Front. Mater. Frontiers in Materials Front. Mater. 2296-8016 Frontiers Media S.A. 818535 10.3389/fmats.2022.818535 Materials Review Digital Twins for Materials Kalidindi et al. Digital Twins for Materials Kalidindi Surya R. 1 * Buzzy Michael 1 Boyce Brad L. 2 Dingreville Remi 2 1 Georgia Institute of Technology, Atlanta, GA, United States 2 Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM, United States

Edited by: Roberto Brighenti, University of Parma, Italy

Reviewed by: Thomas Hammerschmidt, Ruhr University Bochum, Germany

Xiaoying Zhuang, Leibniz University Hannover, Germany

*Correspondence: Surya R. Kalidindi, surya.kalidindi@me.gatech.edu

This article was submitted to Computational Materials Science, a section of the journal Frontiers in Materials

16 03 2022 2022 9 818535 19 11 2021 18 01 2022 Copyright © 2022 Kalidindi, Buzzy, Boyce and Dingreville. 2022 Kalidindi, Buzzy, Boyce and Dingreville

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Digital twins are emerging as powerful tools for supporting innovation as well as optimizing the in-service performance of a broad range of complex physical machines, devices, and components. A digital twin is generally designed to provide accurate in-silico representation of the form (i.e., appearance) and the functional response of a specified (unique) physical twin. This paper offers a new perspective on how the emerging concept of digital twins could be applied to accelerate materials innovation efforts. Specifically, it is argued that the material itself can be considered as a highly complex multiscale physical system whose form (i.e., details of the material structure over a hierarchy of material length) and function (i.e., response to external stimuli typically characterized through suitably defined material properties) can be captured suitably in a digital twin. Accordingly, the digital twin can represent the evolution of structure, process, and performance of the material over time, with regard to both process history and in-service environment. This paper establishes the foundational concepts and frameworks needed to formulate and continuously update both the form and function of the digital twin of a selected material physical twin. The form of the proposed material digital twin can be captured effectively using the broadly applicable framework of n-point spatial correlations, while its function at the different length scales can be captured using homogenization and localization process-structure-property surrogate models calibrated to collections of available experimental and physics-based simulation data.

artificial intelligence machine learning digital twins computational materials science materials knowledge systems

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1 Introduction

      Recent forward-looking roadmaps (Gil and Selman, 2019; Jenks et al., 2020) have identified the development of a fully digital framework that fuses human-subject matter expertise, process and performance modeling, experimental in-situ diagnostics, and data science algorithms as one of the most important areas to transform manufacturing and surveillance of components throughput their life cycle. Indeed, the digitization of product lifecycle management (PLM) has led to the emergence and deployment of digital threads (Kapteyn et al., 2021; Niederer et al., 2021; Zeb et al., 2021) in a broad spectrum of manufacturing industries. These digital threads collect, curate, and archive all of the data/information generated from all stages of the product life cycle: conceptualization, design, prototype, manufacturing, operation, and retirement (Singh and Willcox, 2018; Margaria and Schieweck, 2019). Digital threads open multiple new avenues for fostering innovation and improving the in-service performance of a wide range of products. A necessary feature of the digital threads is that they encompass both the in-silico activities (e.g., model-based or virtual engineering) and the physical activities (e.g., measurements made during the different stages of manufacturing, testing, and operation of the product) conducted in the PLM. An important outcome from the deployment of digital threads is that they have opened new opportunities for the creation and use of in-silico analogues to the physical product. The recent advances in digital and sensor technologies (Mei et al., 2019; Ullo and Sinha, 2020) enable the in-silico objects to co-exist along with their physical counterparts. In addition to mimicking the physical products, the in-silico analogues offer unprecedented potential for consistent change management, allowing the optimization of intentional or unintentional product evolution over time. Therefore, within this context, a digital twin can be defined as a high-fidelity in-silico representation closely mirroring the form (i.e., appearance) and the functional response of a specified (unique) physical twin. Digital twins have thus far been used in the manufacturing and performance evaluation of complex engineered physical systems (e.g., turbine engines) (Tao et al., 2018; Zaccaria et al., 2018; Raj and Surianarayanan, 2020; Lim et al., 2021; Xie et al., 2021) and/or their components, where the focus has been largely on capturing accurately the macroscale geometry and the component-level performance metrics. Current digital twins do not address adequately the capture and archival of the materials data, which typically deals with physical phenomena occurring at the lower material length scales (typically ranging from the atomic to the macroscale). This disconnect is not surprising given the siloed nature of current materials research and product design/manufacturing communities. However, it is abundantly clear that a successful extension of digital twins to include the materials data/information in a comprehensive manner can allow for a holistic co-design of material, manufacturing process, and product in fully integrated innovation cycles, possibly resulting in dramatic improvements in the overall part performance.

      Materials, in their own right, represent highly complex multiscale and multi-physics systems. Their production and in-service responses are controlled by a wide range of phenomena occurring at length scales ranging from the atomic to the macroscale and an equally broad range of associated time scales. Figure 1 depicts schematically the hierarchical nature of materials systems with examples of a wide variety of physical phenomena that occur at the nano- and micro-scales. Clearly, the materials phenomena occurring at the lower material length scales play important roles in controlling the macro- and component-scale performances of the part. In the current research paradigm, the considerations at the component/part scale and the material scale are studied in a mostly de-coupled manner by different groups of researchers. The former are the domain of mechanical designers and manufacturing specialists, while the latter are addressed by materials science and engineering specialists. More specifically, the field of materials science and engineering focuses on understanding how the different processing histories (e.g., thermo-mechanical processing) influence the material structure (includes information on the many aspects of order and disorder seen at different length scales cf. Figure 1) and their associated properties. However, understanding and quantifying accurately the underlying process-structure-property (PSP) relationships (Kalidindi, 2015; McDowell and LeSar, 2016) at the different material length and time scales is quite arduous. This is mainly because the diverse physical phenomena occurring at these scales are necessarily related and co-dependent with one another. Therefore, adopting a systems approach that manages the complex trade-offs between potentially conflicting multifunctional requirements at the different length scales spanning across the complete range of material and product scales would yield significant benefits.

      A schematic depiction of the multiscale and multi-physics nature of material systems and their relationship with the component performance. A comprehensive understanding of material performance requires a complete hierarchical representation of structural/chemical features, the relationship between those features and material properties, and the mechanisms that drive their evolution either through processing or service history. All arrows represent scale bridging, i.e., upscaling via homogenization and downscaling via localization.

      However, this task faces many hurdles. The most significant of these hurdles comes from the fact that the relevant data, even for a selected single material system, is necessarily generated by distributed teams of researchers with the requisite expertise. For example, on the experimental front, materials data comes from a wide range of imaging modalities (e.g., optical microscopy, scanning and transmission electron microscopy, various diffraction and spectroscopic techniques, X-ray tomography, atomic force microscopy) (Belianinov et al., 2018; Polonsky and Pandey, 2021) and property evaluations (e.g., mechanical testing in different modes and at different spatial resolutions, thermal conductivity, diffusivities) (Khosravani et al., 2020:; Khosravani et al., 2021). On the modelling front, the data comes from an equally disparate set of sources that aim to faithfully simulate specific selected sub-phenomena at different material length scales (e.g., density functional theory computations, molecular dynamics, discrete dislocation dynamics, kinetic Monte-Carlo simulations, cellular automata, phase-field simulations, finite element models) (Horstemeyer, 2009; Panchal et al., 2013; Matouš et al., 2017). Although each individual dataset often provides a partial insight, only a systems approach can provide the comprehensive holistic view needed to objectively drive materials innovation in an accelerated manner; this is indeed the goal of many national and international materials research initiatives [e.g., ICME (Allison et al., 2006), MGI (National Science and Technology Council, 2011; de Pablo et al., 2019)].

      Figure 2 illustrates the large variety of data sources involved in formulating a systems approach to understanding and optimizing materials for desired combinations of macroscale (effective) properties. As already noted, the datasets collected from any one data source (refers to either a single experimental protocol or a single physics-based simulation tool) often provides incomplete and uncertain insights into the physics controlling the materials phenomena of interest. At a high level, it should be recognized that physics-based simulations are designed to provide predictions of the material response to imposed (thermo-mechanical) environments for user-specified physics. On the other hand, experiments are generally designed to provide observations of material response to specific imposed environments, for as yet unknown (or uncertain) materials physics. Clearly, all individual datasets (from any individual data source) should be treated as being incomplete and/or uncertain. However, if the insights from the datasets collected from the different data sources can be effectively fused in a consistent framework, it is likely to produce much more comprehensive and valuable insights. Currently, there does not yet exist an overarching mathematical framework for such data fusion. The development and utilization of such a framework is likely to open new avenues for major time and effort savings in materials-product co-design and innovation efforts by optimally guiding the effort investment (i.e., objectively identifying the next best steps based on a rigorous statistical analyses of all previously aggregated data).

      Modeling and experimental tools typically used to obtain relevant materials data at different length and time scales. Example of modeling tools used include Density Functional Theory (DFT), Molecular Dynamics (MD), Accelerated MD (AMD), Dislocation Dynamics (DD), kinetic Monte Carlo (kMC), Crystal Plasticity Finite Element Modeling (CPFEM), FEM, and extended FEM (xFEM). Examples of experimental tools used include Atomic Force Microscopy (AFM), High Resolution Transmission Microscopy (HRTEM), in situ TEM, tomography, Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), and mechanical testing.

      As already noted, the perspectives presented above build on multiple national and international initiatives. Specifically, ICME (Allison et al., 2006), and MGI (de Pablo et al., 2019) have articulated the need for increased use of computational tools and data sciences [including artificial intelligence/machine learning toolsets (AI/ML)] to accelerate the rate of materials discovery, development, and deployment in advanced technologies. Indeed, much progress has been made in organizing and disseminating materials data (The Minerals, Metals & Materials Society TMS, 2017), and physics-based simulation toolsets (The Minerals, Metals & Materials Society TMS, 2015). There has also been a strong injection of data sciences and AI/ML into materials research, especially in aspects related to data ingestion (e.g., experimental laboratory automation) (Kalidindi et al., 2019), curation (e.g., ontologies) (Morgado et al., 2020; Voigt and Kalidindi, 2021), feature engineering (Kalidindi, 2020; Xiang et al., 2021), and automated generation of surrogate models (Generale and Kalidindi, 2021; Marshall and Kalidindi, 2021). These recent advances in materials research have set the stage for the extension and application of the emerging concept of digital twins described earlier to include the multiscale details of the material. This paper establishes a roadmap for the pursuit of this goal, i.e., the extension of digital twins to include materials data over a hierarchy of length scales. Specifically, we identify the key foundational elements that currently exist and outline the gaps that need to be overcome for success in this endeavor (Figure 3).

      The main components of the proposed roadmap for building digital twins for material systems.

      2 Main Elements of Digital Twins for Materials Systems 2.1 Physical Twin of a Material System

      Digital twins of macroscale engineered components and machines typically aim to represent a uniquely identified single physical twin. For example, a digital twin might target a specific turbine engine in service on an airplane. However, in building digital twins for a material system, it becomes intractable to consider each individual material sample as the physical twin. This is not only because of the large number of distinct material samples that can be produced for a nominally specified chemical composition and processing history, but also due to the fact that non-destructive characterization techniques are not yet mature for evaluating both the three-dimensional structure of the material as well as its properties of interest. Furthermore, even with the use of destructive techniques for materials characterization, one can only hope to establish distributions that adequately quantify the material structure and properties in a stochastic framework (i.e., accounting for the significant uncertainty associated with these quantities for any given material sample). Given these considerations, it is readily apparent that the digital twins for materials systems can only be established in a stochastic framework at the present time. In other words, we propose here that digital twins of materials systems should aim to produce multiple instantiations (as many as needed) sampled from the distributions of the possible material structure and their associated properties (with both structure and properties defined over a hierarchy of material length scales). Therefore, in our proposed framework, we will associate the digital twins of the material system to the nominal chemical composition and processing/service history that created the material samples. In doing so, we will implicitly define the material by the controllable details (each of which is identified with aleatoric uncertainty) of the generative process used to create the material samples (i.e., instantiations of the physical twin). This, we believe, will result in a much more pragmatic approach to building digital twins for material systems that will have high value for the design and in-service prognosis of engineered components and devices.

      2.2 Mathematical Framework for Digital Twins of Material Systems

      The mathematical framework underpinning the digital twins for material systems should address two main needs: (i) the statistical quantification of the material structure over a hierarchy of material length scales 1 and its suitable representation in practically useful low-dimensional forms, and (ii) the reliable prediction of the material properties of interest given information about the material structure and the processing/service history. These tasks indeed correspond to defining the form and the function of the digital twins for material systems. As already noted, both these tasks need to be addressed in a stochastic framework that rigorously tracks the uncertainty associated with all of the available data and propagates it into the predictions of the material properties.

      2.2.1 Material Structure Representation and Quantification

      The term material structure is used here to describe the spatial arrangement of structural and chemical heterogeneities, which constitute a material at a specified instant of time and govern its properties at that instant of time. For a given chemical composition, thermodynamics predicts an equilibrium crystallographic phase (or a multiphase mixture), and at finite temperature, an equilibrium vacancy concentration. Yet materials are rarely in their thermodynamic ground state. Essentially, an overwhelming subset of the material structural features represent metastable or unstable defects created throughout the process history. Conventionally, material structure defects have been classified based on their dimensionality as planar grain boundaries, linear dislocations, and point-wise atomic impurities; these are but the simplest examples of a myriad of complex microstructural features (see Figure 1). The material structure is not usually static but evolves when stimulated by exposure to energy (thermal, mechanical, chemical, etc.). Through state-of-the-art processing, the most perfect undoped, isotopically pure silicon single crystals have been produced to purity levels of >99.9999%. On the other hand, the most sophisticated structural alloys benefit from their complex, multiscale arrangement of the lower length scale structural features, reminiscent of the hierarchical nature of biological systems. Hence, the challenge for a digital twin of a material system is to represent the necessary complexity of the inherently high-dimensional material structure features with sufficient fidelity to capture the relevant subset that controls the material response of interest. Complicating matters, no single experimental technique is capable of comprehensively digitizing the material’s complete internal structure.

      A digital twin of a material system should be able to instantiate a representative volume of the material with sufficient statistical sampling of all the relevant lower length-scale structural features and their spatial arrangements. Given the roughly eight orders of magnitude in length scales (from ∼Å to ∼ cms) involved, it should become clear that such instantiations cannot be deterministic or unique. Therefore, what is required here is the ability to produce multiple instantiations that reflect as accurately as possible the inherent stochasticity of the material structure for a given nominal composition and process history. Laplace conjectured that by knowing every atom, its position and momentum, we could anticipate the behavior of the material (marquis de Laplace, 1814). While this statement reflects accurately the expected causal relationship between the material structure and its associated properties, it reflects a practically impossible pursuit. Therefore, we take the viewpoint that the digital twin of a material system is intended to be a minimally sufficient reduced-order representation of Laplace’s “demon.” A tractable digital twin of a material system should therefore utilize a versatile (broadly applicable to all material classes and length scales) low-dimensional representation of the material structure that would allow efficient learning of the functional response of the material system. Based on the earlier discussion, it is also clear that the low-dimensional representation of the material structure can only reflect suitably defined statistical measures at different material length scales; henceforth, such salient statistical measures of the material structure will be referred as features. Because of our interest in instantiating the material structure in our digital twins, it is important that the selected feature set should produce realistic, sufficiently accurate, instantiations of the material structure that can be subsequently correlated with its functional response. This is not a trivial requirement. For example, most of the conventionally used statistical measures of the material structure, such as the overall alloy composition, phase volume fractions, and the averaged grain sizes are woefully inadequate for producing the required instantiations of the multiscale material structure for our digital twins. More advanced approaches involving a richer set of microstructure statistics (e.g., orientation and mis-orientation distributions, grain aspect ratio distributions) have led to concepts such as statistically equivalent representative volume elements (McDowell and LeSar, 2016; Ghosh and Groeber, 2020). Some of these concepts have also been implemented in open-source codes such as DREAM.3D (Groeber and Jackson, 2014; Ghosh and Groeber, 2020).

      A comprehensive and systematic framework available today that is capable of providing the requisite feature engineering capabilities for the material structure is the framework of n-point spatial correlations (Torquato and Stell, 1982; Torquato and Haslach, 2002; Fullwood et al., 2010; Niezgoda et al., 2011; Adams et al., 2012; Niezgoda et al., 2013). In recent work, Kalidindi and co-workers (e.g., Kalidindi, 2015) have developed and demonstrated an efficient and broadly applicable computational framework and toolsets for addressing this task. Broadly referred as Materials Knowledge Systems (MKS), this framework takes advantage of the computational efficiency of voxelated representations and Fast Fourier Transform (FFT) algorithms to implement the theoretical framework of n-point spatial correlations. The feasibility and benefits of this approach have been demonstrated on a wide variety of material classes and material structures at different length scales [from the atomic (Gomberg et al., 2017; Kaundinya et al., 2021) to dislocation length scales (Robertson and Kalidindi, 2021a) to microscale (Generale and Kalidindi, 2021)].

      At its core, MKS defines and utilizes a material structure function (Kalidindi, 2015) that maps a selected combination of spatial position   x Ω   (the physical volume of the material domain) and a local material state h H (includes information such as phase identifiers, chemical compositions, lattice orientations, defect densities) to suitable measures (e.g., density) that reflect the intensity of h at x . Mathematically, one can express this function as m ( h , x ) . Implicit in this definition is the expectation that H needs to be identified suitably to capture the complete set of material states of interest at the different material structure length scales. Features of the material structure can then be defined as expectations of suitably scaled moments of m ( h , x ) . For example, the expected value of m ( h , x ) over Ω can provide a set of 1-point features that can be interpreted as the volume fractions of h in Ω (Kalidindi, 2015). Similarly, the expected value of m ( h , x ) m ( h , x + r ) over Ω can produce a set of 2-point features that can be interpreted as the joint probability of realizing h at x and h′ at x + r , where r denotes a specified vector separating the two spatial points randomly selected from Ω . Although, one can define higher-order features (e.g., 3-point features), one often finds a sufficiently large number of features in the 2-point feature set, as it includes all permutations of ( h , h′ ) over a very large domain of r (this domain includes all distinct set of all vectors of interest that can be placed in Ω ). The adequacy of the set of 2-point features in capturing the salient features of the material structure (including the set of features identified in conventional practices in materials science and engineering) has been established for a broad range of material classes (Latypov et al., 2019; Generale and Kalidindi, 2021) as well as the different structure length scales (Fullwood et al., 2010; Robertson and Kalidindi, 2021a; Kaundinya et al., 2021) encountered in them.

      The MKS framework described in Figure 4 produces a very large number of features, even when using only the 2-point feature set. For extracting a low-dimensional feature set, one needs to use a suitable dimensionality reduction technique. Of the various options for this task, principal component analysis (PCA) has been found to be particularly attractive. First, it allows for an unsupervised learning of the salient low-dimensional features based on maximization of captured variance. Therefore, it identifies a consistent set of features that can be used across multiple PSP surrogate models, allowing for full interoperability among collections of such models. In other words, since the salient features are identified without the knowledge of the specific targets (i.e., outputs) of the surrogate model, they can be used for different targets (for example, in the predictions of very different properties of a given material system). Second, the PCA basis can be inspected and interpreted to a limited extent, allowing for the low-dimensional features to be associated with some (limited) physical meaning. Third, since PCA essentially involves a rotational transform of the original space, it preserves distances between datapoints in the original space. Finally, the orthogonal decomposition involved in the PCA allows for practically useful reconstructions of the full feature list, i.e., a reconstruction of the high-dimensional feature list from the low-dimensional feature list. Of course, these reconstructions are approximate because of PC truncation. However, since the PC representations are maximized to capture variance, it is possible to make sure that the approximation introduced by the truncation is within acceptable tolerance. The PC scores obtained from the application of PCA on an ensemble of 2-point feature sets (one set corresponds to one material structure) serve as a highly effective low-dimensional feature set for the material structure in our digital twins. There exist a multitude of other options for dimensionality reduction of the feature space, such as isomap or kernel PCA. However, the nonlinear embeddings employed in these techniques can introduce distortions into the latent space that negate the benefits of PCA identified above (Hu et al., 2022).

      The MKS workflow for feature engineering of material structure. In this example, we start with microstructures belonging to three distinct classes (corresponding to vertical, horizontal, or random ellipses), with one example of each class shown on the left. Their corresponding 2-point features are shown in the middle and reflect a large number of statistics (including volume fractions, size and shape distributions) for each microstructure. The low-dimensional representations of the microstructure statistics are shown on the right, in the subspace of the first two PC scores. The clusters in the PC plots successfully classify the microstructures in the three classes. The intra-class variance between microstructures within each class can also be quantified from the PC representations.

      As stated earlier in Section 2.1, the physical twin is not defined as a single instantiation of a material structure, but rather as the outcome of a stochastic generative process that yields instantiations that we then observe. The MKS framework described above provides a mathematically compact representation using computationally efficient tools. However, many tools (e.g., phase-field simulations, micromechanical finite element models) only take specific instantiations of the material structure as inputs. Therefore, successful creation of digital twins for materials requires the ability to move between statistical representations of material structure and their three-dimensional physical instantiations at low computational cost. While the computation of 2-point spatial correlations from instantiations is relatively easy (Cecen et al., 2016), the inverse computation is not trivial. Very recently, it has been shown that the three-dimensional material structures can be instantiated from their 2-point feature sets with minimal computational cost (Robertson and Kalidindi, 2021b). As a result of the many advantages described above, the MKS framework along with its open-source code repository PyMKS (Brough et al., 2017) offers a powerful, currently available, toolset for addressing the challenges of building digital twins of materials systems.

      It is also noted that there are a number of other options based on neural networks that allow one to combine feature engineering and property prediction into a single-step framework. These approaches offer attractive avenues when one is interested in a limited number of properties as targets. If one insists on de-coupling the form and function of the digital twins (as we have argued here), then it is imperative to pursue feature engineering of the material structure independently from establishing property predictors (discussed in the next section). In this context, it should be recognized that the autoencoder-decoder networks (Herr et al., 2019) offer an interesting option. These networks do address the unsupervised feature engineering of the material structure. Therefore, the features identified from such networks can then be input into other neural networks for property predictions. This idea represents an open research avenue that merits further exploration.

      2.2.2 Predictions of Material Properties

      Reliable prediction of the effective properties of a given material sample is a challenging task. At a high level, the main options are to either measure experimentally the properties of interest or to leverage known physics (often delivered in physics-based simulation packages) to estimate their values. Both approaches face hurdles when one desires to produce a multiscale, digital twin for materials. On the experimental front, the effort and cost involved in measuring all of the properties of interest along with the related information (e.g., anisotropy, variances) over the multiple material length scales of interest are often prohibitive. On the modelling front, there is substantial uncertainty in the model forms and/or parameter values used in the physics-based models. It is therefore clear that neither approach by itself is optimal in getting us the requisite information. In this regard, the recent emergence and successful application of materials data analytics tools has opened up new avenues for addressing these gaps.

      Recently (Kalidindi, 2015; Kalidindi, 2020), it has been argued that process-structure-property (PSP) linkages can be defined over different material-structure length scales to capture the core knowledge needed to study multiscale material responses. It is argued here that the same PSP linkages can be utilized to predict the functional response of the material digital twin. This is because the PSP linkages can be used to update both the changes in the multiscale material structure due to the imposed service conditions (using suitably defined process-structure evolution linkages) but also their associated properties (using structure-property linkages). The required PSP linkages need to be formulated using available data that might often be disparate, incomplete and/or uncertain. Most importantly, the framework for predicting the function of the material digital twin should allow easy (and possibly frequent) updates as new data becomes available. It is also likely that one needs to chain together multiple PSP models in order to make the predictions of the function of the material digital twin.

      A Bayesian framework has the potential to address scale-bridging with uncertain physics. The proposed Bayesian framework will be described next using the structure-property (SP) linkages as an example. However, they will be formulated such that they can also be easily applied to capturing process-structure linkages (PS). Typically, SP linkages are formulated to take structure variables as inputs and predict property values as output. The mapping implied in these linkages can be expressed as P   =  ℱ ( μ ) ,   where P is a property variable and μ denotes a vector of structure features (e.g., the PC scores of the 2-point feature set described in Section 2.2.1). Both P and μ should be treated as stochastic variables. This naïve definition makes the governing physics implicit in the formulation of . It would be much more desirable for SP linkages to explicitly treat the governing physics as additional input variables to the mapping, i.e., to refine the desired mapping as P   =  ℱ ( μ , φ ) , where φ denotes the governing physics. In practice, φ would represent a vector of parameters defining the physical mechanisms controlling the response of the material physical twin (e.g., parameters used in constitutive modeling of the material response). This refinement is advantageous in two ways. Firstly, it allows one to treat φ as a stochastic vector variable, which often exhibits a significant amount of uncertainty for a selected material physical twin. Secondly, it allows for the uncertain physics to be passed between linkages. This is particularly useful for the multiscale phenomenon that occur in material systems, as the uncertain physics learned in one length scale can still be utilized at another length scale. An example of this scale-bridging is depicted schematically in Figure 5. The first linkage estimates the indentation yield strength (effective property) of a single grain given the grain’s orientation (structure variable) and critically resolved shear strengths (physics variables). The second linkage estimates the bulk yield strength (property) given the two-point statistics of the grain orientations (structure variables) and the same critically resolved shear strengths (physics variables). Since the physics variables in these two linkages are the same, the uncertain knowledge of the physics variables extracted in the grain-scale data (could come from experiments and/or simulations) can be upscaled and utilized in making predictions of the effective properties at the polycrystal scale.

      Schematic illustration of the scale-bridging between the response of an individual grain and the response of a polycrystalline aggregate. At the grain scale, the structure-property linkage is formulated to take grain orientation (structure variable) and critical resolved shear strength(s) (CRSS; physics variables) as input and predict the overall property of interest (e.g., indentation yield strength of grains of different orientations). This linkage is used with both experimental and modeling datasets to extract a posterior on the CRSS for a given material system (see Panel 6 for more details). At the polycrystal scale, the structure-property linkage is formulated to take the 2-point spatial correlations of orientation (structure variables) and CRSS (physics variables) to make a prediction of the bulk (effective) yield strength of the polycrystal (c.f., Paulson et al., 2017).

      In establishing the material physics parameters, one has to exploit all of the available data, collected from disparate sources (e.g., experiments and physics-based simulations). Machine learning of φ for a selected material physical twin can be accomplished using a Bayesian update strategy expressed as: p ( φ | E ) p ( E | φ )   p ( φ ) where E denotes the set of available experimental observations, p ( φ ) is the prior (reflecting our best initial guess), p ( E | φ ) is the likelihood of realizing the observations in E , and p ( φ | E ) denotes the updated posterior on φ . Although Eq. 1 looks very simple, its practical usage for learning the controlling physics in multiscale material phenomena has been hindered by several factors. First, only the physics-based simulation tools that faithfully mimic the experiments performed to obtain E can allow for the computation of the likelihood term in Eq. 1. This is because only these tools allow arbitrary specification of the governing physics φ . However, a brute-force application of physics-based tools for computing the likelihood is prohibitively expensive because of the extremely large number of simulations one needs to perform to accomplish this task since it entails performing simulations covering a large domain of likely governing physics for all of the experimental observations in E . Second, the proportionality in Eq. 1 implies that one needs to develop and implement a suitable strategy for establishing the proportionality factor. Recent work (Castillo et al., 2021) has demonstrated that it is possible to train AI/ML models on simulation results produced by physics-based models, which can then be used to compute the likelihood term in Eq. 1. Furthermore, they would also allow for the implementation of Markov-Chain Metropolis-Hastings (MCMH) approaches for sampling the posterior in Eq. 1 without explicitly computing the proportionality factor. It is important to note that the posterior estimate of φ is not restricted to come from any single source of data. As an example, let us consider the situation where the data becomes available from different test modes (these could be indentation tests and micro-pillar tests for grain-scale mechanical measurements). In such situations, we need to establish different surrogate models for each test mode. Let P 1 =  ℱ ( μ , φ ) and P 2 =  ℱ ( μ , φ ) represent such surrogate models. Since the underlying microstructure and physics variables have the exact same meanings in both models, one can use both models with their respective experimental datasets for sampling a consistent posterior for φ . Once the posterior is established, one can establish the desired SP linkage in a stochastic framework by marginalizing as: p ( μ | E ) = f ( μ , φ ) p ( φ | E ) d φ

      As noted above, the practical implementation of Eqs 1, 2 needs the establishment of suitable AI/ML surrogates. These usually take the form ( μ , φ ) , and can be accomplished using Gaussian Process Regression (GPR). The central advantage of the proposed strategy here is that the formulation of the needed AI/ML models is generally a one-time effort. In other words, when these are properly designed to cover large input domains in the space of the controlling physical parameters and the space of relevant material structures, they only need to be performed once [examples can be seen in prior work (Castillo and Kalidindi, 2019; Castillo et al., 2021)]. This feature allows for a relatively low-computational cost update of the surrogate model as new experimental data becomes available. It is also possible to suggest new experiments that maximize the potential for improving the accuracy of the predictions (i.e., reducing the prediction uncertainty). This is most efficiently accomplished using established concepts of information gain such as the posterior predictive variance (Castillo and Kalidindi, 2019; Castillo et al., 2021; Castillo and Kalidindi, 2021), expected improvement (Solomou et al., 2018; Takhtaganov and Müller, 2018; Talapatra et al., 2018; Ghoreishi and Allaire, 2019), and expected information gain (Pandita et al., 2019).

      An example application of the proposed Bayesian approach methodology is depicted in Figure 6, taken from the work of Castillo et al. (2021). In this example, the information from spherical indentation measurements on individual grains in a polycrystalline sample and the corresponding simulations using crystal plasticity finite element models are combined to establish distributions on the unknown values of the critical resolved shear strengths of four different families of potentially active slip systems in a selected Ti alloy. The approach described in this study resulted in at least one order of magnitude savings in both the overall cost and effort expended, when compared to the conventional approaches that employed small-scale testing to obtain the same information.

      An example application of the Bayesian update strategy for the fusion of experimental and simulation datasets from indentation of a-Ti grains in a polycrystalline sample (Castillo et al., 2021).

      2.3 Cyberinfrastructure for Digital Twins of Materials

      Cyberinfrastructure supports the acquisition, storage, management, and fusion of data within a collaborative, but distributed, research environment. The creation of a robust cyberinfrastructure is critical to the realization of a digital twin, as digital twins exist at the confluence of multiple disparate data streams (e.g., simulation data, experimental data, real time sensor data). These data streams present challenges in managing both the variety and volume of data ingested, as well as any associated metadata needed to ensure high utility of the data for future use. Challenges in the variety of data come from the multimodal nature of materials data, meaning that the data in question stems from a variety of data sources (e.g., different imaging or analysis modalities). For example, materials data can take many forms: scalar parameters (e.g., diffraction line profile), time series (e.g., fatigue response), and spatially resolved (2-D and 3-D) image data (e.g., SEM image, tomography scan), and each modality is accompanied by its own unique forms of metadata that describe pre-process, in-process, and post-process information. Challenges in the volume of data stem from advancements in acquisition resolution and high-throughput experimental capabilities (hyperspectral imaging, x-ray computed tomography, etc.). For example, it is now commonplace to collect a large ensemble of images with high spatial resolution at a high frame rate using a variety of microscopes (e.g., optical, scanning electron, transmission electron), producing gigabytes-to-terabytes of observations of a single material (Dingreville et al., 2016). Similarly, expanded computational resources and multiscale modeling capabilities can also generate large amounts of data related to a material’s response to variety of environments (de Oca Zapiain et al., 2021). The main challenge lies in collecting and curating this large collection of heterogeneous data into the high-value information needed for the creation of a digital twin.

      2.3.1 Data Sources

      Material structure measurements capture the state of the material before, during, and after evolution, and material property measurements quantify various characteristics of evolution (e.g., resistance to evolution, evolution rates). The constellation of methods used to measure material structure and properties is extensive, and here we only mention two general trends. First, the digital data stream is becoming more entrenched in the instruments used to measure material properties. Just a generation ago, material structures were documented on film and quantification was performed by manual measurements; lab instruments utilized strip-chart recorders that created an analog graphical representation of the data. Now, not only have data streams become digitized, but increasingly, the data collection instruments are networked and remotely accessible. Yet significant concerns remain regarding the cyber vulnerability of both the data and the instrument, and institutional regulations regarding interconnectivity are highly disparate. Second, with the continuing advances in measurement sensors, data transfer, and data storage, the data streams are becoming increasingly dense, requiring thoughtful strategies for intelligent data reduction. Additionally, unconventional datasets, collected with alternative low-cost methods are proving to have utility. Previous trends in measurement science have focused on increases in precision and accuracy of data. Now, the focus is shifting to affordable high-density data streams that can provide similar or complementary information content to the existing suite of ultra-precise measurements.

      The external stimuli (e.g., thermo-chemo-mechanical loading) driving material structure evolution need to be tracked through the use of suitable sensors. Sensors generally transduce various forms of energy (Table 1) into electrical signals that can be transformed into digital data. The transduction can also involve intermediate forms of energy, e.g., magnetic or optical. All forms of sensing have limits in resolution, range, accuracy, and precision. The fidelity of the digitized resolution of the external stimulus captured by the sensor is limited by the accuracy of the correlation of the electrical signal to the intensity of the imposed stimulus, and the bit-depth of the stored information. The fidelity of an environmental measurement can also be limited by the temporal and spatial resolution of the sensor. Sensor arrays allow for spatial mapping of a field (e.g., temperature field on a sample surface) of interest, with the spatial resolution limited by the spacing between individual sensors in the array. Alternately, one can acquire such information using a single sensor and rapidly scanning a region of interest; this strategy will lead to some degree of temporal disregistry between individual measurements.

      Example of energy forms that drive changes in material state and the transducers employed to observe the corresponding exposure history.

      Stimuli Application examples Sensor examples
      Mechanical Vibration, Shock, Sound/Phonon, Stress, Strain Strain gauges, piezoelectric, magnetostrictive, eddy current, accelerometer, capacitive
      Electrical Current, magnetic fields Voltage sensors, current sensors, resistance sensors, power sensors hall-effect sensors, giant magnetoresistance sensors, fluxgate sensor
      Radiant Energy Gamma, X-ray, UV, Infrared, Visible light, Microwave, Radio waves Photoresistors (LDR), photodiodes, phototransistors, charged-coupled devices, gamma ray detectors, microwave sensors, CMOS detector
      Thermal Convective, conductive, latent Thermocouples, RTDs, Thermistors, infrared, semiconductor sensors
      Chemical Gases, liquids, solids, ions, isotopesetc. Hygrometer, gas sensor, pH sensor
      Nuclear Neutron, Beta, Alpha, Proton Gas-filled proportional detectors, ionization chambers, Geiger-Mueller tubes, scintillators, solid-state detectors
      Gravitational weight See mechanical sensors
      2.3.2 Data Management (Ontology, Data Software Platforms)

      The high volume and high variety of materials data quickly outpaces rudimentary data organization techniques typically used by humans (project specific folder structures, ad hoc organization or note taking). We therefore require more sophisticated data management tools to manage the storage and organization of the materials data relevant to the digital twin. In their most basic forms data management tools act as simple data repositories, centralized locations where data is held and made accessible to others. However, simple data repositories do not necessarily provide a systematic scheme for the organization of the data or metadata therein. Digital twins require the establishment of standards and protocols to catalogue, vet, compare, and use data reliably and credibly in automated (and possibly autonomous) protocols (Kalidindi and De Graef, 2015; Sorkin et al., 2020). Consequently, data management solutions for digital twins should aim to at least meet FAIR data principles: Findability, Accessibility, Interoperability, and Reusability (Wilkinson et al., 2016). FAIR data should have: (1) globally assigned, rich, searchable metadata with a unique persistent identifier and clear provenance; (2) standardized communication protocols for data storage and retrieval; (3) consistent, widely utilized, non-proprietary standards employed for data formatting. Data repositories generally only meet the most basic aspects of FAIR—namely accessibility. Materials databases progress further towards FAIR principles by providing greater searchability. Databases allow users to construct and carry out complex queries to search for information, and therefore improve searchability. However, their searchability is generally limited to tabular data. Furthermore, databases are also generally limited in their interoperability and reusability. In particular, they are not well suited for the materials data needed for digital twins as there is no natural way to describe the relational connections between disparate materials data (e.g., temporal variations along process paths, nested composition relationships, multimodal data describing single sample).

      In order to truly realize FAIR data principles for materials data, we need to adopt emerging software tools in ontologies and linked data. Ontologies for data management are an open-world framework where we construct a standardized language to connect and describe objects. There currently exists many standardized languages used to describe ontologies such as OWL (McGuinness and Van Harmelen, 2004), RDF (Lassila and Swick, 1998), or JSONLD (Sporny et al., 2014). These languages all describe data in subject-predicate-object triples where we link the subject and the object through some rule (the predicate). One way to capture this information is through the formation of knowledge graph consisting of nodes (subjects, objects) and edges (predicates). Knowledge graphs allow for easily understood visual depictions of metadata, and for the application of emergent graph-based AI toolsets for the automated identification of new connections between aggregated elements of a complex heterogeneous dataset.

      A recently proposed materials ontology (Voigt and Kalidindi, 2021) shown in Figure 7A can prove valuable in our effort to collect and curate the data needed for a materials digital twin. This ontology consists of four primary classes of entities (denoted by circles) that can serve as subjects or objects: Process, Material, Tool, and Data. A total of nine predicates (denoted by arrows) have been defined to link these objects. Process nodes hold information about process parameters, tool nodes describe the settings and characteristics of machines, and data nodes hold the payloads of interest (images, tabular data, etc). A material node describes the state of the material along a nominal process. Therefore, every time an action is taken on a material, we produce a new material node. This allows us to easily associate data with a point along a process path. As an example, a given steel (Material) produced after a specified thermo-mechanical processing route (Process) can be studied in a microscope (Tool); the results of the study are captured in a file (Data). Figure 7B depicts an example knowledge graph for a steel. The process begins with a generic low carbon steel node (seen at the bottom of the knowledge graph). It then undergoes a standard annealing step to get a uniform starting material, and proceeds through a specialized intercritical annealing and quench steps to its final form (labelled as 750-00-000 in the knowledge graph). Along the processing route shown, we are able to connect the various data/metadata collected. For example, it is seen that both the starting material and the final material have associated SEM images. The final material also has a datasheet generated using a known software package (defined by a Tool node) which took a known load-displacement curve (defined by a Data node) as input. Ontologies allow us to systematically capture interconnected materials data and allow for the context of a dataset to be robustly described and communicated, thus enhancing the reusability of the data.

      (A) The constitutive elements of a recently proposed materials ontology (Voigt and Kalidindi, 2021). The four main elements are Material (blue), Process (yellow), Tool (purple), and Data (orange) are shown in different colors along with the allowed connections between them. (B) An example of a knowledge graph constructed using the ontology.

      2.3.3 AI Tools

      There currently exist several software packages than can be used to support the mathematical framework proposed in Section 2.2. For structure quantification PyMKS (Brough et al.) offers computationally efficient tools for the feature engineering of material internal structures. PyMKS supports various data transformations needed to capture information on a wide range of material local states encountered in different material classes at different material structure length scales. PyMKS utilizes Dask, a distributed framework for developing python applications, to facilitate computations involving large datasets on supercomputers and large clusters (Rocklin, 2015). Subsequent to feature engineering, surrogate model building can be accomplished via a wide variety of popular python packages; examples include Statsmodels (Seabold and Perktold, 2010) for basic statistical models, SKLearn (Pedregosa et al., 2011) for machine learning tools, PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2016) for neural networks/deep learning tools.

      AI tools support digital twins beyond the needs of the mathematical framework alone. AI based segmentation strategies have gained traction, and Bayesian CNNs have recently been used to characterize the segmentation uncertainty in materials images (LaBonte et al., 2020). AI tools have also been effective in fusing multimodal materials data. Multi-input NNs have proven effective in combining data from multiple sources and different data types. For example, numeric and categorical data, assessed via multi-layer perceptron algorithms can be directly combined with image-based convolutional NNs (Azim and Aggarwal, 2014). While data streams are typically experimental, it can sometimes be beneficial to integrate high-fidelity simulation data from traditional high-performance computing approaches (e.g., atomistic modeling, phase-field, finite element) to augment “missing” experimental data or to represent functional dependencies/sensitivities that were not exposed in the experimental datasets. For instance, well-established experimental methods such as diffraction measurements are being implemented into computational models as a complement of the interpretation of experimental results (Coleman et al., 2014; Kunka et al., 2021). Alternatively, researchers have recently used generative machine learning algorithms such as generative adversarial network (GAN) to generate large materials and process libraries (Banko et al., 2020).

      3 Applications

      The ability to use a digital twin to provide an accurate picture of the corresponding physical twin at any given point in time is expected to significantly improve the guidance to subject-matter experts towards rational (and optimized) material/process improvements. Additionally, predictions of component performance can drive upstream changes in design or manufacturing process. To date, the development of detection and prognosis-driven planning strategies has largely focused on tuning individual process parameters such as temperature or materials composition for example, despite the urge to devise efficient strategies for the selection of multiple interdependent variables to substantially accelerate and improve scientific discovery. Digital twins open up new opportunities to enable such strategies and accelerate autonomous experimental design and exploration. Autonomous experiments are emerging in materials research leading to the acceleration of materials design and discovery (Nikolaev et al., 2016; Correa-Baena et al., 2018; Hase et al., 2018; Häse et al., 2019; Pendleton et al., 2019; Gongora et al., 2020). The idea is to integrate automation with some form of machine learning or artificial intelligence framework to accelerate experimentation or to guide and discover the next set of experiments. Most of the work to date is dedicated to materials discovery, i.e., autonomously predict and synthesize materials with targeted properties. For instance, Nikolaev et al. (2016) presented a closed-loop iterative method that automatically analyzes experimental results from carbon nanotubes grown from chemical vapor deposition to design or alter the next set of growth experiments to best reach a designated design target growth. Expanding autonomous loops to encompass more complex workflows will require the integration of the digital twin elements described in Section 2 with the automation of expert decisions. One interesting direction is to use the digital twins as a tool to autonomously test hypothesis during an experimental design. In this case, the practitioner would simply state the Process, Material, Tool, and Data and have the automation process decide whether the hypothesis is supported or refuted in order to decide on the potential next set of experiments. In this context, each automated trial would be guided by the knowledge collected and curated by the digital twin.

      One particular application domain of interest for digital twins is the material/process exploration in additive manufacturing, with origins in rapid prototyping. There are extensive model-based simulations of the additive manufacturing process, ranging from powder packing through the entire laser-matter interaction and solidification process that can be taken as input into the Bayesian update strategy described in Section 2.2.2. The range of physical considerations in this process are daunting. In addition to these process models, there are complementary and similarly extensive set of structure-property models. Currently, a comprehensive digital representation of the entire spectrum of governing equations is beyond the state-of-the-art. A digital twin composed of many surrogate models utilizing the Bayesian update strategy could be formulated to optimize the parameters of these models for use in material design as well as process optimization.

      4 Conclusion

      Digital twins of the components in devices have enabled the in-service monitoring, prognosis, and design of complex systems. This work proposes both the conceptual framework and the cyberinfrastructure required to extend the concept of digital twins to the material level. Digital twins for materials provide a statistical in-silico materials representation of both structure and performance. The proposed framework consists of a materials representation based on n-point spatial correlations and PCA, a performance prediction framework centered around a two-step Bayesian framework, and a cyberinfrastructure that leverages new material ontologies for the management of multimodal materials data. Together, these foundational elements offer new opportunities for the extension of current digital twins to include important details of the material over a multitude of material structure length scales (from the macroscale to the atomistic).

      Author Contributions

      All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

      Funding

      MB and SRK acknowledge support from NSF DMREF Award# 2119640. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      In PSP linkages, one associates a material structure to an instant of time. The structure is then assumed to be responsible completely for the properties exhibited by the sample. In any imposed process, the structure is assumed to evolve with time. When the structure evolves, its associated properties are also expected to evolve.

      References Abadi M. Barham P. Chen J. Chen Z. Davis A. Dean J. (2016). “Tensorflow: A System for Large-Scale Machine Learning,” in 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), 265283. Adams B. L. Kalidindi S. Fullwood D. T. (2012). Microstructure Sensitive Design for Performance Optimization. Butterworth-Heinemann Allison J. Backman D. Christodoulou L. (2006). Integrated Computational Materials Engineering: a New Paradigm for the Global Materials Profession. Jom 58 (11), 2527. 10.1007/s11837-006-0223-5 Azim S. Aggarwal S. (2014). Hybrid Model for Data Imputation: Using Fuzzy C Means and Multi Layer Perceptron. in IEEE International Advance Computing Conference (IACC), Gurgaon, India, February 21-22, 2014. IEEE, 12811285. 10.1109/iadcc.2014.6779512 Banko L. Lysogorskiy Y. Grochla D. Naujoks D. Drautz R. Ludwig A. (2020). Predicting Structure Zone Diagrams for Thin Film Synthesis by Generative Machine Learning. Commun. Mater. 1 (1), 110. 10.1038/s43246-020-0017-2 Belianinov A. Ievlev A. V. Lorenz M. Borodinov N. Doughty B. Kalinin S. V. (2018). Correlated Materials Characterization via Multimodal Chemical and Functional Imaging. ACS nano 12 (12), 1179811818. 10.1021/acsnano.8b07292 Brough D. B. Wheeler D. Kalidindi S. R. (2017). Materials Knowledge Systems in Python-A Data Science Framework for Accelerated Development of Hierarchical Materials. Integr. Mater. Manuf Innov. 6 (1), 3653. 10.1007/s40192-017-0089-0 Castillo A. Kalidindi S. R. (2019). A Bayesian Framework for the Estimation of the Single crystal Elastic Parameters from Spherical Indentation Stress-Strain Measurements. Front. Mater. 6, 136. 10.3389/fmats.2019.00136 Castillo A. R. Kalidindi S. R. (2021). Bayesian Estimation of Single Ply Anisotropic Elastic Constants from Spherical Indentations on Multi-Laminate Polymer-Matrix Fiber-Reinforced Composite Samples. Meccanica 56 (6), 15751586. 10.1007/s11012-020-01154-w Castillo A. R. Venkatraman A. Kalidindi S. R. (2021). Mechanical Responses of Primary-α Ti Grains in Polycrystalline Samples: Part II-Bayesian Estimation of Crystal-Level Elastic-Plastic Mechanical Properties from Spherical Indentation Measurements. Integr. Mater. Manuf Innov. 10 (1), 99114. 10.1007/s40192-021-00204-9 Cecen A. Fast T. Kalidindi S. R. (2016). Versatile Algorithms for the Computation of 2-point Spatial Correlations in Quantifying Material Structure. Integr. Mater. Manuf Innov. 5 (1), 115. 10.1186/s40192-015-0044-x Coleman S. P. Sichani M. M. Spearot D. E. (2014). A Computational Algorithm to Produce Virtual X-ray and Electron Diffraction Patterns from Atomistic Simulations. Jom 66 (3), 408416. 10.1007/s11837-013-0829-3 Correa-Baena J.-P. Hippalgaonkar K. van Duren J. Jaffer S. Chandrasekhar V. R. Stevanovic V. (2018). Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing. Joule 2 (8), 14101420. 10.1016/j.joule.2018.05.009 de Oca Zapiain D. M. Stewart J. A. Dingreville R. (2021). Accelerating Phase-Field-Based Microstructure Evolution Predictions via Surrogate Models Trained by Machine Learning Methods. npj Comput. Mater. 7 (1), 111. 10.1038/s41524-020-00471-8 de Pablo J. J. Jackson N. E. Webb M. A. Chen L. Q. Moore J. E. Morgan D. (2019). New Frontiers for the Materials Genome Initiative. npj Comput. Mater. 5 (1), 123. 10.1038/s41524-019-0173-4 Dingreville R. Karnesky R. A. Puel G. Schmitt J.-H. (2016). Review of the Synergies between Computational Modeling and Experimental Characterization of Materials across Length Scales. J. Mater. Sci. 51 (3), 11781203. 10.1007/s10853-015-9551-6 Fullwood D. T. Niezgoda S. R. Adams B. L. Kalidindi S. R. (2010). Microstructure Sensitive Design for Performance Optimization. Prog. Mater. Sci. 55 (6), 477562. 10.1016/j.pmatsci.2009.08.002 Generale A. P. Kalidindi S. R. (2021). Reduced-order Models for Microstructure-Sensitive Effective thermal Conductivity of Woven Ceramic Matrix Composites with Residual Porosity. Compos. Structures 274, 114399. 10.1016/j.compstruct.2021.114399 Ghoreishi S. F. Allaire D. (2019). Multi-information Source Constrained Bayesian Optimization. Struct. Multidisc Optim 59 (3), 977991. 10.1007/s00158-018-2115-z Ghosh S. Groeber M. A. (2020). Developing Virtual Microstructures and Statistically Equivalent Representative Volume Elements for Polycrystalline Materials. Methods Theor. Model, 16311656. 10.1007/978-3-319-44677-6_13 Gil Y. Selman B. (2019). A 20-year Community Roadmap for Artificial Intelligence Research in the US.arXiv preprint arXiv:1908.02624 Gomberg J. A. Medford A. J. Kalidindi S. R. (2017). Extracting Knowledge from Molecular Mechanics Simulations of Grain Boundaries Using Machine Learning. Acta Materialia 133, 100108. 10.1016/j.actamat.2017.05.009 Gongora A. E. Xu B. Perry W. Okoye C. Riley P. Reyes K. G. (2020). A Bayesian Experimental Autonomous Researcher for Mechanical Design. Sci. Adv. 6 (15), eaaz1708. 10.1126/sciadv.aaz1708 Groeber M. A. Jackson M. A. (2014). DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integr. Mater. Manuf Innov. 3 (1), 5672. 10.1186/2193-9772-3-5 Häse F. Roch L. M. Aspuru-Guzik A. (2019). Next-generation Experimentation with Self-Driving Laboratories. Trends Chem. 1 (3), 282. 10.1016/j.trechm.2019.02.007 Häse F. Roch L. M. Kreisbeck C. Aspuru-Guzik A. (2018). Phoenics: a Bayesian Optimizer for Chemistry. ACS Cent. Sci. 4 (9), 11341145. 10.1021/acscentsci.8b00307 Herr J. E. Koh K. Yao K. Parkhill J. (2019). Compressing Physics with an Autoencoder: Creating an Atomic Species Representation to Improve Machine Learning Models in the Chemical Sciences. J. Chem. Phys. 151 (8), 084103. 10.1063/1.5108803 Horstemeyer M. F. (2009). Multiscale Modeling: A Review. Pract. aspects Comput. Chem, 87135. 10.1007/978-90-481-2687-3_4 Hu C. Martin S. Dingreville R. (2022). Accelerating Phase-Field Predictions via Recurrent Neural Networks Learning the Microstructure Evolution in Latent Space. Comput. Methods Appl. Mech. Eng.. 10.2172/1618267 Jenks Cynthia Lee Nyung H. Lewis Jennifer P. (2020). Basic Research Needs for Transformative Manufacturing (Report). United States: USDOE Office of Science Kalidindi S. R. De Graef M. (2015). Materials Data Science: Current Status and Future Outlook. Annu. Rev. Mater. Res. 45, 171193. 10.1146/annurev-matsci-070214-020844 Kalidindi S. R. (2020). Feature Engineering of Material Structure for AI-Based Materials Knowledge Systems. J. Appl. Phys. 128 (4), 041103. 10.1063/5.0011258 Kalidindi S. R. (2015). Hierarchical Materials Informatics: Novel Analytics for Materials Data. Elsevier. Kalidindi S. R. Khosravani A. Yucel B. Shanker A. Blekh A. L. (2019). Data Infrastructure Elements in Support of Accelerated Materials Innovation: ELA, PyMKS, and MATIN. Integr. Mater. Manuf Innov. 8 (4), 441454. 10.1007/s40192-019-00156-1 Kapteyn M. G. Pretorius J. V. R. Willcox K. E. (2021). A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale. Nat. Comput. Sci. 1 (5), 337347. 10.1038/s43588-021-00069-0 Kaundinya P. R. Choudhary K. Kalidindi S. R. (2021). Machine Learning Approaches for Feature Engineering of the crystal Structure: Application to the Prediction of the Formation Energy of Cubic Compounds. Phys. Rev. Mater. 5 (6), 063802. 10.1103/physrevmaterials.5.063802 Khosravani A. Caliendo C. M. Kalidindi S. R. (2020). New Insights into the Microstructural Changes during the Processing of Dual-phase Steels from Multiresolution Spherical Indentation Stress–Strain Protocols. Metals 10 (1), 18. 10.3390/met10010018 Khosravani A. Thadhani N. Kalidindi S. R. (2021). Microstructure Quantification and Multiresolution Mechanical Characterization of Ti-Based Bulk Metallic Glass-Matrix Composites. JOM, 111. 10.1007/s11837-021-04864-y Kunka C. Shanker A. Chen E. Y. Kalidindi S. R. Dingreville R. (2021). Decoding Defect Statistics from Diffractograms via Machine Learning. npj Comput. Mater. 7 (1), 19. 10.1038/s41524-021-00539-z LaBonte T. Martinez C. Roberts S. (2020). We Know Where We Don't Know: 3D Bayesian CNNs for Uncertainty Quantification of Binary Segmentations for Material Simulations.osti Lassila O. Swick R. R. (1998). Resource Description Framework (RDF) Model and Syntax Specification. W3C. Latypov M. I. Toth L. S. Kalidindi S. R. (2019). Materials Knowledge System for Nonlinear Composites. Comput. Methods Appl. Mech. Eng. 346, 180196. 10.1016/j.cma.2018.11.034 Lim J. Perullo C. A. Milton J. Whitacre R. Jackson C. Griffin C. (2021). The EPRI Gas Turbine [43] Digital Twin–A Platform for Operator Focused Integrated Diagnostics and Performance Forecasting. Margaria T. Schieweck A. (2019). “The Digital Thread in Industry 4.0,” in International Conference on Integrated Formal Methods (Cham: Springer), 324. 10.1007/978-3-030-34968-4_1 Marquis de Laplace P. S. (1814). A Treatise upon Analytical Mechanics: Being the First Book of the Mécanique Céleste. Boston, Massachusetts: Hilliard, Gray, Little, and Wilkins. Marshall A. Kalidindi S. R. (2021). Autonomous Development of a Machine-Learning Model for the Plastic Response of Two-phase Composites from Micromechanical Finite Element Models. JOM, 111. 10.1007/s11837-021-04696-w Matouš K. Geers M. G. Kouznetsova V. G. Gillman A. (2017). A Review of Predictive Nonlinear Theories for Multiscale Modeling of Heterogeneous Materials. J. Comput. Phys. 330, 192220. McDowell D. L. LeSar R. A. (2016). The Need for Microstructure Informatics in Process–Structure–Property Relations. MRS Bull. 41 (8), 587593. 10.1557/mrs.2016.163 McGuinness D. L. Van Harmelen F. (2004). OWL Web Ontology Language Overview. W3C recommendation 10 (10), 2004. Mei H. Haider M. Joseph R. Migot A. Giurgiutiu V. (2019). Recent Advances in Piezoelectric Wafer Active Sensors for Structural Health Monitoring Applications. Sensors 19 (2), 383. 10.3390/s19020383 Morgado J. F. Ghedini E. Goldbeck G. Hashibon A. Schmitz G. J. Friis J. (2020). “Mechanical Testing Ontology for Digital-Twins: a Roadmap Based on EMMO,” in SeDiT@ ESWC. CEUR Workshop Proceedings. National Science and Technology Council (Us) (2011). “Materials Genome Initiative for Global Competitiveness,” in Executive Office of the President (Washington, DC: National Science and Technology Council). Niederer S. A. Sacks M. S. Girolami M. Willcox K. (2021). Scaling Digital Twins from the Artisanal to the Industrial. Nat. Comput. Sci. 1 (5), 313320. 10.1038/s43588-021-00072-5 Niezgoda S. R. Kanjarla A. K. Kalidindi S. R. (2013). Novel Microstructure Quantification Framework for Databasing, Visualization, and Analysis of Microstructure Data. Integr. Mater. Manuf Innov. 2 (1), 5480. 10.1186/2193-9772-2-3 Niezgoda S. R. Yabansu Y. C. Kalidindi S. R. (2011). Understanding and Visualizing Microstructure and Microstructure Variance as a Stochastic Process. Acta Materialia 59 (16), 63876400. 10.1016/j.actamat.2011.06.051 Nikolaev P. Hooper D. Webber F. Rao R. Decker K. Krein M. (2016). Autonomy in Materials Research: a Case Study in Carbon Nanotube Growth. npj Comput. Mater. 2 (1), 16. 10.1038/npjcompumats.2016.31 Panchal J. H. Kalidindi S. R. McDowell D. L. (2013). Key Computational Modeling Issues in Integrated Computational Materials Engineering. Computer-Aided Des. 45 (1), 425. 10.1016/j.cad.2012.06.006 Pandita P. Bilionis I. Panchal J. (2019). Bayesian Optimal Design of Experiments for Inferring the Statistical Expectation of Expensive Black-Box Functions. J. Mech. Des. 141 (10). 10.1115/1.4043930 Paszke A. Gross S. Massa F. Lerer A. Bradbury J. Chanan G. (2019). Pytorch: An Imperative Style, High-Performance Deep Learning Library. Adv. Neural Inf. Process. Syst. 32, 80268037. Paulson N. H. Priddy M. W. McDowell D. L. Kalidindi S. R. (2017). Reduced-order Structure-Property Linkages for Polycrystalline Microstructures Based on 2-point Statistics. Acta Materialia 129, 428438. 10.1016/j.actamat.2017.03.009 Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. (2011). Scikit-learn: Machine Learning in Python. J. machine Learn. Res. 12, 28252830. Pendleton I. M. Cattabriga G. Li Z. Najeeb M. A. Friedler S. A. Norquist A. J. (2019). Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): a Software Pipeline for Automated Chemical Experimentation and Data Management. MRS Commun. 9 (3), 846859. 10.1557/mrc.2019.72 Polonsky A. T. Pandey A. (2021). Advances in Multimodal Characterization of Structural Materials. JOM, 12. 10.1007/s11837-021-04895-5 Raj P. Surianarayanan C. (2020). Digital Twin: the Industry Use casesAdvances in Computers. Elsevier 117 (1), 285320. 10.1016/bs.adcom.2019.09.006 Robertson A. E. Kalidindi S. R. (2021a). Digital Representation and Quantification of Discrete Dislocation Networks.arXiv preprint arXiv:2101.03925 Robertson A. E. Kalidindi S. R. (2021b). Efficient Generation of Anisotropic N-Field Microstructures from 2-Point Statistics Using Multi-Output Gaussian Random Fields. Rochester, NY: SSRN 3949516 Rocklin M. (2015). Dask: Parallel Computation with Blocked Algorithms and Task Scheduling. in Proceedings of the 14th python in science conference, Austin, TX, July 6-12, 2009, 130. Austin, TX: SciPy, 136. Seabold S. Perktold J. (2010). Statsmodels: Econometric and Statistical Modeling with python. in Proceedings of the 9th Python in Science Conference, Pasadena, CA, August 18-23, 2009 (Vol. 57, p. 61).10.25080/majora-92bf1922-011 Singh V. Willcox K. E. (2018). Engineering Design with Digital Thread. AIAA J. 56 (11), 45154528. 10.2514/1.j057255 Solomou A. Zhao G. Boluki S. Joy J. K. Qian X. Karaman I. (2018). Multi-objective Bayesian Materials Discovery: Application on the Discovery of Precipitation Strengthened NiTi Shape Memory Alloys through Micromechanical Modeling. Mater. Des. 160, 810827. 10.1016/j.matdes.2018.10.014 Sorkin B. C. Betz J. M. Hopp D. C. (2020). Toward FAIRness and a User-Friendly Repository for Supporting NMR Data. 10.1021/acs.joc.0c00800 Sporny M. Longley D. Kellogg G. Lanthaler M. Lindström N. (2014). JSON-LD 1.0. W3C recommendation 16, 41. Takhtaganov T. Müller J. (2018). Adaptive Gaussian Process Surrogates for Bayesian Inference. SIAM/ASA Journal on Uncertainty Quantification.arXiv preprint arXiv:1809.10784 Talapatra A. Boluki S. Duong T. Qian X. Dougherty E. Arróyave R. (2018). Autonomous Efficient experiment Design for Materials Discovery with Bayesian Model Averaging. Phys. Rev. Mater. 2 (11), 113803. 10.1103/physrevmaterials.2.113803 Tao F. Zhang M. Liu Y. Nee A. Y. C. (2018). Digital Twin Driven Prognostics and Health Management for Complex Equipment. Cirp Ann. 67 (1), 169172. 10.1016/j.cirp.2018.04.055 The Minerals, Metals & Materials Society Tms (2017). Building a Materials Data Infrastructure: Opening New Pathways to Discovery and Innovation in Science and Engineering. Pittsburgh, PA: TMS. Electronic copies available at www.tms.org/mdistudy. The Minerals, Metals & Materials Society Tms (2015). Modeling across Scales: A Roadmapping Study for Connecting Materials Models and Simulations across Length and Time Scales. Warrendale, PA: TMS. Electronic copies available at www.tms.org/multiscalestudy. Torquato S. Haslach H. Jr (2002). Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Appl. Mech. Rev. 55 (4), B62B63. 10.1115/1.1483342 Torquato S. Stell G. (1982). Microstructure of Two‐phase Random media. I. The N‐point Probability Functions. J. Chem. Phys. 77 (4), 20712077. 10.1063/1.444011 Ullo S. L. Sinha G. R. (2020). Advances in Smart Environment Monitoring Systems Using IoT and Sensors. Sensors 20 (11), 3113. 10.3390/s20113113 Voigt S. P. Kalidindi S. R. (2021). Materials Graph Ontology. Mater. Lett. 295, 129836. 10.1016/j.matlet.2021.129836 Wilkinson M. D. Dumontier M. Aalbersberg I. J. Appleton G. Axton M. Baak A. (2016). The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 3 (1), 160018160019. 10.1038/sdata.2016.18 Xiang Z. Fan M. Tovar G. V. Trehem W. Yoon B. J. Qian X. (2021). Physics-constrained Automatic Feature Engineering for Predictive Modeling in Materials Science. in Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 12, pp. 1041410421). The AAAI Digital Library. Xie R. Chen M. Liu W. Jian H. Shi Y. (2021). Digital Twin Technologies for Turbomachinery in a Life Cycle Perspective: A Review. Sustainability 13 (5), 2495. 10.3390/su13052495 Zaccaria V. Stenfelt M. Aslanidou I. Kyprianidis K. G. (2018). “Fleet Monitoring and Diagnostics Framework Based on Digital Twin of Aero-Engines,” in Turbo Expo: Power for Land, Sea, and Air American Society of Mechanical Engineers (ASME), 51128, V006T05A021. 10.1115/gt2018-76414 Zeb S. Mahmood A. Hassan S. A. Piran M. J. Gidlund M. Guizani M. (2021). Industrial Digital Twins at the Nexus of nextG Wireless Networks and Computational Intelligence: A Survey. Journal of Network and Computer Applications, 103309. 10.1016/j.jnca.2021.103309
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016gncfcn.com.cn
      edjruu.com.cn
      kiyigz.com.cn
      msdhyj.com.cn
      syfyfz.com.cn
      suzhouerp.com.cn
      oxbzpt.com.cn
      obsmo.com.cn
      wzpetq.com.cn
      whlrhw.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p