Front. Oncol. Frontiers in Oncology Front. Oncol. 2234-943X Frontiers Media S.A. 10.3389/fonc.2019.00947 Oncology Mini Review Current Trends for Improving Safety of Stereotactic Brain Biopsies: Advanced Optical Methods for Vessel Avoidance and Tumor Detection Akshulakov Serik K. 1 Kerimbayev Talgat T. 1 Biryuchkov Michael Y. 2 Urunbayev Yermek A. 1 Farhadi Dara S. 3 Byvaltsev Vadim A. 1 4 * 1Department of Neurosurgery, JSC “National Center for Neurosurgery”, Nur-Sultan, Kazakhstan 2Department of Neurosurgery and Traumatology, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan 3University of Arizona College of Medicine, Phoenix, AZ, United States 4Department of Neurosurgery and Innovative Medicine, Irkutsk State Medical University, Irkutsk, Russia

Edited by: Mark Preul, Barrow Neurological Institute (BNI), United States

Reviewed by: Seyedmehdi Payabvash, School of Medicine, Yale University, United States; Arvind P. Pathak, School of Medicine, Johns Hopkins University, United States

*Correspondence: Vadim A. Byvaltsev email@uni.edu; byval75vadim@yandex.ru

This article was submitted to Cancer Imaging and Image-directed Interventions, a section of the journal Frontiers in Oncology

02 10 2019 2019 9 947 02 04 2019 09 09 2019 Copyright © 2019 Akshulakov, Kerimbayev, Biryuchkov, Urunbayev, Farhadi and Byvaltsev. 2019 Akshulakov, Kerimbayev, Biryuchkov, Urunbayev, Farhadi and Byvaltsev

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Stereotactic brain needle biopsies are indicated for deep-seated or multiple brain lesions and for patients with poor prognosis in whom the risks of resection outweigh the potential outcome benefits. The main goal of such procedures is not to improve the resection extent but to safely acquire viable tissue representative of the lesion for further comprehensive histological, immunohistochemical, and molecular analyses. Herein, we review advanced optical techniques for improvement of safety and efficacy of stereotactic needle biopsy procedures. These technologies are aimed at three main areas of improvement: (1) avoidance of vessel injury, (2) guidance for biopsy acquisition of the viable diagnostic tissue, and (3) methods for rapid intraoperative assessment of stereotactic biopsy specimens. The recent technological developments in stereotactic biopsy probe design include the incorporation of fluorescence imaging, spectroscopy, and label-free imaging techniques. The future advancements of stereotactic biopsy procedures in neuro-oncology include the incorporation of optical probes for real-time vessel detection along and around the biopsy needle trajectory and in vivo confirmation of the diagnostic tumor tissue prior to sample acquisition.

fluorescence 5-aminolevulinic acid stereotactic spectroscopy optical biopsy fluorescein sodium

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Brain needle biopsies are indicated for deep-seated or multiple brain lesions and for patients with poor prognosis in whom the risks of resection outweigh the potential outcome benefits. A recent systematic review and evidence-based clinical practice guideline investigating the role of stereotactic brain biopsy for low-grade gliomas provided level III evidence in support of brain biopsies and recommended that surgeons consider using advanced imaging techniques to improve diagnostic accuracy (1). In suspected low-grade tumors that are not considered for resection, biopsy location should be planned based on molecular guidance techniques, such as positron emission tomography, magnetic resonance (MR) spectroscopy, or others in order to provide a reliable molecular diagnosis (2).

      The current standard-of-care method for stereotactic brain needle biopsy involves a 1.6- to 2-mm-diameter needle cannula insertion through a cranial burr-hole aligned to a predetermined trajectory. The two cannulas have overlapping side windows. When the desired position is reached, these windows are aligned, and brain tissue is lodged into cannula using suction and cut by sliding the inner cannula.

      Despite the minimally invasive nature of the needle brain biopsy, the limitations and risks are still present and include the following:

      Non-diagnostic biopsy yield. The frequency of non-diagnostic biopsies ranges in various studies

      ◦ Not-specified non-diagnostic biopsy rate−5.2% (3), 9% (4), 10.7% (5), 13% (6);

      ◦ Biopsy performed without intraoperative frozen section-−11%;

      ◦ Biopsy performed with frozen section on demand−1% (7);

      Technical failure rate is 2.4–3.7% (7)

      Complications rate:

      ◦ Overall complications rate−1.2% (3), 7.36% (4);

      ◦ Perioperative−6.3–4.8% (7);

      ◦ Postoperative−10.5–4.8% (7);

      ◦ Hemorrhagic/vessel injury complications: 2.1% (6), 3% (7), 4.35% (4), overall 8.8%, including 1% symptomatic, or >1 cm (8). One study reported the overall rate of hemorrhages on postoperative computerized tomography (CT) as 59.8%, including 41.1% of bleeds <5 mm in diameter and 8.9% of bleeds 3–4 cm in diameter (9).

      Mortality rate was 0.6% (3), 1.34% (4), and 0.6–3.7% (7) in various studies.

      Vessel injury is one of the most feared complications during minimally invasive stereotactic procedures. The rounded tip design of the biopsy needle intends to push aside any vessel encountered along the biopsy needle trajectory. However, such a design does not completely eliminate the potential for vessel injury during the forward movement of the needle. Moreover, the risk of vessel injury is believed to be higher during the side-cutting movement during biopsy acquisition. Therefore, apart from techniques for navigation on the anatomical level, like MR spectroscopy (10, 11), perfusion (12), and metabolism (13), improvements of intraoperative tools for biopsy acquisition and rapid assessment would be beneficial.

      This paper aims to provide a concise review of novel fluorescence-based and other optical techniques for improvement of safety and efficacy of minimally invasive stereotactic needle biopsy procedures in neuro-oncology. The main goal of such procedures is not to improve the resection extent but to safely acquire viable tissue representative of the lesion for further comprehensive histological, immunohistochemical, and molecular analyses. Here, we do omit discussion of MR, computed tomography, and ultrasound Doppler (14, 15)-based navigation techniques. Although the potential value of these techniques is undeniable, we focus this review on recently proposed optical methods. The basics of optical techniques are found in recently published reviews of this subject that describe the basics of fluorescence guidance in neuro-oncology (1621).

      Methods

      We performed a literature search in the PubMed database using the terms “biopsy,” “stereotactic,” “fluorescence,” “Raman,” “spectroscopy,” “brain,” “optical,” and “optical probe” in various combinations. Our search included papers published up to November 2018. We did not set a lower bound for this search. The titles were scanned and relevant articles were selected for full-text review, resulting in relevant articles for analysis as presented in the Supplementary Data 1. Additional articles were added from reference lists if deemed relevant. After reviewing the articles, the three key areas for analysis and discussion were selected: (1) avoidance of vessel injury during stereotactic biopsies, (2) probe-based guidance methods for biopsy acquisition, and (3) methods for rapid intraoperative assessment of stereotactic biopsy specimens. The latter two areas were united in one section for discussion due to the similarity in the used optical principles toward the common goal for differentiation of tumor and normal tissues, which can be done in vivo (using the miniaturized probes) or ex vivo after the biopsy has been acquired (using either miniaturized or benchtop systems).

      Results and Discussion Avoidance of Vessel Injury During Stereotactic Biopsy (<xref ref-type="table" rid="T1">Table 1</xref>) Intravascular Contrast Detection

      Göbel et al. described a small contact forward-viewing endoscopic probe that can fit into a standard biopsy needle and visualize fluorescence signals of protoporphyrin IX (PpIX) and indocyanine green (ICG) (Figure 1A) (22). PpIX is a fluorophore (excitation maximum wavelength is 405 nm; emission maximum, 630 nm) commonly used as the basis of fluorescent-guided neuro-oncology (31), while ICG is a near-infrared fluorophore (excitation maximum wavelength is 780–800 nm; emission maximum, 830 nm) commonly used for vascular flow visualization (32). The multifiber probe includes two excitation diode lasers (405 and 785 nm for PpIX autofluorescence and ICG, respectively) and a charge-coupled device camera for signal detection. This endoscope allowed ICG detection through the brain tissue (about 1 mm thickness) on a phantom model. It also showed reliable detection of a red PpIX fluorescence from the tumor in a mouse glioma model. Subsequently, in a pilot clinical trial (n = 1), this needle endoscope was used instead of the standard brain biopsy needle mandarin to visualize fluorescence during probe advancement. The actual biopsy acquisition was performed with a small forward biting biopsy forceps. Although bright PpIX fluorescence from the viable tumor core was visible, no fluorescence in the surrounding needle positions was evident. For vessel visualization, a 200 mg/kg dose of ICG was used in the mouse model. With this, near-infrared ICG fluorescence appeared inside the blood vessels at an excitation of 785 nm (Figure 1A, top panel). With autofluorescence at 405-nm excitation, the vessels appear clearer and darker (Figure 1A, middle panel). With a combination of autofluorescence and ICG visualization simultaneously, the vessels also display clear visualization (Figure 1A, bottom panel). Vessel visualization in a human tissue was not performed.

      Techniques for vessel detection during stereotactic brain biopsies.

      Author, year Technique Clinical data Main findings Limitations Safety
      FLUORESCENT CONTRAST DETECTION
      Göbel et al. (22) 1.5-mm-diameter multifiber forward-viewing needle endoscope for dual fluorescence (PpIX, ICG) and autofluorescence imaging. Results in multicolor images. Pilot clinical trial (n = 1) showed feasibility of autofluorescence and PpIX visualization; however, safety, and vessel detection were not evaluated. Established feasibility on phantom and characterized detection capability of the vessels, normal brain, and viable tumor tissue. Forward-viewing probe. Light power was 10 mW.
      Rühm et al. (23) Fiber-based ICG detection in the vessels for stereotactic procedures. No. Only computer simulation model. Established safety corridor for excitation light power to prevent normal brain destruction. Simulation computer model experiment. Established light intensity safety corridor for ICG.
      STAIN-LESS REFLECTANCE IMAGING APPROACHES
      Pichette et al. (24)Goyette et al. (25) 24-fiber, 1.7-mm-diameter probe for interstitial sub-diffuse optical tomography. Technology is based on the spectroscopic detection of hemoglobin remittance and sub-diffused light spectra. Creates a 2D map visualizing potential locations of vessels and their proximity to the probe's tip. No. Only preclinical study on phantom models. Established feasibility and characterized detection capability of the vessels of various locations and sizes. Extravascular blood could affect interpretation of the data. Complex probe design. N/R.
      Markwardt et al. (26) Double fiber-based probe inserted in biopsy needle for hemoglobin remission spectrometry. Allows detection of proximity and size of blood vessels. No. Only preclinical study on phantom models. Established feasibility and characterized detection capability of the vessels of various locations and sizes. Extravascular blood could affect interpretation of the data. Light power intensity below MPE for the skin of 2 kW/m2.
      Ramakonar et al. (27) Side-viewing fiber OCT probe fitting the standard brain biopsy needle with automatic vessel detection on B-imaging mode. Pilot clinical trial (n = 11) demonstrated feasibility of automatic vessel detection. Established feasibility and characterized detection capability of the vessels. No forward viewing. N/R, although considered safe based on the patient data.
      LASER DOPPLER FLOWMETRY
      Haj-Hosseini et al. (28) 9-fiber, forward-viewing probe fitting the biopsy needle for simultaneous laser Doppler flowmetry and PpIX fluorescence spectral detection. Similar probes for laser Doppler flowmetry imaging have been studied in stereotactic procedures under IRB approval in previous studies (29, 30). Established feasibility and characterized brain perfusion along the biopsy needle trajectory. No side viewing. Light power 10 mW for PpIX excitation.

      ICG, indocyanine green; N/R, not reported; PpIX, protoporphyrin IX; ICG, indocyanine green; OCT, optical coherence tomography; MPE, maximal permissible exposure.

      Examples of the optical technologies for brain needle biopsies. (A) Images from the fluorescence optical needle endoscope described by Göbel et al. (22) for PpIX visualization in the tumor (left column) and vessel visualization using ICG (right column) in a mouse model. Adapted with permission from Göbel et al. (22)© The Optical Society. (B) Illustration of PpIX spectroscopy method for tumor detection during stereotactic biopsy described by Haj-Hosseini et al. (28). The top two panels show the probe positioned in the stereotactic frame and the concept of measurements along the trajectory. The bottom panels show an MR image with calculated targets, spectral data of PpIX along the injection trajectory, and the histopathology slide of the target. Adapted with permission from Haj-Hosseini et al. (28)© The Optical Society. (C) Stain-less reflectance imaging method from Ramakonar et al. (27). Left panel shows a photo of an imaging needle rolled over a vessel of 650 μm. The imaging window of the probe is not visible and is facing toward the tissue. The upper right panel displays OCT B-scan consisting of A-scans. The tissue surface corresponds to the top of the image. Depth increases going down the image. The bottom right panel displays a speckle decorrelation image calculated form the OCT scan with high decorrelation as white and low decorrelation as dark red. Adapted from Ramakonar et al. (27) under Creative Commons Attribution license. (D) Schematic summary of advanced optical methods and tool designs, for increasing safety of stereotactic brain biopsies. OCT, optical coherence tomography; PpIX, protoporphyrin IX; ICG, indocyanine green; SRH, Stimulated Raman Histology.

      Ruhm et al. investigated forward-viewing microfiber probe for ICG detection using a computer simulation of ICG fluorescence excited and detected through the same fiber-optic system in homogeneous human brain tissue (23). Although detection of intravascular ICG is widely used in open vascular neurosurgery (33), its application for detection of deep vessels might not be optimal due to the fast redistribution and ICG fluorescence decay. Leakage of blood or trace amounts of blood containing ICG in the vicinity of the probe would result in false-positive measurements. Furthermore, the dosage and timing of ICG administration would need to be optimized, and the necessity for additional drug injection should be considered, especially when comparing to other methods for vessel detection.

      Laser Doppler Flowmetry

      Another recently reported tool is a 2.2-mm-diameter forward-viewing needle probe that combines fluorescence spectral detection and laser Doppler flowmetry (28). The probe was designed to fit the Leksell® Stereotactic System. By measuring the frequency shift in the 780-nm backscattered laser light caused by the cell movements in the capillaries, the device assesses brain perfusion and blood flow. The pilot study on three patients demonstrated reliable detection of PpIX spectra (405 excitation laser) along the trajectory of the device (Figure 1B). Although increased perfusion was detected in two biopsy locations, no information regarding the changes in the surgical plan or needle trajectory was reported (28). A similar stand-alone forward-viewing laser Doppler flowmetry needle probe had been investigated by the same group during the electrode placement for deep brain stimulation in patients (29, 30). Although the main goal of these studies was to establish the link between the measured blood flow and anatomy along trajectories, the authors did encounter one bleeding episode evidenced by significantly increased blood flow measures, which was later confirmed by CT (29). Subsequently, the authors suggested that this method could detect small vessels and thus decrease the risk of bleeding complications in stereotactic procedures (30). Obtaining measurements every 0.5 mm along the injection trajectory was proposed; however, it would result in a significant increase of surgical time (20 s per measurement resulting in at least 33.3 min for 5-cm trajectory) (28). Additionally, this probe has not been integrated into a brain biopsy needle for side view assessment. Future studies are necessary to assess if vascular imaging is helpful to guide intraoperative adjustments of the surgical plan and prevent vessel injury and bleeding.

      Stain-Less Reflectance Imaging Approaches

      Ramakonar et al. reported the performance of a side-viewing probe that fit a standard side-cutting brain biopsy needle for optical coherence tomography (OCT) imaging and differentiation of solid tissue and vessels (Figure 1C) (27). This imaging method is based on the detection and reconstruction of backscattered light from the 1,300-nm near-infrared illumination light, allowing 1–1.5 mm penetration depth and 5–20 μm resolution. OCT imaging was presented in an earlier paper by Kut et al. that demonstrated the modality's efficacy as a label-free technique for differentiating cancer from non-cancer in human brain tissues at a 1- to 1.5-mm penetration depth (34). To overcome the challenge of OCT's shallow depth, Ramakonar et al. was able to develop an optically guided biopsy needle capable of OCT imaging in order to visualize blood vessels at greater tissue depths. The information is then displayed on a monitor as a B-scan acquired during needle movements. Initial analysis of surface cortical vessels in patients that underwent craniotomy showed that the device detected blood vessels with a diameter of >500 μm with a sensitivity of 91.2% and a specificity of 97.7% (27). Furthermore, the authors validated these findings by demonstrating deep brain vessel detection capability (vessels were preselected on MRI) during brain needle biopsies in three patients (27).

      Markwardt et al. in a phantom model and in ex vivo porcine brains demonstrated that a side-viewing double fiber probe for remission spectrometry inserted in a side-cutting biopsy needle can determine the proximity of the vessel to the needle (26). The method is based on the illumination of the tissue with a light from a broad wavelength light emitting diode (LED) light source (400–700 nm) and spectroscopic analysis of the remitted light. The remitted light is assessed at wavelengths that are characteristic of hemoglobin absorption (578 and 650 nm for oxygenated and deoxygenated, respectively), allowing the estimation of the proximity of the vessels to the probe. The method results are displayed as ratio values that represent the proximity, size, and orientation of the hemoglobin-containing vessels to the probe. Although there is no visual information regarding the appearance of the tissue, the technique is relatively simple and inexpensive.

      Pichette et al. in phantom experiments demonstrated that interstitial sub-diffuse optical tomography technology can detect vessels with diameters of more than 300 μm for up to 2 mm from the biopsy needle (24). The 1.7-mm-diameter probe consists of 24 side-viewing fibers that provide circumferential scanning and detection of the spectrally resolved remitted light from the tissue around the needle guide. The main advantage of this method is that the probe scans the whole volume of tissues surrounding the needle, creating a two-dimensional visual signal map across the depth and circumference position. An additional advantage is higher tissue penetration depth when compared to optical coherence tomography (2 vs. ~1 mm) (24). Remission spectrometry and sub-diffuse optical tomography both rely on the hemoglobin absorption spectra and do not require additional contrast agents (24, 26).

      Methods for Biopsy Acquisition Guidance and for Rapid Intraoperative Assessment of Obtained Specimens Identification of Viable Diagnostic Tissue

      Decreasing the number of stereotactic biopsies represents another strategy to minimize the risk of brain and vascular damage. Therefore, technologies that allow for the detection of viable tumor tissue along the biopsy needle trajectory are valuable. Such techniques allow not only to increase accuracy for diagnostic sample acquisition for proper histopathological diagnostics but also to avoid unnecessary repetitive needle biopsies.

      Methods Based on the Detection of Molecular Labels in the Tumor Tissue

      The presence of 5-aminolevulinic (5-ALA)-induced PpIX fluorescence is diagnostic for malignant tumors and can be used to assess stereotactic biopsy samples before submitting them to pathology, while the absence of fluorescence can filter out necrotic areas and inflammatory reactive tissue without malignant cells. This method was confirmed in multiple studies (3540). Detection of PpIX fluorescence was highly diagnostic for viable tumor tissue in patients with intracranial lymphomas (41), high-grade gliomas, and anaplastic foci in patients with low-grade gliomas (42). Fluorescence positive samples might even not require intraoperative frozen section analysis and could be sent directly for a permanent section because of the high positive predictive value of PpIX fluorescence (39, 43, 44). In cases of low or negative fluorescence, the intraoperative frozen section analysis is recommended with subsequent biopsies upon the results of the intraoperative histopathological analysis (43). Excitation of PpIX at 633 nm can further increase the diagnostic utility of such a method, as it allows for deeper imaging through a small layer of blood or tissue, which was previously impossible with 405-nm excitation (45, 46).

      Similarly to 5-ALA, fluorescein sodium can be used to assess stereotactic biopsy specimens under the special fluorescence mode of the surgical microscope. High-grade glioma tissue shows strong yellow fluorescence when excited at about 488 nm (47). Being a relatively inexpensive drug, fluorescein sodium could also be visualized using a low-cost miniature device, Fluoropen, which is essentially a LED torch with a blue filter mounted at the light source for excitation and a yellow filter attached around the torch as a cone collar (48). The device is positioned close to the specimen and yellow fluorescence is observed through the yellow filter (48). Observation of fluorescein fluorescence from the specimens had a 100% positive predictive value and a 25% negative predictive value of a lesional tissue (49). Overall, the fluorescein-based method was shown to be as effective as frozen section analysis for the diagnostic biopsy screening (49).

      ICG may also be used as a highlighter of the tumor tissue (5054). Although there are few reports about the ICG use for tumor detection during stereotactic biopsies (16), open surgical visualization showed high sensitivity but low specificity of the second-window ICG (52). Other targeted molecular labels that can be used for open fluorescence-guided surgery, for example, BLZ-100, an ICG-conjugated tumor-targeting peptide chlorotoxin used for imaging, also hold potential for stereotactic needle biopsy procedures (55).

      Apart from the macroscopic identification of the retained fluorescent drug, the obtained stereotactic biopsy specimens could be subjected to analysis with other methods alternative to a frozen section. Such methods might be less laborious and time-consuming. Stereotactic samples could be stained with rapid fluorophores ex vivo and scanned with a confocal microscope (56, 57). Miniaturized handheld confocal laser endomicroscopy with fluorescein sodium injected intraoperatively as a contrast can visualize the histological architecture of brain biopsies ex vivo and in vivo (5862). However, this probe has not been assessed in stereotactic procedures.

      A thin forward-viewing fiber-based confocal laser endomicroscope that can fit biopsy needles is available for 488-nm and 660-nm excitable fluorophores (fluorescein sodium and ICG, respectively) (63, 64). A pilot study has demonstrated that such an endomicroscope with fluorescein as a contrast can visualize brain tumor architecture during a stereotactic brain biopsy procedure in humans (65). A similar technique was tested by Lynagh et al. in a proof-of-concept study for the detection of fluorescein and blue-fluorescence protein labeled glioma cells in a rat model using a 0.65-mm fiber microendoscope coupled with a clinical stereotactic biopsy needle (66). Microendoscopy technology is similar to a needle-based contact endoscope (22) and other fiber probes for spectral measurements that were discussed above (28, 35, 44), but is able to provide fluorescence tissue image with higher resolution down to the cellular level.

      Label-Free Methods

      Various microscopy imaging methods that are not dependent on the drug-induced contrast and instead rely on intrinsic optical properties of the tissues recently received clinical attention. Such methods could be used for rapid intraoperative assessment of the acquired stereotactic brain biopsies to increase diagnostic yield and improve pathology workflow.

      It has been shown that measurements of reflectance and fluorescence spectra of unstained brain tissues can differentiate radiation necrosis in brain tumor tissue (67). Reflectance confocal microscopy can differentiate viable brain tumor tissue from necrotic tissue and further characterize histological appearance with high diagnostic accuracy (68, 69). Label-free multiphoton microscopy methods were successfully used for the imaging of Alzheimer's disease brain samples (70). Raman microspectroscopic microscopy imaging has been studied for histological assessment of brain tumor biopsies (71). A notably successful variant of Raman microscopy is the Stimulated Raman Histology (SRH) technique, which has been used for ex vivo histological assessment of brain tumor biopsies. SRH provided high-resolution digital images that look similar to the standard hematoxylin and eosin staining (72, 73). SRH is a stand-alone imaging system that can be positioned in the operating room for rapid intraoperative pathological assessment (72, 73). Although most of the imaging studies were performed on benchtop microscopes, some multiphoton microscopy modes (CARS and TREF) will be available in endoscopes and needle-size probes in the near future (74).

      Stevens et al. described a 1.8-mm-diameter forward-viewing 830-nm Raman-based spectroscopy probe without fibers that fit a standard brain biopsy needle (75, 76). The new design of the probe resulted in significant noise reduction compared to the silica-fiber-based Raman imaging and demonstrated discrimination of various porcine brain structures including white matter, gray matter, and blood vessels based on the Raman spectra (75).

      Summary

      Current developments for increasing the safety and efficacy of stereotactic brain biopsy procedures are centered around the two main areas: avoidance of the vessels and detection of the viable diagnostic tissue, which could be achieved in vivo or ex vivo (Figure 1D).

      Because vessel avoidance is a major component for the safety of any stereotactic needle-based procedure including needle brain biopsy, deep brain stimulation (77), or interstitial laser thermal therapy (78, 79), advancements in the surgical tools that allow for timely vessel detection is of utmost importance. Several technologies for vessel detection implemented into a biopsy needle included detection of fluorescent intravascular contrast, laser Doppler flowmetry, optical coherence and interstitial sub-diffuse tomography, and remission spectrometry. Non-fluorescence methods based on the blood flow and hemoglobin detection are thought to be the most promising as they avoid dealing with fluctuations in the intravascular contrast concentrations after injection. It should be noted that the current literature does not provide definitive evidence on the efficacy of such methods for vessel injury avoidance; therefore, more clinical studies are necessary.

      Ex vivo confirmation of PpIX or fluorescein fluorescence from biopsy samples has been established to have a high positive predictive value of a diagnostic biopsy in multiple studies and can be recommended as a routine method for stereotactic biopsy at this current stage. However, the possibility for identification of the correct biopsy needle position in vivo prior to actual biopsy acquisition with a small optical tool is even more exciting. Most of such reports are based on the detection of the intra-tumoral fluorescent molecules (PpIX, fluorescein, and ICG); however, the development of reflectance and multiphoton microscopy techniques and militarization of microscopes would allow label-free tumor tissue identification through a biopsy needle in the future. There is a marked diversity in qualitative and quantitative optical methods for brain tumor tissue identification, and each of them requires a significant learning curve and dedication. So far, the most progress has been achieved with 5-ALA-induced PpIX, which is highly specific for malignant tissues and can be detected spectroscopically with a single optical fiber inserted in the biopsy needle.

      Another limitation is that most of the discussed methods require timely interpretation and adjustments of multiple parameters during the procedure to ensure optimal performance, which is not always practical and may lead to information overload. For example, results of quantitative spectroscopy are usually displayed on the screen in a graph form. This information could be converted into an auditory format, which would be easy to understand and non-disruptive during the surgery (80). Finally, the possibility of light-induced tissue damage should be carefully considered when developing novel optical and fluorescent tools for in vivo diagnostics.

      When considering the design of an ideal probe, it should incorporate vessel detection as well as tumor detection modules, most likely in forward and side views simultaneously for the safest possible probe insertion and biopsy acquisition. Machine learning, coupled with optical visualization technologies, would be a basis for computer-aided, real-time tissue image analysis for the selection of the best probe trajectory or location for biopsy acquisition. Besides these technologies that are used for vessel avoidance and tumor detection, future development of probes could also include augmented or virtual reality for clinicians to perform more accurate probe trajectory planning.

      Author Contributions

      All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fonc.2019.00947/full#supplementary-material

      References Ragel BT Ryken TC Kalkanis SN Ziu M Cahill D Olson JJ. The role of biopsy in the management of patients with presumed diffuse low grade glioma. J Neuro Oncol. (2015) 125:481501. 10.1007/s11060-015-1866-226530259 Schwartz C Kreth FW. Comment on: the role of biopsy in the management of patients with presumed diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neuro Oncol. (2016) 128:173. 10.1007/s11060-016-2086-026921095 Teixeira MJ Fonoff ET Mandel M Alves HL Rosemberg S. Stereotactic biopsies of brain lesions. Arq Neuropsiquiatr. (2009) 67:747. 10.1590/S0004-282X200900010001819330216 Chen CC Hsu PW Erich Wu TW Lee ST Chang CN Wei KC . Stereotactic brain biopsy: Single center retrospective analysis of complications. Clin Neurol Neurosurg. (2009) 111:8359. 10.1016/j.clineuro.2009.08.01319765887 Shastri-Hurst N Tsegaye M Robson DK Lowe JS Macarthur DC. Stereotactic brain biopsy: an audit of sampling reliability in a clinical case series. Br J Neurosurg. (2009) 20:2226. 10.1080/0268869060087550716954072 Bander ED Jones SH Pisapia D Magge R Fine H Schwartz TH . Tubular brain tumor biopsy improves diagnostic yield for subcortical lesions. J Neurooncol. (2019) 141:1219. 10.1007/s11060-018-03014-w30446900 Dammers R Schouten JW Haitsma IK Vincent AJ Kros JM Dirven CM. Towards improving the safety and diagnostic yield of stereotactic biopsy in a single centre. Acta Neurochir. (2010) 152:191521. 10.1007/s00701-010-0752-020680649 Frati A Pichierri A Bastianello S Raco A Santoro A Esposito V . Frameless stereotactic cerebral biopsy: our experience in 296 cases. Stereotact Funct Neurosurg. (2011) 89:23445. 10.1159/00032570421778794 Kulkarni AV Guha A Lozano A Bernstein M. Incidence of silent hemorrhage and delayed deterioration after stereotactic brain biopsy. J Neurosurg. (1998) 89:315. 10.3171/jns.1998.89.1.00319647169 Preul MC Caramanos Z Collins DL Villemure JG Leblanc R Olivier A . Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med. (1996) 2:3235. 10.1038/nm0396-3238612232 Chernov MF Muragaki Y Ochiai T Taira T Ono Y Usukura M . Spectroscopy-supported frame-based image-guided stereotactic biopsy of parenchymal brain lesions: comparative evaluation of diagnostic yield and diagnostic accuracy. Clin Neurol Neurosurg. (2009) 111:52735. 10.1016/j.clineuro.2009.03.00619427112 Lefranc M Monet P Desenclos C Peltier J Fichten A Toussaint P . Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies. Stereotact Funct Neurosurg. (2012) 90:2407. 10.1159/00033809222699810 Levivier M Goldman S Pirotte B Brucher JM Baleriaux D Luxen A . Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with [18F]fluorodeoxyglucose. J Neurosurg. (1995) 82:44552. 10.3171/jns.1995.82.3.0445 Gilsbach J Mohadjer M Mundinger F. A new safety device to prevent bleeding complications during stereotactic biopsy—The “stereotactic” Doppler sonography. Acta Neurochir. (1987) 89:779. 10.1007/BF014066712963484 Virdyawan V Y Baena FR. Vessel pose estimation for obstacle avoidance in needle steering surgery using multiple forward looking sensors. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (2018). p. 384552. 10.1109/IROS.2018.8594198 Cho SS Salinas R Lee JYK. Indocyanine-green for fluorescence-guided surgery of brain tumors: evidence, techniques, and practical experience. Front Surg. (2019) 6:11. 10.3389/fsurg.2019.0001130915339 Zhang DY Singhal S Lee JYK. Optical principles of fluorescence-guided brain tumor surgery: a practical primer for the neurosurgeon. Neurosurgery. (2019) 85:3124. 10.1093/neuros/nyy31530085129 Wei L Roberts DW Sanai N Liu JTC. Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol. (2019) 141:495505. 10.1007/s11060-018-03077-930554344 Hadjipanayis CG Stummer W. 5-ALA and FDA approval for glioma surgery. J Neurooncol. (2019) 141:47986. 10.1007/s11060-019-03098-y30644008 Valdes PA Juvekar P Agar NYR Gioux S Golby AJ. Quantitative wide-field imaging techniques for fluorescence guided neurosurgery. Front Surg. (2019) 6:31. 10.3389/fsurg.2019.0003131245380 Lakomkin N Hadjipanayis CG. The use of spectroscopy handheld tools in brain tumor surgery: current evidence and techniques. Front Surg. (2019) 6:30. 10.3389/fsurg.2019.0003031192217 Göbel W Brucker D Kienast Y Johansson A Kniebühler G Rühm A . Optical needle endoscope for safe and precise stereotactically guided biopsy sampling in neurosurgery. Optics Exp. (2012) 20:2611726. 10.1364/OE.20.02611723187467 Ruhm A Gobel W Sroka R Stepp H. ICG-assisted blood vessel detection during stereotactic neurosurgery: simulation study on excitation power limitations due to thermal effects in human brain tissue. Photodiagnosis Photodyn Ther. (2014) 11:30718. 10.1016/j.pdpdt.2014.03.00724699453 Pichette J Goyette A Picot F Tremblay M-A Soulez G Wilson BC . Sensitivity analysis aimed at blood vessels detection using interstitial optical tomography during brain needle biopsy procedures. Biomed Optics Exp. (2015) 6:423854. 10.1364/BOE.6.00423826600990 Goyette A Pichette J Tremblay MA Laurence A Jermyn M Mok K . Sub-diffuse interstitial optical tomography to improve the safety of brain needle biopsies: a proof-of-concept study. Optics Lett. (2015) 40:1703. 10.1364/OL.40.00017025679836 Markwardt NA Stepp H Franz G Sroka R Goetz M Zelenkov P . Remission spectrometry for blood vessel detection during stereotactic biopsy of brain tumors. J Biophoton. (2017) 10:108094. 10.1002/jbio.20160019327714967 Ramakonar H Quirk BC Kirk RW Li J Jacques A Lind CRP . Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans. Sci Adv. (2018) 4:eaav4992. 10.1126/sciadv.aav499230585293 Haj-Hosseini N Richter JCO Milos P Hallbeck M Wårdell K. 5-ALA fluorescence and laser doppler flowmetry for guidance in a stereotactic brain tumor biopsy. Biomed Optics Exp. (2018) 9:228496. 10.1364/BOE.9.00228429760987 Wårdell K Zsigmond P Richter J Hemm S. Relationship between laser doppler signals and anatomy during deep brain stimulation electrode implantation toward the ventral intermediate nucleus and subthalamic nucleus. Oper Neurosurg. (2013) 72:ons127ons40. 10.1227/NEU.0b013e31827e582123190636 Wårdell K Hemm-Ode S Rejmstad P Zsigmond P. High-resolution laser Doppler measurements of microcirculation in the deep brain structures: a method for potential vessel tracking. Stereotact Funct Neurosurg. (2016) 94:19. 10.1159/00044289426795207 Stummer W Pichlmeier U Meinel T Wiestler OD Zanella F Reulen HJ . Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. (2006) 7:392401. 10.1016/S1470-2045(06)70665-916648043 Hanel RA Nakaji P Spetzler RF. Use of microscope-integrated near-infrared indocyanine green videoangiography in the surgical treatment of spinal dural arteriovenous fistulae. Neurosurgery. (2010) 66:97884. discussion: 84–5. 10.1227/01.NEU.0000368108.94233.2220404704 Raabe A Beck J Gerlach R Zimmermann M Seifert V. Near-infrared Indocyanine green video angiography: a new method for intraoperative assessment of vascular flow. Neurosurgery. (2003) 329. discussion: 139. 10.1097/00006123-200301000-0001712493110 Kut C Chaichana KL Xi J Raza SM Ye X McVeigh ER . Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med. (2015) 7:292ra100. 10.1126/scitranslmed.301061126084803 Haj-Hosseini N Richter JCO Hallbeck M Wårdell K. Low dose 5-aminolevulinic acid: Implications in spectroscopic measurements during brain tumor surgery. Photodiagnosis Photodyn Ther. (2015) 12:20914. 10.1016/j.pdpdt.2015.03.00425818546 Piquer J Llácer JL Rovira V Riesgo P Rodriguez R Cremades A. Fluorescence-guided surgery and biopsy in gliomas with an exoscope system. BioMed Res Int. (2014) 2014:16. 10.1155/2014/20797424971317 Hefti M von Campe G Moschopulos M Siegner A Looser H Landolt H. 5-Aminolevulinic acid induced protoporphyrin IX fluorescence in high-grade glioma surgery: a one-year experience at a single institutuion. Swiss Med Wkly. (2008) 138:1805. 10.4414/smw.2008.1207718363116 Moriuchi S Yamada K Dehara M Teramoto Y Soda T Imakita M . Use of 5-aminolevulinic acid for the confirmation of deep-seated brain tumors during stereotactic biopsy. Report of 2 cases. J Neurosurg. (2011) 115:27880. 10.3171/2011.4.JNS10213721548751 von Campe G Moschopulos M Hefti M. 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence as immediate intraoperative indicator to improve the safety of malignant or high-grade brain tumor diagnosis in frameless stereotactic biopsies. Acta Neurochir. (2012) 154:5858. 10.1007/s00701-012-1290-822297399 Yamaguchi F Takahashi H Teramoto A. Photodiagnosis for frameless stereotactic biopsy of brain tumor. Photodiagnosis Photodyn Ther. (2007) 4:715. 10.1016/j.pdpdt.2006.09.00525047195 Kiesel B Millesi M Woehrer A Furtner J Bavand A Roetzer T . 5-ALA–induced fluorescence as a marker for diagnostic tissue in stereotactic biopsies of intracranial lymphomas: experience in 41 patients. Neurosurg Focus. (2018) 44:E7. 10.3171/2018.3.FOCUS185929852770 Arita H Kinoshita M Kagawa N Fujimoto Y Kishima H Hashimoto N . 11C-methionine uptake and intraoperative 5-aminolevulinic acid-induced fluorescence as separate index markers of cell density in glioma. Cancer. (2012) 118:161927. 10.1002/cncr.26445 Widhalm G Minchev G Woehrer A Preusser M Kiesel B Furtner J . Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev. (2012) 35:38191. 10.1007/s10143-012-0374-522407140 Potapov AA Goryaynov SA Okhlopkov VA Pitskhelauri DI Kobyakov GL Zhukov VY . [Clinical guidelines for the use of intraoperative fluorescence diagnosis in brain tumor surgery]. Zh Vopr Neirokhir Im N N Burdenko. (2015) 79:91101. 10.17116/neiro201579591-10126528619 Markwardt NA Haj-Hosseini N Hollnburger B Stepp H Zelenkov P Rühm A. 405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence-guided stereotactic biopsy of brain tumors. J Biophoton. (2016) 9:90112. 10.1002/jbio.20150019526564058 Potapov AA Goriainov SA Loshchenov VB Savel'eva TA Gavrilov AG Okhlopkov VA . [Intraoperative combined spectroscopy (optical biopsy) of cerebral gliomas]. Zh Vopr Neirokhir Im Burdenko. (2013) 77:310.25042365 Rey-Dios R Hattab EM Cohen-Gadol AA. Use of intraoperative fluorescein sodium fluorescence to improve the accuracy of tissue diagnosis during stereotactic needle biopsy of high-grade gliomas. Acta Neurochir. (2014) 156:10715. 10.1007/s00701-014-2097-624770732 Thien A Rao JP Ng WH King NKK. The fluoropen: a simple low-cost device to detect intraoperative fluorescein fluorescence in stereotactic needle biopsy of brain tumors. Acta Neurochir. (2016) 159:3715. 10.1007/s00701-016-3041-827943078 Thien A Han JX Kumar K Ng YP Rao JP Ng WH . Investigation of the usefulness of fluorescein sodium fluorescence in stereotactic brain biopsy. Acta Neurochir. (2017) 160:31724. 10.1007/s00701-017-3429-029275519 Catapano G Sgulo F Laleva L Columbano L Dallan I de Notaris M. Multimodal use of indocyanine green endoscopy in neurosurgery: a single-center experience and review of the literature. Neurosurg Rev. (2018) 41:98598. 10.1007/s10143-017-0858-428477043 Hitti FL Lee JYK. Endoscopic resection of an intraventricular tumor with second window indocyanine green: 2-dimensional operative video. Oper Neurosurg. (2018) 15:E53E4. 10.1093/ons/opy05329617855 Lee JY Thawani JP Pierce J Zeh R Martinez-Lage M Chanin M . Intraoperative near-infrared optical imaging can localize gadolinium-enhancing gliomas during surgery. Neurosurgery. (2016) 79:85671. 10.1227/NEU.000000000000145027741220 Haglund MM Hochman DW Spence AM Berger MS. Enhanced optical imaging of rat gliomas and tumor margins. Neurosurgery. (1994) 35:93040. discussion: 40–1. 10.1097/00006123-199411000-000197838344 Watson JR Martirosyan N Lemole GM Trouard TP Romanowski M. Intraoperative brain tumor resection with indocyanine green using augmented microscopy. J Biomed Optics. (2018) 23:14. 10.1117/1.JBO.23.9.09050130251491 Butte PV Mamelak A Parrish-Novak J Drazin D Shweikeh F Gangalum PR . Near-infrared imaging of brain tumors using the tumor paint BLZ-100 to achieve near-complete resection of brain tumors. Neurosurg Focus. (2014) 36:E1. 10.3171/2013.11.FOCUS1349724484247 Martirosyan NL Georges J Eschbacher JM Belykh E Carotenuto A Spetzler RF . Confocal scanning microscopy provides rapid, detailed intraoperative histological assessment of brain neoplasms: experience with 106 cases. Clin Neurol Neurosurg. (2018) 169:218. 10.1016/j.clineuro.2018.03.01529604507 Martirosyan NL Georges J Eschbacher JM Cavalcanti DD Elhadi AM Abdelwahab MG . Potential application of a handheld confocal endomicroscope imaging system using a variety of fluorophores in experimental gliomas and normal brain. Neurosurg Focus. (2014) 36:E16. 10.3171/2013.11.FOCUS1348624484254 Martirosyan NL Eschbacher JM Kalani MY Turner JD Belykh E Spetzler RF . Prospective evaluation of the utility of intraoperative confocal laser endomicroscopy in patients with brain neoplasms using fluorescein sodium: experience with 74 cases. Neurosurg Focus. (2016) 40:E11. 10.3171/2016.1.FOCUS1555926926051 Foersch S Heimann A Ayyad A Spoden GA Florin L Mpoukouvalas K . Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo. PLoS ONE. (2012) 7:e41760. 10.1371/journal.pone.004176022911853 Breuskin D Szczygielski J Urbschat S Kim YJ Oertel J. Confocal laser endomicroscopy in neurosurgery—An alternative to instantaneous sections? World Neurosurg. (2017) 100:1805. 10.1016/j.wneu.2016.12.12828069420 Sankar T Delaney PM Ryan RW Eschbacher J Abdelwahab M Nakaji P . Miniaturized handheld confocal microscopy for neurosurgery: results in an experimental glioblastoma model. Neurosurgery. (2010) 66:4107. discussion: 7–8. 10.1227/01.NEU.0000365772.66324.6F20087141 Sanai N Eschbacher J Hattendorf G Coons SW Preul MC Smith KA . Intraoperative confocal microscopy for brain tumors: a feasibility analysis in humans. Neurosurgery. (2011) 68(2 Suppl Operative):28290. discussion: 90. 10.1227/NEU.0b013e318212464e21336204 Giovannini M. Needle-based confocal laser endomicroscopy. Endosc Ultrasound. (2015) 4:2848. 10.4103/2303-9027.17040526643694 Schneider C Johnson SP Gurusamy K Cook RJ Desjardins AE Hawkes DJ . Identification of liver metastases with probe-based confocal laser endomicroscopy at two excitation wavelengths. Lasers Surg Med. (2017) 49:28092. 10.1002/lsm.2261727990658 Pavlov V Meyronet D Meyer-Bisch V Armoiry X Pikul B Dumot C . Intraoperative probe-based confocal laser endomicroscopy in surgery and stereotactic biopsy of low-grade and high-grade gliomas: a feasibility study in humans. Neurosurgery. (2016) 79:60412. 10.1227/NEU.000000000000136527643918 Lynagh R Ishak M Georges J Lopez D Osman H Kakareka M . Fluorescence-guided stereotactic biopsy: a proof-of-concept study. J Neurosurg. (2019) 22:17. 10.3171/2018.11.JNS18629 Lin W-C Mahadevan-Jansen A Johnson MD Weil RJ Toms SA. In vivo optical spectroscopy detects radiation damage in brain tissue. Neurosurgery. (2005) 57:51825. 10.1227/01.NEU.0000170559.48166.AC16145531 Eschbacher JM Georges JF Belykh E Yazdanabadi MI Martirosyan NL Szeto E . Immediate label-free ex vivo evaluation of human brain tumor biopsies with confocal reflectance microscopy. J Neuropathol Exp Neurol. (2017) 76:100822. 10.1093/jnen/nlx08929136454 Georges J Zehri A Carlson E Nichols J Mooney MA Martirosyan NL . Label-free microscopic assessment of glioblastoma biopsy specimens prior to biobanking [corrected]. Neurosurg Focus. (2014) 36:E8. 10.3171/2013.11.FOCUS1347824484261 Lee JH Kim DH Song WK Oh M-K Ko D-K. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy. J Biomed Optics. (2015) 20:056013. 10.1117/1.JBO.20.5.05601326021718 Krafft C Belay B Bergner N Romeike BFM Reichart R Kalff R . Advances in optical biopsy—Correlation of malignancy and cell density of primary brain tumors using Raman microspectroscopic imaging. Analyst. (2012) 137:55337. 10.1039/c2an36083g23050263 Hollon TC Lewis S Pandian B Niknafs YS Garrard MR Garton H . Rapid intraoperative diagnosis of pediatric brain tumors using stimulated Raman histology. Cancer Res. (2018) 78:27889. 10.1158/0008-5472.CAN-17-197429093006 Orringer DA Pandian B Niknafs YS Hollon TC Boyle J Lewis S . Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. (2017) 1:0027. 10.1038/s41551-016-002728955599 Romeike BFM Meyer T Reichart R Kalff R Petersen I Dietzek B . Coherent anti-stokes raman scattering and two photon excited fluorescence for neurosurgery. Clin Neurol Neurosurg. (2015) 131:426. 10.1016/j.clineuro.2015.01.02225688033 Mahadevan-Jansen A Petrich W Stevens OAC Hutchings J Gray W Day JC. A low background Raman probe for optical biopsy of brain tissue. Biomed Vibrational Spectrosc. (2014). 10.1117/12.2044139. [Epub ahead of print]. Stevens OAC Hutchings J Gray W Vincent RL Day JC. Miniature standoff Raman probe for neurosurgical applications. J Biomed Optics. (2016) 21:087002. 10.1117/1.JBO.21.8.08700227533445 Giller CA Liu H German DC Kashyap D Dewey RB. A stereotactic near-infrared probe for localization during functional neurosurgical procedures: further experience. J Neurosurg. 110:26373. 10.3171/2008.8.JNS0872819012484 Lee I Kalkanis S Hadjipanayis CG. Stereotactic laser interstitial thermal therapy for recurrent high-grade gliomas. Neurosurgery. (2016) 79 (Suppl 1):S24S34. 10.1227/NEU.000000000000144327861323 Ashraf O Patel NV Hanft S Danish SF. Laser-induced thermal therapy in neuro-oncology: a review. World Neurosurg. (2018) 112:16677. 10.1016/j.wneu.2018.01.12329410102 Black D Hahn HK Kikinis R Wårdell K Haj-Hosseini N. Auditory display for fluorescence-guided open brain tumor surgery. Int J Comput Assisted Radiol Surg. (2017) 13:2535. 10.1007/s11548-017-1667-528929305 Abbreviations PpIX

      protoporphyrin IX

      ICG

      indocyanine green.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hnqpw.com.cn
      udaway.com.cn
      tasdsyj.org.cn
      wejgbd.com.cn
      smarttrip.net.cn
      www.szsubway.com.cn
      mymzmj.com.cn
      qfw810.org.cn
      www.qn0538.com.cn
      www.mocamera.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p