Front. Microbiol. Frontiers in Microbiology Front. Microbiol. 1664-302X Frontiers Media S.A. 10.3389/fmicb.2017.01638 Microbiology Focused Review Mining the Volatilomes of Plant-Associated Microbiota for New Biocontrol Solutions Bailly Aurélien 1 2 * Weisskopf Laure 2 3 1Department of Plant and Microbial Biology, University of Zurich Zurich, Switzerland 2Agroscope, Institute for Sustainability Sciences Zurich, Switzerland 3Department of Biology, University of Fribourg Fribourg, Switzerland

Edited by: Helene Sanfacon, Agriculture and Agri-Food Canada, Canada

Reviewed by: Marco Kai, University of Rostock, Germany; Maaike Van Agtmaal, Imperial College London, United Kingdom

*Correspondence: aurelien.bailly@hotmail.com

25 08 2017 2017 8 1638 06 10 2016 14 08 2017 Copyright © 2017 Bailly and Weisskopf. 2017 Bailly and Weisskopf

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Microbial lifeforms associated with land plants represent a rich source for crop growth- and health-promoting microorganisms and biocontrol agents. Volatile organic compounds (VOCs) produced by the plant microbiota have been demonstrated to elicit plant defenses and inhibit the growth and development of numerous plant pathogens. Therefore, these molecules are prospective alternatives to synthetic pesticides and the determination of their bioactivities against plant threats could contribute to the development of control strategies for sustainable agriculture. In our previous study we investigated the inhibitory impact of volatiles emitted by Pseudomonas species isolated from a potato field against the late blight-causing agent Phytophthora infestans. Besides the well-documented emission of hydrogen cyanide, other Pseudomonas VOCs impeded P. infestans mycelial growth and sporangia germination. Current advances in the field support the emerging concept that the microbial volatilome contains unexploited, eco-friendly chemical resources that could help select for efficient biocontrol strategies and lead to a greener chemical disease management in the field.

volatile organic compounds Pseudomonas phytophthora potato biocontrol microbiome 31003A-149271 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung10.13039/501100001711

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Since the Neolithic Revolution about 12,000 years ago, the onset of plant domestication and the progressive systematization of agricultural practices have gradually led to monophyletic cropping systems, prone to pathogen outbreaks. Although the modern eras' mechanization, irrigation and chemical field management tremendously increased crop yields, today's agriculture faces the critical dilemma to meet global food demand and preserve environmental resources. In the context of climate change, productivity pressure and societal uncertainty over genetic manipulation, plant diseases and their management increasingly threaten food security and ecosystems. The promotion and intensification of sustainable farming practices relies on new biotechnological developments. Our growing understanding of the benefits brought by plant-associated microbes to crop health and growth has led to the realization that the plant-microbiome constitutes an untapped source of potential biocontrol agents, new valuable molecules and farming strategies (Mueller and Sachs, 2015).

      Microbiome and microbiota.

      Often misused as synonyms, these two terms describe distinct definitions of microbial communities. The microbiota denotes the microorganisms that reside in an environmental niche. The microbiome refers to the collective genomes of these microorganisms.

      Among the large diversity of microbial secondary metabolites, low molecular-weight volatile organic compounds (VOCs) have received growing attention in the past decade. Since the early reports describing the health- and growth-promoting effects of bacterial VOCs on model plants (Ryu et al., 2003, 2004), an increasing number of studies has evidenced the great potential of these gaseous molecules in crop enhancement and protection (reviewed in Bailly and Weisskopf, 2012; Kanchiswamy et al., 2015b). Microbial VOCs (mVOCs) are typically released in a multifarious and dynamic bouquet, essentially originating from the catabolic background, and comprise a majority of low-complexity, rather lipophilic compounds (Schulz and Dickschat, 2007; Blom et al., 2011a; Penuelas et al., 2014; Schenkel et al., 2015). Thus, mVOCs are seen as bona fide semiochemicals able to evaporate to the extracellular space, reach target organisms and partition into biological membranes or intracellular compartments. Indeed, microbial emissions have been shown to trigger significant volatile-mediated responses in bacteria (Garbeva et al., 2014; Audrain et al., 2015; Schulz-Bohm et al., 2015; Tyc et al., 2015), fungi (Effmert et al., 2012; Schmidt et al., 2015; Werner et al., 2016), plants (Bailly and Weisskopf, 2012; Pieterse et al., 2014; Kanchiswamy et al., 2015b), and invertebrates (D'alessandro et al., 2013; Davis et al., 2013). Although the molecular mechanisms underlying mVOCs perception by plants remain unclear, numerous studies have demonstrated that this system results in a potent priming of the plant basal immune system, termed induced systemic resistance (ISR), conferring broad-spectrum resistance against pathogens. In contrast to pattern-triggered immunity (PTI) and subsequent mounting of SAR, ISR elicitation does not negatively impact growth and productivity; in fact, many ISR-triggering microorganisms were selected for their plant growth-promoting and stress-relieving properties (reviewed in Van Hulten et al., 2006; Choudhary et al., 2007; Yang et al., 2009; Heil, 2010; Huot et al., 2014; Pieterse et al., 2014). Given the origin and chemical properties of mVOCs, these interkingdom cues represent a prospective pool of new functions that need further investigation and development to be delivered to the field (Fernando et al., 2005; Kanchiswamy et al., 2015a,b; Chung et al., 2016).

      Volatile organic compounds.

      VOCs are low-molecular weight, carbon-containing compounds (excluding very simple chemical species, such as carbon monoxide or carbon dioxide) that display high vapor pressure and low boiling point. Biogenic VOCs have been described as bona fide semiochemicals in most phyla.

      Induced systemic resistance.

      Induced resistance is a general term describing an induced state of resistance in plants triggered by the local perception of biotic or abiotic cues. Induced systemic resistance (ISR) describes the elicitation of latent plant defenses that systemically protects naive plant parts against future attackers, also termed defense priming. ISR activation depends on jasmonic acid and ethylene hormonal responses and is distinct from the systemic acquired resistance (SAR) engaged by the cellular recognition of microbe-associated molecular patterns (MAMPs), characterized by increased levels of the phytohormone salicylic acid.

      Our recent work has focused on late blight, the major worldwide potato disease caused by the oomycete Phytophthora infestans. Although this particular pathosystem is obviously distinct from other fungal or bacterial plant diseases, our line of reasoning within this focused review could be extended to a wide range of plant pathogens. Under favorable conditions, P. infestans easily spreads from plant to plant through densely planted monocultures and rapidly ravages entire fields (Fry, 2008), and disease forecasting has become a key tool for growers. While conventional field practices control late blight via repeated, preventive applications of broad-spectrum fungicides, organic farming greatly relies on copper-based products toxic to the environment (Dorn et al., 2007; Cooke et al., 2011; Nechwatal and Zellner, 2015). The search for alternative organic solutions using either horticultural extracts, biosurfactants, or applications of plant beneficial bacteria or compounds eliciting plant defenses has not yet yielded reliable market products (Dupuis et al., 2007; Diallo et al., 2011). However, the increase in stringent policies regarding copper release into the environment exerts pressure for the continuation of investigations. In vitro work has demonstrated that mVOCs specifically contribute to the inhibition of growth and development of several phytopathogenic fungal or fungal-like genera, including members of Aspergillus (Vespermann et al., 2007; Hua et al., 2014; Chaves-Lopez et al., 2015; Gong et al., 2015), Botrytis (Huang et al., 2011; Li et al., 2012; Rouissi et al., 2013; Zhang et al., 2013; Parafati et al., 2015), Fusarium (Vespermann et al., 2007; Minerdi et al., 2009; Yuan et al., 2012; Tenorio-Salgado et al., 2013; Wang et al., 2013; Cordero et al., 2014), Penicillium (Rouissi et al., 2013), Sclerotinia (Fiddaman and Rossall, 1993, 1994; Fernando et al., 2005; Vespermann et al., 2007; Giorgio et al., 2015), Rhizoctonia (Fiddaman and Rossall, 1993, 1994; Kai et al., 2007; Vespermann et al., 2007; Liu et al., 2008), Alternaria (Andersen et al., 1994; Chaurasia et al., 2005; Trivedi et al., 2008; Zhao et al., 2011; Groenhagen et al., 2013), Pythium (Chaurasia et al., 2005; Sanchez-Fernandez et al., 2016), and Phytophthora (Zhao et al., 2011; Ann, 2012; Sharma et al., 2015).

      Our recent study has therefore been centered on the hypothesis that the volatilomes of bacteria naturally associated with potato plants contain active compounds against P. infestans and that, once isolated, these antagonists would make ideal candidate biopriming control agents (Hu et al., 2014; Spence et al., 2014; Mahmood et al., 2016).

      Harnessing the plant microbiota volatile metabolome

      Throughout their whole lifecycle, land plants are continuously covered by environmental microorganisms colonizing their surfaces, invading intra- and intercellular spaces or building intimate symbiosis. Microbes have evolved life strategies displaying commensal, beneficial, or pathogenic behaviors toward plants to access the metabolic resources they offer. Plants are constantly challenged with biotic cues that need to be processed to balance growth, development and defense programs and achieve optimal fitness (Huot et al., 2014). They have developed a multilayered monitoring strategy that relies on the capacity of each individual cell to perceive molecular effectors and translate them into a systemic signal triggering an alert status in distant organs and on-site defense responses. In addition, recent insights into the host-specific composition of microbial communities have suggested that plants, to some extent, select for their microbiota (Bulgarelli et al., 2013; Schlaeppi and Bulgarelli, 2015). The intense competition between microbes for nutrients and favorable niches both at the rhizosphere and phyllosphere levels might in effect provide a functional addition to the plant immune system, and host-specific microbiomes can essentially be seen as an extension of the plant genome. As laboratory model organisms capable of increasing plant health may prove difficult to transfer to field conditions, the isolation of highly-adapted strains from the plant in situ microbiota has a much greater chance of success in antagonist selection processes.

      Rhizosphere and phyllosphere.

      In microbiology, the term rhizosphere refers to the thin volume of soil directly influenced by plant root exudates and root-associated microorganisms, while the phyllosphere describes the above-ground plant surfaces hosting microbial species. Both represent dynamic habitats with drastically different resources and environmental conditions for microorganisms.

      We therefore isolated 137 morphologically distinct bacterial strains on different growth media from the rhizosphere and phyllosphere of field-grown potato plants previously infected with P. infestans (Hunziker et al., 2015). Subsequent phylogenetic identification of 92 of these strains to the genus or species level using 16S and rpoD gene amplicons revealed that Actinobacteria and Proteobacteria were the most abundant among the isolated organisms. Although our sampling and isolation methods were not exhaustive and higher resolution of OTUs has been described elsewhere (Inceoglu et al., 2011; Barnett et al., 2015), the retrieved strains are bona fide potato-associated bacteria. From the 32 bioactive strains pre-selected from a series of dual-culture assays against B. cinerea, R. solani, and P. infestans growth, Pseudomonas species had the highest inhibitory potential.

      In order to evaluate the volatile-mediated activity of these strains, we then co-cultured bacterial colonies and five discrete target potato pathogens in physically-separated compartments using the I-plate Petri dish system (Hunziker et al., 2015). This work revealed that (1) P. infestans was the most VOC-susceptible target organism, (2) Pseudomonas species displayed the highest volatile-mediated activity, and (3) that hydrogen cyanide production could account for a large part of the observed inhibition. The large difference between the susceptibility of P. infestans and true fungi to mVOCs could partly be explained by the differing nature of its cell wall. Additionally, in our hands, the increase in VOCs-mediated inhibition of fungal and fungal-like species' radial growth seemed to correlate with slower growth speed (Groenhagen et al., 2013; De Vrieze et al., 2015; Hunziker et al., 2015).

      The contribution of volatile HCN to the biocontrol properties of Pseudomonas strains against fungal pathogens has been known for 20 years, since the demonstration of the suppression of Thielaviopsis-induced tobacco black root rot by the cyanogenic P. protegens CHA0 but not by its isogenic mutant P. protegens CHA77 (Voisard et al., 1989; Haas and Defago, 2005; Rudrappa et al., 2008; Lanteigne et al., 2012). In the same extent, other inorganics of bacterial origin, such as ammonia, or hydrogen sulfide are suspected to account for a significant part of the target organism growth inhibition (Bernier et al., 2011; Shatalin et al., 2011; Weise et al., 2013). However, throughout our experimental work, no correlation was found between P. infestans mycelial growth and bacterial NH3 production (Hunziker et al., 2015). Moreover, the oomycete was still significantly inhibited when exposed to the volatile blend of the cyanide-deficient mutant CHA77, thus indicating that beside HCN and NH3, Pseudomonas strains release other potent volatiles against P. infestans.

      This indicated that the identification and quantification of the volatile chemical species composing the natural emissions of cyanogenic and non-cyanogenic bacteria is a prerequisite to the evaluation of their contribution to the inhibitory impact on the target pathogen (Kai et al., 2007, 2009; Campos et al., 2010; Effmert et al., 2012). Such approaches, essentially based on molecule-trapping techniques and gas chromatography-mass spectrometry (GC-MS) platforms, became the standard in the field (Schulz and Dickschat, 2007), thus generating vast amounts of data in which non-abundant and/or non-readily available chemical species are generally overlooked. Indeed, while a large body of literature has reported the inhibitory activity of a broad range of bacterial volatilomes against several discrete fungal or fungal-like pathogens, the identity of single active VOCs remains elusive. In many studies, the application of identified compounds as physiologically relevant amounts of synthetic molecules rarely reached the inhibitory effects observed with natural VOC bouquets, suggesting that volatile blends act in a multifactorial manner (Yuan et al., 2012; Groenhagen et al., 2013; Chaves-Lopez et al., 2015). Recent studies have tentatively reconstituted artificial mixtures of several prominent volatile species and reported their greater effects when compared to single compound applications, suggesting that volatiles interact synergistically (Cortes-Barco et al., 2010a; Fialho et al., 2010, 2011a,b; Mitchell et al., 2010; Naznin et al., 2013; Riyaz-Ul-Hassan et al., 2013).

      Extending our initial investigation of 8 Pseudomonas volatilomes (Hunziker et al., 2015), we collected and identified the compounds emitted by CHA0, CHA77, and 16 of our selected Pseudomonas strains grown on lysogeny broth plates for 24 h, under conditions mimicking our I-plate assays. We hypothesized that each strain's specific volatile-mediated inhibition potential could be explained by either a different population or different amounts of single VOCs in the volatile blends. The obtained chemoprofiles comprised volatile motifs previously identified in Pseudomonas biogenic emissions, with 1-undecene and dimethyl disulfide (DMDS) being the most prominent species (Lemfack et al., 2014; Hunziker et al., 2015), and appeared relatively conserved, thus supporting the concept that volatile signatures could help discriminate microbial genera or species (Thorn et al., 2011; Shestivska et al., 2015; Dryahina et al., 2016; Neerincx et al., 2016). However, detailed comparisons of the collected GC-MS data failed to identify the chemical features responsible for the strains VOCs-mediated inhibitory effects (Figure 1). The genetic proximity of our Pseudomonas isolates did not necessarily translate into identical chemoprofiles (Shestivska et al., 2012; De Vrieze et al., 2015), and it appeared that the impact of the rhizospheric or phyllospheric origin was negligible in our sampling. A previous study investigating the effects of volatiles emitted by closely-related Burkholderia ambifaria strains with discrete isolation origins on various target organisms also reported very similar, yet different VOC chemoprofiles, leading to very subtle changes in the targets' responses (Groenhagen et al., 2013). It is highly plausible that the rich LB medium on which we grew our strains during headspace collection did not select for and reflect the particular metabolic potential of our test-strains, but we expect the collected spectral data to mirror our inhibition assays. Moreover, univariate pair fold change analysis between CHA0 and CHA77 chemoprofiles displayed over 90 significantly different mass features (t-test, p < 0.005), including enrichments in dimethyl trisulfide (DMTS), s-methyl methanethiosulfonate (MMTS) and aminoacetophenone production in the non-cyanogenic mutant (Figure 2). Interestingly, HCN itself is not detected in standard GC-MS methods and so does not impact the differences observed between mutant and wild-type strains' chemoprofiles, thus a change in the synthesis of one particular volatile can lead to a drastic alteration of the overall volatile profiles emitted by otherwise isogenic strains. When focusing on non-cyanogenic isolates, relatively poor PCA clusterings of the total ion GC-MS chromatograms tended to separate the most active strains' chemoprofiles from low activity ones (Figure 3), although no single compound or chemical pattern seemed to unequivocally explain the blend's effect. The abundance or the detection frequency of compounds that do not substantially contribute to the total effect of the whole volatile blend may impede the description of bioactive patterns. Thus, in order to strengthen chemoprofiling data and identify key chemical species, the precise determination of the inhibition potential of individual substances is essential.

      Volatile organic compounds production in Pseudomonas sp. does not mirror phylogenetic relationships. Left, maximum-likelihood-based phylogenetic tree of 24 Pseudomonas sp. calculated from multi-locus sequence alignments of 16s rRNA, gyrB, rpoD, and rpoB genes concatenations using the MEGA software. Bars indicate mean average base substitutions between sequences. Note that the Flavobacterium sp. R75 stands as an outlier. Bold percentage values represent the volatile-mediated inhibition of P. infestans mycelial growth for each tested strain. R and S refer to strains from rhizospheric and phyllospheric origin, respectively; +, cyanogenic stain. Right, 2-D scores plot between the highest PC scores from a principal components analysis of the total ion chromatograms of 9 selected Pseudomonas isolates. Individual biological replicates of each strain are identified according to the legend in the tree (left); each data point is color-coded according to the VOCs-mediated P. infestans mycelial growth inhibition exerted by the corresponding strain. Spectral data were processed using the MetaboAnalyst 3.0 software following this procedure: detection of Gaussian-fitted peaks (4 s fwhm, binning, integrated area of original peak), followed by alignment and grouping according to their masses and retention time after retention time correction. Data were subsequently filtered based on interquantile range, then normalized by the sample median and finally generalized log-transformed. Data scaling and outlier removal were left in automatic mode. Explained variances are shown in brackets.

      Pseudomonas protegens CHA0 and its isogenic, cyanide-deficient mutant CHA77 express distinct volatilomes. (A) PCA 2-D scores plot from total ion chromatograms processed as in Figure 1. Shaded areas represent the 95% confidence interval; explained variances are shown in brackets. (B) Hierarchical clustering dendrogram of the biological replicate volatilomes (Euclidean distance similarity and Ward's linkage clustering). (C) Volcano plot of mass features differentially detected in CHA77 compared to CHA0 volatilomes selected by fold change (threshold = 2) and t-test values (threshold = 0.1). Note the higher number of mass features with positive fold change (green) compared to negative fold change (red) in the HCN-deficient mutant. (D) Heat map and hierarchical clustering of the top 300 t-test selected mass features. Spectral data were processed as described for Figure 1.

      Non-cyanogenic Pseudomonas sp. chemoprofiles may contain compounds explaining the different inhibition potential against P. infestans. 2-D scores plot between the highest PC scores from a principal components analysis of the total ions chromatograms of 9 non-cyanogenic strains processed as in Figure 1. Data points represent the centroids of 3 biological replicates. Note that, besides a net separation between high-activity (red) and low-activity strains (green), the variance explained by each component is low. The chemoprofiles of the non-Pseudomonas strain R75 (blue) separate from Pseudomonas chemoprofiles. Explained variances are shown in brackets. Spectral data were processed as described for Figure 1.

      A pharmacological approach to exploring volatile potential

      The large amount of data contained in mass spectra, coupled to the difficulties in identification of the chemical structures they refer to, make systematic testing of the bioactivities of individual compounds a daunting task. Moreover, the limited number of comparative studies involving different microbial genera (Kai et al., 2009; Blom et al., 2011a,b; Berrada et al., 2012) does not allow the assessment of candidate active volatiles that may be present or absent in the respective volatilomes, leaving a striking knowledge gap. With the aim of assigning a weight function to our chemoprofiles, we attempted to characterize the precise contribution of 40 commercially available pure substances identified from the natural emissions of our isolates by assessing their biological activity against several stages of P. infestans life cycle. Although non-exhaustive, this series of assays revealed that a majority of Pseudomonas volatiles possess low to mild inhibitory power against Phytophthora and probably act synergistically on the target organism (De Vrieze et al., 2015). Although limited to a small panel of simple compounds, the quantitative relative IC50 values derived from dose-dependent P. infestans mycelial growth and sporangial germination inhibition assay allow for basic structure-activity relationship exploration (Figure 4). First, P. infestans sporangia appeared more sensitive to mVOCs exposure than mycelia, especially to aliphatic compounds, such as long chain aldehydes (undecanal and tridecanal), alkenes (1-undecene and 1-dodecene), and short-chained ketones (2-octanone, 2-heptanone, 4-heptanone, 3-hexanone, and 4-hydroxy-4-methyl-2-pentanone), while 2-dodecanol or undecane were found to be inactive. Interestingly, similar activities have been previously reported against Alternaria alternata germ tube growth for this chemical family (Andersen et al., 1994), implying that these lipoxygenase products may cause broad-spectrum interference to fungal and fungal-like germ tube development. This is further supported by the fact that the exposure to a subset of ketones, such as 3-hexanone triggered severe malformations in P. infestans germ tubes (De Vrieze et al., 2015). The closely-related compounds furfuryl alcohol and acetyl furan, as well as three of the six phenyl-ketones tested also performed well against P. infestans germination. Acetophenone derivatives are well-described antifungals thought to target the fungal cell wall (Soberon et al., 2015; De Aguiar et al., 2016). A high level of inhibition also resulted from exposure to diphenylamine and 2,5-dimethylpyrazine treatments; however we cautiously consider these compounds as artifacts originating from the medium. Secondly, both mycelia and sporangia showed high sensitivity to sulfur-containing compounds, such as bis(methylthiomethyl)sulfide, s-methylbunathioate, MMTS and DMTS, isovaleric acid and nitropentane. Nitroalkanes are renowned toxic substances for animals, but to the best of our knowledge, no particular study has investigated their effect on fungal growth. However, some very potent non-volatile antimicrobials display an active nitro-group, for instance nitrofurazone, metronidazole and chloramphenicol. DMDS and to a lesser extent DMTS and MMTS have been repeatedly shown to exert broad-range antifungal activities, probably via their capacity to reduce protein sulfhydryl groups and readily oxidize into highly reactive sulfur-acids, and are considered as prominent antimicrobials in the Brassicacea and Allioideae (Fernando et al., 2005; Kocic-Tanackov et al., 2012; Groenhagen et al., 2013; Zhou et al., 2014). DMDS-containing products are already marketed as soil fumigants for the suppression of soil-borne plant diseases. However, DMDS poorly performed in our assays, with the exception of zoospore activity. The inhibition of P. infestans radial growth and sporangia germination by isovaleric acid is especially interesting as this compound was shown to trigger the germination of Agaricus bisporus spores (Rast and Stauble, 1970) but not of ectomycorrhizal fungi (Fries, 1978), and to inhibit Fusarium growth (Monnet et al., 1988). Most other free fatty acids are considered as broad-range fungal inhibitors interfering with membrane composition (Pohl et al., 2011).

      Structure-activity landscape plots of 40 Pseudomonas volatile organic compounds tested against P. infestans Neighbor analysis, Murcko scaffold analysis and FragFp structure similarity analysis were performed using the Actelion Pharmaceuticals DataWarrior 4.4.3 software. Structures are colored according to their P. infestans mycelial growth inhibitory activity while structure backgrounds display sporangia germination inhibition. Connection lines between different structures indicate the number of neighbor molecules (red, low number; green, high number).

      Finally, few compounds were solely active against P. infestans mycelia without also impacting sporangia development and function, and these belong to the chemical groups discussed above. Furthermore, these molecules, namely 2-phenylethanol, 2-phenylacetone, 2-octanone and 4-octanone, showed mild-to-low inhibitory power. Remarkably, several reports focusing on the antifungal activity of ketones identified from Bacillus species (Fernando et al., 2005; Arrebola et al., 2010; Yuan et al., 2012; Zhang et al., 2013) concluded that long-chain ketones, such as 2-nonanone and 2-decanone demonstrated strong inhibition activity against fungal species. However, in our work, long-chain ketones treatments did not provide satisfactory inhibition of P. infestans, although 2-undecanone exposure led to a strong densification of the mycelial mat (De Vrieze et al., 2015). Similarly, a study by Chaves-Lopez et al. (2015) focusing on single volatiles from Bacillus documented that only short-chain ketones like 2-butanone were efficient against Fusarium oxysporum and Moniliophthora perniciosa growth. These discrepancies may simply be explained by the different sensitivities of the studied target organisms to mVOCs, but they may also find their source in the low pharmacological resolution of the employed methodology. In Yuan et al. (2012), F. oxysporum was exposed to 200 μl of a subset of Bacillus VOCs while in Chaves-Lopez et al. (2015), 25 and 50 μl of another subset of Bacillus VOCs were applied. Regardless of the boiling point of the particular compounds, these amounts represent tens to hundreds of milligrams introduced into the headspace, far beyond the actual production capacity of the bacterial cultures (De Vrieze et al., 2015; Shestivska et al., 2015). As VOCs readily diffuse to the environment, attention should be paid to substances with the highest potency and low dose efficacy. We therefore advocate the systematic assignment of pharmacological values based on standardized bioassays against the investigated target organisms, to the chemical species identified from microbial volatilomes. Our current work strives for the successful implementation of these valuable data layers that will allow deeper assessment of the ecological impact of biogenic microbial emissions and greatly help in pinpointing potent molecules or cornering active chemical backbones produced by various bacterial genera. Alternatively, these compounds could provide leads to drug discovery strategies, as exemplified by volatile benzothiazole (Herrera Cano et al., 2015; Zhao et al., 2016) and 2,4-diacetylphloroglucinol (Lanteigne et al., 2012), or help to select for the most appropriate antagonists from a panel of bioactive mVOCs.

      Toward the development of a volatilomics platform for plant-microbes interactions

      As an emanation of the metabolome of a given organism in a given condition, the collected volatile blends represent only snapshots of a more complex phenomenon. Different substrate use, various growth conditions and genetic mutations are just some of the factors that directly influence the chemical composition of volatilomes (Fiddaman and Rossall, 1994; Blom et al., 2011a; De Vrieze et al., 2015). Furthermore, the natural conditions and environmental cues leading to the production of particular volatile species or signatures have not yet been resolved, and their biological relevance in biocontrol contexts remain to be assessed outside in vitro systems (issues reviewed in Schmidt et al., 2015; Chung et al., 2016). Therefore, the definition of the volatilome is not fixed to the capacity to enzymatically produce a particular compound as engraved in the genomes, but is instead relative to the dynamics of headspace compound release. In analogy to transcriptional patterns, the effect of mVOC emissions on a given target organism may depend on the production of a combination of key chemical species. Yet, in order to better characterize the impact and functions of mVOCs in interspecies relationships, a transition from low-scale individual studies to global data mining platforms is required. The experience gained in other -omics fields, especially the emergence of transcriptomic data, has led to the organization of public data repositories and the creation of resourceful toolsets that have tremendously stimulated research over the last 15 years, such as the NCBI Gene Expression Omnibus (Edgar et al., 2002). However, to a large extent, the sum of complex chemical information related to volatile production by microorganisms gathered in laboratories scattered around the world remains underexploited. As no centralized platforms exist that would allow comparative, statistically-driven exploration of published datasets, the era of metadata analysis of volatilomes has been delayed. The standardized procedures instigated in breath research (King et al., 2011; De Lacy Costello et al., 2014; Broza et al., 2015) should inspire investigators interested in the volatilomes of plant-associated microbiota. Recent attempts to pull together and unify data issued from the literature has resulted in the mVOCs (http://bioinformatics.charite.de/mvoc/; Lemfack et al., 2014) or the KNApSAcK Metabolite Ecology (http://kanaya.naist.jp/KNApSAcK/; Abdullah et al., 2015) databases, yet such initiatives require further development to become valuable instruments. Ideally, standardized NMR/MS peak lists or LC/GC-MS spectra (converted into exchange formats, such as NetCDF or mzXML) obtained from biological replicates would populate a growing database of discrete organisms, strains and experimental conditions that could serve as a basis for exploratory statistical analyses using existing metabolomics tool suites, such as MetaboAnalyst (Xia et al., 2015) or XCMS (Smith et al., 2006). Such advances would help to fill critical knowledge gaps, i.e., the determination of a core volatilome in a given species, the co-occurrence of underrepresented low-abundance mVOCs and the actual composition of emissions released by microorganisms growing in the rhizosphere or phyllosphere. Taken together, this information will provide key concepts to convert the explorative academic knowledge into concrete crop disease control solutions.

      Volatilome.

      The volatilome, also referred to as volatolome, defines the sum of volatile or semi-volatile organic compounds emitted by a biological system under specific experimental conditions. As the transcriptome describes the dynamic expression of genes through mRNA level detection, the quantitative identification of chemical species in the volatilome reflects the dynamic metabolic activity of the studied organism.

      The challenging transition to the field

      The concept of exploiting microbial populations hosted by plants to benefit crop health against one or more plant pathogens and productivity is ancient, but has received increasing attention in the past decades, especially in view of the potential biological and ecological functions conferred by rhizospheric and phyllospheric bacterial species (Zahir et al., 2003; Choudhary et al., 2011; Kim et al., 2011; Kumar et al., 2016). Biocontrol strains can bestow disease suppression via competition or parasitism against the targeted pathogens, antibiotic production, cell wall degradation or plant ISR elicitation. The most effective antagonists should display a range of microbicidal properties, as illustrated by Pseudomonas species potent in the production of a variety of phenazines, DAPG, pyrollnitrin, HCN (Lanteigne et al., 2012; Loper et al., 2012), and in our opinion, novel efficient mVOCs. These potentials are encoded in the genomes of the microbes and therefore, ever-decreasing DNA sequencing costs allow the prospective mining of genomes for desired functions (Loper et al., 2012).

      There has been remarkable progress in defining biocontrol agents and their spread to the environment (Bale et al., 2008) which raises hopes for operational, intensive and yet sustainable agriculture in the next decades. However, regardless of the efforts made toward intensification of bioprospecting, the current bottleneck in delivering tangible applications to farmers results from difficulties in producing formulations suitable for modern agriculture (Lucy et al., 2004; Choudhary et al., 2011; Pérez-Montaño et al., 2014; Velivelli et al., 2014). The potency of biological agents and of (soluble) microbial derivatives has already been well-documented, and had grown into agronomical products (e.g., Mycostop® and Rhizoplus®, utilizing Bacillus species; Biocon® and Ecofit®, with Trichoderma sp. as active ingredient, or Cerall® and Proradix® containing Pseudomonas sp.), but the development of VOC-derived technologies is still embryonic. However, the successful volatile-based mating disruption of pest insects semiochemicals (Reddy and Guerrero, 2010; Lance et al., 2016) stands for an encouraging proof-of-concept. The rather sharp transition from the laboratory to the field has often been smoothed by a switch from model plants like Arabidopsis thaliana to economically important plants and greenhouse experiments. The volatile compound 2,3-butanediol, well-studied in Arabidopsis (Ryu et al., 2003, 2004; Farag et al., 2006; Han et al., 2006; Cho et al., 2008; Cortes-Barco et al., 2010a,b), was reported to reduce Colletotrichum-mediated anthracnose symptoms in Nicotiana benthamiana (Cortes-Barco et al., 2010b) and to protect Agrostis stolonifera against the fungal pathogens Microdochium nivale, Rhizoctonia solani, or Sclerotinia homoeocarpa (Cortes-Barco et al., 2010a). Still, in a recent field trial, attempts to reproduce in vitro results obtained with 3-pentanol and 2-butanone showed limited protection against a pathogenic Pseudomonas syringae (Song and Ryu, 2013), thus underlining the difficulties in delivering mVOC-based technology. In the case of our potato-Phytophthora pathosystem, we verified that the isolated Pseudomonas strains did not compromise plant health or growth in greenhouse pot cultures. The inoculated potato cultivars did not display any phytotoxicity symptoms or growth defects; but neither strain treatments resulted in growth enhancement (Guyer et al., 2015 and unpublished results). In addition, the ability of our candidate bioncontrol strains to colonize roots and survive on the potato phylloplane was assessed after sprout inoculation or leaf spraying, respectively. The large majority of the isolates demonstrated good rhizocompetence and successfully colonized plant shoots, both in the greenhouse and the field conditions (Guyer et al., 2015). As microbial competition for nutrients and ecological niches on the plant surfaces certainly contributes to the antagonistic activity of competent bacterial strains (Innerebner et al., 2011; Ghirardi et al., 2012; Vorholt, 2012), isolates naturally associated with potato plants have the highest chance to be artificially reintroduced to a crop for control purposes. The promising protective effects measured in dual culture assays and leaf disc infection experiments however, have not yet been transposed to successful field trials (Guyer et al., 2015).

      The direct contribution of microbial VOCs in disease suppression in the open field remains elusive, and a study by Sharifi and Ryu (2016) argues that the VOCs-mediated elicitation of ISR is the primary factor in warding off pathogens, while direct inhibition via volatiles has only a minor impact. However, recent investigations by Tahir and colleagues demonstrated that VOCs emitted by well-studied suppressive Bacillus species act at multiple levels against the tobacco wilt agent Ralstonia solanacearum. Indeed, while in vitro work showed that exposure to the Bacillus volatile compounds decreased Ralstonia growth and viability and led to substantial defects in cell integrity and mobility, they as well triggered major changes in the expression of Ralstonia genes fundamental to disease progression (Tahir et al., 2017). Furthermore, tobacco plants exposed to Bacillus emissions and pure identified VOCs increased their transcription levels in key defense-related genes, such as NPR1 and EDS1, thus engaging systemic resistance and resulting in suppression (Tahir et al., 2017). It is therefore conceivable that bacterial volatiles contribute both directly and indirectly to the observed biocontrol properties of Bacillus, and that bacterial VOCs bouquets generally act as multifactorial, sequential or simultaneous signals on both pathogens and hosts.

      The argument that volatiles dissipate in the environment and never reach efficient inhibiting doses may be valid at a macroscopic scale; nevertheless, competition between microbes on plant surfaces occurs in matrixes like the root mucilage or closed compartments, such as the sub-stomatal chamber, where well-adapted bacterial species may prosper and accumulate higher levels of VOCs. As these environments represent favored entry points for pathogens, we believe that the volatilome forms part of the bacterial arsenal and provides a supplementary line of plant defense. Future disease management integrating the use of biological agents for their water-soluble and volatile features in decision-making processes will lead to alternative solutions to effectively reduce pesticide and fertilizer use in an economically and environmentally sound manner.

      Author contributions

      AB and LW wrote the manuscript.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The authors a grateful to Dr. Kirsty Agnoli for the careful proofreading of this manuscript. Financial support from the Swiss National Science Foundation (grant 31003A_149271 to LW) is gratefully acknowledged.

      References Abdullah A. A. Altaf-Ul-Amin M. Ono N. Sato T. Sugiura T. Morita A. H. . (2015). Development and mining of a volatile organic compound database. Biomed. Res. Int. 2015:139254. 10.1155/2015/13925426495281 Andersen R. A. Hamiltonkemp T. R. Hildebrand D. F. Mccracken C. T. Collins R. W. Fleming P. D. (1994). Structure-antifungal activity relationships among volatile C-6 and C-9 aliphatic-aldehydes, ketones, and alcohols. J. Agric. Food Chem. 42, 15631568. 10.1021/jf00043a033 Ann Y. C. (2012). Rhizobacteria of pepper (Piper nigrum) and their antifungal activities. Afr. J. Microbiol. Res. 6, 41854193. 10.5897/AJMR12.583 Arrebola E. Sivakumar D. Korsten L. (2010). Effect of volatile compounds produced by Bacillus strains on post-harvest decay in citrus. Biol. Control 53, 122128. 10.1016/j.biocontrol.2009.11.010 Audrain B. Farag M. A. Ryu C.-M. Ghigo J.-M. (2015). Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 39, 222233. 10.1093/femsre/fuu01325725014 Bailly A. Weisskopf L. (2012). The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal. Behav. 7, 7985. 10.4161/psb.7.1.1841822301973 Bale J. S. Van Lenteren J. C. Bigler F. (2008). Biological control and sustainable food production. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 761776. 10.1098/rstb.2007.218217827110 Barnett B. A. Holm D. G. Koym J. W. Wilson R. G. Manter D. K. (2015). Site and clone effects on the potato root-associated core microbiome and its relationship to tuber yield and nutrients. Am. J. Potato Res. 92, 19. 10.1007/s12230-014-9405-9 Bernier S. P. Letoffe S. Delpierre M. Ghigo J. M. (2011). Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 81, 705716. 10.1111/j.1365-2958.2011.07724.x21651627 Berrada I. Benkhemmar O. Swings J. Bendaou N. Amar M. (2012). Selection of halophilic bacteria for biological control of tomato gray mould caused by Botrytis cinerea. Phytopathol. Mediterr. 51, 625630. 10.14601/Phytopathol_Mediterr-10627 Blom D. Fabbri C. Connor E. C. Schiestl F. P. Klauser D. R. Boller T. . (2011a). Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 13, 30473058. 10.1111/j.1462-2920.2011.02582.x21933319 Blom D. Fabbri C. Eberl L. Weisskopf L. (2011b). Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Appl. Environ. Microbiol. 77, 10001008. 10.1128/AEM.01968-1021115704 Broza Y. Y. Mochalski P. Ruzsanyi V. Amann A. Haick H. (2015). Hybrid volatolomics and disease detection. Angew. Chem. Int. Ed. Engl. 54, 1103611048. 10.1002/anie.20150015326235374 Bulgarelli D. Schlaeppi K. Spaepen S. Ver Loren Van Themaat E. Schulze-Lefert P. (2013). Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807838. 10.1146/annurev-arplant-050312-12010623373698 Campos V. P. De Pinho R. S. C. Freire E. S. (2010). Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Ciencia E Agrotecnol. 34, 525535. 10.1590/S1413-70542010000300001 Chaurasia B. Pandey A. Palni L. M. S. Trivedi P. Kumar B. Colvin N. (2005). Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160, 7581. 10.1016/j.micres.2004.09.01315782941 Chaves-Lopez C. Serio A. Gianotti A. Sacchetti G. Ndagijimana M. Ciccarone C. . (2015). Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. J. Appl. Microbiol. 119, 487499. 10.1111/jam.1284725989039 Cho S. M. Kang B. R. Han S. H. Anderson A. J. Park J. Y. Lee Y. H. . (2008). 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21, 10671075. 10.1094/MPMI-21-8-106718616403 Choudhary D. K. Prakash A. Johri B. N. (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian J. Microbiol. 47, 289297. 10.1007/s12088-007-0054-223100680 Choudhary D. K. Sharma K. P. Gaur R. K. (2011). Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol. Lett. 33, 19051910. 10.1007/s10529-011-0662-021660571 Chung J. H. Song G. C. Ryu C. M. (2016). Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 90, 677687. 10.1007/s11103-015-0344-826177913 Cooke L. R. Schepers H. T. A. M. Hermansen A. Bain R. A. Bradshaw N. J. Nielsen B. J. . (2011). Epidemiology and Integrated Control of Potato Late Blight in Europe. Potato Res. 54, 183222. 10.1007/s11540-011-9187-0 Cordero P. Principe A. Jofre E. Mori G. Fischer S. (2014). Inhibition of the phytopathogenic fungus Fusarium proliferatum by volatile compounds produced by Pseudomonas. Arch. Microbiol. 196, 803809. 10.1007/s00203-014-1019-625085617 Cortes-Barco A. M. Hsiang T. Goodwin P. H. (2010a). Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157, 179189. 10.1111/j.1744-7348.2010.00417.x Cortes-Barco A. M. Goodwin P. H. Hsiang T. (2010b). Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59, 643653. 10.1111/j.1365-3059.2010.02283.x D'alessandro M. Erb M. Ton J. Brandenburg A. Karlen D. Zopfi J. . (2013). Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. 37, 813826. 10.1111/pce.1222024127750 Davis T. S. Crippen T. L. Hofstetter R. W. Tomberlin J. K. (2013). Microbial volatile emissions as insect semiochemicals. J. Chem. Ecol. 39, 840859. 10.1007/s10886-013-0306-z23793954 De Aguiar F. L. L. De Morais S. M. Dos Santos H. S. Albuquerque M. R. J. R. Bandeira P. N. De Brito E. H. S. . (2016). Antifungal activity and synergistic effect of acetophenones isolated from species Croton against dermatophytes and yeasts. J. Med. Plants Res. 10, 216222. 10.5897/JMPR2016.6048 De Lacy Costello B. Amann A. Al-Kateb H. Flynn C. Filipiak W. Khalid T. . (2014). A review of the volatiles from the healthy human body. J. Breath Res. 8:014001. 10.1088/1752-7155/8/1/01400124421258 De Vrieze M. Pandey P. Bucheli T. D. Varadarajan A. R. Ahrens C. H. Weisskopf L. . (2015). Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front. Microbiol. 6:1295. 10.3389/fmicb.2015.0129526635763 Diallo S. Crépin A. Barbey C. Orange N. Burini J.-F. Latour X. (2011). Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol. Ecol. 75, 351364. 10.1111/j.1574-6941.2010.01023.x21204870 Dorn B. Musa T. Krebs H. Fried P. M. Forrer H. R. (2007). Control of late blight in organic potato production: evaluation of copper-free preparations under field, growth chamber and laboratory conditions. Eur. J. Plant Pathol. 119, 217240. 10.1007/s10658-007-9166-0 Dryahina K. Sovova K. Nemec A. Spanel P. (2016). Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex. J. Breath Res. 10:037102. 10.1088/1752-7155/10/3/03710227506232 Dupuis B. Rolot J. L. Stilmant D. Labbe V. Laguesse L. (2007). Evaluation of innovative products to reduce copper applications to control potato late blight in organic production systems. Commun. Agric. Appl. Biol. Sci. 72, 353359. 18399463 Edgar R. Domrachev M. Lash A. E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207210. 10.1093/nar/30.1.20711752295 Effmert U. Kalderas J. Warnke R. Piechulla B. (2012). Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 38, 665703. 10.1007/s10886-012-0135-522653567 Farag M. A. Ryu C. M. Sumner L. W. Pare P. W. (2006). GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67, 22622268. 10.1016/j.phytochem.2006.07.02116949113 Fernando W. G. D. Ramarathnam R. Krishnamoorthy A. S. Savchuk S. C. (2005). Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37, 955964. 10.1016/j.soilbio.2004.10.021 Fialho M. B. De Moraes M. H. D. Tremocoldi A. R. Pascholati S. F. (2011a). Potential of antimicrobial volatile organic compounds to control Sclerotinia sclerotiorum in bean seeds. Pesqui. Agropecu. Bras. 46, 137142. 10.1590/S0100-204X2011000200004 Fialho M. B. Ferreira L. F. R. Monteiro R. T. R. Pascholati S. F. (2011b). Antimicrobial volatile organic compounds affect morphogenesis-related enzymes in Guignardia citricarpa, causal agent of citrus black spot. Biocontrol Sci. Technol. 21, 797807. 10.1080/09583157.2011.580837 Fialho M. B. Toffano L. Pedroso M. P. Augusto F. Pascholati S. F. (2010). Volatile organic compounds produced by Saccharomyces cerevisiae inhibit the in vitro development of Guignardia citricarpa, the causal agent of citrus black spot. World J. Microbiol. Biotechnol. 26, 925932. 10.1007/s11274-009-0255-4 Fiddaman P. J. Rossall S. (1993). The production of antifungal volatiles by Bacillus-subtilis. J. Appl. Bacteriol. 74, 119126. 10.1111/j.1365-2672.1993.tb03004.x8444640 Fiddaman P. J. Rossall S. (1994). Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J. Appl. Bacteriol. 76, 395405. 10.1111/j.1365-2672.1994.tb01646.x8200865 Fries N. (1978). Basidiospore germination in some mycorrhiza-Forming hymenomycetes. Trans. Br. Mycol. Soc. 70, 319324. 10.1016/S0007-1536(78)80128-4 Fry W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Mol. Plant Pathol. 9, 385402. 10.1111/j.1364-3703.2007.00465.x18705878 Garbeva P. Hordijk C. Gerards S. De Boer W. (2014). Volatile-mediated interactions between phylogenetically different soil bacteria. Front. Microbiol. 5:289. 10.3389/fmicb.2014.0028924966854 Ghirardi S. Dessaint F. Mazurier S. Corberand T. Raaijmakers J. M. Meyer J. M. . (2012). Identification of traits shared by rhizosphere-competent strains of fluorescent Pseudomonads. Microb. Ecol. 64, 725737. 10.1007/s00248-012-0065-322576821 Giorgio A. De Stradis A. Lo Cantore P. Iacobellis N. S. (2015). Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front. Microbiol. 6:1056. 10.3389/fmicb.2015.0105626500617 Gong A. D. Li H. P. Shen L. Zhang J. B. Wu A. B. He W. J. . (2015). The Shewanella algae strain YM8 produces volatiles with strong inhibition activity against Aspergillus pathogens and aflatoxins. Front. Microbiol. 6:1091. 10.3389/fmicb.2015.0109126500631 Groenhagen U. Baumgartner R. Bailly A. Gardiner A. Eberl L. Schulz S. . (2013). Production of bioactive volatiles by different Burkholderia ambifaria strains. J. Chem. Ecol. 39, 892906. 10.1007/s10886-013-0315-y23832658 Guyer A. De Vrieze M. Bonisch D. Gloor R. Musa T. Bodenhausen N. . (2015). The anti-phytophthora effect of selected potato-associated Pseudomonas strains: from the laboratory to the field. Front. Microbiol. 6:1309 10.3389/fmicb.2015.0130926640460 Haas D. Defago G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307319. 10.1038/nrmicro112915759041 Han S. H. Lee S. J. Moon J. H. Park K. H. Yang K. Y. Cho B. H. . (2006). GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant Microbe Interact. 19, 924930. 10.1094/MPMI-19-0924 Heil M. (2010). Within-plant signalling by volatiles triggers systemic defences, in Plant Communication from an Ecological Perspective. Signaling and Communication in Plants, eds Baluška F. Ninkovic V. (Berlin: Springer), 99112. 10.1007/978-3-642-12162-3_7 Herrera Cano N. Ballari M. S. Lopez A. G. Santiago A. N. (2015). New synthesis and biological evaluation of benzothiazole derivates as antifungal agents. J. Agric. Food Chem. 63, 36813686. 10.1021/acs.jafc.5b0015025797910 Hu W. Gao Q. Hamada M. S. Dawood D. H. Zheng J. Chen Y. . (2014). Potential of Pseudomonas chlororaphis subsp. aurantiaca Strain Pcho10 as a biocontrol agent against fusarium graminearum. Phytopathology 104, 12891297. 10.1094/PHYTO-02-14-0049-R24941327 Hua S. S. Beck J. J. Sarreal S. B. Gee W. (2014). The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus. Mycotoxin Res. 30, 7178. 10.1007/s12550-014-0189-z24504634 Huang R. Li G. Q. Zhang J. Yang L. Che H. J. Jiang D. H. . (2011). Control of post-harvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101, 859869. 10.1094/PHYTO-09-10-0255 Hunziker L. Bonisch D. Groenhagen U. Bailly A. Schulz S. Weisskopf L. (2015). Pseudomonas Strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl. Environ. Microbiol. 81, 821830. 10.1128/AEM.02999-1425398872 Huot B. Yao J. Montgomery B. L. He S. Y. (2014). Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 12671287. 10.1093/mp/ssu04924777989 Inceoglu O. Abu Al-Soud W. Salles J. F. Semenov A. V. Van Elsas J. D. (2011). Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE 6:e23321. 10.1371/journal.pone.002332121886785 Innerebner G. Knief C. Vorholt J. A. (2011). Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 32023210. 10.1128/AEM.00133-1121421777 Kai M. Effmert U. Berg G. Piechulla B. (2007). Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187, 351360. 10.1007/s00203-006-0199-017180381 Kai M. Haustein M. Molina F. Petri A. Scholz B. Piechulla B. (2009). Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 81, 10011012. 10.1007/s00253-008-1760-319020812 Kanchiswamy C. N. Malnoy M. Maffei M. E. (2015a). Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 20, 206211. 10.1016/j.tplants.2015.01.00425659880 Kanchiswamy C. N. Malnoy M. Maffei M. E. (2015b). Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6:151. 10.3389/fpls.2015.0015125821453 Kim Y. C. Leveau J. Mcspadden Gardener B. B. Pierson E. A. Pierson L. S. Ryu C.-M. (2011). The multifactorial basis for plant health promotion by plant-associated bacteria. Appl. Environ. Microbiol. 77, 15481555. 10.1128/AEM.01867-1021216911 King J. Unterkofler K. Teschl G. Teschl S. Koc H. Hinterhuber H. . (2011). A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. J. Math. Biol. 63, 959999. 10.1007/s00285-010-0398-921234569 Kocic-Tanackov S. Dimic G. Levic J. Tanackov I. Tepic A. Vujicic B. . (2012). Effects of onion (Allium cepa L.) and garlic (Allium sativum L.) essential oils on the Aspergillus versicolor growth and sterigmatocystin production. J. Food Sci. 77, M278M284. 10.1111/j.1750-3841.2012.02662.x22497489 Kumar M. Tomar R. S. Lade H. Paul D. (2016). Methylotrophic bacteria in sustainable agriculture. World J. Microbiol. Biotechnol. 32, 19. 10.1007/s11274-016-2074-827263015 Lance D. R. Leonard D. S. Mastro V. C. Walters M. L. (2016). Mating disruption as a suppression tactic in programs targeting regulated lepidopteran pests in US. J. Chem. Ecol. 42, 590605. 10.1007/s10886-016-0732-927492468 Lanteigne C. Gadkar V. J. Wallon T. Novinscak A. Filion M. (2012). Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102, 967973. 10.1094/PHYTO-11-11-031222713078 Lemfack M. C. Nickel J. Dunkel M. Preissner R. Piechulla B. (2014). mVOC: a database of microbial volatiles. Nucleic Acids Res. 42, D744D748. 10.1093/nar/gkt125024311565 Li Q. L. Ning P. Zheng L. Huang J. B. Li G. Q. Hsiang T. (2012). Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biol. Control 61, 113120. 10.1016/j.biocontrol.2011.10.014 Liu W.-W. Mu W. Zhu B.-Y. Du Y.-C. Liu F. (2008). Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agric. Sci. China 7, 11041114. 10.1016/S1671-2927(08)60153-4 Loper J. E. Hassan K. A. Mavrodi D. V. Davis E. W. Lim C. K. Shaffer B. T. . (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 8:e1002784. 10.1371/journal.pgen.100278422792073 Lucy M. Reed E. Glick B. R. (2004). Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86, 125. 10.1023/B:ANTO.0000024903.10757.6e15103234 Mahmood A. Turgay O. C. Farooq M. Hayat R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol. Ecol. 92:fiw112. 10.1093/femsec/fiw11227222220 Minerdi D. Bossi S. Gullino M. L. Garibaldi A. (2009). Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ. Microbiol. 11, 844854. 10.1111/j.1462-2920.2008.01805.x19396945 Mitchell A. M. Strobel G. A. Moore E. Robison R. Sears J. (2010). Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156, 270277. 10.1099/mic.0.032540-019797357 Monnet D. Vidal D. Creach O. (1988). Influence of metabolic and physical factors on production of diacetoxyscirpenol by Fusarium-Sambucinum Fuckel. Appl. Environ. Microbiol. 54, 21672169. 3190224 Mueller U. G. Sachs J. L. (2015). Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606617. 10.1016/j.tim.2015.07.00926422463 Naznin H. A. Kimura M. Miyazawa M. Hyakumachi M. (2013). Analysis of volatile organic compounds emitted by plant growth-promoting Fungus Phoma sp GS8-3 for growth promotion effects on tobacco. Microbes Environ. 28, 4249. 10.1264/jsme2.ME1208523080408 Nechwatal J. Zellner M. (2015). Potential suitability of various leaf treatment products as copper substitutes for the control of late blight (Phytophthora infestans) in organic potato farming. Potato Res. 58, 261276. 10.1007/s11540-015-9302-8 Neerincx A. H. Geurts B. P. Habets M. F. Booij J. A. Van Loon J. Jansen J. J. . (2016). Identification of Pseudomonas aeruginosa and Aspergillus fumigatus mono- and co-cultures based on volatile biomarker combinations. J. Breath Res. 10:016002. 10.1088/1752-7155/10/1/01600226824272 Parafati L. Vitale A. Restuccia C. Cirvilleri G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol. 47, 8592. 10.1016/j.fm.2014.11.01325583341 Penuelas J. Asensio D. Tholl D. Wenke K. Rosenkranz M. Piechulla B. . (2014). Biogenic volatile emissions from the soil. Plant Cell Environ. 37, 18661891. 10.1111/pce.1234024689847 Pérez-Montaño F. Alías-Villegas C. Bellogín R. A. Del Cerro P. Espuny M. R. Jiménez-Guerrero I. . (2014). Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol. Res. 169, 325336. 10.1016/j.micres.2013.09.01124144612 Pieterse C. M. Zamioudis C. Berendsen R. L. Weller D. M. Van Wees S. C. Bakker P. A. (2014). Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347375. 10.1146/annurev-phyto-082712-10234024906124 Pohl C. H. Kock J. L. F. Thibane V. S. (2011). Antifungal free fatty acids: a review, in Science against Microbial Pathogens: Communicating Current Research and Technological Advances, ed Méndez-Vilas A. (Badajoz: Formatex), 6171. Rast D. Stauble E. J. (1970). On mode of action of isovaleric acid in stimulating germination of Agaricus-bisporus spores. New Phytol. 69, 557566. 10.1111/j.1469-8137.1970.tb07608.x Reddy G. V. Guerrero A. (2010). New pheromones and insect control strategies. Vitam. Horm. 83, 493519. 10.1016/S0083-6729(10)83020-120831959 Riyaz-Ul-Hassan S. Strobel G. Geary B. Sears J. (2013). An endophytic Nodulisporium sp. from central america producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23, 2935. 10.4014/jmb.1208.0406223314364 Rouissi W. Ugolini L. Martini C. Lazzeri L. Mari M. (2013). Control of post-harvest fungal pathogens by antifungal compounds from Penicillium expansum. J. Food Prot. 76, 18791886. 10.4315/0362-028X.JFP-13-07224215691 Rudrappa T. Splaine R. E. Biedrzycki M. L. Bais H. P. (2008). Cyanogenic Pseudomonads influence multitrophic interactions in the rhizosphere. PLoS ONE 3:e2073. 10.1371/journal.pone.000207318446201 Ryu C. M. Farag M. A. Hu C. H. Reddy M. S. Kloepper J. W. Pare P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant physiol. 134, 10171026. 10.1104/pp.103.02658314976231 Ryu C. M. Farag M. A. Hu C. H. Reddy M. S. Wei H. X. Pare P. W. . (2003). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100, 49274932. 10.1073/pnas.073084510012684534 Sanchez-Fernandez R. E. Diaz D. Duarte G. Lappe-Oliveras P. Sanchez S. Macias-Rubalcava M. L. (2016). Antifungal volatile organic compounds from the endophyte Nodulisporium sp. strain GS4d2II1a: a qualitative change in the intraspecific and interspecific interactions with Pythium aphanidermatum. Microb. Ecol. 71, 347364. 10.1007/s00248-015-0679-326408189 Schenkel D. Lemfack M. C. Piechulla B. Splivallo R. (2015). A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front. Plant Sci. 6:707. 10.3389/fpls.2015.0070726442022 Schlaeppi K. Bulgarelli D. (2015). The plant microbiome at work. Mol. Plant Microbe Interact. 28, 212217. 10.1094/MPMI-10-14-0334-FI25514681 Schmidt R. Etalo D. W. De Jager V. Gerards S. Zweers H. De Boer W. . (2015). Microbial small talk: volatiles in fungal-bacterial interactions. Front. Microbiol. 6:1495. 10.3389/fmicb.2015.0149526779150 Schulz S. Dickschat J. S. (2007). Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24, 814842. 10.1039/b507392h17653361 Schulz-Bohm K. Zweers H. De Boer W. Garbeva P. (2015). A fragrant neighborhood: volatile mediated bacterial interactions in soil. Front. Microbiol. 6:1212. 10.3389/fmicb.2015.0121226579111 Sharifi R. Ryu C. M. (2016). Making healthier or killing enemies? Bacterial volatile-elicited plant immunity plays major role upon protection of Arabidopsis than the direct pathogen inhibition. Commun. Integr. Biol. 9:e1197445. 10.1080/19420889.2016.119744527574539 Sharma R. Chauhan A. Shirkot C. K. (2015). Characterization of plant growth promoting Bacillus strains and their potential as crop protectants against Phytophthora capsici in tomato. Biol. Agric. Horticult. 31, 230244. 10.1080/01448765.2015.1009860 Shatalin K. Shatalina E. Mironov A. Nudler E. (2011). H2S: a universal defense against antibiotics in bacteria. Science 334, 986990. 10.1126/science.120985522096201 Shestivska V. Dryahina K. Nunvar J. Sovova K. Elhottova D. Nemec A. . (2015). Quantitative analysis of volatile metabolites released in vitro by bacteria of the genus Stenotrophomonas for identification of breath biomarkers of respiratory infection in cystic fibrosis. J. Breath Res. 9:027104. 10.1088/1752-7155/9/2/02710425830686 Shestivska V. Spanel P. Dryahina K. Sovova K. Smith D. Musilek M. . (2012). Variability in the concentrations of volatile metabolites emitted by genotypically different strains of Pseudomonas aeruginosa. J. Appl. Microbiol. 113, 701713. 10.1111/j.1365-2672.2012.05370.x22726261 Smith C. A. Want E. J. O'maille G. Abagyan R. Siuzdak G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using Nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779787. 10.1021/ac051437y16448051 Soberon J. R. Lizarraga E. F. Sgariglia M. A. Juarez M. B. C. Sampietro D. A. Ben Altabef A. . (2015). Antifungal activity of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone against Candida albicans: evidence for the antifungal mode of action. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 108, 10471057. 10.1007/s10482-015-0559-326342699 Song G. C. Ryu C. M. (2013). Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14, 98039819. 10.3390/ijms1405980323698768 Spence C. Alff E. Johnson C. Ramos C. Donofrio N. Sundaresan V. . (2014). Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol. 14:130. 10.1186/1471-2229-14-13024884531 Tahir H. A. S. Gu Q. Wu H. Niu Y. Huo R. Gao X. (2017). Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 7:40481. 10.1038/srep4048128091587 Tenorio-Salgado S. Tinoco R. Vazquez-Duhalt R. Caballero-Mellado J. Perez-Rueda E. (2013). Identification of volatile compounds produced by the bacterium Burkholderia tropica that inhibit the growth of fungal pathogens. Bioengineered 4, 236243. 10.4161/bioe.2380823680857 Thorn R. M. Reynolds D. M. Greenman J. (2011). Multivariate analysis of bacterial volatile compound profiles for discrimination between selected species and strains in vitro. J. Microbiol. Methods 84, 258264. 10.1016/j.mimet.2010.12.00121167880 Trivedi P. Pandey A. Palni L. M. S. (2008). In vitro evaluation of antagonistic properties of Pseudomonas corrugato. Microbiol. Res. 163, 329336. 10.1016/j.micres.2006.06.00716890413 Tyc O. Zweers H. De Boer W. Garbeva P. (2015). Volatiles in inter-specific bacterial interactions. Front. Microbiol. 6:1412. 10.3389/fmicb.2015.0141226733959 Van Hulten M. Pelser M. Van Loon L. C. Pieterse C. M. Ton J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. USA. 103, 56025607. 10.1073/pnas.051021310316565218 Velivelli S. L. De Vos P. Kromann P. Declerck S. Prestwich B. D. (2014). Biological control agents: from field to market, problems, and challenges. Trends Biotechnol. 32, 493496. 10.1016/j.tibtech.2014.07.00225246168 Vespermann A. Kai M. Piechulla B. (2007). Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73, 56395641. 10.1128/AEM.01078-0717601806 Voisard C. Keel C. Haas D. Defago G. (1989). Cyanide Production by Pseudomonas-Fluorescens helps suppress black root-rot of tobacco under gnotobiotic conditions. Embo J. 8, 351358. 16453871 Vorholt J. A. (2012). Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828840. 10.1038/nrmicro291023154261 Wang Z. F. Wang C. L. Li F. J. Li Z. J. Chen M. H. Wang Y. R. . (2013). Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon. J. Microbiol. 51, 477483. 10.1007/s12275-013-2586-y23990299 Weise T. Kai M. Piechulla B. (2013). Bacterial ammonia causes significant plant growth inhibition. PLoS ONE 8:e63538. 10.1371/journal.pone.006353823691060 Werner S. Polle A. Brinkmann N. (2016). Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl. Microbiol. Biotechnol. 100, 86518665. 10.1007/s00253-016-7792-127638017 Xia J. Sinelnikov I. V. Han B. Wishart D. S. (2015). MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res. 43, W251W257. 10.1093/nar/gkv38025897128 Yang J. Kloepper J. W. Ryu C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14, 14. 10.1016/j.tplants.2008.10.00419056309 Yuan J. Raza W. Shen Q. R. Huang Q. W. (2012). Antifungal Activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp cubense. Appl. Environ. Microbiol. 78, 59425944. 10.1128/AEM.01357-1222685147 Zahir Z. A. Arshad M. Frankenberger W. T. Jr. (2003). Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv. Agron. 81, 97168. 10.1016/S0065-2113(03)81003-9 Zhang X. Y. Li B. Q. Wang Y. Guo Q. G. Lu X. Y. Li S. Z. . (2013). Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl. Microbiol. Biotechnol. 97, 95259534. 10.1007/s00253-013-5198-x24013222 Zhao L. J. Yang X. N. Li X. Y. Mu W. Liu F. (2011). Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa Strain BMP-11. Agric. Sci. China 10, 728736. 10.1016/S1671-2927(11)60056-4 Zhao S. Zhao L. Zhang X. Liu C. Hao C. Xie H. . (2016). Design, synthesis, and structure-activity relationship studies of benzothiazole derivatives as antifungal agents. Eur. J. Med. Chem. 123, 514522. 10.1016/j.ejmech.2016.07.06727494168 Zhou J. Y. Zhao X. Y. Dai C. C. (2014). Antagonistic mechanisms of endophytic Pseudomonas fluorescens against Athelia rolfsii. J. Appl. Microbiol. 117, 11441158. 10.1111/jam.1258624962812

      Aurélien Bailly Ph.D. in Biological Sciences (2008), University of Zurich. Postdoctoral research, Institute of Plant Biology, University of Zurich (2008–2014) and Institute for Sustainability Sciences, Agroscope, Zurich (2014–2015). Faculty position, University of Zurich (2015-present). Our team is interested in the small molecules-mediated communication events occurring between microbial communities and their plant hosts. We aim to unravel chemical cues and target proteins involved in this process that may contribute to the intensification of sustainable agriculture.

      Funding. Agroscope Research Program “Microbial Biodiversity.”

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.lykxgm.com.cn
      www.lixingo.com.cn
      kzchain.com.cn
      newun.com.cn
      www.tcceow.com.cn
      www.utogwb.com.cn
      sogkx.com.cn
      vrfenzi.com.cn
      www.smartro.com.cn
      www.wrchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p