Front. Microbiol. Frontiers in Microbiology Front. Microbiol. 1664-302X Frontiers Media S.A. 10.3389/fmicb.2019.00069 Microbiology Original Research Subsurface Microbial Habitats in an Extreme Desert Mars-Analog Environment Warren-Rhodes Kimberley A. 1 2 Lee Kevin C. 3 Archer Stephen D. J. 3 Cabrol Nathalie 1 2 Ng-Boyle Linda 4 Wettergreen David 5 Zacny Kris 6 Pointing Stephen B. 7 8 * The NASA Life in the Atacama Project Team 1NASA Ames Research Center, Mountain View, CA, United States 2The SETI Institute, Mountain View, CA, United States 3School of Sciences, Auckland University of Technology, Auckland, New Zealand 4College of Engineering, University of Washington, Seattle, WA, United States 5Institute of Robotics, Carnegie Mellon University, Pittsburgh, PA, United States 6Honeybee Robotics Spacecraft Mechanisms Corp., Pasadena, CA, United States 7Yale-NUS College, National University of Singapore, Singapore, Singapore 8Department of Biological Sciences, National University of Singapore, Singapore, Singapore

Edited by: Andreas Teske, University of North Carolina at Chapel Hill, United States

Reviewed by: John R. Spear, Colorado School of Mines, United States; Gabriela Olmedo-Alvarez, Unidad Irapuato (CINVESTAV), Mexico

*Correspondence: Stephen B. Pointing, stephen.pointing@yale-nus.edu.sg

This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology

28 02 2019 2019 10 69 18 07 2018 15 01 2019 Copyright © 2019 Warren-Rhodes, Lee, Archer, Cabrol, Ng-Boyle, Wettergreen, Zacny, Pointing and the NASA Life in the Atacama Project Team. 2019 Warren-Rhodes, Lee, Archer, Cabrol, Ng-Boyle, Wettergreen, Zacny, Pointing and the NASA Life in the Atacama Project Team

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Sediments in the hyper-arid core of the Atacama Desert are a terrestrial analog to Mars regolith. Understanding the distribution and drivers of microbial life in the sediment may give critical clues on how to search for biosignatures on Mars. Here, we identify the spatial distribution of highly specialized bacterial communities in previously unexplored depth horizons of subsurface sediments to a depth of 800 mm. We deployed an autonomous rover in a mission-relevant Martian drilling scenario with manual sample validation. Subsurface communities were delineated by depth related to sediment moisture. Geochemical analysis indicated soluble salts and minerology that influenced water bio-availability, particularly in deeper sediments. Colonization was also patchy and uncolonized sediment was associated with indicators of extreme osmotic challenge. The study identifies linkage between biocomplexity, moisture and geochemistry in Mars-like sediments at the limit of habitability and demonstrates feasibility of the rover-mounted drill for future Mars sample recovery.

Atacama desert soil mars moisture stress soil bacteria

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The surface of Mars is dry, cold, and exposed to high levels of ionizing radiation. However, data accumulated over the past few decades by orbital and landed missions have demonstrated that early in its history the planet may have been habitable for microbial life with abundant sources of energy, carbon, nutrients, and shelter (Cabrol, 2018). Mars supported both surface and subsurface water and may still do in some circumstances, as well as organic molecules required for life (Martin-Torres et al., 2015). As a result, Mars 2020 and ExoMars missions will be searching for biosignatures (Farley and Williford, 2017; Vago et al., 2017), and the investigation of terrestrial analogs can provide critical insights for the development and testing of exploration strategies. Among those, the hyper-arid core of the Atacama Desert in Chile is widely regarded as a tractable Mars analog in the field of astrobiology. The Atacama is the driest desert region on Earth (Peel and Finlayson, 2007) with extremely low moisture inputs and precipitation events that are stochastic in nature (McKay et al., 2003). The region has a long history of climatic stability as an extreme desert (Hartley et al., 2005; Clarke, 2006) resulting in the build-up of evaporates (McKay et al., 2003; Navarro-Gonzalez et al., 2003) and creation of a Mars-like surface. The desert’s hyper-arid core lies at or near the arid limit for soil formation (Ewing et al., 2006) and thus surface terrain in this region is regarded as sediment.

      Animal and plant life are scarce in extreme deserts and instead cyanobacteria-dominated microbial communities in mineral and rocky refugia including deliquescent substrates comprise the dominant surface biota and are well-characterized (Azua-Bustos et al., 2012; Pointing and Belnap, 2012). Conversely, evidence for microbial colonization in hyper-arid Atacama sediment is scarce, contradictory and almost exclusively limited to surface-associated sediment (Navarro-Gonzalez et al., 2003; Drees et al., 2006; Connon et al., 2007; Lester et al., 2007; Crits-Christoph et al., 2013; Schulze-Makuch et al., 2018; Supplementary Table S1). Cultivation-based approaches are unreliable as indicators of environmental microbial diversity and have yielded estimates that varied by several orders of magnitude (Navarro-Gonzalez et al., 2003; Bagaley, 2006; Connon et al., 2007; Lester et al., 2007; Schulze-Makuch et al., 2018). Biochemical tests have similarly yielded inconclusive support for microbial metabolic activity (Navarro-Gonzalez et al., 2003; Connon et al., 2007; Lester et al., 2007; Crits-Christoph et al., 2013; Schulze-Makuch et al., 2018). High throughput sequencing of environmental DNA/RNA remains the most reliable indicator for microbial diversity in extreme desert sediments. This approach has provided critical insight on surface-associated communities in semi-arid, arid and hyper-arid locations (Crits-Christoph et al., 2013). A recent study also estimated putative microbial metabolic activity in three subsurface samples after an unusual rain event and this suggested subsurface sediment may also be a habitat for microbial communities (Schulze-Makuch et al., 2018). Major knowledge gaps persist and importantly from an astrobiology perspective, the question of how microbial occurrence and diversity may vary with abiotic variables in sediment depth horizons of a Mars analog and spatially within terrain, and whether this can be addressed in a simulated robotic sampling mission scenario.

      To document these questions and support the development and testing of biosignature exploration strategies, the NASA-funded Subsurface Life in the Atacama (LITA) project deployed an autonomous rover-mounted robotic drill in Mars-like desert pavement and playa terrain within the hyper-arid core of the Atacama under challenging environmental and logistical constraints (Supplementary Figures S1S3). The drill accessed 32 discreet sediment samples to depths of 800 mm along a 50 km transect in a realistic simulation of Martian drilling operations and constraints. Over 60 manually excavated sediment samples were recovered in parallel and validated the automated sampling for abiotic and biotic components of the sediment habitat and provide important baseline ecological data on the most Mars-like sediments on Earth (Warren-Rhodes et al., 2018).

      Materials and Methods Field Sites

      A 50-km autonomous rover traverse in the hyper-arid core of the Atacama Desert was completed in 2013 under challenging environmental and logistical conditions (Supplementary Figure S1). The field experiment took place over a period of two weeks within a landing ellipse circumscribed by rover logistical constraints, ASTER satellite geochemistry and historical climate data as appropriate Mars analogs. The rover traversed two types of terrain identified as appropriate Mars analogs (McKay et al., 2003): stony desert pavement in the western part of the traverse and desert playa in the eastern part within the topographical low and terminus for water runoff (snowmelt, rainfall) for the surrounding region (thus likely to receive significantly more moisture from easterly winter Andean precipitation and runoff than the desert pavement). A unique paleo-playa was also encountered and sampled, comprising an elevated area of dry sediment with evidence of historical playa features. A total of 61 manual samples and 32 rover-acquired samples were independently collected and interrogated.

      Robotic Sample Recovery

      The Zöe rover built by the Robotics Institute at Carnegie Mellon University is a solar-powered rover designed to autonomously map and analyze contextual landscape and habitat visible and geochemical features (with on-board navigation cameras and Vis-NIR spectrometer on its mast) and to drill and deliver samples to on-board scientific instrumentation, including a Mars Micro-beam Raman Spectrometer (MMRS) (Supplementary Figure S2). The drill, developed by Honeybee Robotics Corporation is a 15 kg, 300-Watt, rotary-percussive and fully autonomous drill designed to capture powdered rocks and sediment samples (Supplementary Figure S3). The drill consists of a rotary-percussive drill head, sampling augur, brushing station, feed stage and deployment stage, using a vertical 19.1 mm diameter drill operating at 120 rpm. Drilling is accomplished using a bite-sampling approach where samples are captured in 10–20 cm intervals, to simulate a Martian drilling scenario (Zacny et al., 2014). That is, after drilling 10–20 cm, the auger bit with the sample is pulled out of the hole, and the sample brushed off into an on-board sample carousel cup [or sterile Whirlpak (Nasco) bag for manual recovery]. Initially autoclaved in the laboratory, the drill bit, brushing station, Z-stage and deployment stage were field sterilized with 70% ethanol prior to and after each site sampling. Aseptic techniques were also used throughout rover sampling operations, including minimal disturbance near the rover during all collections.

      Manual Sediment Pit Sampling

      Post-drill, a sediment pit adjacent to the drill hole was excavated manually after first sampling surface sediments. Samples were recovered horizontally from the exposed sediment horizon at 10 cm depth intervals. The pit wall was excavated using a plastic Sterileware (Bel-Art Products) scoop or metal trowel sterilized with 70% ethanol. Deeper layers occasionally required a drill to obtain sample, and a Makita LXT drill was employed, with the drill bit first sterilized with 70% ethanol. All samples were collected using aseptic techniques and tools using a Sterileware (Bel-Art Products) sampling spatula or a stainless-steel spatula sterilized with 70% ethanol. Sediment samples (50–200 g) were collected from each depth layer for biology and geochemistry, with care taken to minimize mixing between different depths, and placed immediately into sterile falcon tubes or Whirlpak (Nasco) bags. Samples were stored at –80oC until processed in the laboratory.

      Mineralogical Analysis Using Rover Payload

      The MMRS on board the rover collected real-time in situ mineralogical/geochemical analyses of sediment samples. This allowed direct and unambiguous molecular phase identification from raw Raman spectra of mixtures, e.g., minerals and sediments. The MMRS had a two-unit configuration connected using fiber-optics: A probe unit contained a YAG-KTP crystal pair to generate a 532 nm laser beam for excitation, the optics for laser beam focusing and for Raman photon collection, and a step-motoring mechanism that enable a ∼1 cm line scan at the sample surface. The main unit of the MMRS contained an 808 nm diode pump laser, MMRS Raman spectrometer and detector, electronics for laser driving and control, a microprocessor for commending MMRS operation and data receiving, plus MMRS calibration lamp. This covered a spectral range from 100 to 4000 cm-1 with a spectral resolution of 7–8 cm-1. The MMRS probe had a working distance of ∼10 mm from the sample surface and generated a laser beam of 20–30 mW with a diameter < 20 μm at the focus. The wavelength calibration of MMRS spectrometer was performed twice using the Ne calibration lamp during the field campaign, and the laser wavelength calibration was performed daily using naphthalene powder. Raman spectra acquired by the rover were validated against laboratory analysis of sediments using a Kaiser Hololab 5000—532 nm Raman spectrometer with similar configuration to the MMRS and comparable performances in optical throughput (Wei et al., 2015).

      Sediment Geochemistry and Microclimate Data

      In the laboratory, sediment chemical analyses for variables known to affect microbial colonization of soil/sediments, including pH, electrical conductivity, soluble salts, C, N, C:N ratio, extractable cations, phosphorous, and sulfur plus inherent sediment properties including anion and cation exchange capacity and bulk density were measured according to standard soil chemical analysis methods1. It was recognized that high salinity and gypsum levels encountered in our desert sediments may influence estimates for water-soluble ions, however, by adopting standard methods applied to soil testing in microbial ecology studies of soil globally we produced a data set that was comparable with other microbial diversity studies.

      In brief, geochemical tests were conducted using the following methodology: All sediments were dried in a forced air convection drier at 35°C, and after drying, sediments were crushed to pass through a 2 mm sieve. For pH, 10 mL of sediment was slurried with 20 mL of water, and after standing, the pH was measured (1:2 v/v slurry). Bulk density was obtained with a fixed volume (12 mL) of dried and ground sediment weighed. Phosphorus was extracted using Olsen’s procedure (0.5 M sodium bicarbonate, pH 8.5, 1:20 v/v sediment: extractant ratio, 30 min extraction), and the extracted phosphate was determined calorimetrically by a molybdenum blue procedure. Cations (K+, Ca2+, Mg2+, Na+) were extracted using ammonium acetate (1.0 M, pH 7, 1:20 v/v sediment:extractant ratio, 30 min extraction), and determined by ICP-OES. Cation Exchange Capacity (CEC) was calculated by summation of the extractable cations and the extractable acidity. The extractable acidity was determined from the decrease in pH of the buffered ammonium acetate cation extract. For sulfate-sulfur, sediments were extracted using 0.02 M potassium dihydrogen phosphate after 30 min shaking, and sulfate-sulfur was measured by anion-exchange chromatography (IC). Total nitrogen (TN) and total carbon (TC) were determined by the Dumas method of combustion. Each sample was combusted to produce varying proportions of CH4 and CO gas. The CH4 and CO gas was oxidized to CO2 using the catalysts Copper Oxide and Platinum. The CO2 was measured using Thermal Conductivity detector. Available nitrogen and anaerobically mineralizable nitrogen (not reported) were estimated after incubating sediment samples for 7 days at 40°C, after which the ammonium-N was extracted with potassium chloride (2 M potassium chloride, 1:5 v/v sediment:extractant ratio, 15 min shaking), and determined calorimetrically. A water extraction (1:5 w/v sediment: extractant ratio, 30 min shaking) was used for electrical conductivity, (EC), which has be used as a proxy for water availability in desert soils/sediments, i.e., higher EC = more salt, less water (Crits-Christoph et al., 2013).

      Micro-climate data were collected using in situ data loggers in pits installed at the date of sediment sampling in 2013 and recorded continuous subsurface microclimate for 14 months. Relative humidity/temperature HOBO Pro v2 dataloggers (U23-002) were placed at 10 cm, 30 cm, and 80 cm depth in pavement and playa sites. Sediment water content was estimated gravimetrically, directly from sediment samples in the laboratory after drying at 120oC × 48h to constant dry weight.

      Environmental 16S rRNA Gene-Defined Diversity

      Total environmental genomic DNA were extracted from the sediment samples using a method proven during our previous research to maximize recovery from microbial communities from extreme environments (Lee et al., 2016). Sediment samples (3 × 0.5 g triplicate extractions per sample) were combined with 0.5g of 0.1 mm silica-zirconia beads. To each sample, 320 μL of phosphate buffer (100 mM NaH2PO4) and 320 μL of SDS lysis buffer (100 Mm NaCl, 500 mM Tris pH 8.0, 10% SDS) were added and samples were homogenized using the FastPrep®-24 (MP Biomedicals, Solon, OH, United States) at 5.5 for a 30 s run. Samples were centrifuged at 13,200 rpm for 3 min (20°C) and 230 μL of cetyltrimethylammonium bromide-polyvinylpyrrolidone (CTAB) extraction buffer (100 Mm Tis–HCl, 1.4 M NaCl, 20 Mm EDTA, 2% CTAB, 1% polyvinylpyrrolidone and 0.4% β-mecaptoethanol) was added. Samples were vortexed for 10 s before incubation at 60°C and 300 rpm for 30 min. Samples were centrifuged at 13,200 rpm for 1 min and then 400 μL of chloroform:isoamyl alcohol (24:1) was added. Samples were then vortexed for 10 s and centrifuged at 13,200 rpm for 5 min. The upper aqueous layer was removed into a new Eppendorf tube and a further 550 μL of chloroform:isoamyl alcohol (24:1) was added. Samples were vortexed for 15 s and again centrifuged at 13,200 rpm for 5 min. The upper aqueous phase was removed into a new Eppendorf tube and 10 M ammonium acetate was added to samples to achieve a final concentration of 2.5 M. Samples were vortexed for 10 s and centrifuged at 13,200 rpm for 5 min. The aqueous layer was removed to a new tube and 0.54 volume of isopropanol was added and mixed by inversion. Samples were left for 24 h at –20°C and then centrifuged for 20 min at 13,200 rpm (4°C). The supernatant was discarded and the pellet was washed with 1 mL 70% ethanol and centrifuged for 10 min at 13,200 rpm. Ethanol was removed and DNA was re-suspended in 20 μL of sterile DNase free water. Samples were then quantified using the Qubit 2.0 Flourometer (Invitrogen). Samples were then stored at –20°C until required. The extracted DNA were then adjusted, where possible, to 5 ng/μL before Illumina MiSeq library preparation as specified by the manufacturer (16S Metagenomic Sequencing Library Preparation Part # 15044223 Rev. B; Illumina, San Diego, CA, United States). Briefly, PCR was conducted with the primer set targeting the V3-V4 regions of bacterial and archaeal 16S rRNA gene: PCR1 forward (5′ TCGTCGGCAG CGTCAGATGT GTATAAGAGA CAGCCTACGG GNGGCWGCAG 3′) and PCR1 reverse (5′ GTCTCGTGGG CTCGGAGATG TGTATAAGAG ACAGGACTAC HVGGGTATCT AATCC 3′) with KAPA HiFi Hotstart Readymix (Kapa Biosystems, Wilmington, MA, United States) and the following thermocycling parameters: (1) 95°C for 3 min, (2) 25 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s, 72°C for 5 min, and (3) holding the samples at 4°C. The amplicons were then indexed using Nextera XT index kit (Illumina). The indexed amplicons were purified and size selected using AMPure XP beads (Beckman-Coulter, Brea, CA, United States) before sequencing on an Illumina Miseq (Illumina) with the 500 cycle V2 chemistry (250 bp paired-end reads). A 5% PhiX spike-in was used, as per manufacturer’s recommendation. The R packages phyloseq, DESeq2, and ggplot2 were used for downstream analysis and visualization including ordination and alpha diversity calculations2. High-throughput sequencing of the 16S rRNA gene yielded 878,875 quality filtered reads and 92 bacterial OTUs that were further analyzed. All sequence data acquired during this investigation has been deposited in the NCBI Sequence Read Archive under project accession number PRJEB22902.

      Our approach employed an environmental DNA recovery method that has been optimized for extreme desert sediments and has been used as a proxy for relative biomass (Pointing et al., 2009). We employed positive and negative controls for all PCR amplifications. We employed rRNA gene loci widely accepted as the benchmark for interrogating environmental soil/sediment samples3. We also adopted high coverage and carefully screened our sequence libraries for artifacts and contaminants. We also performed successful DNA extractions on pavement and playa sediments that yielded negative extraction outcomes for environmental DNA (as well as those yielding positive outcomes as controls), after spiking these with E.coli from an axenic cell suspension in phosphate buffered saline solution at final cell concentrations of 103–107 cfu/g sediment to simulate estimated occurrence in hyper arid sediment (Connon et al., 2007; Lester et al., 2007). Recovery rates were in the range of 60–80% of that for axenic cell suspensions in all treatments.

      We did not supplement our intensive molecular ecological survey with a cultivation approach because it is widely accepted that most environmental bacteria are unculturable and their in vitro growth requirements are unknown, thus such an approach would have introduced significant bias to the study. Similarly, the lack of resolution and triangulation available for some alternative approaches including lipid analysis and metabolic activity limit their contribution to microbial community estimation relative to DNA sequencing approaches. Given the inherent patchiness of distribution for microbial life in extreme deserts and our robust methodological approach we are confident that our estimates provided the most accurate possible indication of endemic diversity.

      Statistical Analysis

      Canonical correspondence analysis (CCA) was performed with the R package vegan to explore the strength of associations among the sediment geochemistry profiles, bacterial taxa (OTUs) and site locations4. Type III symmetrical scaling was used in the CCA plot, where both site and species scores were scaled symmetrically by square root of eigenvalues. This technique provided a weighted sum of the variables that maximizes the correlation between the canonical variates. A biplot was created to visualize the outcomes and help facilitate interpretation of the canonical variate scores. Linear Discriminant Analysis (LDA) using the R package flipMultivariates5 was applied to geochemistry data (n = 61, cases used for estimation n = 47, values below detection range were treated as 0, cases containing missing values were excluded, null hypotheses = two-sided). For multiple comparisons correction, False Discovery Rate correction was applied simultaneously to the entire table. BEST analyses were conducted using the BIO-ENV procedure in Primer 7 software6 to maximize the rank correlation between biotic and environmental data, thereby establishing a ranking (pw) for the effects of environmental variables on diversity.

      Results and Discussion Extreme Habitats in Atacama Sediment Horizons

      The on-board Raman spectrometry revealed surface mineral distributions comprising feldspar and quartz. Subsurface sediments, and particularly the playa sites, were elevated in gypsum and anhydrite (Supplementary Table S2 and Supplementary Figure S5). This was independently corroborated by laboratory Raman measurements (Supplementary Table S2) and geochemical analysis that revealed a positive linear correlation (r = 0.78, p < 0.001) across all samples between sulfate-sulfur and calcium, the components of gypsum and anhydrite (CaSO4 + /-2H2O). Anydrite is indicative of drier conditions at depth, and in situ soil moisture sensors validated this for horizons in both pavement and playa.

      Our chemical analysis focused on geochemical reservoirs readily available and relevant to biological communities and using methodology that was comparable with other microbial ecology studies. A clear depth-dependent pattern in geochemistry was revealed for pavement and playa horizons (Figure 1, Supplementary Table S3, and Supplementary Figure S4). Surface sediments were strongly associated with elevated phosphorous concentrations in both playa and pavement units (Figure 1). Elevated surface P was attributed to presence of surface Fe-oxides and calcite that can adsorb P. These P-adsorbing phases were likely present in the subsurface but were diluted by high sulfate concentrations causing lower recorded P concentrations below the surface. All subsurface samples displayed very low to undetectable levels of N and low C throughout horizons. The on-board Raman spectrometer also recorded C as a minor/undetectable phase in all samples. Electrical conductivity (EC) and Na+ levels increased with depth in both substrates indicating increased salinity with depth (p = 0.006). Desert pavement subsurface sediments separated mainly due to pH and K+, whilst playa subsurface sediments displayed elevated levels of sulfate-sulfur, extractable cations (Ca2+, Mg2+, Na+) and EC indicating increasing osmotic challenge, and most notably in the paleo-playa Site 10 (Figure 1 and Supplementary Table S3).

      Correlation of Mars analog sediment geochemistry with bacterial diversity. Canonical Correspondence Analysis (CCA) triplot with symmetrical scaling indicating differences in sediment geochemistry within sediment pits, and influence of these abiotic variables on bacterial communities and individual taxa. The three most abundant taxa are labeled (A, B, C). The circle size of each sample indicates species richness index (Chao 1) of the respective community.

      Average annual subsurface temperatures ranged from 19.9 to 20.9oC in depth horizons (Supplementary Table S4). At shallow depths (< 100 mm) temperature varied between 4 and 34oC, whereas in deeper horizons temperature variation was somewhat buffered (Supplementary Figure S6). Moisture values from depth horizons in representative playa terrain were consistently higher (approximately 4- to 7-fold) at all depths than those in the desert pavement horizons (Supplementary Table S4) and this likely reflects local hydrology given the playa was a relatively low-lying terrain (Supplementary Figure S1). However, sediment moisture trends in both substrates broadly indicated the existence of depth groupings into distinct moisture zones: (a) a surface zone consisting of the top 200 mm, where water availability is typically lowest, except in the short-term following a rain event; (b) a mid-depth zone (300–500 mm), where water availability peaks and persists after a rain event; and (c) a deep subsurface zone (≥ 500–800 mm), where water availability is typically lower and, notably for the desert pavement sediments, appeared to be un-impacted by rare large rainfall events (Supplementary Table S4 and Supplementary Figure S6).

      Depth-Related Trends in DNA Recovery and Microbial Alpha Diversity

      Surface sediment and subsurface horizons displayed patchy recovery with low yields of quantifiable DNA in the range 0.067–6.5 ng/g sediment, indicating extremely low standing biomass (Supplementary Tables S3, S5). Notably, the paleo-playa site yielded no recoverable DNA at any depth after repeated efforts at extraction. Our approach using a DNA recovery method adapted for low-biomass extreme environments highlights for the first time the patchiness of low biomass microbial colonization in the most extreme subsurface desert sediments where micro-habitat conditions are at or near the limit for life (McKay, 2014). This may explain, at least in part, why previous research has concluded some parts of the hyper-arid core of the Atacama may be lifeless (Navarro-Gonzalez et al., 2003). Linear Discriminant Analysis was employed to show that variables most strongly associated with potentially lifeless subsurface sediments where environmental DNA was irrecoverable were sulfate-sulfur (substrate) (p = 0.001), depth (p = 0.003), EC (p = 0.006), and soluble salts (p = 0.006). This strongly suggests that osmotic challenge and limited moisture availability are the major extinction drivers in this Mars analog sediment. We also demonstrated that substrate-inhibition of DNA recovery was unlikely to have been a significant factor, since bacterial cell suspensions in the range reported for desert soils (Supplementary Table S1) added to these samples were recoverable with 60–80% efficiency compared to a pure laboratory culture and were not significantly inhibited compared to extractions with spiked sediments that did originally yield environmental DNA.

      Across both terrains any given depth horizon tended to either be colonized almost throughout or display only patchy near-surface colonization as measured by recoverable DNA. Thus, the ubiquitous surface colonization was not a predictor for subsurface habitability in these sediments. We postulate that in addition to sediment moisture, extreme geochemistry also influenced habitability in these sediments as evidenced by high soluble salts/salinity indicators and abundance of anhydrite and gypsum mineral signatures (Supplementary Tables S2, S3). Temperature variations were not regarded as significant challenges to microbial colonization compared to other variables (Supplementary Figure S6). The paleo-playa site 10 failed to yield recoverable DNA from any depth, thus highlighting that ancient landforms created under moisture sufficiency, and with elevated anhydrite levels as indicated by the rover’s Raman spectrometer (Supplementary Figure S7) may not support extant genetic biosignatures and do not support recoverable relic DNA. Our overall DNA recovery success was consistent with our expectations for the driest desert location on Earth. It is notable that we have observed Antarctic mineral sediments, another Mars analog, generally yield higher recovery rates using similar methodologies, e.g. (Pointing et al., 2009; Lee et al., 2012). However, this is due to enhanced standing biomass due to the less extreme nature of the growing season in Antarctic desert where long periods of frozen hibernation are punctuated by periods of moisture sufficiency during the austral summer (Pointing et al., 2015).

      Clear patterns were discernible from manually excavated sediment pits. Bacterial diversity decreased significantly with depth across both terrains (Chao1 richness: r = 0.508, p = 0.044; Shannon’s H: r = 0.731, p = 0.001), thus indicating depth as a major driver of bacterial diversity (Supplementary Figure S8 and Supplementary Table S6). Bacterial communities formed six diversity clusters that associated with clearly defined depth ranges and zones of variability in sediment moisture and geochemistry (Figure 2A). Subsurface communities were more distinct between habitat types but also more heterogenous overall than surface-associated communities, due largely to the lower bacterial diversity within each depth-defined sediment micro-habitat. Community evenness displayed little clear pattern with depth for desert pavement but for playa deep samples displayed very low evenness reflecting their highly specialized diversity (Supplementary Table S6). In all cases the rover-acquired samples showed a generally similar pattern in depth profile and diversity clusters although these were less clearly defined and we attributed this to mixing of sediment during recovery using the bite-drilling approach (Figure 2B and Supplementary Figure S8).

      Depth-defined bacterial diversity in Mars analog sediments of the Atacama Desert. Non-metric multidimensional scaling (NMDS) ordination of Bray Curtis similarities for bacterial diversity versus sediment depth from (A) manual recovery, and (B) rover recovery. Shaded areas indicate similarity clusters for sediment communities at the same depth. The size of each symbol (circle or triangle) indicates species richness index (Chao 1) of the respective community. Mid-range values were used for drill samples where depth ranges instead of individual depths were generated.

      To further unravel the influence of sediment environment on bacterial diversity, we performed CCA to establish the association of distinct geochemistry for desert pavement and playa samples on the assembly of bacterial communities (Figure 1). Surface communities were strongly influenced by P levels that were elevated compared to the subsurface (Figure 1). Bacterial diversity in subsurface sediment habitats correlated with two groups of geochemical variables: The playa subsurface community was strongly associated with EC and extractable cations (Ca2+, Mg2+, Na+) and the rover-mounted Raman data indicated elevated anhydrite and gypsum (Supplementary Table S3 and Supplementary Figure S5). This strongly suggests that bio-availability of water may be limited in this subsurface habitat despite relatively high moisture levels due to the effects of salt saturation. Conversely, the pavement subsurface community was associated largely with pH, and also C and K+ although the magnitude of variation for these variables was low. This pH-dependent structuring of microbial diversity is consistent with observations for global trends in soil microbial diversity (Fierer and Jackson, 2006). The BEST multiple rank correlation routine was employed to further examine our data and rank the relative association of abiotic variables with the observed bacterial diversity as follows: extractable cations (Ca2+, Mg2+, Na+) and phosphorous > sulfate-sulfur >> EC (pw = 0.595–0.609, p < 0.05), thus further validating the ordinations and CCA analysis.

      Highly Specialized Sediment Bacterial Communities

      The taxa identified in sediment indicated highly specialized and relatively low diversity bacterial communities in both desert pavement and playa, and this low diversity reflects global trends in soil microbial diversity where deserts are considered to be relatively depauperate (Thompson et al., 2017; Delgado-Baquerizo et al., 2018). Overall the drill samples yielded weaker depth resolution than manual sampling but still corroborated observations from the manually collected samples (Figure 3 and Supplementary Figure S9). Bacterial taxonomic diversity varied significantly with subsurface habitat as compared to a generally consistent surface community (Figure 3; Crits-Christoph et al., 2013). Overall, communities were dominated largely by only three phyla: Chloroflexi, Actinobacteria and Alphaproteobacteria.

      Highly specialized bacterial communities in Mars analog sediment depth horizons. Distribution of bacterial diversity by taxonomic class with sediment depth for manual (M) and autonomous rover drill (D) recovered samples. Colored shading indicates relative abundance within each community for a given bacterial class. Gray shading indicates no recoverable bacteria. The asterisks represent gaps in drill sampling and have been supplemented with manual sampled equivalent (left side) for comparison. Individual sample data is presented in Supplementary Table S6 and Supplementary Figure S9.

      All surface communities were dominated by the AKIW781 lineage of the photoheterotrophic Chloroflexi, a known desert soil crust taxon (NCBI GenBank accession number: JQ402146), and overall community structure contributed additional taxonomic resolution to previous observations of surface sediment communities (Crits-Christoph et al., 2013; Schulze-Makuch et al., 2018). AKIW781 has also been recorded in desert varnish on rock surfaces (Kuhlman et al., 2008) as well as a keystone taxon of hypolithic communities (Lacap et al., 2011) in the Atacama. This indicates a cosmopolitan distribution and broad habitat preference among surface niches in this extreme desert. Conversely, the Chloroflexi were minor components of subsurface communities, decreasing in relative abundance with depth, and mainly comprised an uncharacterized candidate class Ellin6529, likely adapted to non-phototrophic metabolism in the subsurface microhabitat.

      Low and mid-depth subsurface horizons for both desert pavement and playa were dominated by the high G-C Gram positive Actinobacteria (Figure 3 and Supplementary Figure S9). They are typically thick-walled bacteria commonly encountered in soil. Communities encountered were specific to each depth horizon and shifts in diversity clearly reflected the moisture zones identified for both pavement and playa horizons. At shallow depths (< 200 mm) halotolerant, alkalotolerant, spore-forming desiccation-tolerant actinobacterial groups were abundant and included the orders acidimicrobiales, gaiellales, nitriliruptorales and solirubrobacterales in desert pavement and acidimicrobiales and nitriliruptorales in playa. Mid-depth sediments (300- < 500 mm) corresponding to the zone of greatest moisture availability in both substrates supported highly variable bacterial diversity between samples and also the most diverse communities (Supplementary Table S6). Of note was the elevated relative abundance of bacillales at a single pavement site and this may reflect the relatively high altitude and limited moisture input to the subsurface. The bacillales-dominated community was more similar to those encountered at greater depths at other locations. The bacillales are characterized by their ability to form highly resistant endospores and so may indicate an increasingly challenging micro-habitat in deeper subsurface sediments.

      There were fewer deep sediment samples from which to make comparisons and this reflected the more challenging subsurface environment, and deeper communities (500 + mm) generally displayed lowest taxonomic diversity. The deepest desert pavement community was similar to those at shallower depths but displayed elevated relative abundance of acidimicrobiales. Conversely the deep playa community shifted to a fundamentally different composition from shallower depths that was dominated almost exclusively by a single facultative methylotrophic and desiccation-tolerant Methylobacterium radiotolerans taxon (NCBI GenBank accession number: LT985974) from the phylum Alphaproteobacteria. We speculate the C1 metabolism of this taxon allows it to exploit simple C1 compounds as well as subsurface methane sources (Kao et al., 2017), a molecule known to be released from subsurface sources on Mars (Stevens et al., 2017). An overall picture thus emerges of highly- specialized bacterial diversity adapted to and reflecting the challenging subsurface habitat as well as reflecting moisture availability zones determined at least in part by sediment depth and geochemistry.

      Other bacteria typically encountered in desert surface communities and generally regarded as tolerant to extreme conditions were not major components of subsurface communities. A complete absence of cyanobacterial taxa was consistent with their adaptation to surface mineral refugia rather than subsurface sediment habitats that preclude photoautotrophy (Azua-Bustos et al., 2012), and the highly desiccation-tolerant Deinococcus-Thermus group were represented by only a single lineage of Trueperaceae candidate genus B-42 recovered in just a few subsurface samples with low abundance (0.6–4.8%), compared to a relatively diverse assemblage of cultivable Deinococci recovered from surface sediments in other less arid desert locations (Rainey et al., 2005). This further supports our evidence for highly specialized subsurface communities selected for by the distinct geochemistry and microclimate in the subsurface Mars analog sediments of the Atacama. They may thus be broadly indicative of the type of microbial consortia that could exploit Martian subsurface habitats.

      In the deepest and least-diverse playa communities biocomplexity was reduced almost to a single taxon, reflecting extreme selective pressure and also highlighting a possible lack of resilience to environmental change given that recruitment to deep subsurface sediments may be limited. The minimum biocomplexity might therefore comprise multiple ecotypes of a single taxon, each adapted to exploit a given suite of microclimate and geochemical conditions (Koeppel et al., 2008). They exhibited a strong preference for C1 and/or autotrophic taxa that are somewhat de-linked from their immediate surroundings in terms of carbon sequestration and reflect the extreme oligotrophic nature of these microhabitats. Given the highly specialized diversity recovered, the association of putative physiology with environmental variables, and lack of DNA recovery in paleo-playa samples; we conclude that our estimates are likely to represent resident microbial communities rather than relic DNA (Carini et al., 2016; Schulze-Makuch et al., 2018).

      Implications for Detection of Biosignatures on Mars

      The autonomous rover drilling platform yielded subsurface sediment samples that allowed for the first time a combined investigation of sediment abiotic properties and microbial diversity at an unprecedented level of detail. The parallel manual sampling and analysis demonstrated feasibility and fidelity of the autonomous rover approach. Highly specialized but low-diversity subsurface bacterial communities were encountered patchily and this was strongly associated with abiotic variables which suggests that “follow the water” is only part of the biosignature exploration solution in the search for potential habitable refuges on Mars. Consideration of subsurface micro-habitat variability in geochemistry, originating with and adapted to possible water availability zones may also be key. Whilst the geochemistry of our analog sites was similar to that of a habitable Martian regolith, moisture in the Atacama is surface-sourced by fog and/or rain events (McKay et al., 2003), whereas on Mars subsurface sources may provide an upward migration of moisture similar to that observed in Antarctic mineral sediment overlaying permafrost (Stomeo et al., 2012; Goordial et al., 2016). Thus, extrapolating habitable subsurface locations on Mars would need to consider this along with the incident radiation regime and other Martian environmental variables. Based on the exploratory design consideration for this NASA-funded research, drill depth was constrained at 800 mm as a proof of concept study. However, current plans are for both NASA and ESA to target depths of up to 2 m on Mars in order to target potential subsurface habitats that account for Martian environmental variables.

      The relevance of ecology and microbial habitats to past and possible extant life on Mars are finally coming to the fore in the robotic search for biosignatures on Mars (Warren-Rhodes et al., 2007; Cabrol, 2018). As our study suggests, detecting such life or its residual biosignatures may prove highly challenging, given that in the most extreme deserts on Earth these communities are extremely patchy in distribution and occur with exceedingly low biomass. The drill apparatus employed in this study has demonstrated that subsurface sediment biosignatures can be autonomously recovered, although precise depth delineation requires refinement with the bite-drilling approach used in this study. Whilst genetic biosignatures such as DNA used in our study may not ultimately be the primary method employed to search for traces of life on Mars, they are the most reliable and widely used method currently available for microbial diversity estimation (Thompson et al., 2017; Delgado-Baquerizo et al., 2018). This approach provided essential first proof of concept that an incontrovertible biological signature within the likely range for geochemical variables in a habitable subsurface environment can be recovered from a Mars-like sediment using an autonomous rover.

      Author Contributions

      KW-R, NC, and SP conceived the study. DW, KZ, and NASA LITA Project Team built and operated the rover. KW-R and NASA LITA Project Team conducted field operations and sampling. KL, SA, and SP processed the sediment samples and conducted geochemical analysis. SA and KL conducted the molecular biology experiments. KW-R, KL, SA, LN-B, and SP performed the data analysis. KW-R and SP wrote the manuscript. All authors reviewed a draft of the manuscript.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. The work was completed with funding from NASA Astrobiology Science and Technology for Exploring Planets (ASTEP) Program Grant NNX11AJ87G and a Yale-NUS College Start-Up Grant. NASA Life in the Atacama Project team members that contributed to the success of this research: Guillermo Chong (Universidad Católica del Norte), Cecilia Demergasso (Universidad Católica del Norte), Greydon Foil (Carnegie-Mellon University), Christopher Gayle Tate (University of Tenessee), Trent Hare (United States Geological Survey), Donnabella C. Lacap-Bugler (Auckland University of Technology), Jeff Moersch (University of Tenessee), Ken Tanaka (United States Geological Survey), Cinthya Tebes (Universidad Católica del Norte), Srinivasan Vijayarangan (Honeybee Robotics and Spacecraft Mechanisms Corp.), Michael Wagner (Carnegie-Mellon University), Alian Wang (Washington University), Jie Wei (Washington University).

      The authors are grateful to Brad Sutter (NASA) for advice on interpretation of geochemical analysis, and Craig Cary (University of Waikato) for assistance with sample storage. Author Kris Zacny was employed by Honeybee Robotics and Spacecraft Corporation. All other authors declare no competing interests. A preprint version of this manuscript is available on the bioRxiv server: https://www.biorxiv.org/content/early/2018/06/20/269605.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmicb.2019.00069/full#supplementary-material

      References Azua-Bustos A. Urrejola C. Vicuña R. (2012). Life at the dry edge: microorganisms of the atacama desert. FEBS Lett. 586 29392945. 10.1016/J.FEBSLET.2012.07.025 22819826 Bagaley D. R. (2006). Uncovering Bacterial Diversity on and Below the Surface of a Hyper-Arid Environment, the Atacama Desert, Chile. LSU Master’s Theses. 3474 Louisiana State University and Agricultural and Mechanical College, USA. Cabrol N. A. (2018). The coevolution of life and environment on mars: an ecosystem perspective on the robotic exploration of biosignatures. Astrobiology 18 127. 10.1089/ast.2017.1756 29252008 Carini P. Marsden P. J. Leff J. W. Morgan E. E. Strickland M. S. Fierer N. (2016). Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2:16242. 10.1038/nmicrobiol.2016.242 27991881 Clarke J. D. A. (2006). Antiquity of aridity in the chilean atacama desert. Geomorphology 73 101114. 10.1016/j.geomorph.2005.06.008 Connon S. S. A. Lester E. D. E. Shafaat H. H. S. Obenhuber D. C. Ponce A. (2007). Bacterial diversity in hyperarid atacama desert soils. J. Geophys. Res. Biogeosci. 112 G04S17. 10.1029/2006JG000311 Crits-Christoph A. Robinson C. K. Barnum T. Fricke W. F. Davila A. F. Jedynak B. (2013). Colonization patterns of soil microbial communities in the atacama desert. Microbiome 1:28. 10.1186/2049-2618-1-28 24451153 Delgado-Baquerizo M. Oliverio A. M. Brewer T. E. Benavent-González A. Eldridge D. J. Bardgett R. D. (2018). A global atlas of the dominant bacteria found in soil. Science 359 320325. 10.1126/science.aap9516 29348236 Drees K. P. Neilson J. W. Betancourt J. L. Quade J. Henderson D. A. Pryor B. M. (2006). Bacterial community structure in the hyperarid core of the atacama desert, chile. Appl. Env. Microbiol. 72 79027908. 10.1128/AEM.01305-06 17028238 Ewing S. A. Sutter B. Owen J. Nishiizumi K. Sharp W. Cliff S. S. (2006). A threshold in soil formation at Earth’s arid–hyperarid transition. Geochim. Cosmochim. Acta 70 52935322. 10.1016/j.gca.2006.08.020 Farley K. Williford K. (2017). Seeking signs of life and more: nasa’s Mars 2020 mission. EOS 98. 10.1029/2017EO066153 Fierer N. Jackson R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103 626631. 10.1073/pnas.0507535103 16407148 Goordial J. Davila A. Lacelle D. Pollard W. Marinova M. M. Greer C. W. (2016). Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley. Antarctica. ISME J. 10 16131624. 10.1038/ismej.2015.239 27323892 Hartley A. J. Chong G. Houston J. Mather A. E. (2005). 150 million years of climatic stability: evidence from the atacama desert, northern chile. J. Geol. Soc. London 162 421424. 10.1144/0016-764904-071 Kao Y. Li J. Wang Y. Li C. Yu B. Yao M. (2017). Scale-dependent key drivers controlling methane oxidation potential in chinese grassland soils. Soil Biol. Biochem. 111 104114. 10.1016/J.SOILBIO.2017.04.005 Koeppel A. Perry E. B. Sikorski J. Krizanc D. Warner A. Ward D. M. (2008). Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc. Natl. Acad. Sci. U.S.A. 105 25042509. 10.1073/pnas.0712205105 18272490 Kuhlman K. R. Venkat P. La Duc M. T. Kuhlman G. M. McKay C. P. (2008). Evidence of a microbial community associated with rock varnish at yungay, atacama desert, chile. J. Geophys. Res. 113 G04022. 10.1029/2007JG000677 Lacap D. C. Warren-Rhodes K. A. McKay C. P. Pointing S. B. (2011). Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the atacama desert, chile. Extremophiles 15 3138. 10.1007/s00792-010-0334-3 21069402 Lee C. K. Barbier B. A. Bottos E. M. McDonald I. R. Cary S. C. Barbier B. A. (2012). The inter-valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME J. 6 10461057. 10.1038/ismej.2011.170 22170424 Lee K. C. Archer S. D. J. Boyle R. H. Lacap-Bugler D. C. Belnap J. Pointing S. B. (2016). Niche filtering of bacteria in soil and rock habitats of the colorado plateau desert, utah, USA. Front. Microbiol. 7:1489. 10.1093/bioinformatics/btq461 20709691 Lester E. D. Satomi M. Ponce A. (2007). Microflora of extreme arid atacama desert soils. Soil Biol. Biochem. 39 704708. 10.1016/j.soilbio.2006.09.020 Martin-Torres F. J. Zorzano M.-P. Valentin-Serrano P. Harri A.-M. Genzer M. Kemppinen O. (2015). Transient liquid water and water activity at Gale crater on Mars. Nat. Geosci. 8 357361. 10.1038/ngeo2412 McKay C. P. (2014). Requirements and limits for life in the context of exoplanets. Proc. Natl. Acad. Sci. U.S.A. 111 1262812633. 10.1073/pnas.1304212111 24927538 McKay C. P. Friedmann E. I. Gomez-Silva B. Caceres-Villanueva L. Andersen D. T. Landheim R. (2003). Temperature and moisture conditions for life in the extreme arid region of the atacama desert: four years of observations including the El Nino of 1997-1998. Astrobiology 3 393406. 10.1089/153110703769016460 14577886 Navarro-Gonzalez R. Rainey F. A. Molina P. Bagaley D. R. Hollen B. J. de la Rosa J. (2003). Mars-like soils in the atacama desert, chile, and the dry limit of microbial life. Science 302 10181021. 10.1126/science.1089143 14605363 Peel M. C. Finlayson B. L. (2007). Updated world map of the köppen-geiger climate classification. Hydrol. Earth Syst. Sci. 11 16331644. 10.5194/hess-11-1633-2007 Pointing S. B. Buedel B. Convey P. Gillman L. N. Koerner C. Leuzinger S. (2015). Biogeography of photoautotrophs in the high polar biome. Front. Plant Sci. Funct. Plant Ecol. 6:692. 10.3389/fpls.2015.00692 26442009 Pointing S. B. Chan Y. Lacap D. C. Lau M. C. Y. Jurgens J. A. Farrell R. L. (2009). Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl. Acad. Sci. U.S.A. 106 1996419969. 10.1073/pnas.0908274106 19850879 Pointing S. B. S. B. Belnap J. (2012). Microbial colonization and controls in dryland systems. Nat. Rev. Microbiol. 10 551562. 10.1038/nrmicro2831 22772903 Rainey F. A. Ray K. Ferreira M. Gatz B. Z. Nobre M. F. Bagaley D. (2005). Extensive diversity of ionizing-radiation-resistant bacteria recovered from sonoran desert soil and description of nine new species of the genus deinococcus obtained from a single soil sample. Appl. Environ. Microbiol. 71 52255235. 10.1128/AEM.71.9.5225-5235.2005 16151108 Schulze-Makuch D. Wagner D. Kounaves S. P. Mangelsdorf K. Devine K. G. de Vera J.-P. (2018). Transitory microbial habitat in the hyperarid atacama desert. Proc. Natl. Acad. Sci. U.S.A. 115 26702675. 10.1073/pnas.1714341115 29483268 Stevens A. H. Patel M. R. Lewis S. R. (2017). Modelled isotopic fractionation and transient diffusive release of methane from potential subsurface sources on Mars. Icarus 281 240247. 10.1016/j.icarus.2016.08.023 Stomeo F. Makhalanyane T. P. Valverde A. Pointing S. B. Stevens M. I. Cary C. S. (2012). Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated antarctic dry valley. FEMS Microbiol. Ecol. 82 326340. 10.1111/j.1574-6941.2012.01360.x 22428950 Thompson L. R. Sanders J. G. McDonald D. Amir A. Ladau J. Locey K. J. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551 457463. 10.1038/nature24621 29088705 Vago J. L. Westall F. Coates A. J. Jaumann R. Korablev O. Ciarletti V. (2017). Habitability on early Mars and the Search for biosignatures with the ExoMars rover. Astrobiology 17 471510. 10.1089/ast.2016.1533 Warren-Rhodes K. Lee K. Archer S. Lacap D. Ng-Boyle L. Wettergreen D. (2018). Subsurface microbial habitats in an extreme desert Mars-analogue environment. bioRxiv [Preprint]. 10.1101/269605 Warren-Rhodes K. Weinstein S. Piatek J. L. Dohm J. Hock A. Minkley E. (2007). Robotic ecological mapping: habitats and the search for life in the atacama desert. J. Geophys. Res. Biogeosci. 112. 10.1029/2006JG000301 Wei J. Wang A. Lambert J. L. Wettergreen D. Cabrol N. Warren-Rhodes K. (2015). Autonomous soil analysis by the Mars Micro-beam Raman Spectrometer (MMRS) on-board a rover in the atacama desert: a terrestrial test for planetary exploration. J. Raman Spectrosc. 46 810821. 10.1002/jrs.4656 Zacny K. Zacny G. Paulsen S. Yoon D. Wettergreen D. Cabrol N. (2014). “Life in the atacama - the drill and sample delivery system. results from the 2013 field campaign,” in Proceedings of the 45th Lunar and Planetary Science Conference, (Woodlands, TX: USRA).

      https://www.landcareresearch.co.nz/resources/laboratories/environmental-chemistry-laboratory/services/soil-testing/methods

      https://www.r-project.org/

      http://www.earthmicrobiome.org/

      https://www.r-project.org/

      https://github.com/Displayr/flipMultivariates

      http://www.primer-e.com/

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hlxfwy.com.cn
      kmbffl.com.cn
      gzyhncp.org.cn
      ew500.com.cn
      www.ht1v1.net.cn
      lphddl.com.cn
      www.lanshou.org.cn
      www.mtsjzs.org.cn
      www.modetour.com.cn
      ruobao.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p