Front. Oncol. Frontiers in Oncology Front. Oncol. 2234-943X Frontiers Media S.A. 10.3389/fonc.2021.663419 Oncology Original Research Disease Spectrum of Breast Cancer Susceptibility Genes Wang Jin 1 2 Singh Preeti 2 Yin Kanhua 2 3 Zhou Jingan 2 4 Bao Yujia 5 Wu Menghua 5 Pathak Kush 6 McKinley Sophia K. 7 Braun Danielle 3 8 Hughes Kevin S. 2 * 1 Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China 2 Division of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States 3 Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, United States 4 Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China 5 Computer Science & Artificial Intelligence, Massachusetts Institute of Technology, Boston, MA, United States 6 Department of Surgical Oncology, P. D Hinduja Hospital, Mumbai, India 7 Department of Surgery, Massachusetts General Hospital, Boston, MA, United States 8 Department of Biostatistics, Harvard University T.H. Chan School of Public Health, Boston, MA, United States

Edited by: Hee Jeong Kim, Asan Medical Center, South Korea

Reviewed by: Praveen Vikas, University of Iowa Hospitals and Clinics, United States; Jaime D. Lewis, University of Cincinnati, United States; Angela Toss, University of Modena and Reggio Emilia, Italy

*Correspondence: Kevin S. Hughes, kshughes@partners.org

This article was submitted to Women’s Cancer, a section of the journal Frontiers in Oncology

20 04 2021 2021 11 663419 02 02 2021 22 03 2021 Copyright © 2021 Wang, Singh, Yin, Zhou, Bao, Wu, Pathak, McKinley, Braun and Hughes 2021 Wang, Singh, Yin, Zhou, Bao, Wu, Pathak, McKinley, Braun and Hughes

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Background

Pathogenic variants in cancer susceptibility genes can increase the risk of a spectrum of diseases, which clinicians must manage for their patients. We evaluated the disease spectrum of breast cancer susceptibility genes (BCSGs) with the aim of developing a comprehensive resource of gene-disease associations for clinicians.

Methods

Twelve genes (ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, RECQL, STK11, and TP53), all of which have been conclusively established as BCSGs by the Clinical Genome Resource (ClinGen) and/or the NCCN guidelines, were investigated. The potential gene-disease associations for these 12 genes were verified and evaluated based on six genetic resources (ClinGen, NCCN, OMIM, Genetics Home Reference, GeneCards, and Gene-NCBI) and an additional literature review using a semiautomated natural language processing (NLP) abstract classification procedure.

Results

Forty-two diseases were found to be associated with one or more of the 12 BCSGs for a total of 86 gene-disease associations, of which 90% (78/86) were verified by ClinGen and/or NCCN. Four gene-disease associations could not be verified by either ClinGen or NCCN but were verified by at least three of the other four genetic resources. Four gene-disease associations were verified by the NLP procedure alone.

Conclusion

This study is unique in that it systematically investigates the reported disease spectrum of BCSGs by surveying multiple genetic resources and the literature with the aim of developing a single consolidated, comprehensive resource for clinicians. This innovative approach provides a general guide for evaluating gene-disease associations for BCSGs, potentially improving the clinical management of at-risk individuals.

breast cancer cancer susceptibility genes disease spectrum germline mutation cancer genetic

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Hereditary predisposition is found in approximately 10% of all breast cancer cases (1). Most are related to germline mutations in high-penetrance genes such as BRCA1 and BRCA2 (25). Since the identification of BRCA1 and BRCA2 (6, 7), genetic testing has become a routine part of clinical care for individuals with possible hereditary breast cancer predisposition (1). With the substantial increase in knowledge of cancer genetics (8, 9), more than 30 potential breast cancer susceptibility genes (BCSGs) have been suggested, including genes with high (e.g., BRCA1/2, TP53, CDH1, PTEN, and STK11), moderate (e.g., PALB2, CHEK2, ATM, and RECQL), and low-to-disputed penetrance (e.g., MLH1, MSH2, MSH6, PMS2, MEN1, and PPM1D) (912). Among them, 12 genes with high or moderate penetrance for breast cancer have been definitively established by either the Clinical Genome Resource (ClinGen) (11) or the National Comprehensive Cancer Network (NCCN) (12), the top two authoritative resources.

      Pathogenic variants in a BCSG can also increase the risk of other diseases. For instance, CDH1 is not only associated with increased breast cancer risk, but also a predisposition to gastric cancer (13, 14). Furthermore, several BCSGs are responsible for rare hereditary cancer syndromes, such as TP53, which is responsible for Li-Fraumeni syndrome. Individuals with this syndrome have a very high risk of developing multiple malignancies, including but not limited to, breast cancer, sarcoma, brain cancer, leukemia, lung cancer, and adrenocortical cancer (1518). As comprehensive panel genetic testing becomes the norm (19), clinicians are increasingly faced with the challenge of advising mutation carriers about genes they may be less familiar with or involving cancer susceptibility in organs outside their specialty.

      A variety of existing resources, in addition to NCCN and ClinGen, describe the diseases associated with each gene (20), including but not limited to, Genetics Home Reference (https://ghr.nlm.nih.gov/), Online Mendelian Inheritance in Man (OMIM) (https://www.ncbi.nlm.nih.gov/omim), GeneCards (https://www.genecards.org/), and Gene-NCBI (https://www.ncbi.nlm.nih.gov/gene/). However, gene-disease associations described among these six resources are often ambiguous, incomplete, or confusing. For example, the association of BRCA2 with melanoma is identified in NCCN and Genetics Home Reference but not in other genetic resources such as ClinGen, OMIM, GeneCards, or Gene-NCBI. Furthermore, some gene-disease associations are not found in any genetic resource, such as the association of CHEK2 with gastric cancer, which has been established with high likelihood in the literature (21, 22). This poses a considerable dilemma for clinicians who are obligated to identify and assess gene-disease associations that require management in clinical practice.

      In addition, the rapidly growing medical literature makes it not possible for clinicians to extract useful information precisely and quickly. To address this challenge, Natural language processing (NLP), a technology that trains a computational algorithm with many annotated examples to allow the computer to “learn” and “predict” the meaning of human language, may present a promising solution. Our previous studies illustrate how to train and evaluate an NLP algorithm and incorporate it into a semi-automated procedure to accurately identify the penetrance studies based on abstracts (2325).

      Relying on a patchwork of resources is cumbersome, time-consuming, and can lead to errors of omission. A single comprehensive resource is critically needed to streamline this process. In light of these issues, we have developed a novel approach to identify, evaluate, and curate the diseases or complex syndromes associated with cancer susceptibility genes based on six genetic resources and the NLP literature review.

      Methods Established Breast Cancer Susceptibility Genes

      Germline genetic testing is performed on non-cancer cells and mostly blood-based or saliva-based, and a germline pathogenic variant in a cancer susceptibility gene indicates the possibility that other family members have a hereditary susceptibility to developing cancer. In contrast, somatic testing is performed on cancer cells (e.g., tumor tissue), and a somatic variant may guide targeted therapy and other treatment decisions. The present study focused on germline BCSGs, and only monoallelic BCSGs were included. The BCSGs were initially identified using ClinGen (11) and NCCN (12). In 2019, Lee and other experts on the ClinGen Hereditary Cancer Clinical Domain Executive Committee published a list of 31 high-priority genes for curation using the ClinGen Gene Curation framework (11). Among these 31 genes, 11 classified as having a ‘Definitive’ or ‘Moderate’ association with breast cancer were included in our study. The NCCN Guidelines for ‘Genetic/Familial High-Risk Assessment: Breast and Ovarian’ identified 21 genes offered in multi-gene panels where breast cancer risk was classified as ‘Very strong’, ‘Strong’, or ‘Limited’ (12). Of these 21, the 12 genes that were classified as ‘Very strong’ or ‘Strong’ were also included in our study. Accounting for overlap between the two resources, 12 BCSGs were selected for breast cancer, namely, ATM, BARD1, BRCA1, BRCA2, CDH1, CHEK2, NF1, PALB2, PTEN, RECQL, STK11, and TP53 ( Figure 1 ).

      Flow chart for identifying and evaluating gene-disease association. The number ‘1’ indicates that the gene was associated with BCSG in the resource. The number ‘0’ indicates that the gene’s association with BCSG was refuted in the resource. The number ‘9’ indicates that the gene’s association with BCSG was unclear in the resource. Uncertain association indicates that the gene’s association with BCSG is unclear, and further studies are required to refute or accept the association. BCSGs, breast cancer susceptibility genes; NLP, natural language processing.

      Identification of Gene-Disease Association

      Diseases associated with BCSGs were initially identified in the six genetic resources (ClinGen, NCCN, OMIM, Genetics Home Reference, GeneCards, and Gene-NCBI) and by reviewing the literature. For each of these sources, each potential association was coded in our database as ‘1’ if the association was definitive, ‘9’ if the association was possible, and ‘0’ if there was no association, as shown in Supplementary Table 1 . The date of last access to all resources was November 20, 2020. In the following sections we describe in detail each of these resources.

      ClinGen

      ClinGen is a database curated by the Clinical Genome Resource. It uses a standardized clinical validity framework to assess evidence to validate a gene-disease association and to define disease management. We extracted data regarding gene-disease associations directly from the ‘Gene-Disease Validity’ reports in ClinGen (https://search.clinicalgenome.org/kb/gene-validity).

      The strength of ‘Gene-Disease Validity’ was classified by ClinGen as ‘Definitive’, ‘Strong’, ‘Moderate’, ‘Limited’, ‘Refuted’, ‘Disputed’, or ‘No Reported Evidence’ based on the level of evidence. If an association was classified as ‘Definitive’, ‘Strong’, or ‘Moderate’, it was coded in our database as ‘1’ in the field ClinGen Validity. If an association was classified as ‘Limited’, it was coded in our database as ‘9’. If an association was classified as ‘Refuted’, ‘Disputed’ or ‘No Reported Evidence’, it was coded in our database as ‘0’.

      We also reviewed the ‘Actionability’ reports in ClinGen, where the gene-disease associations were identified indirectly (https://clinicalgenome.org/working-groups/actionability/). The ‘Actionability’ report in ClinGen summarizes secondary findings in patients and identifies diseases caused by susceptibility genes that can be prevented or palliated. A gene-disease association was coded as ‘1’ in our database in the field ClinGen Actionability, if the disease was a manifestation of the genetic disorder, if management of that disease was recommended by screening or preventive intervention, or if the disease was verified in the ‘Penetrance’ section of the ‘Actionability’ report. The gene-disease association was coded in our database as ‘9’, if the report suggested a possible relationship.

      NCCN Guidelines

      Data was extracted from the NCCN Guidelines on Genetic/Familial High-Risk Assessment: Breast, Ovarian and Pancreatic (Version 2.2021) (12) and Colorectal (Version 2.2019) (26). A gene-disease association was coded as ‘1’ in our database if a disease or a feature was used to identify patients for genetic testing or if the management of a disease was recommended for mutation carriers. If NCCN identified a possible relationship, the gene-disease association was coded as ‘9’.

      Other Genetic Resources

      Other reputable databases such as ‘OMIM’, ‘Genetics Home Reference’, ‘GeneCards’, and ‘Gene-NCBI’ (described in detail below) were also used to identify gene-disease associations. If a gene-disease association was present in one of these resources, this association was coded as ‘1’ in our database.

      ‘OMIM’ is an online compendium of human genes and genetic phenotypes that is written and regularly updated by the McKusick-Nathans Institute of Genetic Medicine. The “Clinical Synopses” table for each gene was used to identify gene-disease associations.

      ‘Genetics Home Reference’ is a free online resource that was created after the announcement of the human genome map in 2003 and is maintained by the National Library of Medicine. It is designed to make the connection between genetics and disease more transparent for the general public. The “health conditions related to the Genetic Changes” section for each gene was used to identify gene-disease associations. Of note, as of October 1, 2020, Genetics Home Reference was ended as a stand-alone website, and most of its content has been transferred to MedlinePlus Genetics (https://medlineplus.gov/genetics).

      ‘GeneCards’ is a comprehensive database of human genes. The content of this database is reviewed and updated by the GeneCards Suite Project Team. The “disorders” table for each gene was used to identify gene-disease associations.

      ‘Gene-NCBI’ is a resource of the National Center for Biotechnology Information (NCBI), which centralizes gene-related information into individual records. Many different types of gene-specific data are connected to the record including gene products and their attributes, expression, interactions, pathways, variation, and phenotypic consequences. The “Phenotypes” section for each gene was used to identify gene-disease associations.

      Evaluation of Gene-Disease Association

      The process of validating the gene-disease association is outlined in Figure 1 . Of the six genetic resources, we considered ClinGen and NCCN the most authoritative and curated these as major resources. As shown in Figure 1 , we designated the gene-disease association ‘verified’ if it was coded as ‘1’ in either ClinGen or NCCN. Additionally, if the gene-disease association was coded as ‘1’ in more than three other genetic resources (OMIM, Genetic Home Reference, GeneCard, and Gene-NCBI), it was also designated ‘verified’. On the other hand, we designated the gene-disease association ‘uncertain’, if it was not coded as ‘1’ in either ClinGen or NCCN and was found in fewer than three of the other genetic resources (OMIM, Genetic Home Reference, GeneCard, and Gene-NCBI). We designated the gene-disease association as ‘no association’ directly if it was coded as ‘0’ in ClinGen.

      All ‘uncertain’ gene-disease associations were further evaluated by literature review using an abstract classifier NLP procedure, which classifies abstracts as being relevant to cancer penetrance or not (23, 24). Our NLP abstract classifier was developed to cull germline penetrance papers from PubMed. In brief, it uses a Support Vector Machine algorithm to classify abstracts as relevant to penetrance, prevalence, both, or neither (24). This NLP abstract classifier has been incorporated into a semiautomated procedure. The sensitivity and specificity of this approach in identifying cancer penetrance studies have been validated (23).

      In this study, we used standard gene and disease PubMed search terms ( Supplementary Table 2 ) to run the procedure. The NLP abstract classifier was applied to identify the abstracts that were classified as relevant to prevalence or penetrance, and the abstracts were subsequently reviewed by two researchers independently. We then retrieved the full text of these penetrance studies and determined the gene-disease associations based on the quality of the penetrance study (including type of study, sample size, carrier numbers, and ascertainment criteria) as well as the statistical significance of the results.

      If no relevant penetrance abstract was identified, the association was designated ‘no association’. If relevant penetrance studies were identified, they were presented in a group consensus meeting with our principal investigator (KSH), one surgery resident, and four clinical researchers participating (two attending surgical oncologists and two research fellows in surgical oncology). The attendees selected high-quality penetrance studies based on study design, patient population, number of pathogenic variant carriers, and ascertainment mechanism, and reached a final consensus based on evaluating these high-quality studies. As a rule of thumb, we considered a gene-cancer association to be real if at least one high-quality penetrance study reported at least a two-fold increased risk that was statistically significant. If the attendees could not reach a consensus, the gene-disease association remained ‘uncertain’. Of note, to ensure accuracy, the group meeting not only discussed the potential controversial gene-cancer associations but also examined all the evidence regarding every gene-cancer association reported in the study.

      Results Breast Cancer Susceptibility Genes in Six Genetic Resources

      As shown in Table 1 , among the twelve established BCSGs, the association of breast cancer risk with ATM, BARD1, BRCA1, BRCA2, CDH1, and CHEK2 was identified in all six genetic sources; PALB2, PTEN, STK11 and TP53 were identified in at least two genetic sources. However, the association of breast cancer risk with NF1 was only identified in NCCN, and RECQL was only identified in ClinGen.

      Associations between the 12 susceptibility genes and breast cancer in six genetic resources.

      Gene Genetic Resources
      No. of resources ClinGen NCCN OMIM GHR GeneCards Gene-NCBI
      ATM 6 Definitive Strong 1 1 1 1
      BARD1 6 Definitive Strong fortriple-negative disease 1 1 1 1
      BRCA1 6 Definitive Very strong 1 1 1 1
      BRCA2 6 Definitive Very strong 1 1 1 1
      CDH1 6 Definitive Strong 1 1 1 1
      CHEK2 6 Definitive Strong 1 1 1 1
      STK11 4 Definitive Strong 1 1
      PALB2 4 Definitive Strong 1 1
      TP53 4 Definitive Strong 1 1
      PTEN 3 Definitive Strong 1
      NF1 1 Strong
      RECQL 1 Moderate

      The number ‘1’ indicates that the gene was associated with breast cancer in the resource.

      GHR, Genetics Home Reference; NCBI, National Center for Biotechnology Information.

      Diseases Associated With BCSGs

      There were 66 unique diseases initially identified, of which 42 diseases were determined to be associated with BCSGs by our evaluation ( Supplementary Table 3 ). Besides breast cancer, malignant diseases including prostate cancer, pancreatic cancer, colorectal cancer, brain tumor, gastric cancer, ovarian cancer, and sarcoma were associated with at least three BCSGs (range: 3 to 6). However, BARD1 and RECQL were only associated with breast cancer, without increased risk for any other diseases.

      The disease spectrum of each BCSG is shown in Table 2 . Furthermore, several BCSGs are associated with specific syndromes, such as NF1 with Neurofibromatosis Type 1, PTEN with Cowden Syndrome, STK11 with Peutz-Jeghers Syndrome, and TP53 with Li-Fraumeni Syndrome. The most common cancers associated with these syndromes were determined to be associated with the corresponding susceptibility genes by our procedure.

      Diseases associated with the 12 breast cancer susceptibility genes.

      BCSGs Disease Spectrum
      Malignant Benign Borderline
      ATM Breast Cancer, Colorectal Cancer, Gastric Cancer, Pancreatic Cancer, Prostate Cancer
      BARD1 Breast Cancer
      BRCA1 Breast Cancer, Ovarian Cancer, Pancreatic Cancer, Prostate Cancer
      BRCA2 Breast Cancer, Melanoma, Ovarian Cancer, Pancreatic Cancer, Prostate Cancer
      CDH1 Breast Cancer, Gastric Cancer BCD Syndrome*
      CHEK2 Breast Cancer, Colorectal Cancer, Gastric Cancer, Kidney Cancer, Prostate Cancer, Osteosarcoma, Thyroid Cancer
      NF1 Brain Tumor, Breast Cancer, Leukemia, Sarcoma Bone Dysplasia, Cafe-Au-Lait Spots, Intellectual Disability, Iris Hamartoma, Neurofibroma, Pulmonary Stenosis, Skin GIST, Paraganglioma, Pheochromocytoma
      PALB2 Breast Cancer, Ovarian Cancer, Pancreatic Cancer, Prostate Cancer
      PTEN Brain Tumor, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Melanoma, Thyroid Cancer Acral Keratoses, Autism, Cerebrovascular Malformation, Facial Papules, GI Hamartomatous Polyps, Lipoma, Macrocephaly, Macular Pigmentation, Oral Mucosal Papillomatosis, Palmoplantar Keratoses, Thyroid, Trichilemmoma, Uterine Fibroid
      RECQL Breast Cancer
      STK11 Breast Cancer, Cervical Cancer, Colorectal Cancer, Endometrial Cancer, Gastric Cancer, Hepatobiliary Cancer, Lung Cancer, Pancreatic Cancer, Small Intestine Cancer GI Hamartomatous Polyps, Skin Non-Epithelial Ovarian Tumor, Ovarian SCST, Testicular SCST
      TP53 Adrenocortical Carcinoma, Brain Tumor, Breast Cancer, Colorectal Cancer, Hepatobiliary Cancer, Pancreatic Cancer, Osteosarcoma, Soft Tissue Sarcoma

      GI, gastrointestinal; BCD, blepharocheilodontic; SCST, sex cord-stromal tumor; GIST, gastrointestinal stromal tumor.

      *BCD syndrome consists of facial dysmorphism, hypertelorism, imperforate anus, distichiasis, clinodactyly, hypoplastic nails, choanal atresia, cleft palate, and benign teeth disorder.

      Disease Spectrum of BCSGs and the Corresponding Resources

      A total of 160 gene-disease associations were initially identified in the six genetic resources and literature ( Supplementary Table 1 ). As shown in Figure 2 , a total of 86 gene-disease associations were identified by our evaluation. Among them, 90% (78/86) of gene-disease associations were verified by ClinGen and/or NCCN. Conversely, four gene-disease associations were absent from both ClinGen and NCCN but verified in three or more of the other four genetic resources. These included CDH1-Blepharocheilodontic (BCD) Syndrome, CHEK2-osteosarcoma, NF1-leukemia, and NF1-pulmonary stenosis. Notably, four gene-disease associations, namely, ATM-gastric cancer, CHEK2-gastric cancer, CHEK2-kidney cancer, and CHEK2-thyroid cancer, were verified by NLP literature review alone.

      Disease spectrum of breast cancer susceptibility genes. “†” refers to both female and male breast cancer. The three colors represent malignant disease (black), benign disease (grey), and borderline disease (orange), respectively. NLP, natural language processing; GI, gastrointestinal; BCD, blepharocheilodontic syndrome; SCST, sex cord-stromal tumor; GIST, gastrointestinal stromal tumor; NEOT, non-epithelial ovarian tumor.

      Discussion

      Although hereditary breast cancer is mainly associated with BRCA1/2 pathogenic variants, it may also be associated with germline mutations in other genes. Thus, multi-gene panels usually include both high- and moderate-penetrance genes associated with breast cancer (8, 27, 28). The twelve BCSGs included in our study are those previously established by ClinGen and/or NCCN. To outline the disease spectrum for the twelve BCSGs, we examined six reliable genetic resources combined with a literature review using NLP. Finally, 49 unique diseases were verified as being associated with the twelve BCSGs.

      One of the authoritative resources used for this study is the NIH-funded ClinGen. In contrast to “expert panel” consensus assessments used by NCCN, ClinGen creates a framework that provides evidence for the strength of the association between a gene and a disease risk through semi-quantitative classification (29). The ClinGen classification is based on genetic evidence including case-level data and case-control data, as well as experimental evidence. The other authoritative resource employed for this study is the NCCN Guidelines - the recognized standard for clinical practice in cancer care - using its frequently updated set of clinical practice guidelines. More than 1,300 physicians and oncology researchers from the NCCN Member Institutions comprise the expert panels. Hence, the gene-disease association was designated ‘verified’ in our study if it was established by either ClinGen or NCCN. Although the standardized literature review method used by ClinGen is outstanding (11), this approach is time-consuming and leads to delay in reflecting the most recent findings. In addition, the gene-cancer associations listed on the NCCN guidelines may not be comprehensive. Therefore, it is necessary to include other genetic resources and find associations missed or not yet addressed by ClinGen and/or NCCN.

      Four other genetic resources (OMIM, Genetics Home Reference, GeneCards, and Gene-NCBI) are also considered reputable and contain a comprehensive compendium of relationships between phenotypes and genotypes. However, these resources lack the strict curation processes for evaluating strength of evidence utilized by ClinGen or the expert panels employed by NCCN. Therefore, we rated the level of evidence from these four resources lower than ClinGen and NCCN, and the gene-disease association was designated ‘verified’ only if it was established by at least three of these sources when the relationship was not found in ClinGen or NCCN. Meanwhile, we understand that the likely valid gene-disease associations we identified that were not present in ClinGen or NCCN may be explained in part by the observation that the latter entities work in a slow and deliberate manner that might not yet have allowed a full review of all associations.

      Forty-nine unique diseases were verified as being associated with BCSGs by our procedure. Each BCSG was associated with at least three diseases except BARD1 and RECQL, which were only associated with breast cancer. BARD1 shares strong structural homology with BRCA1 and has been demonstrated to be involved in the cellular DNA repair process (30). The association between breast cancer and mutations in the BARD1 gene was first found in a large case-control study of 65,057 women with breast cancer (8), where the prevalence of BARD1 mutations was 0.18%, significantly greater than the controls (OR = 2.16, 95% CI: 1.31-3.63, p < 0.05). On the other hand, RECQL was first identified as a novel breast cancer susceptibility gene in 2015, by two independent research groups (31, 32). Bogdanova et al. compared 2596 breast cancer patients and 2132 healthy females from central Europe and indicated that RECQL* c.1667_1667+3delAGTA could represent a moderate-risk breast cancer susceptibility allele (33). A recent study found a moderate risk of breast cancer in African American women with RECQL mutation (34). In addition, RECQL is considered associated with hereditary breast carcinoma in ClinGen (gene-disease validity: moderate) (https://search.clinicalgenome.org/kb/genes/HGNC:9948). However, there is no high-quality penetrance study that showed statistical significance for additional diseases beyond breast cancer.

      Generally speaking the BCSGs are thought to affect female breast cancer risk, but some are also associated with male breast cancer (MBC). Tai et al. evaluated 97 men with breast cancer from 1939 families. The cumulative risk of breast cancer was higher in both BRCA1 and BRCA2 male heterozygotes compared to those without a BRCA1/2 pathogenic variant at all ages. The relative risk of developing breast cancer peaks in the 30s and 40s (35). Another study analyzed 321 families with BRCA2 mutations both retrospectively and prospectively, suggesting a cumulative risk for male breast cancer of 8.9% up to age 80 (36). Based on these data, NCCN guidelines recommend that men with a BRCA1/2 pathogenic variant should receive a clinical breast exam at a young age (12).

      Notably, we found that CHEK2 and PALB2 were also associated with male breast cancer in GeneCards. We verified these associations by literature review based on the NLP procedure, with the literature showing strong evidence in penetrance studies. The CHEK2/1100delC, a truncating variant, is present in 13.5% of individuals from families with male breast cancer (p = 0.00015) and results in an approximately ten-fold increase of breast cancer risk in men (37). A population-based study found the CHEK2/1100delC was present in 4.2% of unselected male breast cancer cases, more prevalent than the frequency of 1.1% in 1,692 controls (OR = 4.1, 95% CI: 1.2-14.3, p = 0.05) (38). Recently, Yang et al. analyzed data from 524 families with PALB2 pathogenic variants from 21 countries and found an association between PALB2 and risk of male breast cancer (RR = 7.34, 95% CI: 1.28-42.18, p = 0.026) (39). Additionally, Pritzlaff et al. reviewed 715 male breast cancer patients who underwent germline multi-gene panel testing and found that pathogenic variants in CHEK2 (OR = 3.7, p = 6.24 × 10-24) and PALB2 (OR = 6.6, p = 0.01) were both significantly associated with breast cancer risk in men (40).

      In the present study, 82% of gene-disease associations were verified by ClinGen and/or NCCN, underscoring the credibility of these two major resources. Nevertheless, six gene-disease associations were not found in ClinGen or NCCN but were instead identified in at least three of the other four genetic resources. Furthermore, these associations were similarly supported by published studies with strong evidence of the association, underscoring the reliability our review criteria.

      Of note, four gene-disease associations, i.e., ATM-gastric cancer, CHEK2-gastric cancer, CHEK2-kidney cancer, and CHEK2-thyroid cancer, were not identified in any of the six resources but were verified by the NLP-aided literature review. In 2015, Helgason et al. reported a GWAS of gastric cancer in a European population, using information on 2,500 population-based gastric cancer cases and 205,652 controls. They found a new gastric cancer association with loss-of-function mutations in ATM (OR = 4.74, p = 8.0 × 10-12) (41). A recent study reported that ATM carriers were significantly associated with lower protein expression in five cancer types, including gastric cancer (42). A CHEK2 mutation was also identified to predispose to gastric cancer (OR = 1.6, p = 0.004), particularly in young-onset cases (OR = 2.1, p = 0.01) (21). Additionally, Näslund-Koch et al. examined 86,975 individuals from the Copenhagen General Population Study. The age- and sex-adjusted hazard ratio for CHEK2/1100delC heterozygotes compared with noncarriers was 5.76 (95% CI: 2.12-15.6) for gastric cancer and 3.61 (95% CI: 1.33-9.79) for kidney cancer (22). Furthermore, a case-control study reported a CHEK2 mutation in 15.6% of unselected patients with papillary thyroid cancer, compared to 6.0% in age- and sex-matched controls (OR = 3.3, p < 0.0001) (43). Another CHEK2 variant, c.470C allele, was shown to increase the risk of papillary thyroid carcinoma in female patients by almost 13-fold (OR = 12.81, p = 0.019) (44).

      The NCCN guidelines for considering risk-reducing mastectomy and breast MRI are well established for carriers of high-risk genes (e.g., BRCA1, BRCA2, and PALB2), and guidelines on annual mammogram with consideration of breast MRI are also established regarding carriers with moderate-risk genes (e.g., ATM and CHEK2) (12). Women with genes such as TP53, CDH1, PTEN, STK11, and NF1 may be managed according to established guidelines for the associated cancer predisposition syndrome. For instance, in Li-Fraumeni syndrome, annual whole-body MRI is advised in TP53 pathogenic variant carriers (45, 46). More aggressive interventions may be recommended, such as consideration of prophylactic gastrectomy if a CDH1 mutation is found, even in the absence of gastric cancer in the family (47). This necessitates that clinicians stay current with management guidelines and access reliable information resources to implement these updates effectively for their patients (e.g., resources such as ASK2ME could aid with this). Risks of other cancers for those BCSG carriers appear to be modestly elevated, but whether this should alter screening recommendations is unknown. For example, the risk of leukemia with “TP53” is 1.6 times as high as the general population, but since the general population risk of leukemia is 0.9%, this amounts to an absolute risk of only 1.4% by age 85 (48). Although a pathogenic mutation in TP53 is statistically associated with leukemia, it would be hard to justify intensive screening or prevention measures based on this information. It is beyond the scope of this paper to identify the penetrance for each gene-disease association, but this will be the target of future work. Our proposed expansion of disease-gene association reporting will require clinicians to counsel patients appropriately about their risk of additional diseases and to refer them to genetic counselors or other specialists (e.g., neurologist, urologist).

      Evaluation based on six genetic resources could result in omissions of some phenotypes associated with BCSGs. We attempted to lessen this effect by including a literature review as an additional step. Another limitation is that the strict criteria we set for gene-disease associations (e.g., verified by ClinGen/NCCN, or at least three genetic resources) could mean that some diseases are overlooked. By reviewing the literature using NLP, we reevaluated those uncertain gene-disease associations to lessen this effect as much as possible. Although the comprehensiveness of our data seems to be conducive to more individualized care, this raises the problem of absence of management guidelines for patients who carry such variants. Additionally, the clinical utility of identifying potential diseases in BCSG carriers may conflict with current cost-efficacy constraints (i.e., interpreting variants, genetic counseling, overdiagnoses, and resulting anxiety in patients). Of note, we are making assumptions based on the available evidence, and we recognize that authoritative sources, such as ClinGen and NCCN guidelines, are updated periodically. Thus, this study represents a snapshot of current knowledge and understanding, rather than a definitive conclusion.

      In 2016, we built a clinical decision support tool for cancer susceptibility genes, called Ask2Me.Org (49). This tool provides labs, researchers, and clinical experts with the estimated cancer risk of germline pathogenic variants, including the disease spectrum for each susceptibility gene. Ask2Me.Org has been recommended as a resource in recent clinical practice guidelines (50). These disease spectrums we verified in the current study will be soon available in our website Ask2Me.Org, which is constantly updated. Ongoing research based on accurate estimates of cancer risk needs to be conducted in terms of appropriate management strategies.

      Conclusions

      To the best of our knowledge, this is the first study to collate the disease spectrum of BCSGs from multiple sources and make it available in a single resource. Notably, we developed an innovative assessment process based on six genetic resources and literature review using an NLP procedure. Throughout our evaluation process, we have kept in mind that frequent updates of the disease spectrum will be necessary to adjust for new data in these genetic resources. Our study provides a reference point for future studies, showing that BCSG mutation carriers should also be cautious of other diseases beyond breast cancer and highlights the necessity of broadening the criteria of management and improving outcomes for at-risk individuals.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Ethics Statement

      We used public database with no patient data, and individual informed consent was waived.

      Author Contributions

      JW, KY, DB, and KSH were involved in the conceptualization and design of this study. JW, PS, KY, JZ, KP, and SKM collected the data. YB and MW were responsible for maintaining the natural language processing abstract classifier. JW and PS analyzed the data and interpreted the results. JW, PS, and KY drafted the initial manuscript with critical feedback from DB and KSH. All authors contributed to the article and approved the submitted version.

      Conflict of Interest

      KH receives Honoraria from Hologic (Surgical implant for radiation planning with breast conservation and wire-free breast biopsy) and Myriad Genetics and has a financial interest in CRA Health (Formerly Hughes RiskApps). CRA Health develops risk assessment models/software with a particular focus on breast cancer and colorectal cancer. KH is a founder and owns equity in the company. KH is the Co-Creator of Ask2Me.Org, which is freely available for clinical use and is licensed for commercial use by the Dana Farber Cancer Institute and the MGH. KH’s interests in CRA Health and Ask2Me.Org were reviewed and are managed by Massachusetts General Hospital and Partners Health Care in accordance with their conflict of interest policies. DB co-leads the BayesMendel laboratory, which licenses software for the computation of risk prediction models. She does not derive any personal income from these licenses. All revenues are assigned to the lab for software maintenance and upgrades.

      The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Acknowledgments

      The authors acknowledge Ann S. Adams (Department of Surgery, Massachusetts General Hospital) for editorial and writing assistance.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fonc.2021.663419/full#supplementary-material

      References Collaborative Group on Hormonal Factors in Breast C . Familial breast cancer: collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet (2001) 358:1389–99. doi: 10.1016/S0140-6736(01)06524-2 Risch HA McLaughlin JR Cole DE Rosen B Bradley L Fan I . Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: A kin-cohort study in Ontario, Canada. J Natl Cancer Inst (2006) 98:1694–706. doi: 10.1093/jnci/djj465 Begg CB Haile RW Borg A Malone KE Concannon P Thomas DC . Variation of breast cancer risk among BRCA1/2 carriers. JAMA (2008) 299:194201. doi: 10.1001/jama.2007.55-a Chen S Parmigiani G . Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol (2007) 25:1329–33. doi: 10.1200/JCO.2006.09.1066 Mavaddat N Peock S Frost D Ellis S Platte R Fineberg E . Embrace. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst (2013) 105:812–22. doi: 10.1093/jnci/djt095 Miki Y Swensen J Shattuck-Eidens D Futreal PA Harshman K Tavtigian S . A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science (1994) 266:6671. doi: 10.1126/science.7545954 Wooster R Bignell G Lancaster J Swift S Seal S Mangion J . Identification of the breast cancer susceptibility gene BRCA2. Nature (1995) 378:789–92. doi: 10.1038/378789a0 Couch FJ Shimelis H Hu C Hart SN Polley EC Na J . Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol (2017) 3:1190–6. doi: 10.1001/jamaoncol.2017.0424 Easton DF Pharoah PD Antoniou AC Tischkowitz M Tavtigian SV Nathanson K . Gene-panel sequencing and the prediction of breast-cancer risk. N Engl J Med (2015) 372:2243–57. doi: 10.1056/NEJMsr1501341 Kean S . Breast cancer. The ‘other’ breast cancer genes. Science (2014) 343:1457–9. doi: 10.1126/science.343.6178.1457 Lee K Seifert BA Shimelis H Ghosh R Crowley SB Carter NJ . Clinical validity assessment of genes frequently tested on hereditary breast and ovarian cancer susceptibility sequencing panels. Genet Med (2019) 21:1497–506. doi: 10.1038/s41436-018-0361-5 Daly MB Pilarski R Berry MP Buys SS Dickson P Domchek SM . Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw (2021) 19(1):77102. doi: 10.6004/jnccn.2021.0001 Pharoah PD Guilford P Caldas C . International Gastric Cancer Linkage Consortium. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology (2001) 121:1348–53. doi: 10.1053/gast.2001.29611 Hansford S Kaurah P Li-Chang H Woo M Senz J Pinheiro H . Hereditary Diffuse Gastric Cancer Syndrome: CDH1 Mutations and Beyond. JAMA Oncol (2015) 1:2332. doi: 10.1001/jamaoncol.2014.168 Malkin D . Li-fraumeni syndrome. Genes Cancer (2011) 2:475–84. doi: 10.1177/1947601911413466 Schneider K Zelley K Nichols KE Garber J . Li-Fraumeni syndrome. Adam MP Ardinger HH Pagon RA , editors. GeneReviews University of Washington Seattle (1993-2021). Nichols KE Malkin D Garber JE Fraumeni JF Jr Li FP . Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiol Biomarkers Prev (2001) 10:83–7. Gonzalez KD Noltner KA Buzin CH Gu D Wen-Fong CY Nguyen VQ . Beyond Li Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol (2009) 27:1250–6. doi: 10.1200/JCO.2008.16.6959 Wideroff L Vadaparampil ST Greene MH Taplin S Olson L Freedman AN . Hereditary breast/ovarian and colorectal cancer genetics knowledge in a national sample of US physicians. J Med Genet (2005) 42:749–55. doi: 10.1136/jmg.2004.030296 Rehm HL Berg JS Brooks LD Bustamante CD Evans JP Landrum MJ . ClinGen-the Clinical Genome Resource. N Engl J Med (2015) 372:2235–42. doi: 10.1056/NEJMsr1406261 Teodorczyk U Cybulski C Wokołorczyk D Jakubowska A Starzyńska T Lawniczak M . The risk of gastric cancer in carriers of CHEK2 mutations. Fam Cancer (2013) 12:473–8. doi: 10.1007/s10689-012-9599-2 Näslund-Koch C Nordestgaard BG Bojesen SE . Increased Risk for Other Cancers in Addition to Breast Cancer for CHEK2*1100delC Heterozygotes Estimated From the Copenhagen General Population Study. J Clin Oncol (2016) 34:1208–16. doi: 10.1200/JCO.2015.63.3594 Deng Z Yin K Bao Y Armengol VD Wang C Tiwari A . Validation of a Semiautomated Natural Language Processing-Based Procedure for Meta-Analysis of Cancer Susceptibility Gene Penetrance. JCO Clin Cancer Inform (2019) 3:19. doi: 10.1200/CCI.19.00043 Bao Y Deng Z Wang Y Kim H Armengol VD Acevedo F . Using Machine Learning and Natural Language Processing to Review and Classify the Medical Literature on Cancer Susceptibility Genes. JCO Clin Cancer Inform (2019) 3:19. doi: 10.1200/CCI.19.00042 Hughes KS Zhou J Bao Y Singh P Wang J Yin K . Natural language processing to facilitate breast cancer research and management. Breast J (2020) 26:92–9. doi: 10.1111/tbj.13718 Gupta S Provenzale D Llor X Halverson AL Grady W Chung DC . NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Colorectal, Version 2.2019. J Natl Compr Canc Netw (2019) 17:1032–41. doi: 10.6004/jnccn.2019.0044 Kurian AW Hare EE Mills MA Kingham KE McPherson L Whittemore AS . Clinical evaluation of a multiplegene sequencing panel for hereditary cancer risk assessment. J Clin Oncol (2014) 32:2001–9. doi: 10.1200/JCO.2013.53.6607 Tung N Battelli C Allen B Kaldate R Bhatnagar S Bowles K . Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next generation sequencing with a 25-gene panel. Cancer (2015) 121:2533. doi: 10.1002/cncr.29010 Strande NT Riggs ER Buchanan AH Ceyhan-Birsoy O DiStefano M Dwight SS . Evaluating the Clinical Validity of Gene-Disease Associations: An Evidence-Based Framework Developed by the Clinical Genome Resource. Am J Hum Genet (2017) 100:895906. doi: 10.1016/j.ajhg.2017.04.015 Wu LC Wang ZW Tsan JT Spillman MA Phung A Xu XL . Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet (1996) 14:430–40. doi: 10.1038/ng1296-430 Cybulski C Carrot-Zhang J Kluźniak W Rivera B Kashyap A Wokołorczyk D . Germline RECQL mutations are associated with breast cancer susceptibility. Nat Genet (2015) 47:643–6. doi: 10.1038/ng.3284 Sun J Wang Y Xia Y Xu Y Ouyang T Li J . Mutations in RECQL gene are associated with predisposition to breast cancer. PloS Genet (2015) 11:e1005228. doi: 10.1371/journal.pgen.1005228 Bogdanova N Pfeifer K Schürmann P Antonenkova N Siggelkow W Christiansen H . Analysis of a RECQL splicing mutation, c.1667_1667+3delAGTA, in breast cancer patients and controls from Central Europe. Fam Cancer (2017) 16(2):181–6. doi: 10.1007/s10689-016-9944-y Palmer JR Polley EC Hu C John EM Haiman C Hart SN . Contribution of germline predisposition gene mutations to breast cancer risk in African American women. J Natl Cancer Inst (2020) 112(12):1213–21. doi: 10.1093/jnci/djaa040 Tai YC Domchek S Parmigiani G Chen S . Breast cancer risk among male BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst (2007) 99:1811–4. doi: 10.1093/jnci/djm203 Evans DG Susnerwala I Dawson J Woodward E Maher ER Lalloo F . Risk of breast cancer in male BRCA2 carriers. J Med Genet (2010) 47:710–1. doi: 10.1136/jmg.2009.075176 Meijers-Heijboer H van den Ouweland A Klijn J Wasielewski M de Snoo A Oldenburg R . CHEK2-Breast Cancer Consortium. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet (2002) 31:55–9. doi: 10.1038/ng879 Wasielewski M den Bakker MA van den Ouweland A Meijer-van Gelder ME Portengen H Klijn JG . CHEK2 1100delC and male breast cancer in the Netherlands. Breast Cancer Res Treat (2009) 116:397400. doi: 10.1007/s10549-008-0162-7 Yang X Leslie G Doroszuk A Schneider S Allen J Decker B . Cancer Risks Associated with Germline PALB2 Pathogenic Variants: An International Study of 524 Families. J Clin Oncol (2020) 38:674–85. doi: 10.1200/JCO.19.01907 Pritzlaff M Summerour P McFarland R Li S Reineke P Dolinsky JS . Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results. Breast Cancer Res Treat (2017) 161:575–86. doi: 10.1007/s10549-016-4085-4 Helgason H Rafnar T Olafsdottir HS Jonasson JG Sigurdsson A Stacey SN . Loss-of-function variants in ATM confer risk of gastric cancer. Nat Genet (2015) 47:906–10. doi: 10.1038/ng.3342 Huang KL Mashl RJ Wu Y Ritter DI Wang J Oh C . Pathogenic Germline Variants in 10,389 Adult Cancers. Cell (2018) 173:35570.e14. doi: 10.1016/j.cell.2018.03.039 Siołek M Cybulski C Gąsior-Perczak D Kowalik A Kozak-Klonowska B Kowalska A . CHEK2 mutations and the risk of papillary thyroid cancer. Int J Cancer (2015) 137:548–52. doi: 10.1002/ijc.29426 Kaczmarek-Ryś M Ziemnicka K Hryhorowicz ST Górczak K Hoppe-Gołębiewska J Skrzypczak-Zielińska M . The c.470 T > C CHEK2 missense variant increases the risk of differentiated thyroid carcinoma in the Great Poland population. Hered Cancer Clin Pract (2015) 13:8. doi: 10.1186/s13053-015-0030-5 Ballinger ML Best A Mai PL Khincha PP Loud JT Peters JA . Baseline Surveillance in Li-Fraumeni Syndrome Using Whole-Body Magnetic Resonance Imaging: A Meta-analysis. JAMA Oncol (2017) 3:1634–9. doi: 10.1001/jamaoncol.2017.1968 Piombino C Cortesi L Lambertini M Punie K Grandi G Toss A . Secondary Prevention in Hereditary Breast and/or Ovarian Cancer Syndromes Other Than BRCA. J Oncol (2020) 2020:6384190. doi: 10.1155/2020/6384190 Lynce F Isaacs C . How Far Do We Go With Genetic Evaluation? Gene Panel Tumor Testing Am Soc Clin Oncol Educ Book (2016) 35:e72–8. doi: 10.1200/EDBK_160391 Mai PL Best AF Peters JA DeCastro RM Khincha PP Loud JT . Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer (2016) 122:3673–81. doi: 10.1002/cncr.30248 Braun D Yang J Griffin M Parmigiani G Hughes KS . A clinical decision support tool to predict cancer risk for commonly tested cancer-related germline mutations. J Genet Couns (2018) 27:1187–99. doi: 10.1007/s10897-018-0238-4 Manahan ER Kuerer HM Sebastian M Hughes KS Boughey JC Euhus DM . Consensus guidelines on genetic testing for hereditary breast cancer from the American Society of Breast Surgeons. Ann Surg Oncol (2019) 26:3025–31. doi: 10.1245/s10434-019-07549-8
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.hnqpw.com.cn
      hcchain.com.cn
      hsequi.com.cn
      www.hkzttp.com.cn
      haowugou.com.cn
      fsfhkj.com.cn
      www.qukk.com.cn
      www.suyin.net.cn
      www.mka518.org.cn
      whjy365.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p