of caffeine at the motor level were observed in NTg animals as an increase in the number of crossings in the OF and the swimming speed in the learning tasks of the MWM. As expected (i.e., Nehlig et al., 1992), this stimulatory effect of the horizontal motor activity was in decrement to the vertical activity, considered the variable that better reflects the exploratory behavior per se (Colorado et al., 2006). Therefore, caffeine exerted its effects increasing hyperactivity (locomotion) and reducing vertical exploratory behavior.

      As introduced before, here it is interesting to note that a depressive-like profile paired to monoaminergic alterations has been recently reported in the 3xTg-AD mice using two models of stress-coping behavior (FST, Porsolt forced swim test, and Tail suspension test) and with an anhedonia test such as the sucrose preference test (Romano et al., 2015). In the current study, the effects of caffeine on behavioral despair were not directly addressed, i.e., using the forced swim test in order to avoid carry on effects on the MWM. Also, because in our hands 3xTg-AD mice showed a persistence of behaviors in the FST that interfered with the interpretation of the performances (Torres-Lista and Giménez-Llort, 2014, 2015). Instead, the presence of immobility (floating) was taken into account in all the trials in the maze (as described in Baeta-Corral and Giménez-Llort, 2015) and the “Cue learning with a visible platform” was a specific paradigm used to control lack of motivation as well as sensorimotor differences. Besides, the effect of caffeine on other variables such as exploration in the ACTs and more specifically the performance in the HB test for novelty seeking was among the studied behaviors as opposed to the expression of apathy/depressive symptoms.

      Regarding sensorimotor functions, the results obtained in the balance of 3xTg-AD mice cannot exclude the presence of a false positive, since the innate fear of heights made that group showing more petrifaction (i.e., genotype 3xTg-AD treated with caffeine) were those that stayed longer on the rod. This is in agreement with prior results obtained at the same age, in female 3xTg-AD mice (Giménez-Llort et al., 2007). In contrast, in NTg animals that roam the rod, caffeine improved balance but worsened muscle resistance in this genotype. Similar results were also obtained by our laboratory in the behavioral assessment A1 receptor knockout mice (Giménez-Llort et al., 2002), a genetic strategy to emulate the chronic effects of caffeine (Johansson et al., 2001).

      It has been shown that chronic caffeine treatment prevents weight gain in rodents that were fed a high fat diet (Moy and McNay, 2013). In the present work, the long-term treatment with a low dose of caffeine modified, but not corrected, the overweight of 3xTg-AD mice. We have already shown that overweight is a characteristic of the Spanish colony of 3xTg-AD mice, since onset of disease (Giménez-Llort et al., 2010), it is related to a higher relative contribution of white adipose tissue (WAT) (Giménez-Llort et al., 2010; García-Mesa et al., 2011, 2012) and could not be corrected by health strategies such as forced (Giménez-Llort et al., 2010) or voluntary exercise (García-Mesa et al., 2011). In the present work, the increase in the nocturnal activity found in 3xTg-AD+caff mice could explain their weight loss.

      The MWM showed that the increased latency, distance, and speed that chronic caffeine indiscriminately exerts over both genotypes in the cue learning task does not correspond to the expected cognitive effects, quite the contrary. In the first experience in the maze, the benefits attributed to caffeine improving attention (Griffiths et al., 1990), did not confer any advantage to the animals in this learning task, considered as a visual perceptive learning. In the following three trials for short-term memory, the effects were also contrary to those expected, since caffeine increased the distance covered to reach the platform. In the second paradigm, the place learning task, increased speed in the NTg group and decreased in the 3xTg-AD could emulate stimulant and depressant effects of low and high doses of caffeine, respectively (Fredholm et al., 1999). Thus, the chronic low-dose (0.3 mg/kg) acted exhilarating swimming speed in the NTg group, while in 3xTg-AD mice – which consistently show a higher speed than NTg animals – the reduction induced by caffeine may be the result of a depressant drug effect. Although it seems that caffeine improved short-term memory because it did so in a pair of trials, this fact could be considered exceptional in the face of nine trials in which the effects of caffeine involved a significantly worse execution. At the end of this task, all experimental groups reached the same level of acquisition and in the probe trial, conducted after 1 h 30 min, all of them also showed the same ability to remember the position of the final platform. Still, the NTg+caff group did so with one or two lower orders of magnitude. Considering that in the first trials of everyday, quantitative values between NTg and 3xTg-AD were more distinct, it is likely that a 24-h probe trial would have been more suitable to detect cognitive differences. In general, quantitative results show that, under these experimental conditions, cognitive outcomes were strongly conditioned by the genotype differences in swimming speed or the hyperactive profile shown in our 3xTg-AD colony.

      The anxiogenic conditions that the MWM represents for mice were also reflected in the high level of floating observed in NTg animals and the sustained increase in the speed of 3xTg-AD mice. As we have extensively discussed in a precedent report’ (Baeta-Corral and Giménez-Llort, 2015), this means that in this colony of 3xTg-AD mice, the MWM may probably not be specific to assess hippocampal-dependent cognitive deficits related to spatial memory, as in other models for AD (i.e., Arendash et al., 2009). In this mice model, the MWM may involve the assessment of cognition under anxiogenic conditions and therefore the measurement of emotional memory depending on limbic system. Therefore, the anxiogenic effects of caffeine may have counteracted the potential cognitive effects in both visual perceptive (cue learning task) and spatial (place learning task) learning and memory tasks. The fact that the acquisition curve of the 3xTg-AD animals showed an even better performance than NTg mice reminds us of the results obtained in this colony of animals in the conditioned fear test (España et al., 2010). In that work, not only the 3xTg-AD model but also APPSwe and APPSwe/ind models showed an enhanced contextual conditioned fear response that was dependent on their respective levels of accumulation of βA in the basolateral amygdala.

      The possible masking that the presence of flotation could exert on the measures of latency and distance was also considered. The analysis of these variables including the time invested in flotation indicated that results did not differ from those obtained when the total floating time was excluded. Regarding this “non-search behavior,” caffeine reduced the incidence of floating in the cue learning task in both genotypes. This action could be explained by its effects increasing attention or motivation in this learning and memory visual perceptive task. The effects of increasing the incidence of “thigmotaxis,” that is a non-goal-directed swimming around the wall of the pool, would be consistent with the horizontal locomotor hyperactivity induced by caffeine in the OF.

      In order to better understand the results shown in the MWM, we analyzed the swimming strategies developed along the different trials of the three paradigms (Baeta-Corral and Giménez-Llort, 2015). The detailed analysis of strategies unveiled traits that allowed to distinguish both genotypes: single- and goal-directed strategies in NTg animals but mixed and non-goal-directed in the 3xTg-AD ones. In the present work, caffeine decreased genotype differences in learning and memory tests, because the NTg-treated animals showed mixed and non-goal-directed strategies and, conversely, the 3xTg-AD exhibited single- and goal-directed strategies attributed to a normal pattern. Therefore, behaviors that were previously easy discriminated, now were more similar.

      In the probe trial, two intervals could be distinguished: the first section of navigation until the animals arrive to the previous location of the platform, and the remaining interval in which the animals could look for it or not in a new location. While in the first interval, all animals, 3xTg-AD and NTg, swam directly to the platform, caffeine treatment reduced in 50% the use of this strategy in the 3xTg-AD+caff group. In the second interval could be hypothesized that the animals are facing a problem similar to the first day of the place task, with the exception that now there have already fulfilled the acquisition process. Here, the 3xTg-AD mice showed a poor cognitive flexibility using steadily a single strategy, which could be considered an inefficient response to solve this situation. Interestingly, we have reported poor cognitive flexibility shown as persistence of behaviors in the forced swim test at more advanced stages of disease (17 months of age) (Torres-Lista and Giménez-Llort, 2014). In this sense, it is important to note that caffeine increased the variety of strategies in the 3xTg-AD group suggesting improved cognitive integration processes that may be taking part in the resolution of the problem.

      Regarding mortality data in this study, the number of animals is far from the minimum necessary to reliably assess the degree of survival and the effects of caffeine on it. Still, what our results suggest is that the data are congruent with the increased vulnerability of male 3xTg-AD mice at neuroimunoendocrine level, that could explain an important 40% of mortality at 12–13 months of age (Giménez-Llort et al., 2008) that can reach 100% at 15 month of age (García-Mesa et al., 2016). The observed mortality in the NTg+caff group would be in agreement with the reduced survival curve we reported in A1 knockout mice (Giménez-Llort et al., 2002). While health benefits of caffeine and coffee are increasingly recognized, there are also notable reports of adverse effects of especially high-dose caffeine (Jain et al., 2017), including a case report of psychotic symptoms in a patient with dementia (Golden et al., 2015). The neurochemical scenario produced by long-term loss of A1 and A2a receptor function has been addressed in A1 (Johansson et al., 2001) and A2a (Ledent et al., 1997) knockout mice. Perhaps adverse effects can be sufficiently avoided by partial receptor blockade by low doses. Already now, there is reason to consider caffeine intake in patients with BPSD and its reduction in difficult-to-treat cases.

      Since our first report (Giménez-Llort et al., 2008) proposing gender-specific immunoendocrine aging in 3xTg-AD mice, we have consistently reported that simple measures of weight and relative weight of peripheral organs indicate splenomegaly and thymus involution in this AD model. Both are considered physical indicators of peripheral immunological system aging (reviewed by Giménez-Llort et al., 2012) and impaired neuroimmunoendocrine crosstalk in AD (Giménez-Llort et al., 2014). More recently other laboratories have worked on this issue and successfully demonstrated the validity of splenomegaly as part of the autoimmune manifestations in the 3xTg-AD model (Marchese et al., 2014). In the present work, relative spleen size was slightly modulated by caffeine in both genotypes, a modulatory effect enough to restore the normal weight of the spleen in the 3xTg-AD mice. This suggests that in the 3xTg-AD+caff group, there could be an improvement in the deregulation of this network that recently has been described as relevant in AD (Giménez-Llort et al., 2014).

      At the endocrine level, slight increases of corticosterone were observed due to genotype and treatment, without reaching statistical significance. This trend would be in agreement with our first report on the increase of glucocorticoid levels in male 3xTg-AD mice at more advanced stages of disease, concomitantly to increased anxiety and peripheral immune dysfunction (Giménez-Llort et al., 2008). Stress-like patterns of increased corticosterone secretion and decreased thyrotropin are described among the neuroendocrine effects of caffeine, while chronic treatment is known to induce tolerance to these effects (Spindel et al., 1983).

      Immunomodulatory effects of caffeine by the decrease of cytokines (Frost-Meyer and Logomarsino, 2012) have also been proposed to contribute to neuroprotection, e.g., in Alzheimer’s disease (Horrigan et al., 2006). A better balance between pro- and anti-inflammatory cytokines in favor of anti-inflammation is also posed as the main hypothesis to explain the effects of caffeine reducing the inflammatory processes in severe life-threatening conditions (Bessler et al., 2012). Further experiments addressing the effects of chronic caffeine on peripheral cytokine levels will help to better elucidate its actions on the impaired neuro-immune system in AD.

      Conclusion

      The present results provide evidence of the adverse effects of caffeine in 3xTg-AD mice with a BPSD-like profile that raises the concern for its general recommendation to AD patients. These results confirm that caffeine, despite its everyday use and relative lack of government regulation, is a potent compound with multifaceted effects. Our study adds to the evidence for caffeine and other adenosine-receptor blockers have distinct physiological effects. Some ways to deal with these multi-effects are to optimize the dose, to use active substances in coffee other than caffeine, and to use synthetic drugs modeled after caffeine, such as subtype-selective adenosine receptor antagonists, rather caffeine itself. We speculate that over a chronic treatment with caffeine, the exacerbation of anxiety-like BPSD symptoms may partially interfere with the beneficial cognitive effects to the extent that they can be in the opposite direction.

      Author Contributions

      LG-L the concept development, the study design, the study conduct, and the data collection. RB-C data analysis. RB-C and LG-L data interpretation and drafting the manuscript. BJ scientific discussions and critical revision of the manuscript and figures content. All authors approved final version of the manuscript. LG-L and BJ supported for financial resources.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. The work received support by Instituto de Salud Carlos III, ISC3 PI10/00283 Spain, UAB GE260804. BJ received support by the Åhlén Foundation and the Stockholm County Council (ALF 20170190). RB-C received a predoctoral grant FI-DGR (2012FI_B1 00198) from Secretaria d’Universitats i Recerca, Departament d’Economia i Coneixement, Generalitat de Catalunya. We thank Ismael Álvarez-Montón for his assistance in the chronic caffeine treatment. The animals used in the present study came from the colony of homozygous 3xTg-AD and wild-type NTg mice established by Dr. LG-L at the Universitat Autònoma de Barcelona, Spain, from progenitors kindly provided by Prof. Frank M. LaFerla, Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.

      References Anderson N. L. Hughes R. N. (2008). Increased emotional reactivity in rats following exposure to caffeine during adolescence. Neurotoxicol. Teratol. 30 195201. 10.1016/j.ntt.2008.02.002 18378115 Arendash G. W. Cao C. (2010). Caffeine and coffee as therapeutics against Alzheimer’s disease. J. Alzheimers Dis. 20(Suppl. 1), S117S126. 10.3233/JAD-2010-091249 20182037 Arendash G. W. Mori T. Cao C. Mamcarz M. Runfeldt M. Dickson A. (2009). Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J. Alzheimers Dis. 17 661680. 10.3233/JAD-2009-1087 19581722 Arendash G. W. Schleif W. Rezai-Zadeh K. Jackson E. K. Zacharia L. C. Cracchiolo J. R. (2006). Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142 941952. 10.1016/j.neuroscience.2006.07.021 16938404 Baeta-Corral R. Giménez-Llort L. (2014). Bizarre behaviors and risk assessment in 3xTg-AD mice at early stages of the disease. Behav. Brain Res. 258 97105. 10.1016/j.bbr.2013.10.017 24144550 Baeta-Corral R. Giménez-Llort L. (2015). Persistent hyperactivity and distinctive strategy features in the Morris water maze in 3xTg-AD mice at advanced stages of disease. Behav. Neurosci. 129 129137. 10.1037/bne0000027 25730122 Batalha V. L. Ferreira D. G. Coelho J. E. Valadas J. S. Gomes R. Temido-Ferreira M. (2016). The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci. Rep. 6:31493. 10.1038/srep31493 27510168 Bessler H. Salman H. Bergman M. Djaldetti M. (2012). Caffeine alters cytokine secretion by PBMC induced by colon cancer cells. Cancer Invest. 30 8791. 10.3109/07357907.2011.636113 22149008 Blázquez G. Cañete T. Tobeña A. Giménez-Llort L. Fernández-Teruel A. (2014). Cognitive and emotional profiles of aged Alzheimer’s disease (3 × TgAD) mice: effects of environmental enrichment and sexual dimorphism. Behav. Brain Res. 268 185201. 10.1016/j.bbr.2014.04.008 24746486 Broekkamp C. L. Rijk H. W. Joly-Gelouin D. Lloyd K. L. (1986). Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur. J. Pharmacol. 126 223229. 10.1016/0014-2999(86)90051-8 2875886 Canas P. M. Porciúncula L. O. Cunha G. M. Silva C. G. Machado N. J. Oliveira J. M. (2009). Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J. Neurosci. 29 1474114751. 10.1523/JNEUROSCI.3728-09.2009 19940169 Cañete T. Blázquez G. Tobeña A. Giménez-Llort L. Fernández-Teruel A. (2015). Cognitive and emotional alterations in young Alzheimer’s disease (3xTgAD) mice: effects of neonatal handling stimulation and sexual dimorphism. Behav. Brain Res. 281 156171. 10.1016/j.bbr.2014.11.004 25446741 Cao C. Cirrito J. R. Lin X. Wang L. Verges D. K. Dickson A. (2009). Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J. Alzheimers Dis. 17 681697. 10.3233/JAD-2009-1071 19581723 Cao C. Loewenstein D. A. Lin X. Zhang C. Wang L. Duara R. (2012). High blood caffeine levels in MCI linked to lack of progression to dementia. J. Alzheimers Dis. 30 559572. 10.3233/JAD-2012-111781 22430531 Cao C. Wang L. Lin X. Mamcarz M. Zhang C. Bai G. (2011). Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer’s mice. J. Alzheimers Dis. 25 323335. 10.3233/JAD-2011-110110 21422521 Chen J. F. Yu L. Shen H. Y. He J. C. Wang X. Zheng R. (2010). What knock-out animals tell us about the effects of caffeine. J. Alzheimers Dis. 20(Suppl. 1), S17S24. 10.3233/JAD-2010-1403 20182058 Chu Y. F. Chang W. H. Black R. M. Liu J. R. Sompol P. Chen Y. (2012). Crude caffeine reduces memory impairment and amyloid β(1-42) levels in an Alzheimer’s mouse model. Food Chem. 135 20952102. 10.1016/j.foodchem.2012.04.148 22953961 Colorado R. A. Shumake J. Conejo N. M. Gonzalez-Pardo H. Gonzalez-Lima F. (2006). Effects of maternal separation, early handling, and standard facility rearing on orienting and impulsive behavior of adolescent rats. Behav. Processes 71 5158. 10.1016/j.beproc.2005.09.007 16242858 Corrêa-Velloso J. C. Gonçalves M. C. B. Naaldijka Y. Oliveira-Giacomelli A. Pillat M. M. Ulrich H. (2018). Pathophysiology in the comorbidity of Bipolar Disorder and Alzheimer’s disease: pharmacological and stem cell approaches. Prog. Neuropsychopharmacol. Biol. Psychiatry 80 3453. 10.1016/j.pnpbp.2017.04.033 28476640 Costenla A. R. Cunha R. A. de Mendonca A. (2010). Caffeine, adenosine receptors, and synaptic plasticity. J. Alzheimers Dis. 20(Suppl. 1), S25S34. 10.3233/JAD-2010-091384 20182030 Dall’Igna O. P. Fett P. Gomes M. W. Souza D. O. Cunha R. A. Lara D. R. (2007). Caffeine and adenosine A2a receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp. Neurol. 203 241245. 10.1016/j.expneurol.2006.08.008 17007839 Eskelinen M. H. Kivipelto M. (2010). Caffeine as a protective factor in dementia and Alzheimer’s disease. J. Alzheimers Dis. 20(Suppl. 1), S167S174. 10.3233/JAD-2010-1404 20182054 Eskelinen M. H. Ngandu T. Tuomilehto J. Soininen H. Kivipelto M. (2009). Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J. Alzheimers Dis. 16 8591. 10.3233/JAD-2009-0920 19158424 España J. Valero J. Miñano-Molina A. J. Masgrau R. Martín E. Guardia-Laguarta C. (2010). beta-Amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J. Neurosci. 30 94029410. 10.1523/JNEUROSCI.2154-10.2010 20631169 Fredholm B. B. (2007). Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 14 13151323. 10.1038/sj.cdd.4402132 17396131 Fredholm B. B. Bättig K. Holmen J. Nehlig A. Zvartau E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 51 83133. 10049999 Fredholm B. B. Yang J. Wang Y. (2017). Molecular aspects of medicine low, but not high, dose caffeine is a readily available probe for adenosine actions. Mol. Aspects Med. 55 2025. 10.1016/j.mam.2016.11.011 27915051 Frost-Meyer N. J. Logomarsino J. V. (2012). Impact of coffee components on inflammatory markers: a review. J. Funct. Foods 4 819830. 10.1016/j.jff.2012.05.010 García-Mesa Y. Colie S. Corpas R. Cristòfol R. Comellas F. Nebreda A. R. (2016). Oxidative stress is a central target for physical exercise neuroprotection against pathological brain aging. J. Gerontol. A Biol. Sci. Med. Sci. 71 4049. 10.1093/gerona/glv005 25720862 García-Mesa Y. Giménez-Llort L. López L. C. Venegas C. Cristòfol R. Escames G. (2012). Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol. Aging 33 1124.e131124.e29. 10.1016/j.neurobiolaging.2011.11.016 22177720 García-Mesa Y. Lopez-Ramos J. C. Gimenez-Llort L. Revilla S. Guerra R. Gruart A. (2011). Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J. Alzheimers Dis. 24 421454. 10.3233/JAD-2011-101635 21297257 Giménez-Llort L. Arranz L. Maté I. De la Fuente M. (2008). Gender-specific neuroimmunoendocrine aging in a triple-transgenic3xTgAD mouse model for Alzheimer’s disease and its relation with longevity. Neuroimmunomodulation 15 331343. 10.1159/000156475 19047809 Giménez-Llort L. Blázquez G. Cañete T. Johansson B. Oddo S. Tobeña A. (2007). Modeling behavioral and neuronal symptoms of Alzheimer’s disease in mice: a role for intraneuronal amyloid. Neurosci. Biobehav. Rev. 31 125147. 10.1016/j.neubiorev.2006.07.007 17055579 Giménez-Llort L. Blázquez G. Cañete T. Rosa R. Vivó M. Oddo S. (2006). “Modeling neuropsychiatric symptoms of Alzheimer’s disease dementia in 3xTg-AD mice,” in Alzheimer’s Disease: New Advances, eds Iqbal K. Winblad B. Avila J. (Pianoro: Medimond SRL), 513516. Giménez-Llort L. Fernandez-Teruel A. Escorihuela R. M. Fredholm B. B. Tobena A. Pekny M. (2002). Mice lacking the adenosine A1 receptor are anxious and aggressive, but are normal learners with reduced muscle strength and survival rate. Eur. J. Neurosci. 16 547550. 10.1046/j.1460-9568.2002.02122.x 12193199 Giménez-Llort L. Garcia Y. Buccieri K. Revilla S. Sunol C. Cristofol R. (2010). Gender-specific neuroimmunoendocrine response to treadmill exercise in 3xTg-AD mice. Int. J. Alzheimers Dis. 2010:128354. 10.4061/2010/128354 20981262 Giménez-Llort L. Masino S. A. Diao L. Fernandez-Teruel A. Tobena A. Halldner L. (2005). Mice lacking the adenosine A1 receptor have normal spatial learning and plasticity in the CA1 region of the hippocampus, but they habituate more slowly. Synapse 57 816. 10.1002/syn.20146 15858837 Giménez-Llort L. Maté I. Manassra R. Vida C. De la Fuente M. (2012). Peripheral immune system and neuroimmune communication impairment in a mouse model of Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1262 7484. 10.1111/j.1749-6632.2012.06639.x 22823438 Giménez-Llort L. Torres-Lista V. De la Fuente M. (2014). Crosstalk between behavior and immune system during the prodromal stages of Alzheimer’s disease. Curr. Pharm. Des. 20 47234732. 10.2174/1381612820666140130205500 24588823 Golden L. E. Sassoon P. Cáceda R. (2015). A case report of late onset psychosis with dementia and aspirin and caffeine addiction. Schizophr. Res. 168 591592. 10.1016/j.schres.2015.08.021 26338262 Griffiths R. R. Evans S. M. Heishman S. J. Preston K. L. Sannerud C. A. Wolf B. (1990). Low-dose caffeine discrimination in humans. J. Pharmacol. Exp. Ther. 252 970978. Han K. Jia N. Li J. Yang L. Min L. Q. (2013). Chronic caffeine treatment reverses memory impairment and the expression of brain BNDF and TrkB in the PS1/APP double transgenic mouse model of Alzheimer’s disease. Mol. Med. Rep. 8 737740. 10.3892/mmr.2013.1601 23900282 Hermansen K. Krogholm K. S. Bech B. H. Dragsted L. O. Hyldstrup L. Jørgensen K. (2012). Coffee can protect against disease. Ugeskr. Laeger 174 22932297. Horrigan L. A. Kelly J. P. Connor T. J. (2006). Immunomodulatory effects of caffeine: friend or foe? Pharmacol. Ther. 111 877892. 10.1016/j.pharmthera.2006.02.002 16540173 Jain S. Srivastava A. S. Verma R. P. Maggu G. (2017). Caffeine addiction: need for awareness and research and regulatory measures. Asian J. Psychiatry 10.1016/j.ajp.2017.01.008 [Epub ahead of print]. 28174076 Janus C. (2004). Search strategies used by APP transgenic mice during navigation in the Morris water maze. Learn. Mem. 11 337346. 10.1101/lm.70104 15169864 Johansson B. Georgiev V. Kuosmanen T. Fredholm B. B. (1996). Long-term treatment with some methylxanthines decreases the susceptibility to bicuculline- and pentylenetetrazol-induced seizures in mice. Relationship to c-fos expression and receptor binding. Eur. J. Neurosci. 8 24472458. 10.1111/j.1460-9568.1996.tb01539.x 8996794 Johansson B. Halldner L. Dunwiddie T. V. Masino S. A. Poelchen W. Giménez-Llort L. (2001). Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl. Acad. Sci. U.S.A. 98 94079412. 10.1073/pnas.161292398 11470917 Kilkenny C. Browne W. J. Cuthill I. C. Emerson M. Altman D. G. (2010). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLOS Biol. 8:e1000412. 10.1371/journal.pbio.1000412 20613859 Kolahdouzan M. Hamadeh M. J. (2017). The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther. 23 272290. 10.1111/cns.12684 28317317 Laurent C. Eddarkaoui S. Derisbourg M. Leboucher A. Demeyer D. Carrier S. (2014). Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol. Aging 35 20792090. 10.1016/j.neurobiolaging.2014.03.027 24780254 Ledent C. Vaugeois J. M. Schiffmann S. N. Pedrazzini T. El Yacoubi M. Vanderhaeghen J. J. (1997). Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388 674678. 10.1038/41771 9262401 Maia L. de Mendonça A. (2002). Does caffeine intake protect from Alzheimer’s disease? Eur. J. Neurol. 9 377382. Manuel I. Lombardero L. LaFerla F. M. Giménez-Llort L. Rodríguez-Puertas R. (2016). Activity of muscarinic, galanin and cannabinoid receptors in the prodromal and advanced stages in the triple transgenic mice model of Alzheimer’s disease. Neuroscience 329 284293. 10.1016/j.neuroscience.2016.05.012 27223629 Marchese M. Cowan D. Head E. Ma D. Karimi K. Ashthorpe V. (2014). Autoimmune manifestations in the 3xTg-AD model of Alzheimer’s disease. J. Alzheimers Dis. 39 191210. 10.3233/JAD-131490 24150111 Marques S. Batalha V. L. Lopes L. V. Outeiro T. F. (2011). Modulating Alzheimer’s disease through caffeine: a putative link to epigenetics. J. Alzheimers Dis. 24(Suppl. 2), 161171. 10.3233/JAD-2011-110032 21427489 Moy G. A. McNay E. C. (2013). Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF. Physiol. Behav. 109 6974. 10.1016/j.physbeh.2012.11.008 23220362 Nehlig A. (2010). Is caffeine a cognitive enhancer? J. Alzheimers Dis. 20(Suppl. 1), S85S94. 10.3233/JAD-2010-091315 20182035 Nehlig A. Daval J. L. Debry G. (1992). Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Brain Res. Rev. 17 139170. 10.1016/0165-0173(92)90012-B 1356551 Oddo S. Caccamo A. Shepherd J. D. Murphy M. P. Golde T. E. Kayed R. (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39 409421. 10.1016/S0896-6273(03)00434-3 Oñatibia-Astibia A. Franco R. Martínez-Pinilla E. (2017). Health benefits of methylxanthines in neurodegenerative diseases. Mol. Nutr. Food Res. 61:1600670. 10.1002/mnfr.201600670 28074613 Piccininni M. Di Carlo A. Baldereschi M. Zaccara G. Inzitari D. (2005). Behavioral and psychological symptoms in Alzheimer’s disease: frequency and relationship with duration and severity of the disease. Dement. Geriatr. Cogn. Disord. 19 276281. 10.1159/000084552 15775717 Reisberg B. Borenstein J. Salob S. P. Ferris S. H. Franssen E. Georgotas A. (1987). Behavioral symptoms in Alzheimer’s disease: phenomenology and treatment. J. Clin. Psychiatry 48(Suppl.), 915. Romano A. Pace L. Tempesta B. Lavecchia A. M. Macheda T. Bedse G. (2015). Depressive-like behavior is paired to monoaminergic alteration in a murine model of Alzheimer’s disease. Int. J. Neuropsychopharmacol. 18:yu020. 10.1093/ijnp/pyu020 25609597 Sabogal-Guáqueta A.-M. Carrillo-Hormaz L. Osorio E. Cardona-Gómez G. P. (2017). Effects of biflavonoids from Garcinia madruno on a triple transgenic mouse model of Alzheimer’s disease. Pharmacol. Res. 10.1016/j.phrs.2017.12.002 [Epub ahead of print]. 29229355 Silverman K. Mumford G. K. Griffiths R. R. (1994). A procedure for studying the within-session onset of human drug discrimination. J. Exp. Anal. Behav. 61 181189. 10.1901/jeab.1994.61-181 8169567 Solfrizzi V. Panza F. Imbimbo B. P. D’Intronoa A. Galluzzof L. Gandin C. (2015). Coffee consumption habits and the risk of mild cognitive impairment: the Italian longitudinal study on aging. J. Alzheimers Dis. 47 889899. 10.3233/JAD-150333 26401769 Spindel E. Griffith L. Wurtman R. J. (1983). Neuroendocrine effects of caffeine. II. Effects on thyrotropin and corticosterone secretion. J. Pharmacol. Exp. Ther. 225 346350. 6302246 Torres-Lista V. de la Fuente M. Giménez-Llort L. (2017). Survival curves and behavioral profiles of female 3xTg-AD mice surviving to 18-months of age as compared to mice with normal aging. J. Alzheimers Dis. Rep. 1 4757. 10.3233/ADR-170011 Torres-Lista V. Giménez-Llort L. (2014). Persistence of behaviours in the Forced Swim Test in 3xTg-AD mice at advanced stages of disease. Behav. Processes 106 118121. 10.1016/j.beproc.2014.05.001 24857980 Torres-Lista V. Giménez-Llort L. (2015). Early postnatal handling and environmental enrichment improve the behavioral responses of 17-month-old 3xTg-AD and non-transgenic mice in the Forced Swim Test in a gender-dependent manner. Behav. Processes 120 120127. 10.1016/j.beproc.2015.09.011 26431900 Wang F. Feng T. Y. Yang S. Preter M. Zhou J. Wang X. (2016). Drug therapy for behavioral, and psychological symptoms of dementia. Curr. Neuropharmacol. 14 307313. 10.2174/1570159X14666151208114232 Wierzejska R. (2017). Can coffee consumption lower the risk of Alzheimer’s disease and Parkinson’s disease? A literature review. Arch. Med. Sci. 13 507514. 10.5114/aoms.2016.63599 28507563
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016ichugao.com.cn
      www.etulel.com.cn
      www.hi04.org.cn
      e-ting.net.cn
      www.vimily.com.cn
      svns.com.cn
      shbc118.com.cn
      szcourt.org.cn
      voam.com.cn
      willcai.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p