Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2024.1392585 Marine Science Original Research Long-term annual trawl data show shifts in cephalopod community in the western Barents sea during 18 years Golikov Alexey V. 1 * Jørgensen Lis L. 2 Sabirov Rushan M. 3 Zakharov Denis V. 4 Hoving Henk-Jan 1 1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 2 Ecosystem Processes Department, Institute of Marine Research, Tromsø, Norway 3 Department of Zoology, Kazan Federal University, Kazan, Russia 4 Laboratory of Marine Research, Zoological Institute of Russian Academy of Sciences, Saint−Petersburg, Russia

Edited by: Paco Bustamante, Université de la Rochelle, France

Reviewed by: Alexandra Lischka, Ecofish Research Ltd., Canada

Tobias Büring, South Atlantic Environmental Research Institute, Falkland Islands

Marek Lipinski, Rhodes University, South Africa

*Correspondence: Alexey V. Golikov, golikov.ksu@gmail.com

23 05 2024 2024 11 1392585 27 02 2024 02 05 2024 Copyright © 2024 Golikov, Jørgensen, Sabirov, Zakharov and Hoving 2024 Golikov, Jørgensen, Sabirov, Zakharov and Hoving

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Climate change is threatening marine ecosystems on a global scale but particularly so in the Arctic. As a result of warming, species are shifting their distributions, altering marine communities and predator-prey interactions. This is known as the Atlantification of the Arctic. Warming may favor short-lived, opportunistic species such as cephalopods, marine mollusks that previously have been hypothesized to be winners in an ocean of change. To detect temporal regional trends in biodiversity, long-term annual surveys in hotspots of climate change are an unparalleled source of data. Here, we use 18 years of annual bottom trawl data (2005–2022) to analyse cephalopods in the western Barents Sea. More specifically, our research goals are to assess temporal trends in cephalopod fauna composition, abundance and biomass, and to relate these trends to climate change in the western Barents Sea. Main changes in cephalopod diversity and distribution occurred in mid-2000s and early 2010s, which corresponds with a period of warming in the Arctic since the late 1990s/early 2000s. Repeated increased occurrence of the boreal-subtropical cephalopods was recorded from 2005–2013 to 2014–2022. Moreover, the abundance of cephalopods in the area (in general and for most taxa) increased from 2005–2013 to 2014–2022. These observations suggest that the cephalopod community of the Barents Sea is subjected to Atlantification since the 2005–2013 period. This corresponds with previously reported evidence of the Atlantification in fishes and benthic invertebrates in the Barents Sea and benthic invertebrates. ‘Typical’ Arctic cephalopod species such as Bathypolypus spp., Gonatus fabricii and Rossia spp., however, are still much more abundant in the western Barents Sea compared to the deep-sea and the boreal-subtropical species. We also found indirect indications for body-size reduction in Bathypolypus spp. from 2005–2013 to 2014–2022. Overall, the temporal trends in the Barents Sea cephalopod fauna provide evidence for changing marine communities in the Arctic.

arctic climate change atlantification marine ecosystems monitoring Cephalopoda shelf deep-sea section-in-acceptance Marine Molecular Biology and Ecology

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The Arctic is heavily affected by climate change (Lind et al., 2018; Praetorius et al., 2018; Rantanen et al., 2022) with increase of temperature, decrease of sea-ice extent, weakening of ocean stratification, and changes in physical ocean dynamics and hydrochemistry (Brandt et al., 2023; Gerland et al., 2023). The Barents Sea is one of the fastest warming areas in the Arctic (Overland et al., 2014; Lind et al., 2018; Gerland et al., 2023). This sea is of high commercial importance due to its biological and mineral resources (Moe and Jørgensen, 2013; Jørgensen et al., 2020; Mikkelsen et al., 2023). The Barents Sea is simultaneously impacted by anthropogenic activities and climate change (Moe and Jørgensen, 2013; Jørgensen et al., 2020; Mikkelsen et al., 2023) but with largely unknown consequences for the marine communities in the area.

      Due to ocean warming, many warm-water species are entering the Arctic from the Atlantic, causing changes in biomass, distribution and ecology of local Arctic species and altering predator-prey interactions (Brandt et al., 2023; Gerland et al., 2023). The changes in the Arctic ecosystems, which make them more similar to the North Atlantic ecosystems over time, are known as the ‘Atlantification’ (Jørgensen et al., 2016). The Atlantification of the Barents Sea is best studied for pelagic and demersal fishes (Fossheim et al., 2015; Frainer et al., 2017), but less so for benthic invertebrate communities (Renaud et al., 2015; Jørgensen et al., 2019). One of the reasons for our poor understanding of the extent of the Atlantification of seafloor communities is the understudied benthic biodiversity and difficulty in obtaining temporal trends in Arctic benthos (CAFF, 2017; Jørgensen et al., 2022).

      One abundant but particularly understudied group of invertebrates in the Arctic are cephalopods (Phylum Mollusca, Class Cephalopoda) (Nesis, 1987; Golikov et al., 2013; Xavier et al., 2018). Despite their relatively low biodiversity in the Arctic, cephalopods have a high ecological importance in the regional food webs (Nesis, 1987; Bjørke and Gjøsaeter, 1998; Gardiner and Dick, 2010; Golikov et al., 2013; Xavier et al., 2018). They attain high regional biomass, are important as prey and predators, and have high ecological diversity (Bjørke and Gjøsaeter, 1998; Gardiner and Dick, 2010; Golikov et al., 2013; Xavier et al., 2018). Cephalopods are challenging to identify morphologically (e.g., Nozères and Roy, 2021; this study, below), and genetic identification of certain species is hampered by limited availability of reference sequences in GenBank (e.g., Fernández-Álvarez et al., 2021; Katugin and Zolotova, 2023; Taite et al., 2023). Finally, cephalopods respond opportunistically to climate change, resulting in increasing regional biomass, changing size-at-maturity and expanding geographical ranges (e.g., Pecl and Jackson, 2008; Hoving et al., 2013a; Doubleday et al., 2016; Xavier et al., 2018; Golikov et al., 2019b; Oesterwind et al., 2022). In the mid-2000s and early 2010s, northward range expansions in the Barents Sea and adjacent areas of the Nordic Seas of 2000 km were documented for two boreal-subtropical squid species (Todaropsis eblanae and Teuthowenia megalops) and of 100 km for one sepiolid (Sepietta oweniana) (Sabirov et al., 2009, Sabirov et al., 2012; Golikov et al., 2013, Golikov et al., 2014). In the mid-2000s, the Arctic squid species (Gonatus fabricii) increased its range over the eastern Barents Sea and adjacent deep waters of the Kara Sea (Golikov et al., 2012, Golikov et al., 2013). These areas were previously too cold for this species (Nesis, 1987, Nesis, 2001).

      To regulate human activities in important and geographically extensive systems, monitoring of marine ecosystems’ structure and functioning is needed. An example is the Norwegian-Russian Ecosystem Survey that has taken place annually since 2003 in the Barents Sea (Michalsen et al., 2011; Eriksen et al., 2018). The long term benthos data from this survey were recently used in management decisions. Management assigned specific seafloor grounds with vulnerable benthos species in the northern Barents Sea and adjacent areas of the Central Polar Basin to be closed for commercial fisheries as a response to northward migrating commercial fish stocks and fishing fleets (Jørgensen et al., 2020). Here, we use annual bottom trawl data from this survey spanning across 18 years (2005–2022) to study the cephalopods in the western Barents Sea and adjacent areas of the Nordic Seas and Central Polar Basin. We aim: 1) to describe the temporal dynamics of cephalopod community composition; and 2) to assess the temporal dynamics of cephalopod abundance and biomass.

      Materials and methods Study area, survey details, sampling and identification

      The study area includes the western Barents Sea, the adjacent marginal areas of the Norwegian and Greenland Seas, and of the Central Polar Basin covered by the bottom trawl stations of the Norwegian-Russian Ecosystem Survey (eastward to 40° E) ( Figure 1 ). Since 2004, the bottom trawling within this survey has been standardized to the use of a Campelen-1800 shrimp trawl by all the participating four research vessels (RVs) (Michalsen et al., 2011; Eriksen et al., 2018; Zakharov et al., 2018). All data from the 2005–2022 period were included in the analyses, except from three RVs for 2005, where cephalopods were not identified within benthos catch. The study period was separated into two equal periods for comparative purposes (2005–2013 and 2014–2022). Overall, 2720 and 1609 bottom trawl stations were performed in the studied area during the 2005–2013 and 2014–2022 period, respectively ( Table 1 ; Supplementary Table 1 ).

      Bottom trawl station taken during 2005–2022 within the Norwegian-Russian Ecosystem Survey in the western Barents Sea, and distribution of cephalopods caught by bottom trawl stations. (A) All bottom trawl stations and unidentified Cephalopoda. (B) Bathypolypus spp. (C) Muusoctopus aegir. (D) Cirroteuthis muelleri. (E) Unidentified Incirrata and Octopoda. (F) Gonatus fabricii. (G) Boreal-subtropical species. (H) Rossia spp. Blank maps made with Natural Earth and IBCAO V. 4.2 (Jakobsson et al., 2020). Common occurrence in (B, G, H) indicated stations where more than one of the represented species were caught.

      Bottom trawl station number and frequency of cephalopods in their catches in 2005–2022 in the western Barents Sea.

      Years Numberofstations Stations withcephalopods Bathypolypus arcticus Bathypolypus bairdii Bathypolypus pugniger Bathypolypus sp.
      n % n % n % n % n %
      2005–2013 2720 927 34.1 131 14.1 12 1.3 8 0.9 51 5.5
      2014–2022 1609 874 54.3 61 7.0 22 2.5 3 0.3 209 23.9
      2005–2022 4329 1801 41.6 192 10.7 34 1.9 11 0.6 260 14.4
      χ 2, p N/A N/A 19.63, 0.0110 N/A 76.68, 0.0001 N/A N/A N/A N/A N/A N/A
      Years Bathypolypus spp.1 Muusoctopus aegir UnidentifiedIncirrata Cirroteuthis muelleri UnidentifiedOctopoda
      n % n % n % n % n %
      2005–2013 197 21.3 10 1.1 2 0.2 8 0.9 1 0.1
      2014–2022 293 33.5 11 1.3 4 0.5 12 1.4 16 1.8
      2005–2022 490 27.2 21 1.2 6 0.3 20 1.1 17 0.9
      χ 2, p N/A 57.63, 0.0001 N/A N/A N/A N/A N/A N/A N/A N/A
      Years Gonatus fabricii Todaropsis eblanae Todarodes sagittatus UnidentifiedOmmastrephidae AllOmmastrephidae2
      n % n % n % n % n %
      2005–2013 292 31.5 3 0.3 2 0.2 0 0 4 0.4
      2014–2022 314 35.9 0 0 2 0.2 2 0.2 4 0.5
      2005–2022 606 33.6 3 0.2 4 0.2 2 0.1 8 0.4
      χ 2, p N/A 30.43, 0.0004 N/A N/A N/A N/A N/A N/A N/A N/A
      Years Rossia palpebrosa Rossia megaptera Rossia moelleri Rossia sp. Rossia spp.3
      n % n % n % n % n %
      2005–2013 248 26.8 60 6.5 7 0.8 10 1.1 310 33.4
      2014–2022 316 36.2 72 8.2 31 3.5 93 10.6 495 56.6
      2005–2022 564 31.3 132 7.3 38 2.1 103 5.7 805 44.7
      χ 2, p N/A 49.85, 0.0001 N/A 43.76, 0.0001 N/A N/A N/A N/A N/A 46.56, 0.0001
      Years Sepietta oweniana UnidentifiedCephalopoda
      n % n %
      2005–2013 1 0.1 287 31.0
      2014–2022 1 0.1 88 10.1
      2005–2022 2 0.1 176 9.8
      χ 2, p N/A N/A N/A 111.20, 0.0001

      1 Bathypolypus arcticus, B. bairdii, B. pugniger and Bathypolypus sp.; 2 Todaropsis eblanae, Todarodes sagittatus and unidentified Ommastrephidae; 3 Rossia palpebrosa, R. megaptera, R. moelleri and Rossia sp.

      Frequency of occurrence between 2005–2013 and 2014–2022 assessed with a χ 2 test where applicable. Frequency values are given for the 2005–2013 and 2014–2022 periods, annual values are presented in Supplementary Table 1 . Significant p-values are in bold. N/A, not applicable.

      All invertebrate benthos catch from the shrimp trawl surveys was identified onboard by benthic experts alongside fish experts (Zakharov et al., 2018; Jørgensen et al., 2019; Zakharov et al., 2020; Jørgensen et al., 2022). Cephalopods usually were treated as the other benthos bycatch taxa onboard (Zakharov et al., 2018; Jørgensen et al., 2019; Zakharov et al., 2020; Jørgensen et al., 2022). Since 2005, a varying number of cephalopods from the benthos catch was fixed or frozen and analysed ashore by Alexey V. Golikov (A.V.G.) and Rushan M. Sabirov (R.M.S.). Such re-identification of catches from the older surveys increased the number of species initially found. Moreover, in many cases old unfixed samples were photo-verified by A.V.G. and R.M.S. These data, when provided to onboard benthic experts, resulted in significant increase of onboard identification quality in the 2014–2022 period in comparison to the 2005–2013 period (see Results & Discussion). Outdated names such as Benthoctopus sp. and later Muusoctopus sp. were changed to Muusoctopus aegir after this species was formally described in 2023 (Golikov et al., 2023a). Rossia individuals that did not fit either R. palpebrosa or R. moelleri taxonomic descriptions were identified to Rossia megaptera after this species was found to present in the Barents Sea (Golikov et al., 2020).

      In some years, a cephalopod expert was absent onboard during a particular cruise. It was never the case for all participating RVs simultaneously, if we account for ashore/photo-reidentification described above. During these years, Bathypolypus and Rossia were often not identified to the species level and labelled as “Bathypolypus sp.” and “Rossia sp.”, respectively. Also during these years, species were labelled as “Incirrata” if either Bathypolypus sp. or Muusoctopus aegir; “Octopoda” if either both of the latter or Cirroteuthis muelleri; “Ommastrephidae” if either Todaropsis eblanae, Todarodes sagittatus or unidentified Ommastrephidae; and “Cephalopoda” if nothing else was recorded/photographed to help the identification ashore. In this manuscript, the data were provided on group level as Bathypolypus spp. (= combined three species and Bathypolypus sp.), Rossia spp. (= combined three species and Rossia sp.) and Ommastrephidae (T. eblanae, To. sagittatus or unidentified Ommastrephidae), as well as on individual species level, to show both species’ patterns and patterns unbiased by identification quality.

      Abundance and biomass

      The ratio of trawl stations with cephalopod catch to standardized total catches was recorded annually and was used as a measure of cephalopod relative abundance. Frequency of occurrence of individual species/group of cephalopods in % of all stations with cephalopods was used as an abundance proxy of particular species/group. Statistical comparisons of frequencies between the 2005–2013 and 2014–2022 period were possible where we have enough data annually (= caught for more than four years within either one of the periods). These taxa were Bathypolypus arcticus, Bathypolypus spp., Gonatus fabricii, Rossia palpebrosa, R. megaptera, Rossia spp. and unidentified Cephalopoda. The latter was done to assess if the quality of onboard identification changed from the 2005–2013 to 2014–2022 period.

      Biomass density, i.e. biomass in gram per nautical mile of towing (g/n.m.) was a proxy of absolute biomass. The quantitative measures were estimated using towing speed and distance by standard IMR/PINRO protocols (Jørgensen et al., 2019; Zakharov et al., 2020). We decided not to correct density values to absolute biomass, because the Campelen-1800 shrimp trawl’s catchability for cephalopods is unknown, as revealed by previous attempts to do so (Lubin and Sabirov, 2007; Golikov et al., 2017). Statistical comparisons of biomass density between the 2005–2013 and 2014–2022 period were possible where enough data was available: Bathypolypus arcticus, B. bairdii, Bathypolypus spp., Gonatus fabricii, Rossia palpebrosa, R. megaptera and Rossia spp. Deep-sea octopods (Muusoctopus aegir and Cirroteuthis muelleri) were not temporally compared, because deep-sea slopes were sampled infrequently and differently among years, unlike the shelf areas.

      Data analyses

      To compare the biomass of species/taxa (see above) between the two groups (i.e., the 2005–2013 and 2014–2022 period), a Mann–Whitney U-test was used; and to compare among three or more groups (i.e., within Bathypolypus spp., Rossia spp. and among other taxa) we used a Kruskal–Wallis H test with a post-hoc Dunn’s Z test (Zar, 2010). Frequencies of species/taxa were compared using a χ 2 test (Zar, 2010). Statistical analysis, calculations, equations and plots were performed in PAST 4.12b (Hammer et al., 2001), Statistica 12.0 (Statsoft) and MS Excel 2010. The value of α = 0.05 was considered significant in this study.

      Results Cephalopod species and abundance

      The Norwegian-Russian Ecosystem Survey recorded twelve species in the Barents Sea and adjacent areas during 2005–2022: Bathypolypus arcticus, B. bairdii, B. pugniger, Muusoctopus aegir (incirrate octopods; Octopoda Incirrata); Cirroteuthis muelleri (cirrate octopod; Octopoda Cirrata); Gonatus fabricii, Todaropsis eblanae, Todarodes sagittatus (squids; Oegopsida); and Rossia palpebrosa, R. megaptera, R. moelleri and Sepietta oweniana (bobtail squids; Sepiolida). Among those, T. eblanae, To. sagittatus and S. oweniana were boreal-subtropical migrants, and all others belonged to permanent Arctic residents. All records of the boreal-subtropical species occurred south of 75° N ( Figure 1 ). All these species were recorded during both the 2005–2013 and 2014–2022 period, except for T. eblanae, which was absent during the 2014–2022 period ( Table 1 ). The latter species, however, was found east of 40° E in the Barents Sea during this period (Golikov et al., in prep.). So, the fauna composition over the studied area seemed identical between the 2005–2013 and 2014–2022 period.

      The trawl catch of cephalopods increased significantly over time ( Figure 2 , Table 1 ; Supplementary Table 1 ). Moreover, significant increase in frequency was recorded in every taxon it was checked for (i.e., Bathypolypus spp., G. fabricii, R. palpebrosa, R. megaptera, Rossia spp. and unidentified Cephalopoda), except for B. arcticus ( Table 1 ). In the latter species, significant decrease in frequency was recorded ( Table 1 ). Among the taxa where the significance of temporal frequency changes could not be checked, it was increase in B. bairdii, Bathypolypus sp., deep-sea and unidentified octopods, boreal-subtropical Ommastrephidae squids, R. moelleri and Rossia sp. and decrease in B. pugniger ( Figure 2 , Table 1 ; Supplementary Table 1 ). Boreal-subtropical S. oweniana was infrequently caught and no differences in frequency were observed over time. Aggregations of Bathypolypus sp. and B. bairdii were recorded in the south-western Barents Sea ( Figure 1 ). Both deep-sea incirrate and cirrate octopods, M. aegir and C. muelleri, were much less frequent than Bathypolypus spp. ( Figure 2 , Table 1 ). Both these two deep-sea octopods were found on the slope and in the troughs, but not on the shelf ( Figure 1 ). Unidentified Incirrata and Octopoda were also largely found over the deep-sea areas, but closer to the shelf than ‘identified’ deep-sea octopods ( Figure 1 ).

      Frequency of occurrence of different species/taxa of cephalopods in % of all bottom trawl stations with cephalopod catch in 2005–2022 in the western Barents Sea. (A) All species/taxa. (B) Bahtypolypus taxa combined as Bathypolypus spp., Rossia taxa combined as Rossia spp. and Ommastrephidae taxa combined as Ommastrephidae.

      Overall, Bathypolypus spp., G. fabricii and Rossia spp. were much more frequent than the deep-sea (M. aegir and C. muelleri) and the boreal-subtropical (Ommastrephidae and S. oweniana) species, and distributed all over the study area ( Figures 1 , 2 , Table 1 ). Among the three most abundant cephalopod taxa, Rossia spp. was the most frequently recorded during both the 2005–2013 and 2014–2022 period, while Bathypolypus spp. was the least frequently recorded ( Table 2 ). Within the Bathypolypus spp. and Rossia spp., widespread boreal-arctic species B. arcticus and R. palpebrosa were the most ubiquitous ( Figures 1 , 2 , Table 1 ). While the high-boreal R. megaptera and the arctic R. moelleri preferred warmer and colder areas, respectively, both of the two high-boreal species B. bairdii and B. pugniger preferred warmer areas ( Figure 1 , Table 1 ).

      Cross-taxa comparison of frequencies among the most abundant cephalopods in 2005–2013 and 2014–2022 in the western Barents Sea.

      2005–2013 2014–2022
      Taxa χ 2 = 75.26, p = 0.0001 Taxa χ 2 = 78.68, p = 0.0001
      Bathypolypus spp.1 Rossia spp.2 Gonatus fabricii Bathypolypus spp.1 Rossia spp.2 Gonatus fabricii
      Bathypolypus spp.1 N/A p = 0.0310 p = 0.0001 Bathypolypus spp.1 N/A p = 0.0001 p = 0.0001
      Rossia spp.2 χ 2 = 16.58 N/A p = 0.0001 Rossia spp.2 χ 2 = 37.81 N/A p = 0.0001
      Gonatus fabricii χ 2 = 37.00 χ 2 = 53.21 N/A Gonatus fabricii χ 2 = 32.76 χ 2 = 39.65 N/A

      1 Bathypolypus arcticus, B. bairdii, B. pugniger and Bathypolypus sp.; 2 Rossia palpebrosa, R. megaptera, R. moelleri and Rossia sp.

      Differences in frequencies assessed with a χ 2 test (station number already given in Table 1 ). Significant p-values are in bold. N/A – not applicable.

      Biomass

      While frequencies of occurrence showed significant differences over time, the biomass only showed significant decrease from the 2005–2013 and 2014–2022 period for Bathypolypus spp. ( Table 3 ). A non-significant decrease was recorded for B. arcticus, B. bairdii and Gonatus fabricii, while a non-significant increase was found in Rossia palpebrosa, R. megaptera and Rossia spp. ( Table 3 ). Among the three most abundant cephalopod taxa, the biomass density was the highest for Bathypolypus spp., medium for Rossia spp. and the lowest for G. fabricii ( Tables 3 , 4 ). Within Bathypolypus spp., no significant differences were found among the species ( Tables 3 , 4 ). Within Rossia spp., high-boreal R. megaptera had significantly lower biomass density than the two other species ( Tables 3 , 4 ).

      Biomass density of cephalopods in 2005–2022 in the western Barents Sea.

      Years Bathypolypus arcticus Bathypolypus bairdii Bathypolypus pugniger Bathypolypus sp. Bathypolypus spp.1
      2005–2013 0.3–3471.0 (135.0 ± 36.8) 1.0–1095.6 (136.3 ± 89.1) 1.5–76.7 (33.4 ± 11.6) 1.1–617.1 (55.6 ± 12.5) 0.3–3471.0 (113.5 ± 27.7)
      2014–2022 1.3–885.2 (97.4 ± 18.1) 2.8–1126.6 (134.2 ± 51.4) 20.3–146.1 (85.2 ± 36.4) 0.1–1801.0 (83.2 ± 11.9) 0.1–1801.0 (91.4 ± 10.3)
      2005–2022 0.3–3471.0 (123.0 ± 25.7) 1.0–1126.6 (134.9 ± 45.0) 1.5–146.1 (47.5 ± 13.9) 0.1–1801.0 (77.7 ± 9.9) 0.3–3471.0 (100.2 ± 12.7)
      U, p 3424.0, 0.13 97.0, 0.22 N/A N/A 25194.0, 0.0238
      Years Muusoctopus aegir Unidentified Incirrata Cirroteuthis muelleri Unidentified Octopoda Gonatus fabricii
      2005–2013 13.5–2225.8 (286.9 ± 215.8) 10.0–16.8 (13.4 ± 3.4) 88.6–559.9 (243.0 ± 55.1) 520.0 0.7–740.0 (39.3 ± 4.2)
      2014–2022 6.3–231.9 (56.5 ± 19.9) 13.4–52.9 (32.8 ± 8.2) 18.2–1791.8 (511.1 ± 163.5) 7.5–1004.6 (127.1 ± 63.7) 0.5–673.0 (28.8 ± 2.9)
      2005–2022 6.3–2225.8 (166.2 ± 103.7) 10.0–52.9 (26.3 ± 6.7) 18.2–1791.8 (403.8 ± 103.2) 7.5–1004.6 (150.2 ± 64.1) 0.7–740.0 (33.3 ± 2.5)
      U, p N/A N/A N/A N/A 40483.0, 0.06
      Years Todaropsis eblanae Todarodes sagittatus Unidentified Ommastrephidae All Ommastrephidae2 Rossia palpebrosa
      2005–2013 9.0–149.7 (79.3 ± 70.3) 4.4–22.6 (13.5 ± 9.1) 0 9.0–154.1 (61.9 ± 46.3) 0.1–3620.7 (56.6 ± 15.3)
      2014–2022 0 17.2–120.4 (68.8 ± 51.6) 33.9–37.6 (35.7 ± 1.8) 17.2–120.4 (52.3 ± 23.2) 0.4–3126.1 (59.7 ± 11.0)
      2005–2022 9.0–149.7 (59.6 ± 45.1) 4.4–120.4 (41.1 ± 26.7) 33.9–37.6 (35.7 ± 1.8) 9.0–154.1 (56.4 ± 21.5) 0.1–3620.7 (58.3 ± 9.1)
      U, p N/A N/A N/A N/A 36401.0, 0.20
      Years Rossia megaptera Rossia moelleri Rossia sp. Rossia spp.3 Sepietta oweniana
      2005–2013 0.1–152.4 (24.4 ± 2.9) 26.8–184.0 (102.1 ± 25.2) 0.4–169.9 (65.6 ± 20.7) 0.1–3620.7 (51.1 ± 12.0) 38.7
      2014–2022 0.8–396.7 (33.0 ± 6.7) 2.0–516.6 (52.3 ± 16.0) 0.6–1064.1 (52.2 ± 14.7) 0.6–3126.1 (56.1 ± 7.7) 3.8
      2005–2022 0.1–396.7 (29.0 ± 3.8) 2.0–516.6 (61.3 ± 14.1) 0.4–1064.1 (53.5 ± 13.4) 0.1–3620.7 (54.2 ± 6.6) 3.8–38.7 (21.3 ± 17.5)
      U, p 2118.5, 0.85 N/A N/A 75053.0, 0.72 N/A
      Years Unidentified Cephalopoda
      2005–2013 0.6–1911.3 (93.0 ± 10.4)
      2014–2022 0.6–306.8 (36.9 ± 4.9)
      2005–2022 0.6–1911.3 (79.5 ± 8.1)
      U, p N/A

      1 Bathypolypus arcticus, B. bairdii, B. pugniger and Bathypolypus sp.; 2 Todaropsis eblanae, Todarodes sagittatus and unidentified Ommastrephidae; 3 Rossia palpebrosa, R. megaptera, R. moelleri and Rossia sp.

      Differences between 2005–2013 and 2014–2022 assessed with a Mann–Whitney U test where applicable (station number already given in Table 1 ). Significant p-values are in bold. Biomass values are min – max (mean ± SE). N/A, not applicable.

      Cross-species/taxa comparison of biomass density of cephalopods in 2005–2022 in the western Barents Sea.

      Species H 2,236 = 0.69, p = 0.70 Species H 2,733 = 16.06, p = 0.0003 Taxa H 2,1889 = 110.70, p < 0.0001
      Bathypolypus arcticus Bathypolypus bairdii Bathypolypus pugniger Rossia palpebrosa Rossia megaptera Rossia moelleri Bathypolypus spp.1 Rossia spp.2 Gonatus fabricii
      Bathypolypus arcticus N/A N/A N/A Rossia palpebrosa N/A p = 0.0013 p = 0.39 Bathypolypus spp.1 N/A p < 0.0001 p < 0.0001
      Bathypolypus bairdii N/A N/A N/A Rossia megaptera Z = 3.51 N/A p = 0.0034 Rossia spp.2 Z = 7.15 N/A p < 0.0001
      Bathypolypus pugniger N/A N/A N/A Rossia moelleri Z = 1.53 Z = 3.25 N/A Gonatus fabricii Z = 10.44 Z = 4.20 N/A

      1 Bathypolypus arcticus, B. bairdii, B. pugniger and Bathypolypus sp.; 2 Rossia palpebrosa, R. megaptera, R. moelleri and Rossia sp.

      Assessed with a Kruskal–Wallis H test with a post-hoc Dunn’s Z test (station number already given in Table 1 ). Significant p-values are in bold. N/A, not applicable.

      Discussion Summary of the main findings from the 18 years of annual trawl data

      The main changes in cephalopod fauna occurred during the mid-2000s and early 2010s, when four boreal-subtropical species appeared in the area (three of them for the first time ever, and one for the first time since the early 1980s). The timing of their occurrence (i.e., the mid-2000s and early 2010s) followed the onset of increased climate-driven warming in the Barents Sea since late 1990s/early 2000s (Swart et al., 2015; Rantanen et al., 2022). The Atlantification of the cephalopod community in the Barents Sea was evidenced by increased abundance of boreal-subtropical Ommastrephidae squids, and repeated occurrence of Ommastrephidae squids and Sepietta oweniana during two periods (2005–2013 and 2014–2022). ‘Typical’ Arctic cephalopod species (Bathypolypus spp., Gonatus fabricii and Rossia spp.) are still much more abundant in the western Barents Sea compared to the deep-sea and the boreal-subtropical cephalopod species. Moreover, the abundance of these Arctic taxa increased from the 2005–2013 to 2014–2022 period, as did the abundance of other cephalopods across the studied area. The increased abundance but reduced biomass of Bathypolypus spp. from the 2005–2013to 2014–2022 indirectly suggests a body-size reduction. This would be the first evidence of size reduction in response to ocean warming in octopods, a phenomena known for other taxa elsewhere (e.g., Gardner et al., 2011; Sheridan and Bickford, 2011; Ikpewe et al., 2021). Lastly, a significant increase of onboard identification quality followed when onboard benthic experts were educated by cephalopod taxonomic experts. Such taxonomic training increases the value of the ecosystem surveys for the future monitoring.

      Temporal dynamics of cephalopod community composition

      Our study is the first to document temporal trends in the cephalopod community of the Barents Sea, which is one of the fastest warming regions in the Arctic (Overland et al., 2014; Lind et al., 2018; Gerland et al., 2023). Before 2005 (= start of the time series used here), cephalopod biodiversity of the Barents Sea was lower than it currently is (Nesis, 1987; Golikov et al., 2013; Xavier et al., 2018) ( Table 5 ). Todarodes sagittatus has been the only boreal-subtropical cephalopod known from the Barents Sea before 2005 (Nesis, 1987; Golikov et al., 2013; Xavier et al., 2018) ( Table 5 ). It was last recorded in the Barents Sea in 1983 (Nesis, 1987), while in our studies the first records of this species start from 2010 (Golikov et al., 2013, 2014; Xavier et al., 2018). Other boreal-subtropical cephalopods that were found in the Barents Sea in 2005–2013 are Todaropsis eblanae, Teuthowenia megalops and Sepietta oweniana (Golikov et al., 2013, 2014; Xavier et al., 2018) ( Table 5 ). The deep-sea squid Te. megalops was only found once in 2009 (Golikov et al., 2013). This rare record was not from the Norwegian-Russian Ecosystem Survey area, but from the north-eastern slope of the Greenland Sea ( Figure 1 ), and taken by the same Campelen-1800 trawl as used in the Norwegian-Russian Ecosystem Survey (Golikov et al., 2013). In 2014–2022, all boreal-subtropical cephalopods were recorded in the Barents Sea again, except for Te. megalops ( Table 5 ). A gradual influx of Atlantic fauna in the Barents Sea is also well known for other invertebrates and fishes, providing a basis for ongoing Atlantification of the local ecosystems (Jørgensen et al., 2016; Frainer et al., 2017; Brandt et al., 2023). The records from our study show that the cephalopod community of the Barents Sea is subjected to the Atlantification since the 2005–2013 period. Mean annual temperatures in the Arctic, both modelled and observed, continuously increase since the late 1990s/early 2000s (Swart et al., 2015; Rantanen et al., 2022). This warming, which results from climate change, is often hypothesized as a main cause of the Atlantification (e.g., Jørgensen et al., 2016; Frainer et al., 2017; Brandt et al., 2023).

      Cephalopod fauna composition from the XIXth century to 2022 in the western Barents Sea and adjacent areas.

      Timeline Before 2005 2005–2022 2019–2022(Fram Strait)
      2005–2013 2014–2022
      Source Reviews: Nesis, 1987; Golikov et al., 2013; Xavier et al., 2018; andreferences therein This study Merten et al., 2023
      Assessmentmethod Trawling eDNA
      Octopoda Bathypolypus arcticus Bathypolypus arcticus Bathypolypus arcticus
      1 Bathypolypus bairdii Bathypolypus bairdii
      1 Bathypolypus pugniger Bathypolypus pugniger
      Bathypolypus sp.2 Bathypolypus sp.2
      Muusoctopus aegir 3 Muusoctopus aegir 3 Muusoctopus aegir
      Incirrata2 Incirrata2
      Cirroteuthis muelleri Cirroteuthis muelleri Cirroteuthis muelleri
      Octopoda2 Octopoda2
      Oegopsida Gonatus fabricii Gonatus fabricii Gonatus fabricii Gonatus fabricii 4
      Todaropsis eblanae 5 5
      Todarodes sagittatus Todarodes sagittatus Todarodes sagittatus
      Ommastrephidae2 Ommastrephidae2
      Teuthowenia megalops 6
      Histioteuthis sp.
      Histioteuthidae
      Oegopsida
      Sepiolida Rossia palpebrosa Rossia palpebrosa Rossia palpebrosa Rossia palpebrosa
      1 Rossia megaptera Rossia megaptera
      Rossia moelleri Rossia moelleri Rossia moelleri
      Rossia sp.2 Rossia sp.2
      Sepietta oweniana Sepietta oweniana
      Cephalopoda Cephalopoda2 Cephalopoda2 Cephalopoda

      1not recorded due to lack of identification expertise, not a real absence (see Discussion); 2one of the taxa recorded in the Barents Sea, but not recognized by benthic experts onboard and not fixed/frozen for ashore identification; 3as Benthoctopus piscatorum and Muusoctopus sp. prior to the species’ description in 2023; 4eDNA rendered it as Gonatus sp. and Gonatidae; 5recorded in the south-eastern Barents Sea during 2014–2022; 6not recorded by the Norwegian-Russian Ecosystem Survey, where the rest of our samples in this study are from. Boreal-subtropical species marked with light-grey color.

      Of the twelve permanent Arctic resident cephalopod species (Xavier et al., 2018; Golikov et al., 2020; Golikov et al., 2023a), only Muusoctopus sibiricus, M. leioderma and Muusoctopus sp. were absent in the western Barents Sea and adjacent areas. These octopods live in the Siberian Seas, Beaufort and Chukchi Sea (M. sibiricus and M. leioderma), and in the northern Baffin Bay and Canadian Arctic Archipelago (Muusoctopus sp.) (Nesis, 1987; Xavier et al., 2018; Golikov et al., 2023a). The absence of published records of Rossia megaptera, Bathypolypus bairdii and B. pugniger before 2005 ( Table 5 ) could rather be caused by the lack of taxonomic studies and identification expertise. Bathypolypus bairdii and B. pugniger were only taxonomically separated from B. arcticus in 2002 (Muus, 2002). And R. megaptera is often considered as living only in North-West Atlantic (Mercer, 1968; Reid and Jereb, 2005), despite its presence was later confirmed from Iceland (Golikov et al., 2018b) and the Barents Sea (Golikov et al., 2020). When reanalyzing samples from before 2005, both B. pugniger and R. megaptera have been found in the area, in 1967 and in 2003 respectively (Golikov et al., in prep.).

      Alternative methods to assess biodiversity and community composition in marine ecosystems are underwater video imagery and environmental DNA (eDNA) analyses (e.g., Merten et al., 2021; Kopp et al., 2023). Environmental DNA analysis enables detection of species based on genetic material from marine animals that is released in the environment, such as shed skin cells, mucus, gametes and faeces (Taberlet et al., 2012a, Taberlet et al., 2012b). The advantages of eDNA analysis are that it gives a larger presence/absence time frame than trawl surveys (eDNA remains suspended in the water column for up to 60 days), and it allows simultaneous identification of different taxa within the same water sample (reviews: Thomsen and Willerslev, 2015; Rourke et al., 2022). Advances and successes have been made with the application of eDNA in fisheries surveys (Thomsen and Willerslev, 2015; Rourke et al., 2022) and also in cephalopod biodiversity studies (e.g., Merten et al., 2021; Visser et al., 2021; Merten et al., 2023). While the technique is being developed to be used for abundance estimates (Thomsen and Willerslev, 2015; Rourke et al., 2022), it is currently mostly used to obtain presence-absence for species or communities. Results of eDNA metabarcoding depend on the used primers, which may be biased towards certain taxonomic groups, and sequence availability in databases. For example, the 18S rRNA primer that is used in cephalopod eDNA studies does not detect all octopods (De Jonge et al., 2021). While, arctic and boreal-subtropical cephalopods recorded in the Barents Sea and adjacent areas are better represented in GenBank with COI, than with 18S. When applying, it is 18S which is better able to detect cephalopods during eDNA metabarcoding on water samples (detailed in De Jonge et al., 2021). The collection of underwater imagery enables analyses of biodiversity and community composition, color, behavior, habitat association, and estimation of abundance and biomass density in case of standardized surveys (e.g., Robison et al., 1998; Robison, 2004; Buhl-Mortensen et al., 2015; Stratmann et al., 2022). Underwater imagery analyses has been applied in biodiversity assessments of cephalopod communities (e.g., Merten et al., 2021; Pratt et al., 2021, Pratt et al., 2023). For example, G. fabricii was recorded in the central Arctic Ocean under ice by a mooring camera system (Snoeijs-Leijonmalm et al., 2022), and Arctic cirrate octopods were documented to perform benthopelagic migrations (Golikov et al., 2023b). While no studies have attempted to quantify squid biomass from underwater imaging surveys, this approach may be challenging since some squids may alter their behavior in response to lights (avoidance or attraction behavior) (e.g., Hoving et al., 2019; Snoeijs-Leijonmalm et al., 2022). On the other hand, presumably natural cephalopod behavior has been documented repeatedly via in situ observations of remotely operated vehicles (e.g., Hoving and Robison, 2012; Hoving et al., 2013b; Hoving and Haddock, 2017). Benthic cephalopods are often hard to identify to species level from images (e.g., Pratt et al., 2021; Robinson et al., 2021; Snoeijs-Leijonmalm et al., 2022; and many others). To summarise, currently trawling, eDNA and video imagery each have their strengths and weaknesses, and the best results are rendered by combining them (e.g., Thomsen et al., 2016; Merten et al., 2021; Kopp et al., 2023).

      Temporal dynamics of cephalopod abundance and biomass

      A clear increase in the ratio of cephalopod catches to standardized total catches, as well as an increase in the frequency of occurrence was recorded for most of the studied cephalopod species/taxa in the western Barents Sea from the 2005–2013 to 2014–2022 period. These observations align with ongoing continuous increase of mean annual temperatures in the Arctic during the same timeline (Swart et al., 2015; Rantanen et al., 2022). While the expansion of cephalopods’ ranges and habitats was previously indirectly implying to their increased abundance and biomass (Golikov et al., 2012, Golikov et al., 2013; Xavier et al., 2018; Golikov et al., 2019b; Oesterwind et al., 2022), our study is the first direct evidence that indeed the abundance of cephalopods in the Arctic is increasing. Our results are in line with a global trend that shows that cephalopods’ biomass is increasing in tropical and temperate areas (Doubleday et al., 2016). Our results are also in line with the trends observed for other Arctic nekton, such as increasing abundance of boreal pelagic fishes (Frainer et al., 2017; Brandt et al., 2023).

      The biomass density used here can be a proxy of absolute biomass when coupled with abundance data and distribution maps. This makes comparisons of biomass among the studies possible (even though limited by the use of different gear). The biomass of deep-sea octopods is the largest in the troughs and on the slopes of the marginal areas of the Barents Sea. Cirroteuthis muelleri specifically reaches the highest biomass density in the studied area, even though it is still about two times lower compared to this species’ hotspots in the Baffin Bay (Golikov et al., 2022). At the same time widespread Arctic taxa (Bathypolypus spp., Gonatus fabricii and Rossia spp.) have much higher abundance and ubiquitous distribution in the studied area, while their biomass is lower than of deep-sea octopods. The biomass of Bathypolypus spp. and Rossia spp. in the Baffin Bay seems comparable to our values (Frandsen and Wieland, 2004; Treble, 2007), but the trawls are different and it may flaw a direct comparison. In the Porcupine Seabight, abundance data of Bathypolypus spp. and Rossia spp. suggest similar or slightly lower biomass than in the Barents Sea, but the used trawls are also different from those used in the Barents Sea (Collins et al., 2001). When correctly estimated, absolute biomass may be a good parameter to compare among areas. Because we do not know the trawl catchability of cephalopods, absolute biomass is currently rarely used. Previous conservative estimates of absolute biomass include 6.5 thousand tonnes of R. papebrosa and 24.8 thousand tonnes of G. fabricii in the Norwegian-Russian Ecosystem Survey area in 2007 and 2011, respectively by Golikov et al. (2017). Our current study exceeds these numbers in 8–10 times.

      The standardized survey (gear, time and place) demonstrating the congruent significant decrease of biomass and significant increase in individual numbers (see Results and above) indirectly suggests a reduction in body-size of Bathypolypus spp. in the western Barents Sea. There are various examples of reduction in size in aquatic invertebrates, fishes, and some seabirds in response to climate change (e.g., Gardner et al., 2011; Sheridan and Bickford, 2011; Ikpewe et al., 2021). Among cephalopods, size reduction in response to climate change has only been recorded for squids (Jackson and Domeier, 2003; Hoving et al., 2013a; Arkhipkin et al., 2015; Takahara et al., 2017).

      To date, cephalopod monitoring in the Barents Sea has been performed via analysis of benthos bycatch from the Norwegian-Russian Ecosystem Survey. This survey uses the Campelen-1800 bottom trawl which is designed for demersal shrimp and fish surveys (McCallum and Walsh, 1994). It is not typically used to assess pelagic squids, as was done in this study. Still, even with a gear that is suboptimal for nekton, G. fabricii is the second most abundant cephalopod in the study area. This suggests that biomass of G. fabricii and other squids in the Barents Sea may be even higher if sampled with a pelagic trawl (Golikov et al., 2012, Golikov et al., 2017; Golikov et al., 2019a).

      Challenges to cephalopod identification

      Cephalopod identification can be challenging for non-specialists, also because of wrong or insufficient species names in GenBank (e.g., Fernández-Álvarez et al., 2021; Katugin and Zolotova, 2023). Specifically, in Bathypolypus spp. only mature males can be reliably identified by non-specialists. Genetic barcodes from reliably identified B. bairdii and B. pugniger were only recently uploaded to GenBank (Taite et al., 2023). Muusoctopus aegir was first described in 2023 (Golikov et al., 2023a), and is in GenBank as ‘Muusoctopus sp.’ (Taite et al., 2023). Sequences of specimens that were morphologically identified as Gonatus fabricii and G. steenstrupi and originated from several studies in the North Atlantic cluster as a single species in GenBank (Lindgren et al., 2005; Lindgren, 2010; Vecchione et al., 2010; Taite et al., 2020). These Gonatus sequences were referred to as being different from ‘real’ G. fabricii from the Arctic (Taite et al., 2020; Katugin and Zolotova, 2023), which was cited as ‘Lindgren, unpublished’. To date, only G. fabricii has been recorded in the Barents Sea (Golikov et al., 2012; Xavier et al., 2018; Golikov et al., 2019a). The most northern distribution is still unknown for G. steenstrupi, and is supposed to be in the low Arctic areas, such as north off Iceland (Xavier et al., 2018; Golikov et al., 2018a). Rossia palpebrosa also has several misidentifications in GenBank (they do not even cluster as one species; A.V.G., pers. obs.), and there are no uploaded sequences for R. moelleri and R. megaptera.

      In this study there was a significant increase in quality of onboard identification expertise by benthic experts over time. This is demonstrated by a three times-decrease of unidentified cephalopods from the trawl catches from the 2005–2013 period to the 2014–2022 period, and by changed ratios of taxa within Bathypolypus spp. Onboard experts recognized B. bairdii and B. pugniger more often. Still, 10% of cephalopod catches were unidentified in the 2014–2022 period, which imply necessary improvements of onboard identification.

      Data availability statement

      The data analysed in this study is subject to the following licenses/restrictions: The dataset is still in work under our team’s other projects; also the data from Russian part of the Norwegian-Russian Ecosystem Survey are in not in public access yet. Once they are, the whole dataset will be made available as soon as possible. Requests to access these datasets should be directed to golikov.ksu@gmail.com.

      Ethics statement

      Ethical approval was not required for the study involving animals in accordance with the local legislation and institutional requirements because samples were obtained as a bycatch from cruises; when they come as a bycatch, they are already dead when onboard. No animals were killed specifically for this project. The specimens are not vertebrates, neither are they non-human primates, genetically modified organisms, cloned farm animals or endangered species.

      Author contributions

      AG: Conceptualization, Formal analysis, Funding acquisition, Investigation, Resources, Visualization, Writing – original draft, Writing – review & editing. LJ: Formal analysis, Funding acquisition, Resources, Visualization, Writing – original draft, Writing – review & editing. RS: Conceptualization, Formal analysis, Investigation, Writing – review & editing. DZ: Formal analysis, Resources, Writing – review & editing. HJH: Conceptualization, Formal analysis, Funding acquisition, Resources, Writing – review & editing.

      Funding

      The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement № 101065960 (granted to AG); from Norwegian-Russian Ecosystem Survey (AG, LJ = PI on benthos and DZ); and HJH was supported by Helmholtz POF IV.

      Acknowledgments

      We are grateful to the scientific groups and crews of all RVs participating in the Norwegian-Russian Ecosystem Survey over these years, and especially to the benthic experts onboard (Pavel A. Lubin, Olga L. Zimina, Igor E. Manushin, Natalya A. Strelkova, Anne K. Sveistrup, Heidi Gabrielsen and many others); and to Julian B. Stauffer for his support with map design. We thank the editor, Dr. Paco Bustamante, two reviewers and Dr. Marek Lipinski whose comments helped us to improve the manuscript.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2024.1392585/full#supplementary-material

      References Arkhipkin A. Argüelles J. Shcherbich Z. Yamashiro C. (2015). Ambient temperature influence adult size and life span in jumbo squid Dosidicus gigas . Can. J. Fish. Aquat. Sci. 72, 400409. doi: 10.1139/cjfas-2014–0386 Bjørke H. Gjøsaeter H. (1998). Who eats the larger Gonatus fabricii (Lichtenstein) in the Norwegian Sea? ICES. CM. Pap. Rep. M10, 111. Brandt S. Wassmann P. Piepenburg D. (2023). Revisiting the footprints of climate change in Arctic marine food webs: an assessment of knowledge gained since 2010. Front. Mar. Sci. 10. doi: 10.3389/fmars.2023.1096222 Buhl-Mortensen L. Buhl-Mortensen P. Dolan M. J. F. Gonzalez-Mirelis G. (2015). Habitat mapping as a tool for conservation and sustainable use of marine resources: some perspectives from the MAREANO Programme, Norway. J. Sea. Res. 100, 4661. doi: 10.1016/j.seares.2014.10.014 CAFF (2017). State of the Arctic Marine Biodiversity Report (Akureyri: Conservation of Arctic Flora and Fauna International Secretariat). Collins M. A. Yau C. Allcock L. Thurston M. H. (2001). Distribution of deep-water benthic and bentho-pelagic cephalopods from the north-east Atlantic. J. Mar. Biol. Assoc. U.K. 81, 105117. doi: 10.1017/S0025315401003459 De Jonge D. S. W. Merten V. Bayer T. Puebla O. Reusch T. B. H. Hoving H.-J. T. (2021). A novel metabarcoding primer pair for environmental DNA analysis of Cephalopoda (Mollusca) targeting the nuclear 18S rRNA region. R. Soc Open Sci. 8, 201388. doi: 10.1098/rsos.201388 Doubleday Z. A. Prowse T. A. A. Arkhipkin A. Pierce G. J. Semmens J. Steer M. . (2016). Global proliferation of cephalopods. Curr. Biol. 26, R406R407. doi: 10.1016/j.cub.2016.04.002 Eriksen E. Gjøsæter H. Prozorkevich D. Shamray E. Dolgov A. Skern-Mauritzen M. . (2018). From single species surveys towards monitoring of the Barents Sea ecosystem. Prog. Oceanogr. 166, 414. doi: 10.1016/j.pocean.2017.09.007 Fernández-Álvarez F.Á. Sánchez P. Villanueva R. (2021). Morphological and molecular assessments of bobtail squids (Cephalopoda: Sepiolidae) reveal a hidden history of biodiversity. Front. Mar. Sci. 7. doi: 10.3389/fmars.2020.632261 Fossheim M. Primicerio R. Johannesen E. Ingvaldsen R. B. Aschan M. M. Dolgov A. V. (2015). Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673677. doi: 10.1038/nclimate2647 Frainer A. Primicerio R. Kortsch S. Aune M. Dolgov A. V. Fossheim M. . (2017). Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. U.S.A. 114, 1220212207. doi: 10.1073/pnas.1706080114 Frandsen R. P. Wieland K. (2004). Cephalopods in Greenland waters (Nuuk: Pinngortitaleriffik, Greenland Institute of Natural Resources). Gardiner K. Dick T. A. (2010). Arctic cephalopod distributions and their associated predators. Polar. Res. 29, 209227. doi: 10.1111/j.1751–8369.2010.00146.x Gardner J. L. Peters A. Kearney M. R. Joseph L. Heinsohn R. (2011). Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285291. doi: 10.1016/j.tree.2011.03.005 Gerland S. Ingvaldsen R. B. Reigstad M. Sundfjord A. Bogstad B. Chierici M. . (2023). Still arctic? – the changing barents sea. Elem. Sci. Anth. 11, 88. doi: 10.1525/elementa.2022.00088 Golikov A. V. Artemev G. M. Blicher M. E. Gudmundsson G. Jørgensen L. L. Olafsdottir S. H. . (2022). Deep and cold: are Boreal and Arctic finned octopods, Stauroteuthis syrtensis and Cirroteuthis muelleri (Cephalopoda, Octopoda, Cirrata), ecological analogues? Deep-Sea Res. I. 181, 103706. doi: 10.1016/j.dsr.2022.103706 Golikov A. V. Blicher M. E. Jørgensen L. L. Walkusz W. Zakharov D. V. Zimina O. L. . (2019a). Reproductive biology and ecology of the boreoatlantic armhook squid Gonatus fabricii (Cephalopoda: Gonatidae). J. Moll. Stud. 85, 287299. doi: 10.1093/mollus/eyz023 Golikov A. V. Ceia F. R. Sabirov R. M. Ablett J. D. Gleadall I. G. Gudmundsson G. . (2019b). The first global deep-sea stable isotope assessment reveals the unique trophic ecology of Vampire Squid Vampyroteuthis infernalis (Cephalopoda). Sci. Rep. 9, 19099. doi: 10.1038/s41598–019-55719–1 Golikov A. V. Ceia F. R. Sabirov R. M. Batalin G. A. Blicher M. E. Gareev B. I. . (2020). Diet and life history reduce interspecific and intraspecific competition among three sympatric Arctic cephalopods. Sci. Rep. 10, 21506. doi: 10.1038/s41598–020-78645-z Golikov A. V. Gudmundsson G. Blicher M. E. Jørgensen L. L. Korneeva E. I. Olafsdottir S. H. . (2023a). A review of the genus Muusoctopus (Cephalopoda: Octopoda) from Arctic waters. Zool. Lett. 9, 21. doi: 10.1186/s40851–023-00220-x Golikov A. V. Sabirov R. M. Gudmundsson G. (2018a) Cephalopoda (Smokkdýr), Gonatus steenstrupi Kristensen 1981. Available online at: http://www.ni.is/biota/animalia/mollusca/cephalopoda/gonatus-steenstrupi (Accessed February 3, 2022). Golikov A. V. Sabirov R. M. Gudmundsson G. (2018b) Cephalopoda (Smokkdýr), Rossia megaptera Verrill 1881. Available online at: http://www.ni.is/biota/animalia/mollusca/cephalopoda/rossia-megaptera (Accessed February 3, 2022). Golikov A. V. Sabirov R. M. Lubin P. A. (2012). New data on Gonatus fabricii (Cephalopoda, Teuthida) distribution and reproductive biology in the Western Sector of Russian Arctic. Proc. Kazan. Uni. Nat. Sci. Ser. 154, 118128. Golikov A. V. Sabirov R. M. Lubin P. A. (2017). First assessment of biomass and abundance of cephalopods Rossia palpebrosa and Gonatus fabricii in the Barents Sea. J. Mar. Biol. Assoc. U.K. 97, 16051616. doi: 10.1017/S0025315416001004 Golikov A. V. Sabirov R. M. Lubin P. A. Jørgensen L. L. (2013). Changes in distribution and range structure of Arctic cephalopods due to climatic changes of the last decades. Biodiversity 14, 2835. doi: 10.1080/14888386.2012.702301 Golikov A. V. Sabirov R. M. Lubin P. A. Jørgensen L. L. Beck I.-M. (2014). The northernmost record of Sepietta oweniana (Cephalopoda: Sepiolidae) and comments on boreo-subtropical cephalopod species occurrence in the Arctic. Mar. Biodivers. Rec. 7, e58. doi: 10.1017/S1755267214000645 Golikov A. V. Stauffer J. B. Schindler S. V. Taylor J. Boehringer L. Purser A. . (2023b). Miles down for lunch: deep-sea in situ observations of Arctic finned octopods Cirroteuthis muelleri suggest pelagic–benthic feeding migration. Proc. R. Soc B. 290, 20230640. doi: 10.1098/rspb.2023.0640 Hammer Ø. Harper D. A. T. Ryan P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Paleontol. Electron. 4, 19. Hoving H. J. T. Christiansen S. Fabrizius E. Hauss H. Kiko R. Linke P. . (2019). The Pelagic In situ Observation System (PELAGIOS) to reveal biodiversity, behavior, and ecology of elusive oceanic fauna. Ocean. Sci. 15, 13271340. doi: 10.5194/os-15–1327-2019 Hoving H. J. T. Gilly W. F. Markaida U. Benoit-Bird K. J. Brown Z. W. Daniel P. . (2013a). Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob. Change Biol. 19, 20892103. doi: 10.1111/gcb.12198 Hoving H. J. T. Haddock S. H. D. (2017). The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna. Sci. Rep. 7, 44952. doi: 10.1038/srep44952 Hoving H. J. T. Robison B. H. (2012). Vampire squid: detritivores in the oxygen minimum zone. Proc. R. Soc B. 279, 45594567. doi: 10.1098/rspb.2012.1357 Hoving H. J. T. Zeidberg L. D. Benfield M. C. Bush S. L. Robison B. H. Vecchione M. (2013b). First in situ observations of the deep-sea squid Grimalditeuthis bonplandi reveal unique use of tentacles. Proc. R. Soc B. 280, 20131463. doi: 10.1098/rspb.2013.1463 Ikpewe I. E. Baudron A. R. Ponchon A. Fernandes P. G. (2021). Bigger juveniles and smaller adults: changes in fish size correlate with warming seas. J. Appl. Ecol. 58, 847856. doi: 10.1111/1365–2664.13807 Jackson G. D. Domeier M. L. (2003). The effects of an extraordinary El Niño / La Niña event on the size and growth of the squid Loligo opalescens off Southern California. Mar. Biol. 142, 925935. doi: 10.1007/s00227-002-1005-4 Jakobsson M. Mayer L. A. Bringensparr C. Castro C. F. Mohammad R. Johnson P. . (2020). The international bathymetric chart of the arctic ocean version 4.0. Sci. Data 7, 176. doi: 10.1038/s41597–020-0520–9 Jørgensen L. L. Archambault P. Armstrong C. Dolgov A. Edinger E. Gaston T. . (2016). “Arctic marine biodiversity. Chapter 36G,” in First Global Integrated Marine Assessment, World Ocean Assessment I. Eds. Inniss L. Simcock A. (United Nations, New York), 147. Jørgensen L. L. Bakke G. Hoel A. H. (2020). Responding to global warming: new fisheries management measures in the Arctic. Prog. Oceanogr. 188, 102423. doi: 10.1016/j.pocean.2020.102423 Jørgensen L. L. Logerwell E. A. Strelkova N. Zakharov D. Roy V. Nozères C. . (2022). International megabenthic long-term monitoring of a changing arctic ecosystem: baseline results. Prog. Oceanogr. 200, 102712. doi: 10.1016/j.pocean.2021.102712 Jørgensen L. Primicerio R. Ingvaldsen R. Fossheim M. Strelkova N. Thangstad T. . (2019). Impact of multiple stressors on sea bed fauna in a warming Arctic. Mar. Ecol. Prog. Ser. 608, 112. doi: 10.3354/meps12803 Katugin O. N. Zolotova A. O. (2023). Species identification and genetic relationships in the squid family Gonatidae (Teuthida, Cephalopoda) based on partial sequencing of mitochondrial and nuclear genes. J. Mar. Biol. Assoc. U.K. 103, e88. doi: 10.1017/S0025315423000759 Kopp D. Faillettaz R. Le Joncour A. Simon J. Morandeau F. Le Bourdonnec P. . (2023). Assessing without harvesting: pros and cons of environmental DNA sampling and image analysis for marine biodiversity evaluation. Mar. Environ. Res. 188, 106004. doi: 10.1016/j.marenvres.2023.106004 Lind S. Ingvaldsen R. B. Furevik T. (2018). Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634639. doi: 10.1038/s41558–018-0205-y Lindgren A. R. (2010). Molecular inference of phylogenetic relationships among Decapodiformes (Mollusca: Cephalopoda) with special focus on the squid Order Oegopsida. Mol. Phylogenet. Evol. 56, 7790. doi: 10.1016/j.ympev.2010.03.025 Lindgren A. R. Katugin O. N. Amezquita E. Nishiguchi M. K. (2005). Evolutionary relationships among squids of the family Gonatidae (Mollusca: Cephalopoda) inferred from three mitochondrial loci. Mol. Phylogenet. Evol. 36, 101111. doi: 10.1016/j.ympev.2004.12.009 Lubin P. A. Sabirov R. M. (2007). “Fauna of cephalopods (Mollusca, Cephalopoda) of Spitsbergen Archipelago,” in Proceedings of VII International Scientific Conference ‘Complex Studies of Spitsbergen Archipelago. Ed. Matishov G. G. (Kola Scientific Centre of Russian Academy of Sciences, Apatity), 300306. McCallum B. R. Walsh S. J. (1994). Campelen 1800. Survey trawl reference manual (Newfoundland: Department of Fisheries and Oceans). Mercer M. C. (1968). Systematics of the Sepiolid squid Rossia Owen 1835 in Canadian waters with a preliminary review of the genus and notes on biology (St. John’s: Memorial University of Newfoundland). Merten V. Bayer T. Reusch T. B. H. Puebla O. Fuss J. Stefanschitz J. . (2021). An integrative assessment combining deep-sea net sampling, in situ observations and environmental DNA analysis identifies Cabo Verde as a cephalopod biodiversity hotspot in the Atlantic Ocean. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.760108 Merten V. Puebla O. Bayer T. Reusch T. B. H. Fuss J. Stefanschitz J. . (2023). Arctic nekton uncovered by e DNA metabarcoding: Diversity, potential range expansions, and pelagic-benthic coupling. Environ. DNA 5, 503518. doi: 10.1002/edn3.403 Michalsen K. Dalpadado P. Eriksen E. Gjøsaeter H. Ingvaldsen R. B. Johannesen E. . (2011). “The joint Norwegian-Russian ecosystem survey: overview and lessons learned,” in Proceeding of the 15th Norwegian-Russian Symposium “Svalbard Climate Change and Effects on the Barents Sea Marine Living Resources. Eds. Haug T. Dolgov A. V. Drevetnyak K. Røttingen I. Sunnanå K. Titov O. (Institute of Marine Research, Bergen), 247272. Mikkelsen N. Planque B. Arneberg P. Skern-Mauritzen M. Hansen C. Fauchald P. . (2023). Multiple stakeholders’ perspectives of marine social ecological systems, a case study on the Barents Sea. Ocean. Coast. Manage. 242, 106724. doi: 10.1016/j.ocecoaman.2023.106724 Moe A. Jørgensen A.-K. (2013). Offshore mineral development in the Russian Barents Sea. Post-Sov. Geo. Eco. 41, 98133. doi: 10.1080/10889388.2000.10641135 Muus B. J. (2002). The bathypolypusbenthoctopus problem of the north atlantic (Octopodidae, cephalopoda). Malacologia 44, 175222. Nesis K. N. (1987). “Cephalopod molluscs of the Arctic Ocean and its seas,” in Fauna and distribution of molluscs: North Pacifc and Arctic Basin. Ed. Kafanov A. I. (USSR Academy of Sciences, Vladivostok), 115136. Nesis K. N. (2001). West-Arctic and East-Arctic distributional ranges of cephalopods. Sarsia 86, 111. doi: 10.1080/00364827.2001.10420456 Nozères C. Roy V. (2021). Photo catalogue of coastal marine fauna on the Icelandic Scallop (Chlamys islandica) survey in the northern Gulf of St. Lawrence. Can. Manuscr. Rep. Fish. Aquat. Sci. 3207, 1165. Oesterwind D. Barrett C. J. Sell A. F. Nunez-Riboni I. Kloppmann M. Piatkowski U. . (2022). Climate change-related changes in cephalopod biodiversity on the North East Atlantic Shelf. Biodivers. Conserv. 31, 14911518. doi: 10.1007/s10531–022-02403-y Overland J. E. Wang M. Walsh J. E. Stroeve J. C. (2014). Future Arctic climate changes: adaptation and mitigation time scales. Earth’s. Future 2, 6874. doi: 10.1002/2013EF000162 Pecl G. T. Jackson G. D. (2008). The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev. Fish. Biol. Fisheries. 18, 373385. doi: 10.1007/s11160–007-9077–3 Praetorius S. Rugenstein M. Persad G. Caldeira K. (2018). Global and Arctic climate sensitivity enhanced by changes in North Pacific heat flux. Nat. Commun. 9, 3124. doi: 10.1038/s41467–018-05337–8 Pratt A. France S. C. Vecchione M. (2021). Survey of bathyal incirrate octopods in the western North Atlantic. Mar. Biodivers. 51, 49. doi: 10.1007/s12526–021-01191-y Pratt A. France S. C. Vecchione M. (2023). Deep octopod habitat in the western North Atlantic characterized by Standard Ecological Classification from videos. Ecosphere 14, e4699. doi: 10.1002/ecs2.4699 Rantanen M. Karpechko A. Y. Lipponen A. Nordling K. Hyvarinen O. Ruosteenoja K. . (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168. doi: 10.1038/s43247–022-00498–3 Reid A. Jereb P. (2005). “Family Sepiolidae,” in Cephalopods of the world. An annotated and illustrated catalogue of species known to date. No.4, Vol. 1: Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae). Eds. Jereb P. Roper C. F. E. (FAO, Rome), 153203. Renaud P. E. Sejr M. K. Bluhm B. A. Sirenko B. Ellingsen I. H. (2015). The future of Arctic benthos: expansion, invasion, and biodiversity. Prog. Oceanogr. 139, 244257. doi: 10.1016/j.pocean.2015.07.007 Robinson N. J. Johnsen S. Brooks A. Frey L. Judkins H. Vecchione M. . (2021). Studying the swift, smart, and shy: unobtrusive camera-platforms for observing large deep-sea squid. Deep-Sea Res. I. 172, 103538. doi: 10.1016/j.dsr.2021.103538 Robison B. H. (2004). Deep pelagic biology. J. Exp. Mar. Biol. Ecol. 300, 253272. doi: 10.1016/j.jembe.2004.01.012 Robison B. H. Reisenbichler K. R. Sherlock R. E. Silguero J. M. B. Chavez F. P. (1998). Seasonal abundance of the siphonophore, Nanomia bijuga, in Monterey Bay. Deep-Sea Res. II. 45, 17411751. doi: 10.1016/S0967–0645(98)80015–5 Rourke M. L. Fowler A. M. Hughes J. M. Broadhurst M. K. Di Battista J. D. Fielder S. . (2022). Environmental DNA (eDNA) as a tool for assessing fish biomass: a review of approaches and future considerations for resource surveys. Environ. DNA 4, 933. doi: 10.1002/edn3.185 Sabirov R. M. Golikov A. V. Nigmatullin C. Lubin P. A. (2012). Structure of the reproductive system and hectocotylus in males of lesser flying squid Todaropsis eblanae (Cephalopoda: Ommastrephidae). J. Nat. Hist. 46, 17611778. doi: 10.1080/00222933.2012.700335 Sabirov R. M. Lubin P. A. Golikov A. V. (2009). Finding of the lesser flying squid Todaropsis eblanae (Oegopsida, Ommastrephidae) in the Barents Sea. Zool. J. 88, 10101012. Sheridan J. A. Bickford D. (2011). Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401406. doi: 10.1038/nclimate1259 Snoeijs-Leijonmalm P. Flores H. Sakinan S. Hildebrandt N. Svenson A. Castellani G. . (2022). Unexpected fish and squid in the central Arctic deep scattering layer. Sci. Adv. 8, 7536. doi: 10.1126/sciadv.abj7536 Stratmann T. Simon-Lledó E. Morganti T. M. de Kluijver A. Vedenin A. Purser A. (2022). Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts. Sci. Rep. 12, 20610. doi: 10.1038/s41598–022-25240-z Swart N. C. Fyfe J. C. Hawkins E. Kay J. E. Jahn A. (2015). Influence of internal variability on Arctic sea-ice trends. Nat. Clim. Change 5, 8689. doi: 10.1038/nclimate2483 Taberlet P. Coissac E. Hajibabaei M. Rieseberg L. H. (2012a). Environmental DNA. Mol. Ecol. 21, 17891793. doi: 10.1111/j.1365–294X.2012.05542.x Taberlet P. Coissac E. Pompanon F. Brochmann C. Willerslev E. (2012b). Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 20452050. doi: 10.1111/j.1365–294X.2012.05470.x Taite M. Dillon L. Strugnell J. M. Drewery J. Allcock A. L. (2023). DNA barcoding reveals unexpected diversity of deep-sea octopuses in the North-East Atlantic. Biol. Environ. 123, 112. doi: 10.1353/bae.2023.0000 Taite M. Vecchione M. Fennell S. Allcock L. A. (2020). Paralarval and juvenile cephalopods within warm-core eddies in the North Atlantic. Bull. Mar. Sci. 96, 235262. doi: 10.5343/bms.2019.0042 Takahara H. Kidokoro H. Sakurai Y. (2017). High temperatures may halve the lifespan of the Japanese flying squid, Todarodes pacificus . J. Nat. Hist. 51, 26072614. doi: 10.1080/00222933.2016.1244297 Thomsen P. F. Møller P. R. Sigsgaard E. E. Knudsen S. W. Jørgensen O. A. Willerslev E. (2016). Environmental DNA from seawater samples correlate with trawl catches of Subarctic, deepwater fishes. PloS One 11, e0165252. doi: 10.1371/journal.pone.0165252 Thomsen P. F. Willerslev E. (2015). Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity. Biol. Cons. 183, 418. doi: 10.1016/j.biocon.2014.11.019 Treble M. A. (2007). Analysis of data from the 2006 trawl surveys in NAFO Division 0A. NAFO SCR Doc. 07/41. Dartmouth: Northwest Atlantic Fisheries Organization. 125. Vecchione M. Young R. E. Piatkowski U. (2010). Cephalopods of the northern mid-atlantic ridge. Mar. Biol. Res. 6, 2552. doi: 10.1080/17451000902810751 Visser F. Merten V. J. Bayer T. Oudejans M. G. de Jonge D. S. W. Puebla O. . (2021). Deep-sea predator niche segregation revealed by combined cetacean biologging and eDNA analysis of cephalopod prey. Sci. Adv. 7, 5908. doi: 10.1126/sciadv.abf5908 Xavier J. C. Cherel Y. Allcock L. Rosa R. Sabirov R. M. Blicher M. E. . (2018). A review on the biodiversity, distribution and trophic role of cephalopods in the Arctic and Antarctic marine ecosystems under a changing ocean. Mar. Biol. 165, 93. doi: 10.1007/s00227–018-3352–9 Zakharov D. V. Jørgensen L. L. Manushin I. E. Strelkova N. A. (2020). Barents Sea megabenthos: spatial and temporal distribution and production. Mar. Biol. J. 5, 1937. doi: 10.21072/mbj.2020.05.2.03 Zakharov D. V. Strelkova N. A. Manushin I. E. Zimina O. L. Jørgensen L. L. Lyubin P. A. . (2018). Atlas of the megabenthic organisms of the Barents Sea and adjacent waters (Murmansk: PINRO Press). Zar J. H. (2010). Biostatistical analysis (Upper Saddle River: Prentice Hall).
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016lzcad.com.cn
      gzpzqc.org.cn
      icaogou.com.cn
      hi04.com.cn
      v3n77.net.cn
      www.ruuyue.com.cn
      rjkyie.com.cn
      www.qclvyou.net.cn
      www.qyad.com.cn
      qhchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p