Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2025.1575748 Marine Science Original Research Shifts in marine bird abundance and species composition following the 2014−2016 Pacific marine heatwave Hoepfner Sarah A. Schaefer Anne L. * Bishop Mary Anne Prince William Sound Science Center, Cordova, AK, United States

Edited by: Stelios Katsanevakis, University of the Aegean, Greece

Reviewed by: Zachary Cannizzo, National Oceanic and Atmospheric Administration (NOAA), United States

Sarah K. Schoen, U.S. Geological Survey, Alaska, United States

Adrian Gall, ABR, Inc., United States

*Correspondence: Anne L. Schaefer, aschaefer@pwssc.org

12 05 2025 2025 12 1575748 12 02 2025 14 04 2025 Copyright © 2025 Hoepfner, Schaefer and Bishop 2025 Hoepfner, Schaefer and Bishop

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The 2014−2016 Pacific marine heatwave (PMH) was an intense and prolonged environmental disturbance that significantly disrupted the marine food web, leading to widespread ecological impacts. The PMH contributed to major shifts in species distributions, mass mortalities, and reproductive failures among upper-trophic level species, including a massive die-off of common murres (Uria aalge) in the Gulf of Alaska (GOA). To assess the impact of the PMH on the winter marine bird community in Prince William Sound (PWS), a large embayment in the northern GOA, we analyzed changes in winter marine bird abundance and species composition in a series of bays before and after the PMH. The overall density of winter marine birds decreased and species composition significantly changed in PWS following the PMH. Specifically, common murres, cormorants, and loons decreased from pre-PMH survey densities, while marbled murrelet (Brachyramphus marmoratus) densities increased. The post-PMH increase in marbled murrelets, likely due to immigration, coincided with the rapid growth and spatial expansion in the PWS Pacific herring (Clupea pallasii) young-of-the-year population and with a smaller, 8-month marine heatwave across the northern GOA. We suggest the mass mortality and lack of recovery by the common murre population provided a competitive release enabling murrelets to exploit a growing forage fish population, and that murrelets may be more effective at shifting to warmer-water zooplankton during marine heatwave events. These results highlight the persistent upper-trophic level changes associated with the PMH and provide important insights into the ecological consequences of environmental disturbances. This is increasingly relevant given the predicted increase in frequency and intensity of marine heatwaves.

Brachyramphus marmoratus Gulf of Alaska marine bird marine heatwave nonbreeding season Prince William Sound Uria aalge section-in-acceptance Marine Ecosystem Ecology

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Marine birds serve as valuable indicators of ecosystem conditions since changes in their abundance or community composition can signal broader changes in the marine food web or ocean environment (e.g., Diamond and Devlin, 2003; Piatt et al., 2007). Additionally, because marine birds feed on a variety of fish and invertebrate species, their abundance and trends can indirectly reflect the status of these prey populations (e.g., Dunphy et al., 2020; Ramos and Furness, 2022). For species found in upper latitudes, food availability during the winter is critical during the colder months as conditions become harsher and there is less daylight for foraging. During winter, some marine bird species tend to congregate in waters closer to shore, such as shallow bays that offer protection from wave exposure (Dawson et al., 2015; Stocking et al., 2018; Schaefer and Bishop, 2023), while other marine bird species travel farther offshore (e.g., >50 km) to take advantage of foraging opportunities at continental shelves (Hunt et al., 2014; Cushing et al., 2024).

      Marine heatwaves are prolonged periods of anomalously high ocean temperatures (Meehl and Tebaldi, 2004; Hobday et al., 2018) that can impact marine species. Marine heatwaves have been documented in the northeast Pacific Ocean since 1958 (Xu et al., 2022) with the most extensive event occurring between 2014 and 2016. This heatwave stretched from the eastern Bering Sea south to California. During this Pacific marine heatwave (PMH) event, sea surface temperature (SST) anomalies reached record levels that exceeded three standard deviations and were accompanied by high subsurface sea temperatures (Di Lorenzo and Mantua, 2016). Since then, another north Pacific heatwave occurred in 2019, but it was of shorter duration, a smaller geographic extent (but included our study area) and the warmer surface waters did not mix with cooler, deeper waters (Amaya et al., 2020; Chen et al., 2021; Ross et al., 2021; von Biela et al., 2022; R. Campbell pers. comm.). Such warming events are predicted to increase in frequency and intensity (Hobday et al., 2018; Oliver et al., 2018), therefore, understanding the impacts of marine heatwaves on the ecosystem is critical.

      The 2014−2016 PMH caused cascading effects across all trophic levels over a vast swath of the north Pacific Ocean (Suryan et al., 2021). Phytoplankton production was reduced, and the largest harmful algal bloom in recorded history extended from the Gulf of Alaska (GOA) to the coast of California in 2015 (Leising et al., 2015; McCabe et al., 2016). In areas along the northern GOA, the overall forage fish population decreased (Arimitsu et al., 2021a; Institute for Seabird Research and Conservation, 2023) and Pacific sand lance (Ammodytes hexapterus), a key forage fish for marine mammals and seabirds, also lost nutritional value (von Biela et al., 2019; Suryan et al., 2021). Concurrently, marine bird and mammal die-offs were documented. A die-off of planktivorous Cassin’s auklets (Ptychoramphus aleuticus) occurred from British Columbia to central California in the winter of 2014−2015 (Jones et al., 2018). From the summer of 2015 into the spring of 2016, approximately 62,000 dead or dying piscivorous common murres (Uria aalge) were documented washed ashore from Alaska to California, with an estimated total loss of 4 million murres, making it the most extensive avian mortality event on record (Piatt et al., 2020; Renner et al., 2024). These seabird deaths were attributed primarily to starvation due to the reduced forage availability and the increased prevalence of low-calorie species coinciding with a decline in high-quality forage. In addition, the lack of forage led to an increase in pinniped mortality in southern California (McClatchie et al., 2016), an unusually large die-off of baleen whales in the GOA (Savage, 2017), and declines in humpback whale (Megaptera novaeangliae) survival and reproductive success in southeast Alaska (Gabriele et al., 2022).

      Along portions of the northern GOA, documented impacts on the marine bird community from the PMH included shifts in species distribution and mass mortalities (Piatt et al., 2020; Robinson et al., 2024b; Cushing et al., 2024). In Prince William Sound (PWS), the epicenter of the common murre die-off (Piatt et al., 2020) and where the PMH persisted for a year longer (Campbell, 2023), the impacts on the marine bird community have not yet been assessed. In light of the documented impacts of the PMH on forage availability and quality, we hypothesized that marine bird density would be lower in PWS following the PMH. In this paper, we examined marine bird data collected from at-sea surveys in PWS during the nonbreeding season over nine winters prior to and after the 2014−2016 PMH to estimate marine bird densities, detect shifts in community composition, and determine which species were driving observed changes.

      Materials and methods Study area

      Prince William Sound is a large embayment on the northern GOA, primarily between 60 and 61°C N ( Figure 1 ). The Sound is separated from the GOA by large, mountainous islands, but is influenced by hydrography from the GOA (Reister et al., 2024). This region features large ice fields with tidewater glaciers and many freshwater streams contributing to an influx of freshwater. The coastline of PWS is rugged and includes many islands, deep fjords, and shallow bays affecting currents and tides (see site description in Gay and Vaughan, 2001). PWS provides protected wintering habitat for over 20 species of marine birds (Lance et al., 2001; Stocking et al., 2018; Schaefer and Bishop, 2023). In this study, we surveyed a series of bays and fjords (hereafter referred to as bays) ranging in maximum depths from 50 m to 300 m (Gay and Vaughan, 2001).

      Bays surveyed in 2007−2012 (pre-Pacific marine heatwave) and 2019−2022 (post-Pacific marine heatwave) in Prince William Sound, Alaska. Survey transects are shown by the black zig-zag lines within each bay.

      Data collection and preparation

      We conducted marine bird surveys in six PWS bays: Eaglek Bay, Port Gravina, Simpson Bay, Whale Bay, Zaikof Bay, and Lower Herring Bay (added in November 2009);. Bays were surveyed as opposed to open-water areas as marine birds tend to concentrate in these protected, nearshore locations during the winter (Stocking et al., 2018). These bays are important juvenile herring nursery bays and have been included in other oceanographic and forage fish surveys (e.g., Gay and Vaughan, 2001; Lewandoski and Bishop, 2018; McKinstry and Campbell, 2018; Schaefer et al., 2020). Surveys took place during November and March for nine winters both prior to and after the PMH (November 2007−March 2012 and March 2019−March 2022; Figure 1 ). From 2007−2012 (pre-PMH), our marine bird surveys were conducted concurrently with surveys designed to assess juvenile Pacific herring (Clupea pallasii) biomass (Thorne, 2010) and herring energetics (Gorman et al., 2018). The sampling design developed for hydroacoustic juvenile herring surveys determined the locations and length of transects. More recently (2019−2022; post-PMH), marine bird surveys were repeated using the same survey methods and locations to provide updates on seabird abundance, distribution, habitat use, and community composition following the PMH (Schaefer and Bishop, 2023).

      Marine bird observations were conducted using established U.S. Fish and Wildlife Service (USFWS) protocols (USFWS, 2007). Using 10x binoculars, one observer recorded species identification and the number of birds occurring within a strip transect width of 300 m (150 m on both sides and ahead of the boat) from a clear observation platform 2.5 m above the water line. These strip-transect surveys were conducted at standard survey speeds for small vessels of 5–15 km h-1 (slower speeds during hydroacoustic surveys), and we assumed all birds were detected at all speeds based on previous research assessing flushing distances and diving times (Lukacs et al., 2010). Observers used rangefinders to check distances and were trained to estimate distances of birds from the center line at 50 m increments. We assumed that no birds were attracted to or followed the survey vessel and that all birds within the transect strip were counted. The observer recorded observations into a laptop computer integrated with a global positioning system (GPS) using the program DLOG (2007−2012; Ford Consulting, Portland, OR) or SeaLog (2019−2022; ABR, Inc., Fairbanks, AK). These GPS-integrated programs provided location data at 15–20 sec intervals and for every entered observation. The observer also recorded in-situ sea and weather conditions. Data processing was performed using QA/QSea version 2.1 (Drew et al., 2023).

      Statistical analyses

      To calculate relative density (birds/km2), observations for each bay survey were sorted into 14 taxonomic groups ( Supplementary Table 1 ), then summed and divided by sample area. Taxonomic groups were grouped by similar species (e.g., loons, mergansers, murres) and foraging strategies (i.e., shallow ducks forage at depths < 30 m and deep ducks > 30 m). We excluded from our analyses surveys where visibility conditions were rated as poor due to weather, glare, or sea state (Beaufort scale > 3), as well as species groups contributing <1% of observed birds over the study period (fewer than 98 birds). We performed a three-way ANOVA to assess overall changes in marine bird density by bay, period (pre-PMH, post-PMH), and month (November, March). T-tests evaluated the significance of species-specific density changes pre- and post-PMH, with a significance level of > 0.05 being considered significant.

      We performed an Analysis of Similarity (ANOSIM) to determine statistically significant differences in species group densities between bays, periods, and months. The ANOSIM conducts a ranked dissimilarity matrix, with R values > 0.10 considered dissimilar and p-values < 0.05 indicating significance (Legendre and Legendre, 2012). We then used a Bray-Curtis similarity matrix and a non-parametric multi-dimensional scale (nMDS) ordination plot to examine differences in marine bird assemblages. We conducted pairwise comparisons (similarity percentage, i.e., SIMPER) to identify which species contributed to differences between bays, periods, and months. The nMDS ordination plots were then generated to graphically represent the separation between bays, time periods, and months, and boxplots were used to highlight species-specific differences. We square root transformed the density data included in the ANOSIM, nMDS ordination plots, and SIMPER analyses to decrease the influence of dominant taxa (Clarke and Warwick, 2001). We used R version 4.3.3 (R Core Team, 2023) and the package ‘vegan’ (Oksanen et al., 2013) for all analyses.

      Results

      We completed 17 research cruises, surveying on average 22.4 km2 per cruise ( Supplementary Table 2 ). Four bays (Eaglek, Simpson, Whale, and Zaikof) were surveyed during every cruise, while Port Gravina and Lower Herring Bay were surveyed 13 times ( Supplementary Table 2 ). In total, we recorded 9,812 birds representing 30 species across all cruises ( Supplementary Table 1 ). The most abundant species on pre-PMH cruises included common murre (1,913 birds, 28.2% of observations), long-tailed duck (Clangula hyemalis, 777 birds, 11.5%, 668 of the total ducks observed in one flock), and glaucous-winged gull (Larus glaucescens, 680 birds, 10.0%; Supplementary Table 2 ). Post-PMH, the most abundant species were marbled murrelet (Brachyramphus marmoratus, 874 birds, 28.7% of observations), black-legged kittiwake (Rissa tridactyla, 311 birds, 10.2%), and Barrow’s goldeneye (Bucephala islandica, 281 birds, 9.2%).

      Densities of individual species groups varied significantly between pre- and post-PMH surveys ( Figure 2 ). Significantly different species groups include murres, Brachyramphus murrelets, loons, and cormorants (all p-values ≤ 0.006; Table 1 ). Compared to pre-PMH, post-PMH mean densities per survey of common murres decreased by a factor of 7.1 ( Figure 3 ), while cormorants and loons decreased by a factor of 2.4 and 3.5, respectively. Among the loon species, common (Gavia immer), red-throated (G. stellata), and yellow-billed loon (G. adamsii) densities all decreased from pre- to post-PMH, especially common and red-throated loons which were not seen on any surveys after the heatwave. Pelagic cormorant (Urile pelagicus) comprised most cormorant sightings, and density decreases were primarily from two bays. Marbled murrelet, the dominant Brachyramphus murrelet species, was the only species that exhibited an increase in density post-PMH, rising by a factor of 1.9 ( Figure 4 ).

      Density of marine bird species groups (birds/km2) observed on surveys in six bays pre-Pacific marine heatwave (PMH; 2007−2012, red) and post-PMH (2019−2022, blue) in Prince William Sound, Alaska. Note the y-axis scale for density is different for each graph. An asterisk denotes a significant change in density.

      T-test results comparing species group densities pre-Pacific marine heatwave (2007−2012) and post-Pacific marine heatwave (2019−2022) during surveys in Prince William Sound, Alaska.

      Species Groups t DF p-value
      Shallow Ducks 0.519 91.998 0.605
      Deep Ducks 1.222 51.399 0.227
      Mergansers 1.32 79.702 0.191
      Grebes 0.607 7.675 0.546
      Murres 3.736 57.213 0.0004*
      Brachyramphus Murrelets -2.824 71.529 0.006*
      Kittiwakes -0.676 81.214 0.501
      Small Gulls -1.251 71.111 0.215
      Large Gulls 1.566 53.161 0.123
      Loons 3.167 75.386 0.002*
      Cormorants 3.092 68.836 0.003*

      Significant comparisons signified with an asterisk (p < 0.05).

      Densities of common murres Uria aalge by month (November=red, March=blue), and grouped by pre-Pacific marine heatwave (pre-PMH; 2007−2012) and post-Pacific marine heatwave (post-PMH; 2019−2022) in Prince William Sound, Alaska.

      Densities of Brachyramphus murrelets by month (November=red, March=blue), and grouped by pre-Pacific marine heatwave (pre-PMH; 2007−2012) and post-Pacific marine heatwave (post-PMH; 2019−2022) in Prince William Sound, Alaska.

      Marine bird densities were significantly higher before the heatwave and varied significantly across bays (both p values ≤ 0.01; Table 2 ). The highest densities occurred pre-PMH in Port Gravina (59.1 birds/km2, primarily driven by high densities of diving ducks) and post-PMH in Simpson Bay (26.6 birds/km2). Lower Herring Bay hosted the lowest average densities of birds before and after the PMH ( Table 3 ). In four survey bays, the murre species group dominated the marine bird community pre-PMH, whereas post-PMH Brachyramphus murrelets were dominant ( Table 3 ).

      Results of the three-way ANOVA to assess changes in marine bird density by bay (Eaglek, Gravina, Lower Herring, Simpson, Whale, Zaikof), period (pre-Pacific marine heatwave, 2007−2012; post-Pacific marine heatwave, 2019−2022), and month (March, November), in Prince William Sound, Alaska.

      Factor DFn DFd F p-value
      Month 1 70 1.66 0.201
      Period 1 70 7.95 0.006*
      Bay 5 70 3.44 0.008*
      Month: Period 1 70 2.66 0.107
      Month: Bay 5 70 1.55 0.187
      Period: Bay 5 70 2.13 0.072
      Month: Period : Bay 5 70 1.64 0.161

      An asterisk denotes a p < 0.05 and indicates statistical significance.

      Mean density of marine birds (birds/km2) by bay in Prince William Sound, Alaska during 2007−2012 (pre-Pacific marine heatwave; PMH) and 2019−2022 (post-PMH) with standard error (SE).

      Period Bay Mean (SE) birds/km2 Highest mean density species group (birds/km2) Lowest mean density species group (birds/km2)
      Pre-PMH Eaglek 17.9(5.3) Murres (66.9) Loons (3.7)
      Gravina 59.1(32.0) Deep Ducks (193.8) Grebes (2.3)
      Lower Herring 13.2(4.7) Murres (23.2) Kittiwakes (0)
      Simpson 46.0(6.8) Murres (191.0) Deep Ducks (15.4)
      Whale 27.5(3.3) Shallow Ducks (115.7) Deep Ducks (3.0)
      Zaikof 23.9(5.8) Murres (58.9) Mergansers (2.0)
      Post-PMH Eaglek 14.0(2.1) Brachyramphus Murrelets (33.0) Deep Ducks (0)
      Gravina 14.4(3.1) Brachyramphus Murrelets (45.9) Shallow Ducks (1.1)
      Lower Herring 8.6(1.8) Shallow Ducks (15.1) Deep Ducks and Murres (0)
      Simpson 26.6(3.6) Brachyramphus Murrelets (85.0) Cormorants (0.9)
      Whale 24.1(4.6) Shallow Ducks (68.2) Murres (0)
      Zaikof 23.3(3.7) Brachyramphus Murrelets (45.6) Grebes (2.1)

      The highest and lowest density species groups and their densities are also listed for each bay and period.

      Multivariate analysis indicated significant variation in bird assemblages between the pre- and post-PMH periods (R = 0.18, p < 0.001; Table 4 ; Figure 5 ) and between bays (R = 0.24, p < 0.001; Figure 6 ). The SIMPER analysis identified three species groups contributing to the dissimilarities between periods: murres (9.2%; p = 0.003), Brachyramphus murrelets (7.5%; p = 0.001), and shallow ducks (6.5%; not significant, p = 0.461; Table 5 ). Pairwise comparisons indicated significant differences among bays, with Port Gravina being most frequently distinct from others, followed by Lower Herring Bay ( Figure 6 ).

      Results of the analysis of similarity (ANOSIM) tests for months (March, November), period (pre-Pacific marine heatwave, 2007−2012; post-Pacific marine heatwave, 2019−2022), and bay (Eaglek, Gravina, Lower Herring, Simpson, Whale, Zaikof) using marine bird density for 14 species groups in Prince William Sound, Alaska.

      Factor ANOSIM statistic R Significance level
      Month 0.086 0.0003
      Period 0.181 0.0001
      Bay 0.244 0.0001

      Non-metric multidimensional scaling (nMDS) Non-metric multidimensional scaling (nMDS) ordinations showing changes in winter marine bird assemblages in Prince William Sound bays before (2007-2012, left) and after (2019-2022, right) the Pacific marine heatwave for 2007−2012 (pre-Pacific marine heatwave; left) and 2019−2022 (post-Pacific marine heatwave; right).

      Non-metric multidimensional scaling (nMDS) ordinations of survey bays (symbols) based on marine bird assemblages and abundance data pre-Pacific marine heatwave (PMH; 2007−2012, green) to post-PMH (2019−2022, yellow) in Prince William Sound, Alaska.

      SIMPER pairwise comparison showing species contributions to differences in pre- (2007-2012) and post-Pacific marine heatwave (2019-2022) winter marine bird assemblages in Prince William Sound, Alaska.

      Species Groups Mean SE Ratio p-value
      Murres 0.092 0.008 1.135 0.003*
      Brachyramphus Murrelets 0.075 0.006 1.301 0.001*
      Shallow Ducks 0.648 0.006 1.021 0.461
      Kittiwakes 0.047 0.005 1.037 0.173
      Deep Ducks 0.046 0.006 0.764 0.646
      Small Gulls 0.043 0.004 1.221 0.156
      Mergansers 0.043 0.004 1.166 0.561
      Large Gulls 0.039 0.005 0.855 0.679
      Loons 0.036 0.003 1.187 0.010*
      Grebes 0.034 0.003 1.230 0.335
      Cormorants 0.033 0.003 1.231 0.028

      Significant comparisons indicated with an asterisk (p < 0.05).

      Discussion

      We documented decreased marine bird density and significant changes in the community composition in PWS bays during the nonbreeding season in the years after the PMH as compared to the years prior to the PMH. Notably, densities declined post-PMH for murres, loons, and cormorants, all piscivorous divers that forage at depths of ~40–200 m (Roberts, 1932; Kotzerka et al., 2011; Kokubun et al., 2016). In contrast, densities increased post-PMH for Brachyramphus murrelets, which typically forage at depths of 40–50 m (Nelson, 2020). We suggest these documented changes in species groups were due to the decreased availability of high-lipid forage fish and zooplankton species post-PMH, the differences in diet between the three deeper-diving piscivorous species groups and marbled murrelets, and the differences in oceanographic conditions during each period and between bays.

      The link between warmer ocean temperatures and the collapse of forage fish populations, as well as seabird die-offs and population declines, has been documented previously in the Pacific Ocean, both in the GOA (e.g., Agler et al., 1999) and as far south as the California Current (Hyrenbach and Veit, 2003; Hipfner, 2008; LeValley, 2009; Oliver et al., 2018). During the 2014−2016 PMH, multiple population collapses occurred across trophic levels. Euphausiid biomass decreased overall, with cooler-temperature species decreasing and some warmer-temperature species increasing (Arimitsu et al., 2021a; Pinchuk et al., 2021; Batten et al., 2022). These dramatic declines reduced prey availability and altered the prey composition available for predatory fish and seabirds.

      Pacific herring, capelin (Mallotus catervarius), and sand lance are critical high-lipid forage species for marine birds in PWS (Anthony et al., 2000; Kuletz, 2005; Bishop et al., 2015; Hatch et al., 2020; Ainley et al., 2021; Paruk et al., 2021). During the PMH all three species were documented as being smaller in size and containing lower energy content in PWS and the GOA (Rand and Thorne, 2018; von Biela et al., 2019; Arimitsu et al., 2021a; Robinson et al., 2024a). In PWS, adult herring abundance decreased such that by spring 2018, a record-setting-low of 4.5 mile-days of spawn (sum of daily linear miles of herring milt observed during aerial surveys) was recorded (10-year average = 20.9 mile-days; Botz et al., 2021; 2022), reflecting a reduced spawning population available to predators (McGowan et al., 2021). Capelin, a northern species associated with cooler ocean temperatures, crashed during the PMH from record-high levels and remained low into 2019 (Arimitsu et al., 2021a). Diet studies at Middleton Island, a GOA island just south of PWS, documented the decrease of capelin from diets of diving and surface feeding birds (Suryan et al., 2021; Institute for Seabird Research and Conservation, 2023). Of the three forage fish species, sand lance did not experience as significant a decline in abundance and energy content. However, 90% of sand lance sampled from diving seabirds’ diets in the GOA in 2016 were from the smallest size class, and population numbers had not recovered to historical values by 2019 (Arimitsu et al., 2021a; Suryan et al., 2021).

      In PWS, significant post-PMH declines and range contractions were observed in murres, loons, and cormorants. For example, common murres were recorded in most pre-PMH surveys in Lower Herring Bay where they represented the highest-density species group. However, no murres were recorded during any post-PMH surveys in Lower Herring Bay and one other bay. The decline in wintering murre density was not unexpected given the unprecedented murre mortality event that occurred across the north Pacific during the PMH (Piatt et al., 2020; Renner et al., 2024). Notably, murre populations have been slow to recover on their breeding grounds, with post-PMH productivity remaining below average or close to total reproductive failure (Schoen et al., 2024; Marsteller et al., 2024; Renner et al., 2024), despite some forage fish populations showing signs of recovery (Arimitsu et al., 2021b; McGowan et al., 2021). Post-PMH no common loons were observed on surveys in any bays despite being present (minimally) on pre-PMH surveys. Pelagic cormorants experienced significant density declines in two bays, whereas densities in other bays remained low and did not show a marked difference between periods. During the same period as this study, winter surveys in the Kenai and Katmai Fjords (approx.150–250 km from PWS) saw minimal changes in loons, cormorants, or murres (Coletti et al., 2023). Among other species groups, we determined there was minimal change in the pre- and post-PMH densities of shallow- and deep-diving ducks, a result similar to other studies within the GOA that found limited impacts to the nearshore food web (Robinson et al., 2024b; Weitzman et al., 2021).

      Brachyramphus murrelets, consisting almost entirely of marbled murrelets, were the only species group to increase significantly in PWS bays post-PMH. Marbled murrelets may be migrating from elsewhere to winter in PWS in response to specific local forage availability and/or winter conditions in the GOA. Marbled murrelets have been documented moving between British Columbia and Alaska during the breeding and post-breeding seasons, possibly inflating population counts in Alaska (Bertram et al., 2023), especially during certain ocean conditions (e.g., storms, increased SST, currents; Agler et al., 1998; Becker and Beissinger, 2003). Additionally, alcids have been observed shifting inshore in Washington and the GOA, potentially increasing their presence and detectability on our surveys post-PMH (Pearson et al., 2022; Cushing et al., 2024). However, in Kenai and Katmai Fjords, post-PMH winter surveys recorded no observable differences in Brachyramphus murrelet densities (Coletti et al., 2023). It is surprising that two relatively close regions would experience different trends during the same period, suggesting local rather than regional conditions may be driving observed differences. Further investigation into changes in marbled murrelet movements across their range (annually and seasonally) and in response to ocean conditions is necessary to understand the drivers of the localized density increase in PWS. Additionally, it would be valuable to examine how other species similarly shifted their distributions in search of food or refuge in response to the PMH. For example, unusually high numbers of common murres were present in PWS in search of food immediately preceding the die-off event (Suryan et al., 2021). Such localized distribution changes may have masked broader population trends during and after the heatwave.

      The striking increases in murrelet densities recorded during November 2019 and March 2020 surveys ( Figure 4 ) coincided with the marine heatwave that occurred across much of the GOA from June 2019 to January 2020 (Amaya et al., 2020). During this period, the abundance of cool-water associated zooplankton declined, while warm-water associated zooplankton became more prevalent (Pinchuk et al., 2021; Batten et al., 2022; Campbell, 2023). Murrelets are euryphagous, eating a variety of foods, including young and small forage fish, squid, mysid shrimp (Mysis spp.), amphipods, euphausiids, and zooplankton (Hobson, 1990; Becker et al., 2007; Nelson, 2020). Compared to other species, PWS murrelets are more likely to be present in warmer surface waters (Dawson et al., 2015), suggesting they may be effective at shifting from cool-water to warmer-water zooplankton during marine heatwave events. Beginning in spring 2019, PWS murrelets also may have benefited from increases in young-of-the-year herring with the maturation of the 2016 hatch-year cohort of Pacific herring. This numerically dominant fish cohort began to spawn in areas outside of the historical southeast PWS spawning grounds as the mile-days of spawn increased from the low of 4.5 mile-days in 2018 incrementally to 26.8 mile-days in 2021 (McGowan et al., 2021; Morella, 2023). Historically, young-of-the-year (age 0) and age 1+ herring have been major diet components for marbled murrelets in PWS (Kuletz, 2005). Further, the population crash of common murres throughout the GOA may have created a competitive release enabling murrelets, the smaller of the two alcid species, to exploit prey resources such as the increasing Pacific herring population more fully than if common murres were present (Ronconi and Burger, 2011). Further investigation into this potential competitive release in relation to environmental change is needed to assess its validity, as well as to determine whether the increase in marbled murrelets could cause a cascading effect leading to a decline in the less dominant Kittlitz’s murrelet (Brachyramphus brevirostris).

      We also documented marine bird abundance and species composition differences between PWS bays. The main drivers of the observed differences between time periods were Brachyramphus murrelets in Simpson Bay, shallow ducks in Whale Bay, and deep ducks in Port Gravina. Further study to understand and evaluate the ocean conditions (i.e., bathymetry, SST, current patterns, storms) and physical differences (i.e., depth, substrate, freshwater sources) between bays may help explain patterns of abundance based on species’ foraging strategies and the prey available. For example, Port Gravina hosted higher densities of loons, deep ducks, and large gulls than other bays pre-PMH. These higher densities in Port Gravina may reflect optimal foraging conditions for Pacific herring, with overwintering adult herring and extensive spawn regularly occurring in the area, as well as retention of both young-of-the-year and juvenile herring schools due to local ocean currents (Norcross et al., 2001).

      Conclusion

      Post-PMH, wintering marine bird densities in PWS declined, accompanied by a significant shift in species composition. We do not have survey data from the years of the PMH and can only make inferences on the impacts as a result of the PMH, however the decline in forage availability and its effects may not have been as evident during the event. These results present the longer-term effects to marine bird populations in PWS. The decrease in piscivorous species and species groups, in particular murres, loons, and cormorants, is concerning in light of predictions that marine heatwaves will occur more often and with greater intensity (Meehl and Tebaldi, 2004; Hobday et al., 2018; Oliver et al., 2018). Conversely, the increase in marbled murrelet density warrants further assessment of their annual cycle and geographic distribution.

      Our results align with the findings of other GOA studies, including beach surveys for marine bird mortalities (Parrish et al., 2017) colony productivity assessments (Renner et al., 2024), and winter surveys in nearby areas (Cushing et al., 2024; Robinson et al., 2024b). Long-term monitoring efforts such as these are essential for documenting the impacts of events like the PMH, enabling researchers to evaluate interannual variation and identify long-term trends, which are crucial for understanding how different factors, such as storms, ocean temperatures, prey availability, and foraging conditions, affect marine bird populations over time (e.g., Ainley and Hyrenbach, 2010; Chambers et al., 2015; Dawson et al., 2015). Understanding changes in upper trophic level communities resulting from the PMH may provide valuable insights for updating and informing management strategies for these species as ecosystems continue to face increasing pressures from climate-driven disturbances.

      Data availability statement

      The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: Fall and Winter Seabird Abundance Data, Prince William Sound, 2007-2023, Gulf Watch Alaska Pelagic Component:https://search.dataone.org/view/10.24431/rw1k32x.

      Ethics statement

      Ethical approval was not required for the study involving animals in accordance with the local legislation and institutional requirements because solely observational data were collected.

      Author contributions

      SH: Data curation, Formal analysis, Writing – original draft, Writing – review & editing. AS: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Writing – original draft, Writing – review & editing. MB: Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Writing – original draft, Writing – review & editing.

      Funding

      The author(s) declare that financial support was received for the research and/or publication of this article. Funding for this research was provided by the Exxon Valdez Oil Spill Trustee Council (Projects 078814, 10100132-H, 17120114-E); however, the findings and conclusions of the authors are their own and do not necessarily reflect the views or position of the Trustee Council. Reference to trade, firm, or product names is for descriptive purposes only, and does not imply endorsement by the PWS Science Center, United States Government or State of Alaska.

      Acknowledgments

      This work would not have been possible without the observers that helped collect this data: A. Lang, B. Hsu, E. Owen, K. Brenneman, N. Dawson, R. Kaler, and T. Morgan. We also thank the boat captains D. Janka (and crew of R/V Auklet) and R. Campbell (M/V New Wave). We thank R. Thorne (deceased) and M. Buckhorn (deceased) for allowing us to share their vessel time. We are grateful to R. Suryan for his constructive input on an earlier draft, and to the reviewers (Z. Cannizzo, S. Schoen, A. Gall). Finally, we thank K. Kuletz for her collaborative efforts during the pre-PMH portion of this study.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Generative AI statement

      The author(s) declare that no Generative AI was used in the creation of this manuscript.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2025.1575748/full#supplementary-material

      References Agler B. A. Kendall S. J. Irons D. B. (1998). Abundance and distribution of Marbled and Kittlitz’s murrelets in southcentral and southeast Alaska. Condor 100, 254265. doi: 10.2307/1370266 Agler B. A. Kendall S. J. Irons D. B. Klosiewski S. P. (1999). Declines in marine bird populations in Prince William Sound, Alaska coincident with a climatic regime shift. Waterbirds 22, 98103. doi: 10.2307/1521998 Ainley D. G. Hyrenbach K. D. (2010). Top-down and bottom-up factors affecting seabird population trends in the California current system, (1985–2006). Prog. Oceanography 84, 242254. doi: 10.1016/j.pocean.2009.10.001 Ainley D. G. Nettleship D. N. Storey A. E. (2021). Common Murre (Uria aalge), version 2.0. In Birds of the World. Eds. Billerman S. M. Rodewald P. G. Keeney B. K. (Ithaca, NY, USA: Cornell Lab of Ornithology). doi: 10.2173/bow/commur/02 Amaya D. J. Miller A. J. Xie S. P. Kosaka Y. (2020). Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 11, 903. doi: 10.1038/s41467-020-15820-w Anthony J. A. Roby D. D. Turco K. R. (2000). Lipid content and energy density of forage fishes from the northern Gulf of Alaska. J. Exp. Marine Biol. Ecol. 248, 5378. doi: 10.1016/S0022-0981(00)00159-3 Arimitsu M. L. Piatt J. F. Hatch S. Suryan R. M. Batten S. Bishop M. A. . (2021a). Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Global Change Biol. 27, 18591878. doi: 10.1111/gcb.15556 Arimitsu M. L. Schoen S. Piatt J. Marsteller C. Drew G. (2021b). Monitoring the recovery of seabirds and forage fish following a major ecosystem disruption in Lower Cook Inlet Vol. 31 (Anchorage, AK: US Department of the Interior, Bureau of Ocean Energy Management. OCS Study BOEM), 50. Batten S. D. Ostle C. Hélaouët P. Walne A. W. (2022). Responses of Gulf of Alaska plankton communities to a marine heat wave. Deep Sea Res. Part II 195, 105002. doi: 10.1016/j.dsr2.2021.105002 Becker B. H. Beissinger S. R. (2003). Scale-dependent habitat selection by a nearshore seabird, the marbled murrelet, in a highly dynamic upwelling system. Marine Ecol. Prog. Ser. 256, 243255. doi: 10.3354/meps256243 Becker B. H. Peery M. Z. Beissinger S. R. (2007). Ocean climate and prey availability affect the trophic level and reproductive success of the marbled murrelet, an endangered seabird. Marine Ecol. Prog. Ser. 329, 267279. doi: 10.3354/meps329267 Bertram D. F. MacDonald C. A. Hara P. O. Cragg J. L. Corcoran R. Greene R. . (2023). Summer movements of marbled murrelets from Canada to Alaska. Endangered Species Res. 51, 215225. doi: 10.3354/esr01252 Bishop M. A. Watson J. T. Kuletz K. Morgan T. (2015). Pacific herring (Clupea pallasii) consumption by marine birds during winter in Prince William Sound, Alaska. Fisheries Oceanography 24, 113. doi: 10.1111/fog.2015.24.issue-1 Botz J. Russell C. W. Morella J. Haught S. (2021). 2020 Prince William Sound area finfish management report. Alaska Department of Fish and Game, Fishery Management Report No. 21-18, Anchorage. Botz J. Scannell H. Morella J. (2022). Prince William Sound Herring Announcement 2 (Alaska Department of Fish and Game). Available at: https://www.adfg.alaska.gov/static/applications/dcfnewsrelease/1441717667.pdf (Accessed March 28, 2024). Campbell R. W. (2023). “Monitoring the oceanographic conditions of prince william sound,” in Exxon Valdez Oil Spill Long-term Monitoring Program (Gulf Watch Alaska) Final Report (Exxon Valdez Oil Spill Trustee Council Project 21120114-G) (Exxon Valdez Oil Spill Trustee Council, Anchorage, Alaska). Chambers L. E. Patterson T. Hobday A. J. Arnould J. P. Tuck G. N. Wilcox C. . (2015). Determining trends and environmental drivers from long-term marine mammal and seabird data: examples from Southern Australia. Regional Environ. Change 15, 197209. doi: 10.1007/s10113-014-0634-8 Chen Z. Shi J. Liu Q. Chen H. Li C. (2021). A persistent and intense marine heatwave in the Northeast Pacific during 2019–2020. Geophysical Res. Lett. 48, e2021GL093239. doi: 10.1029/2021GL093239 Clarke K. R. Warwick R. M. (2001). Change in marine communities. approach to Stat. Anal. interpretation 2, 1168. Coletti H. Esler D. Ballachey B. Bodkin J. Esslinger G. Kloecker K. . (2023). “Gulf watch alaska: nearshore ecosystems in the gulf of alaska,” in Exxon Valdez Oil Spill Restoration Project 2017–2021 Final Report (Restoration Project 21120114-H) (Exxon Valdez Oil Spill Trustee Council, Anchorage, Alaska). Cushing D. A. Kuletz K. J. Sousa L. Day R. H. Danielson S. L. Labunski E. A. . (2024). Differential response of seabird species to warm-and cold-water events in a heterogeneous cross-shelf environment in the Gulf of Alaska. Marine Ecol. Prog. Series. 737, 3158. doi: 10.3354/meps14239 Dawson N. M. Bishop M. A. Kuletz K. J. Zuur A. F. (2015). Using ships of opportunity to assess winter habitat associations of seabirds in subarctic coastal Alaska. Northwest Sci. 89, 111128. doi: 10.3955/046.089.0203 Diamond A. W. Devlin C. M. (2003). Seabirds as indicators of changes in marine ecosystems: ecological monitoring on Machias Seal Island. Environ. monitoring assessment. 88, 153181. doi: 10.1023/A:1025560805788 Di Lorenzo E. Mantua N. (2016). Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Climate Change. 6, 10421047. doi: 10.1038/nclimate3082 Drew G. Swingley C. Schoen S. (2023). “U.S. Geological survey, alaska science center,” in SeaLog User Manual, v2.2 (AK 99508, & ABR, Inc., Environmental Research & Services, 2842 Goldstream Rd., Fairbanks, AK 99709, Anchorage). Available at: https://sealog.abrinc.com/installers/SeaLog_User_Manual_v2.2.pdf (Accessed June 10, 2024). Dunphy B. J. Vickers S. I. Zhang J. Sagar R. L. Landers T. J. Bury S. J. . (2020). Seabirds as environmental indicators: foraging behaviour and ecophysiology of common diving petrels (Pelecanoides urinatrix) reflect local-scale differences in prey availability. Marine Biol. 167, 112. doi: 10.1007/s00227-020-3672-4 Gabriele C. M. Amundson C. L. Neilson J. L. Straley J. M. Baker C. S. Danielson S. L. (2022). Sharp decline in humpback whale (Megaptera novaeangliae) survival and reproductive success in southeastern Alaska during and after the 2014–2016 Northeast Pacific marine heatwave. Mamm. Biol. 102, 11131131. doi: 10.1007/s42991-021-00187-2 Gay S. M. III Vaughan S. L. (2001). Seasonal hydrography and tidal currents of bays and fjords in Prince William Sound, Alaska. Fisheries Oceanography. 10, 159193. doi: 10.1046/j.1054-6006.2001.00041.x Gorman K. B. Kline T. C. Jr. Roberts M. E. Sewall F. F. Heintz R. A. Pegau W. S. (2018). Spatial and temporal variation in winter condition of juvenile Pacific herring (Clupea pallasii) in Prince William Sound, Alaska: Oceanographic exchange with the Gulf of Alaska. Deep Sea Res. Part II 147, 116126. doi: 10.1016/j.dsr2.2017.10.010 Hatch S. A. Robertson G. J. Baird P. H. (2020). “Black-legged Kittiwake (Rissa tridactyla), version 1.0,” in Birds of the world. Ed. Billerman S. M. (Cornell Lab of Ornithology, Ithaca, NY, USA). doi: 10.2173/bow.bklkit.01 Hipfner J. M. (2008). Matches and mismatches: ocean climate, prey phenology and breeding success in a zooplanktivorous seabird. Marine Ecol. Prog. Series. 368, 295304. doi: 10.3354/meps07603 Hobday A. J. Oliver E. C. Gupta A. S. Benthuysen J. A. Burrows M. T. Donat M. G. . (2018). Categorizing and naming marine heatwaves. Oceanography. 31, 162173. doi: 10.5670/oceanog.2018.205 Hobson K. A. (1990). Stable isotope analysis of marbled murrelets: evidence for freshwater feeding and determination of trophic level. Condor. 92, 897903. doi: 10.2307/1368725 Hunt G. L. Jr Renner M. Kuletz K. (2014). Seasonal variation in the cross-shelf distribution of seabirds in the southeastern Bering Sea. Deep Sea Res. Part II: Topical Stud. Oceanography. 109, 266281. doi: 10.1016/j.dsr2.2013.08.011 Hyrenbach K. D. Veit R. R. (2003). Ocean warming and seabird communities of the southern California Current System, (1987–98): response at multiple temporal scales. Deep Sea Res. Part II 50, 25372565. doi: 10.1016/S0967-0645(03)00123-1 Institute for Seabird Research and Conservation (2023). Middleton Island Seabird Research and Monitoring 2023 Field Report. Anchorage, Alaska. Jones T. Parrish J. K. Peterson W. T. Bjorkstedt E. P. Bond N. A. Balance L. T. . (2018). Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophysical Res. Letters. 45, 31933202. doi: 10.1002/2017GL076164 Kokubun N. Yamamoto T. Sato N. Watanuki Y. Will A. Kitaysky A. S. . (2016). Foraging segregation of two congeneric diving seabird species breeding on St. George Island, Bering Sea. Biogeosciences. 13, 25792591. doi: 10.5194/bg-13-2579-2016 Kotzerka J. Hatch S. A. Garthe S. (2011). Evidence for foraging-site fidelity and individual foraging behavior of pelagic cormorants rearing chicks in the Gulf of Alaska. Condor. 113, 8088. doi: 10.1525/cond.2011.090158 Kuletz K. J. (2005). Foraging behavior and productivity of a non-colonial seabird, the marbled murrelet (Brachyramphus marmoratus), relative to prey and habitat. University of Victoria, Victoria, BC, 173195. Lance B. K. Iron D. B. Kendall S. J. McDonald L. L. (2001). An evaluation of marine bird population trends following the Exxon Valdez oil spill, Prince William Sound, Alaska. Marine Pollution Bulletin. 42, 298309. doi: 10.1016/S0025-326X(00)00155-7 Legendre P. Legendre L. (2012). Numerical ecology (Amsterdam, The Netherlands: Elsevier). Leising A. W. Schroeder I. D. Bograd S. J. Abell J. Durazo R. Gaxiola-Castro G. . (2015). “State of the california current 2014-15: impacts of the warm-water” Blob”,” in California Cooperative Oceanic Fisheries Investigations Reports (San Diego, California: Scripps Institution of Oceanography), 56. LeValley R. (2009). Seabird and marine mammal monitoring at Gualala Point Island, California, Sonoma County, May to August 2008 (The Sea Ranch California Coastal National Monument Stewardship Task Force and the Bureau of Land Management, Department of Interior), 51 pp. Lewandoski S. Bishop M. A. (2018). Distribution of juvenile Pacific herring relative to environmental and geospatial factors in Prince William Sound, Alaska. Deep Sea Res. Part II 147, 98107. doi: 10.1016/j.dsr2.2017.08.002 Lukacs P. M. Kissling M. L. Reid M. Gende S. M. Lewis S. B. (2010). Testing assumptions of distance sampling on a pelagic seabird. The Condor 112(3), 455-459. Marsteller C. E. Arimitsu M. L. Schoen S. K. Stark S. B. Piatt J. F. (2024). Predator disturbance contributed to Common Murre Uria aalge breeding failures in Cook Inlet, Alaska following the 2014–2016 Pacific marine heatwave. Marine Ornithology. 52, 129139. McCabe R. M. Hickey B. M. Kudela R. M. Lefebvre K. A. Adams N. G. Bill B. D. . (2016). An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Res. letters. 43, 10366. doi: 10.1002/2016GL070023 McClatchie S. Field J. Thompson A. R. Gerrodette T. Lowry M. Fiedler P. C. . (2016). Food limitation of sea lion pups and the decline of forage off central and southern California. R. Soc. Open Science. 3, 150628. doi: 10.1098/rsos.150628 McGowan D. W. Branch T. A. Haught S. Scheuerell M. D. (2021). Multi-decadal shifts in the distribution and timing of Pacific herring (Clupea pallasii) spawning in Prince William Sound, Alaska. Can. J. Fisheries Aquat. Sci. 78, 16111627. doi: 10.1139/cjfas-2021-0047 McKinstry C. A. Campbell R. W. (2018). Seasonal variation of zooplankton abundance and community structure in Prince William Sound, Alaska 2009–2016. Deep Sea Res. Part II 147, 6978. doi: 10.1016/j.dsr2.2017.08.016 Meehl G. A. Tebaldi C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science. 305, 994997. doi: 10.1126/science.1098704 Morella J. (2023). Aerial survey observations of Pacific herring biomass, marine birds, and marine mammals in Prince William Sound, Alaska, 2008-2021. Research Workspace. doi: 10.24431/rw1k43z Nelson S. K. (2020). “Marbled Murrelet (Brachyramphus marmoratus), version 1.0,” in Birds of the World. Eds. Poole A. F. Gill F. B. (Cornell Lab of Ornithology, Ithaca, NY, USA). doi: 10.2173/bow.marmur.01 Norcross B. L. Brown E. D. Foy R. J. Frandsen M. Gay S. M. Kline T. C. Jr. . (2001). A synthesis of the life history and ecology of juvenile Pacific herring in Prince William Sound, Alaska. Fisheries Oceanography. 10, 4257. doi: 10.1046/j.1054-6006.2001.00040.x Oksanen J. Blanchet F. G. Kindt R. Legendre P. Minchin P. O’Hara R. . (2013). Package ‘vegan’ (Community ecology package), 1295. Available at: https://CRAN.R-project.org/package=vegan (Accessed July 10, 2024). Oliver E. C. Donat M. G. Burrows M. T. Moore P. J. Smal D. A. Alexander L. V. . (2018). Longer and more frequent marine heatwaves over the past century. Nat. Communications. 9, 112. doi: 10.1038/s41467-018-03732-9 Parrish J. K. Litle K. Dolliver J. Hass T. Burgess H. K. Frost E. . (2017). “Defining the baseline and tracking change in seabird populations: the Coastal Observation and Seabird Survey Team (COASST),” in Citizen science for coastal and marine conservation (Routledge) (Milton Park, Abingdon-on-Thames, UK: Taylor & Francis), 1938. Paruk J. D. Ever J. W. Barr J. F. Mager J. Piper W. H. (2021). “Common Loon (Gavia immer), version 2.0,” in Birds of the World. Eds. Rodewald P. G. Keeney B. K. (Ithaca, NY, USA: Cornell Lab of Ornithology). doi: 10.2173/bow.comloo.02 Pearson S. F. Keren I. Lance M. M. Raphael M. G. (2022). Non-breeding changes in at-sea distribution and abundance of the threatened marbled murrelet (Brachyramphus marmoratus) in a portion of its range exhibiting long-term breeding season declines. PLoS One 17, e0267165. doi: 10.1371/journal.pone.0267165 Piatt J. F. Sydeman W. J. Wiese F. (2007). Introduction: a modern role for seabirds as indicators. Marine Ecol. Prog. Series. 352, 199204. doi: 10.3354/meps07070 Piatt J. F. Parrish J. K. Renner H. M. Schoen S. K. Jones T. T. Arimitsu M. L. . (2020). Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014-2016. PLoS One 15, e0226087. doi: 10.1371/journal.pone.0226087 Pinchuk A. I. Batten S. D. Strasburger W. W. (2021). Doliolid (Tunicata, thaliacea) blooms in the southeastern Gulf of Alaska as a result of the recent marine heat wave of 2014–2016. Front. Marine Science. 8, 625486. doi: 10.3389/fmars.2021.625486 Ramos J. A. Furness R. W. (2022). “Seabirds as indicators of forage fish stocks,” in Volume 1: Seabird Biodiversity and Human Activities (CRC Press) (Milton Park, Abingdon-on-Thames, UK: Taylor & Francis), 137148. Rand P. S. Thorne R. E. (2018). “Long-term herring research and monitoring program final report,” in Expanded Adult Herring surveys. Final Report (Exxon Valdez Oil Spill Trustee Council Project 16120111-E) (Exxon Valdez Oil Spill Trustee Council Project, Anchorage, Alaska). R Core Team (2023). R: A Language and Environment for Statistical Computing (Vienna, Austria: The R Foundation for Statistical Computing). Reister I. Danielson S. Aguilar-Islas A. (2024). Perspectives on Northern Gulf of Alaska salinity field structure, freshwater pathways, and controlling mechanisms. Prog. Oceanography. 229, 103373. doi: 10.1016/j.pocean.2024.103373 Renner H. M. Piatt J. F. Renner M. Drummond B. A. Laufenberg J. S. Parrish J. K. (2024). Catastrophic and persistent loss of common murres after a marine heatwave. Science. 386, 12721276. doi: 10.1126/science.adq4330 Roberts T. S. (1932). Manual for the identification of the birds of Minnesota and neighboring states (Minneapolis, Minnesota: U of Minnesota Press). Robinson C. L. Bertram D. F. Shannon H. von Biela V. R. Greentree W. Duguid W. . (2024a). Reduction in overwinter body condition and size of Pacific sand lance has implications for piscivorous predators during marine heatwaves. Marine Ecol. Prog. Series. 737, 8999. doi: 10.3354/meps14257 Robinson B. Coletti H. A. Ballachey B. Bodkin J. L. Kloecker K. Traiger S. B. . (2024b). Lack of strong responses to the Pacific marine heatwave by benthivorous marine birds indicates importance of trophic drivers. Marine Ecol. Prog. Series. 737, 215226. doi: 10.3354/meps14384 Ronconi R. A. Burger A. E. (2011). Foraging space as a limited resource: inter-and intra-specific competition among sympatric pursuit-diving seabirds. Can. J. Zoology. 89, 356368. doi: 10.1139/z11-006 Ross T. Jackson J. Hannah C. (2021). The Northeast Pacific: Update on marine heatwave status and trends. PICES Press 29, 4648. Savage K. (2017). Alaska and British Columbia large whale unusual mortality event summary report. (Juneau, Alaska: NOAA). Schaefer A. L. Bishop M. A. (2023). “Long-term monitoring of marine bird abundance and habitat associations during fall and winter in Prince William Sound,” in Exxon Valdez Oil Spill Long-term Monitoring Program (Gulf Watch Alaska) Final Report (Exxon Valdez Oil Spill Trustee Council Project 21120114-E) (Exxon Valdez Oil Spill Trustee Council Project, Anchorage, Alaska). Schaefer A. L. Bishop M. A. Thorne R. (2020). Marine bird response to forage fish during winter in subarctic bays. Fisheries Oceanography. 29, 297308. doi: 10.1111/fog.12472 Schoen S. K. Arimitsu M. L. Marsteller C. E. Piatt J. F. (2024). Lingering impacts of the 2014–2016 northeast Pacific marine heatwave on seabird demography in Cook Inlet, Alaska (USA). Marine Ecol. Prog. Series. 737, 121136. doi: 10.3354/meps14177 Stocking J. Bishop M. A. Arab A. (2018). Spatio-temporal distributions of piscivorous birds in a subarctic sound during the nonbreeding season. Deep Sea Res. Part II 147, 138147. doi: 10.1016/j.dsr2.2017.07.017 Suryan R. M. Arimitsu M. L. Coletti H. A. Hopcroft R. R. Lindeberg M. R. Barbeaux S. J. . (2021). Ecosystem response persists after a prolonged marine heatwave. Sci. Reports. 11, 6235. doi: 10.1038/s41598-021-83818-5 Thorne R. E. (2010). Trends in adult and juvenile herring distribution and abundance in Prince William Sound Exxon Valdez Oil Spill Restoration Project Final Report, (Restoration Project 070830) (Cordova, Alaska: Prince William Sound Science Center). USFWS (2007). North Pacific pelagic seabird observer program observer’s manual, inshore/small vessel version, November 2007. U.S. Fish and Wildlife Service, Migratory Bird Management Nongame Program, Anchorage, Alaska. Unpublished protocol manual, 25 pp. von Biela V. R. Arimitsu M. L. Piatt J. F. Heflin B. Schoen S. K. Trowbridge J. L. . (2019). Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014-2016. Marine Ecol. Prog. Series. 613, 171182. doi: 10.3354/meps12891 von Biela V. R. Sergeant C. J. Carey M. P. Liller Z. Russell C. Quinn-Davidson S. . (2022). Premature mortality observations among Alaska’s Pacific Salmon during record heat and drought in 2019. Fisheries. 47, 157168. doi: 10.1002/fsh.10705 Weitzman B. Konar B. Iken K. Coletti H. Monson D. Suryan R. . (2021). Changes in rocky intertidal community structure during a marine heatwave in the northern Gulf of Alaska. Front. Marine Science. 8, 556820. doi: 10.3389/fmars.2021.556820 Xu T. Newman M. Capotondi A. Stevenson S. Di Lorenzo E. Alexander M. A. (2022). An increase in marine heatwaves without significant changes in surface ocean temperature variability. Nat. Communications. 13, 7396. doi: 10.1038/s41467-022-34934-x
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.ho84.org.cn
      www.jtzher.com.cn
      www.n9n51.net.cn
      rostock.net.cn
      www.vjfd.com.cn
      tb12188.com.cn
      tjfhs.org.cn
      www.tdpgkz.com.cn
      www.wpchain.com.cn
      railbj.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p