Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2024.1359785 Marine Science Original Research A taste of youth: Seasonal changes in the diet of immature white sharks in eastern Australia Lipscombe Rebecca S. 1 * Meyer Lauren 2 Butcherine Peter 1 Morris Stephen 3 Huveneers Charlie 2 Scott Anna 1 Butcher Paul A. 1 4 1 National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia 2 Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Bedford Park, SA, Australia 3 New South Wales (NSW) Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW, Australia 4 New South Wales (NSW) Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW, Australia

Edited by: George Jackson, Loma Linda University, United States

Reviewed by: Emigdio Marín-Enríquez, National Council of Science and Technology (CONACYT), Mexico

Felipe Galván-Magaña, Centro Interdisciplinario de Ciencias Marinas (IPN), Mexico

*Correspondence: Rebecca S. Lipscombe, r.lipscombe83@hotmail.com

16 07 2024 2024 11 1359785 22 12 2023 17 06 2024 Copyright © 2024 Lipscombe, Meyer, Butcherine, Morris, Huveneers, Scott and Butcher 2024 Lipscombe, Meyer, Butcherine, Morris, Huveneers, Scott and Butcher

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

White sharks (Carcharodon carcharias) play a crucial ecological role, shaping ecosystems through direct predation and risk effects. On the east coast of Australia, immature white sharks are broadly distributed, inhabiting a wide range of habitats and ecosystems from temperate Tasmania to tropical North Queensland. Using stable isotopes and fatty acids of muscle and plasma, we examined the diet and habitat use of 136 immature white sharks (152–388 cm total length) captured on SMART drumlines on the East Australian coast. This facilitated the temporal assessment of white shark trophic ecology from a few weeks to approximately a year. Biochemistry of muscle samples showed that white sharks predominantly feed on low trophic level prey from coastal environments. A seasonal shift in diet was evident, with the increasing proportions of essential fatty acids in muscle tissues during spring and summer suggesting a greater consumption of high-nutrition preys during those months compared to autumn and winter. By combining stable isotope and fatty acid analysis, we gain a comprehensive understanding of immature white shark diet in eastern Australia. Our results confirm that white sharks are generalist predators that exhibit seasonal shifts in their diet. Their high use of coastal habitats reinforces the importance of these areas for foraging, which is crucial for growth and development during this critical life stage.

Stable isotopes fatty acids trophic ecology biomarkers marine predator section-in-acceptance Marine Molecular Biology and Ecology

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Highly mobile marine predators play crucial ecological roles by connecting spatially separated food webs and shaping ecosystems through diet and habitat use (Heithaus and Dill, 2002; Heithaus et al., 2010; Williams et al., 2018). In marine ecosystems, diet and energetic requirements impact an individual’s ability to execute intrinsic biological processes necessary for migration, reproduction, and survival (de Sousa Rangel et al., 2021a). Such energetic demands vary throughout an animal’s life stages, influencing trophic role, foraging preferences and capabilities throughout ontogeny (Kohl et al., 2015; Chaguaceda et al., 2020). The trophic ecology of many marine predators, such as sharks, is well documented (Hussey et al., 2015) but often focuses on large mature individuals (Heithaus and Dill, 2002; Huveneers et al., 2018). Understanding the diet of marine predators across all life stages is essential, as resource availability and feeding preferences influence shark habitat selection, particularly in early life stages (Krausman, 1999; Heithaus, 2007).

      Insight into the diet of marine predators is often limited to brief snapshots of recently consumed prey from direct observations of predation, stomach content analysis, or, more recently, genetic analyses of faecal material (Munroe et al., 2018; Clark et al., 2023). However, relying solely on snapshots of recently ingested meals may lead to inaccurate assessments of diet and foraging patterns because most recent meals might not represent a species’ diet comprehensively. Alternative indirect measures, e.g., biochemical tracers, provide valuable information over broader and more ecologically relevant spatial and temporal scales and are used to quantify and estimate resource use over weeks to years (Hussey et al., 2011; Pethybridge et al., 2014; Raoult et al., 2019; Meyer et al., 2021). Based on the principle ‘you are what you eat’, elements and compounds within prey items are assimilated into consumer tissue with minimal or predictable modification and can be traced upwards from the base of the food chain (Iverson et al., 2004; Budge et al., 2006; Munroe et al., 2018). Biochemical tracers can reveal diet, feeding patterns, and habitat use (Carlisle et al., 2021; Meyer et al., 2021), with short-term information (~30 days) gained from metabolically active tissues like plasma and liver (Hussey et al., 2012a), while less active tissue like muscle provides longer-term (months to years) information (Kim et al., 2012a).

      Stable isotopes of carbon and nitrogen are widely used biochemical tracers owing to their ability to quantify basal carbon sources and trophic levels, respectively. This enables stable isotope analyses to elucidate a predator’s dietary composition and specialisation, ontogenetic changes, variations in habitat use, and ecological dynamics within a community (Peterson and Fry, 1987; Carlisle et al., 2012; Pethybridge et al., 2018). Additionally, the use of lipids and fatty acids can be used to infer the diet, habitat use, nutritional condition, and physiology of elasmobranchs (Pethybridge et al., 2011; Gallagher et al., 2017; Meyer et al., 2017; Munroe et al., 2018). Fatty acids are critical for physiological functions, including growth, development, reproduction, and cellular maintenance (Sargent et al., 1995; Tocher, 2003). However, elasmobranchs have limited capacity for lipid oxidation in extrahepatic tissues (Zammit and Newsholme, 1979; Ballantyne, 1997), and essential fatty acids, including arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA), cannot be synthesised de novo (Sargent et al., 1995). Therefore, fatty acids must be obtained through diet, and many remain relatively unchanged, enabling their use as dietary biomarkers (Dalsgaard et al., 2003; Iverson, 2009). Fatty acid incorporation in tissues is substantially quicker than stable isotopes, with shifts in consumer nutrition reflected in muscle and blood fatty acid profiles within weeks rather than months or years (Beckmann et al., 2013). Subsequently, fatty acids are useful biomarkers, providing a fine-scale assessment of spatiotemporal changes in diet and nutrition (Rohner et al., 2013; Alderete-Macal et al., 2020; Meyer et al., 2021).

      On the east coast of Australia, juvenile and sub-adult white sharks (hereafter referred to as immature white sharks) are broadly distributed, inhabiting a wide range of coastal habitats and ecosystems from temperate Tasmania and Bass Strait (Victoria) in summer to tropical regions as far north as the southern Great Barrier Reef (Queensland) in winter (Bruce and Bradford, 2012; Bruce et al., 2019). Telemetry studies reveal that immature white sharks undertake seasonal north-south migrations, spending increased time in southern Queensland and northern New South Wales from September, before moving to southern New South Wales and Victorian waters in March (Spaet et al., 2020b). Similar patterns of seasonal movement have been reported in the North Atlantic (Skomal et al., 2017; Franks et al., 2021), South Africa (Towner et al., 2013), and the north-east Pacific (Weng et al., 2007). Although highly migratory, immature white sharks spend more time in so-called ‘nursery’ areas between Lake Macquarie (33.3°S) and South West Rocks (30.8°S), returning in consecutive years (Bruce et al., 2019).

      Previous studies using stomach contents and fatty acids, and more recently environmental DNA (eDNA) metabarcoding, indicate the diet of these white sharks comprises primarily of finned fishes, benthic batoids, squid and marine mammals (Pethybridge et al., 2014; Grainger et al., 2020; Clark et al., 2023). However, inconsistencies between these studies are evident. Stomach contents evaluated by Grainger et al. (2020) found Australian salmon (Arripis trutta) had high occurrence, compared to sea mullet (Mugil cephalus) using eDNA metabarcoding by Clark et al. (2023). These discrepancies highlight the variability in white shark diet likely attributed to spatial and temporal differences within the sampling regime. Earlier studies (Pethybridge et al., 2014; Grainger et al., 2020) relied on opportunistic sampling from fisheries bycatch or shark meshing programs, with sample sizes of 21 and 52, respectively, and limited samples collected during winter, when white shark presence is high Spaet et al. (2020b). Although the novel method of environmental DNA described by Clark et al. (2023) provides a higher taxonomic resolution than biochemical tracers, a lack of reference sequence data may result in underrepresentation, while sample contamination from the surrounding environment may lead to false positives (Beng and Corlett, 2020). These studies have provided valuable insight into the diet of east coast white sharks, but temporal changes in the diet of immature white sharks in this region are yet to be described. Seasonal fluctuations in prey abundance are persistent on the east coast of Australia (Brodie et al., 2017), and the dynamic oceanographic conditions influence prey distribution (Hobday et al., 2011).

      The East Australian Current (EAC) is a western boundary current that flows from the Coral Sea, southward into New South Wales (Ridgway and Godfrey, 1997). Seasonal north-south expansion and contraction of the East Australian Current, in addition to high mesoscale kinetic energy, facilitates the distribution of chlorophyll a along the coastline (Everett et al., 2014; Liu et al., 2022). In northern areas at latitudes between 28.5°S and 31°S, the shelf narrows, leading to upwelling of nutrient-rich water and increases in primary productivity (Everett et al., 2014). The EAC has the strongest influence on shelf waters during late spring and summer, affecting the abundance and distribution of large marine predators along the east coast (Young et al., 2010; Hobday et al., 2011; Lee et al., 2021). Therefore, predators may require plasticity in habitat use and foraging patterns to meet energy and nutritional requirements in such fluctuating environments. Adaptation and responses to ephemeral prey availability remain species-specific (Terraube et al., 2011; Munroe et al., 2014), yet vital, as predators with the capability to adapt will be able to cope better with the forecasted impacts on environments and preys in the Anthropocene.

      In the present study, we detail the trophic ecology of immature white sharks along Australia’s east coast across temporal scales by using biochemical tracers and tissues reflecting diet from a few weeks up to a year. Specifically, we calculate annual and seasonal diet composition and infer foraging habitat from nitrogen and carbon stable isotopes. Fatty acid signatures of muscle and plasma were also used to investigate shifts in diet and trophic pathways. Together, these methods provide an integrated understanding of immature white shark diet and habitat use within a highly dynamic coastal ecosystem. Based on the documented seasonal movements of immature white sharks through acoustic and satellite telemetry and seasonal changes in prey distribution in this region, we hypothesised stable isotope and fatty acid values to reflect a seasonal shift in diet and nutritional condition.

      Materials and methods

      To quantify the diet and examine the foraging habitat of white sharks, 102 muscle and 39 blood samples (136 individuals; 8 sharks had both muscle and blood collected) were collected from sharks caught between Ballina (28.811° S 153.610° E) and Forster (32.180° S 152.511° E), New South Wales, Australia, from 9 August 2016 to 3 February 2022 ( Figure 1 ). We captured sharks using SMART (Shark-Management-Alert-in-Real-Time) drumlines deployed in coastal waters as part of the New South Wales Department of Primary Industries (NSW DPI) Shark Management Program (see Lipscombe et al., 2023 and Tate et al., 2021 for gear configuration and deployment). Previous studies have shown that the time spent on the line using this capture method does not impact plasma fatty acids, enabling the confident use of plasma fatty acids to examine diet and habitat use (Gallagher et al., 2019; Tate et al., 2019). We recorded sex and size (total length [TL] to the nearest cm). Sharks ranged from 152–388 cm TL, including six young-of-the-year < 175 cm TL, 119 juveniles 176–300 cm TL, and 11 sub-adults 300–388 cm TL (Bruce and Bradford, 2012).

      Sampling location and number of samples collected from white sharks in New South Wales, Australia.

      Sample collection and preparation

      We sampled the epaxial muscle adjacent to the dorsal fin using a hand-held 1 cm diameter stainless steel biopsy and stored on ice before transferring to a -18°C freezer. We collected blood via caudal venipuncture and placed into a lithium-heparin plasma separator vial (BD Vacutainer), centrifuged at 1534 ×g for 3 min and pipetted the plasma into 2 mL vials. We stored the plasma samples temporarily at -18°C in the field and later transferred them to a freezer at -80°C.

      Lipids were extracted from samples for subsequent fatty acid analysis to ensure lipid content did not bias carbon isotopes (Newsome et al., 2010; Carlisle et al., 2017). We lyophilised muscle (0.1 ± SD 0.01 g) and plasma (1.2 ± SD 0.78 g) for 48 h (Alpha LD14 plus freeze dryer) and homogenised the samples in a TissueLyser LT (Qiagen) for 2 min at 50 Hz to facilitate optimal lipid extraction. Using a modified Bligh and Dyer (1959) method, lipids were extracted from the lyophilised tissue using 3.8 mL of dichloromethane:methanol:Milli-Q (1:2:0.8 mL) solution for approximately 18 h. We centrifuged the solution at 1534 ×g for 2 min and transferred the supernatant into a glass tube, where we separated the polar and non-polar phases using 1 mL each of dichloromethane and 0.9% NaCl saline solution and centrifuged at 1534 ×g for 2 min. The lower non-polar layer was transferred to a 2 mL vial and dried it under N2 to a constant weight. We resuspended the total lipid extract in 1.5 mL dichloromethane and stored it at -80°C for subsequent fatty acid analysis.

      We air-dried the lipid-extracted tissue overnight in a fume hood to remove residual solvents. After lipid extraction, we removed urea and TMAO using three rounds of sonication in deionised water, following Kim and Koch (2012). We then oven-dried samples at 60°C for 48 h, ground them to a fine powder for 3 min at 50 Hz using a TissueLyser LT (Qiagen) and prepared them for stable isotope analysis.

      Fatty acid analysis

      We analysed fatty acid profiles of 102 muscle (60 female; 42 male) and 39 plasma (26 female; 13 male) tissues following a modified Bligh and Dyer trans-methylation procedure (Bligh and Dyer, 1959; described in Meyer et al., 2017). An aliquot of the total lipid extract was trans-methylated using 3 mL of dichloromethane:methanol:hydrochloric acid (10:10:1 v/v/v) for 2 h at 80°C, then allowed to cool to room temperature before adding 1 mL of Milli-Q. We extracted the resulting fatty acid methyl esters (FAME) from the methylating solvent using three washes of 1.8 ml hexane:dichloromethane (4:1 v/v), centrifuged at 1534 ×g for 5 min, collected the upper solvent layer containing the FAMES in a 2 mL glass vial, dried under N2 gas, and suspended it in 1 ml of dichloromethane. We identified and quantified individual fatty acids through gas chromatography (GC) and GC-mass spectrometry (GC-MS). We achieved peak separation using an Agilent Technologies 7890B GC (Palo Alto, California USA) with an Equity-1 fused silica capillary column (15 mm × 0.1 mm internal diameter and 0.1 mm film thickness), a flame ionisation detector, a splitless injector, and an Agilent Technologies 7683B Series auto-sampler. Samples were injected in splitless mode and carried by helium gas at an oven temperature of 120°C. The temperature was raised to 270°C at a rate of 10°C per min and then to 310°C at a rate of 5°C per min. We quantified fatty acid peaks using Agilent Technologies ChemStation software (Palo Alto, California, USA) and confirmed identities using a Finnigan Thermoquest DSQ GC-MS system. Fatty acids were converted from chromatogram peak area to percentage of total area.

      Stable isotope analysis

      We weighed 102 dried muscle (60 female; 42 male) and 38 plasma (25 female; 13 male) samples from white sharks (10–20 mg) into tin capsules using an automated microbalance described by Carvalho (2021) to ensure maximum accuracy. We analysed samples for δ13C and δ15N using an isotope ratio mass spectrometer (Thermo Delta V Plus) coupled to an elemental analyser (Thermo Fisher Flash EA) via an interface (Thermo Fisher Conflo IV). Isotopic ratios are expressed in delta (δ) values as the deviations from conventional standards in parts per thousand (‰) using the following formula: δ13C or δ15N = [(Rsample/Rstandard – 1)] × 1000 (‰) where Rsample is the ratio of heavy to light isotope and Rstandard is the ratio of heavy to light isotope in the reference standard. We measured Rsample against internal working standards (glycine: δ13C = -41.8, δ15N = 2.0; glucose: δ13C = -10.5; collagen: δ13C = -21.5, δ15N = 4.8), which were calibrated against international reference materials [(USGS64: δ13C = -40.8, δ15N = 1.8; USGS65: δ13C = -20.3, δ15N = 20.7; USGS64: δ13C = -0.7, δ15N = 40.8 (Schimmelmann et al., 2016)]. We reported δ13C and δ15N values relative to international reference materials V-PDB (Vienna-Pee Dee Belemnite) and atmospheric nitrogen (N2) with a precision of 0.15 ‰ (δ13C) and 0.3 ‰ (δ15N).

      Stable isotopes of prey samples

      We collected muscle tissue samples from 18 potential white shark prey items to calculate prey contributions to white shark diet ( Supplementary Table S1 ). Prey items were selected based on recent studies of immature white sharks in the same region (Grainger et al., 2020; Clark et al., 2023). Muscle samples were lipid-extracted using the above protocol, and urea was removed from elasmobranch prey samples using the outlined deionised water treatment. We could not obtain samples from cownose rays (Rhinoptera neglecta), so we used values from Raoult et al. (2019), which were not lipid extracted. To account for the effects of lipids on δ13C, these values were mathematically lipid-corrected before analyses using the below equation, described in Post et al. (2007).

      δ 13 C normalised = δ 13 C untreated 3.32 + 0.99 × C : N
      Statistical analysis

      Of the 57 fatty acids detected, we used those with averages > 0.1% (14 muscle; 17 plasma; Table 1 ). We used PRIMER 7 + PERMANOVA (Permutational multivariate analysis of variance; Plymouth Routines in Multivariate Ecological Research, Anderson, 2017) to run multivariate statistical analyses, and R v4.3.1 (R Core Team, 2023) for linear and Bayesian mixing models.

      Fatty acid relative composition (as percent of total fatty acid; mean ± SD) of white shark muscle and plasma collected in eastern Australia.

      Fatty acid Muscle (n = 102) Plasma (n = 39)
      14:0 1.85 ± 0.53 5.11 ± 1.62
      15:0 0.46 ± 0.44 0.73 ± 0.36
      16:0 36.75 ± 4.73 29.80 ± 1.95
      16:1ω7 1.95 ± 0.62 2.49 ± 1.37
      17:0 0.86 ± 0.21 1.46 ± 0.91
      18:0 23.03 ± 4.81 16.31 ± 2.31
      18:1ω9 9.90 ± 2.21 7.94 ± 2.30
      18:2ω6 0.48 ± 0.17 1.01 ± 0.58
      18:3ω2 0.00 ± 0.00 0.39 ± 0.28
      20:0 0.00 ± 0.00 0.39 ± 0.19
      20:1ω9 1.07 ± 0.50 0.63 ± 0.32
      20:2ω6 0.17 ± 0.17 0.22 ± 0.24
      20:4ω6 (ARA) 7.31 ± 2.40 9.72 ± 1.88
      20:5ω3 (EPA) 1.18 ± 0.56 5.57 ± 1.22
      22:0 0.00 ± 0.00 0.78 ± 0.43
      22:6ω3 (DHA) 14.14 ± 7.3 15.95 ± 3.33
      24:1ω9 0.55 ± 0.40 1.35 ± 0.51
      Σ SFA 62.94 ± 2.42 51.78 ± 0.86
      Σ MUFA 13.48 ± 0.83 12.40 ± 0.91
      Σ PUFA 23.28 ± 3.04 35.92 ± 1.18

      PERMANOVA analysis (Type I, based on 9999 permutations) was used to investigate differences in white shark fatty acid profiles using season and sex as fixed factors, location as a random factor, and total length as a continuous covariate. PERMANOVA analyses were completed using a Euclidean distance matrix on normalised untransformed data. Pairwise comparisons were performed if the main PERMANOVA tests showed significant differences. Principal Coordinate Ordination analysis (PCO) was used to visualise the clustering of individuals and correlation between fatty acids.

      If the PERMANOVA showed significant differences in fatty acid profiles, we further explored dietary patterns by fitting univariate linear models to a subset of fatty acids selected for their ecological relevance and high correlation on the PCO. We were unable to include location as a factor in the models because of the low sample size across some locations ( Supplementary Table S4 ). The effect of season (4 levels; fixed), sex (2 levels; fixed), and TL (continuous) on individual fatty acids (16:0, 18:0, 18:1ω9, ARA, EPA and DHA) was assessed by analysis of variance derived from each linear model. We used the same linear model to investigate changes in isotopic signatures in muscle and plasma:

      y = X β + e

      Where Y is the vector of fatty acid or stable isotope values observed on each shark and X is a matrix of indicator variables with columns representing season of capture, sex and TL. The vector β contains coefficients estimated by maximum likelihood. All models were tested for normality and homogeneity in the residuals (e). The models were also used to estimate the mean response to season with 95% confidence intervals.

      We used Bayesian stable isotope mixing models of the muscle samples using the simmr package (Govan et al., 2023) to calculate the overall contributions of prey sources to the diet of white sharks. We excluded plasma stable isotope values from the analysis, as the C:N after lipid extraction was greater than the threshold (3.5), introducing potential bias to the mixing model results (Post et al., 2007; Hussey et al., 2012a). Before running the mixing model, we visually assessed the isotopic signatures of consumers, ensuring they were generally within the isospace of sampled prey ( Supplementary Table S1 ). After the application of the trophic enrichment factor, the following prey did not fall within the isospace of the consumers and were removed from the model ( Supplementary Figures S2 , S3 ): cownose ray, pilchards (Sardinops sagax), tiger shark (Galeocerdo cuvier), and bronze whaler (Carcharhinus obscurus).

      We used K-means clustering; assigning observations to the group with nearest centroid so that within group variance is minimised, to aggregate the remaining prey items (n = 13; Table 2 ) into three groups. This was recommended by Phillips et al. (2014), whereby model accuracy is greatest when the number of sources is equal to the number of tracers + 1. Stable isotope values of prey groups were adjusted for trophic enrichment using values for lipid-extracted sand tiger shark (Carcharias taurus) muscle from Hussey et al. (2011; δ13C = 0.9 ± 0.3‰, δ15N = 2.29 ± 0.2‰). We ran the mixing model with 3600 iterations over 4 MCMC chains and deemed model convergence satisfactory through a Gelman diagnostic value of 1.

      Carbon and nitrogen isotope values (± SD) of grouped prey species used in the final Bayesian mixing model.

      Prey group Species δ13C (SD) δ15N (SD)
      Low trophic level δ13C enriched Trygonoptera testacea -17.4 (± 0.3) 12.0 (± 0.7)
      Urolophus sufflavus -17.1 (± 0.4) 12.2 (± 0.1)
      Mugil cephalus -16.7 (± 1.0) 12.0 (± 0.2)
      Mid-trophic level δ13C depleted Rhabdosargus sarba -17.5 (± 1.3) 12.9 (± 0.6)
      Scomber australasicus -18.4 (± 0.2) 11.9 (± 0.3)
      Euthynnus affinis -17.8 (± 0.4) 13.2 (± 0.3)
      Thunnus albacares -17.5 (± 0.03) 12.7 (± 0.3)
      Trachurus novaezelandiae -18.0 (± 0.1) 13.4 (± 0.2)
      Sepioteuthis australis -17.7 (± 0.1) 13.1 (± 0.04)
      High trophic level δ13C enriched Carcharhinus obscurus -16.4 (± 0.3) 15.5 (± 0.7)
      Chrysophrys auratus -16.6 (± 0.4) 14.5 (± 0.8)
      Thunnus obesus -16.9 (± 0.2) 14.5 (± 0.1)
      Arripis trutta -17.2 (± 0.1) 15.4 (± 0.2)

      We ran separate Bayesian mixing models on winter, spring, and summer to examine proportional prey contribution differences among seasons. Autumn was excluded from this analysis to avoid unreliable contributions, as only four samples were collected during this season ( Supplementary Table S4 ). Due to prey seasonality, two species, sea mullet (Mugil cephalus) and Australian salmon (Arripis trutta), were removed from the spring and summer models because their abundance is substantially reduced throughout these seasons (Lester et al., 2009; Hughes, 2012).

      Results Fatty acids

      White shark muscle fatty acid profiles varied among seasons (PERMANOVA-pseudo-F = 4.34, p< 0.01) but were not influenced by sex or location (PERMANOVA- pseudo-F = 1.65, p > 0.05; Supplementary Table S5 ). Pairwise PERMANOVA revealed winter being different to both spring and summer, and autumn being different to both summer and spring (p< 0.05). Muscle samples collected in spring and summer had higher proportions of essential FA 20:4ω6 (ARA), 20:5ω3 (EPA), and 22:6ω3 (DHA) compared to samples collected in winter and autumn, which were dominated by saturated FAs 14:0, 16:0 and 18:0 ( Figures 2 , 3 ). Plasma fatty acid profiles, however, did not vary between season, sex, or location ( Supplementary Table S5 ).

      Principle coordinate ordination (PCO) of fatty acid profiles of white shark muscle and season. Vector overlay based on Pearson correlation with r > 0.7.

      Seasonal variation (mean ± 95% CI) of fatty acid percentage for 16:0, 18:0, 18:1ω9, ARA (Arachidonic acid), DHA (Docosahexaenoic acid), and EPA (Eicosapentaenoic acid) in immature white shark muscle.

      In muscle tissues, all six individual fatty acids were most affected by season, with autumn and winter having high 16:0, 18:0, and 18:1ω9, and low ARA, DHA, and EPA ( Supplementary Tables S6, S7 ; Figure 3 ). Sex also affected muscle EPA and ARA ( Supplementary Figure S8 ), while shark length affected muscle EPA and DHA ( Supplementary Table S6 ; Supplementary Figure S9 ).

      Stable isotopes

      In white shark muscle tissue, δ13C ranged from -14.6 to -17.5‰ (mean ± standard deviation: -16.2 ± 0.5‰), while δ15N ranged from 14.6 to 16.4‰ (15.5 ± 0.3‰). Plasma δ13C ranged from -14.3 to -17.8‰ (-15.3 ± 0.8‰) and δ15N ranged from 12.4 to 14.9‰ (13.8 ± 0.5‰). Stable isotope values of muscle were influenced by seasons ( Supplementary Table S10 ; Supplementary Figure S11 ), δ13C was lowest in winter and δ15N lowest in spring ( Figure 4 ). Sex did not affect stable isotope values, but a weak but significant relationship existed in muscle and plasma δ15N and total length ( Supplementary Figures S12 , S13 ).

      Seasonal variation (± 95% CI) of δ13C and δ15N (‰) of immature white shark muscle tissue.

      Stable isotope mixing model and diet composition

      Stable isotope values of white shark tissue were within the isoscape of potential prey sources ( Figure 5 ; Supplementary Figure S3 ). Low trophic level δ13C enriched prey were the primary resource used by immature white sharks and had an average contribution of 0.49 (± 0.04) to the annual diet of immature white sharks ( Figure 6 ). High trophic level δ13C enriched prey) contributed an average of 0.37 (± 0.05), while mid-trophic level δ13C depleted prey contributed 0.14 to the diet of immature white sharks (± 0.01; Figure 6 ).

      Biplot of white shark muscle δ13C and δ15N values (coloured by season) compared to the mean (± standard deviation) of three prey groups used in the Bayesian mixing model. Low trophic level δ13C enriched (), mid-trophic level δ13C depleted (), high trophic level δ13C enriched ().Prey values are corrected for trophic enrichment based on Hussey et al. (2010): + 2.3‰ δ15N values and + 0.9‰ δ13C values.

      The proportional contribution of prey groups estimated from Bayesian mixing models for white shark muscle collected in New South Wales, Australia, between 2020-2021 ( low trophic level δ13C enriched; mid-trophic level δ13C depleted: high trophic level δ13C enriched).

      Seasonal mixing models showed substantial variation in prey proportions. Contributions from low trophic level δ13C enriched prey) were highest in spring and summer, at 0.57 and 0.43 (± 0.04 and 0.02), respectively and decreased to 0.29 in winter ( Figure 7 ). Mid-trophic level δ13C depleted prey (contributed minimally during spring and summer at 0.07 and 0.14 (± 0.04 and 0.09), respectively and increased to 0.40 (± 0.1) in winter ( Figure 7 ). Proportions from high trophic level δ13C enriched prey were lowest in winter, 0.31 (± 0.03), increased during spring to 0.36 (± 0.06), and were highest in summer at 0.43 (± 0.04; Figure 7 ).

      Seasonal Bayesian mixing models of white shark diet using muscle (autumn was excluded from these analyses due to small sample size) collected in New South Wales, Australia, between 2020-2021 ( low trophic level δ13C enriched; mid-trophic level δ13C depleted: high trophic level δ13C enriched). Sea mullet and Australian salmon were excluded from the spring and summer model.

      Discussion

      Short- and long-term dietary biomarkers provided a comprehensive overview of the diet and foraging habitat of immature white sharks on the east coast of Australia and revealed that they feed primarily on low-trophic prey in carbon-enriched coastal habitats. We found distinct seasonal differences in fatty acid signatures and diet composition from stable isotope mixing models. Specifically, muscle had lower proportions of essential polyunsaturated fatty acids, i.e., ARA, EPA, and DHA, during autumn and winter, suggesting that changes in prey availability linked to environmental factors, such as water temperature, influence white shark diet and foraging patterns. The increased contribution from inshore prey highlights the importance of these habitats as foraging grounds for immature white sharks, which is critical for their growth and development. Additionally, the seasonal diet shifts may influence these sharks’ nutritional condition over a longer timescale as their energetic and nutritional requirements change throughout ontogeny.

      Coastal habitat use and feeding

      Fatty acid and stable isotope results suggest that white sharks use coastal habitats for foraging. Muscle and plasma ARA proportions were similar to previous studies in New South Wales and South Australia (Pethybridge et al., 2014; Meyer et al., 2017; Gallagher et al., 2019) and are comparable to other coastal sharks and benthic elasmobranchs (Davidson et al., 2011; de Sousa Rangel et al., 2021c; Zhang et al., 2023). ARA derives from benthic and coastal primary producers (Sardenne et al., 2017). Therefore, animals feeding in these areas would have elevated levels of this polyunsaturated fatty acid (Caraveo-Patiño et al., 2009; Hartwich et al., 2013) compared to those feeding in offshore habitats. Over a longer-temporal scale, δ13C values support the fatty acid results of high coastal habitat use. However, the δ13C values revealed high inter-individual variation, ranging between -14.6 to -17.5‰, which encompasses habitats dominated by coastal macrophytes (-14‰) and pelagic phytoplankton (-18‰; Hobson, 1999). The variation in δ13C reported here indicate some individuals have a higher reliance on δ13C depleted prey, similar to great hammerhead sharks (Sphyrna mokarran) that forage on coastal prey in the same region (Raoult et al., 2019).

      Overall proportions of ARA and DHA indicate feeding on coastal prey. These fatty acids may reflect the contribution of fish and cephalopods to the diet of white sharks (Couturier et al., 2013; Pethybridge et al., 2014), with high ARA proportions representing benthic-feeding fishes and elasmobranchs (Couturier et al., 2013). This was further supported by the stable isotope Bayesian mixing model, showing white shark diet consisted primarily of low trophic level prey from coastal habitats with a substantial contribution from species at higher trophic levels These findings are similar to previous studies reporting that immature white sharks feed on various species from benthic and pelagic ecosystems (Hussey et al., 2012b; Tamburin et al., 2020). Previous stomach content and eDNA metabarcoding analyses showed that Australian salmon (Arripis trutta) and sea mullet (Mugil cephalus) are important prey for eastern Australian immature white sharks (Grainger et al., 2020; Clark et al., 2023). Benthic and benthopelagic elasmobranchs also contribute to the diet of immature white sharks in eastern Australia (Grainger et al., 2020) and in the North-Eastern Pacific Ocean (Tamburin et al., 2020) but were rarely detected in another study using eDNA metabarcoding of cloaca swabs (Clark et al., 2023). The differences in prey composition across these studies reflect the broad range of species consumed by white sharks, likely linked to seasonal variation in prey availability or broad-scale movements exhibited by most sharks, from Queensland to Victoria Spaet et al., (2020b). Additionally, the differences in δ13C and δ15N values seen here, indicate there are substantial dietary variations among individuals which may not be reflected in the contributions from the mixing model.

      Seasonal plasticity in diet

      Stable isotope mixing models from muscle samples showed seasonal shifts in diet, with substantial changes from low and higher trophic level δ13C enriched prey in spring and summer to mid-trophic level δ13C depleted prey in winter. The fatty acid results further support this dietary shift. Proportions of DHA increased substantially during the spring and summer months and are similar to those found in benthic elasmobranchs (Dunstan et al., 1988; El Kebir et al., 2007) and bigeye tuna (Thunnus obesus; Peng et al., 2013). Fatty acid 18:1ω9 is a strong indicator of mesopelagic fish, such as yellowfin tuna (Thunnus albacares; Sardenne et al., 2016) and cephalopods (Phillips et al., 2001; Meyer et al., 2019), suggesting higher consumption of these prey during autumn and winter when this fatty acid increases. Seasonal variations in environmental conditions can impact the distribution and abundance of prey (Poloczanska et al., 2007; Last et al., 2011). The strengthening EAC during late spring causes persistent upwelling over shelf waters, subsequently increasing productivity (Roughan and Middleton, 2002). This coincides with white shark presence and capture in the region, which peaks during winter and spring, when water temperatures are below 21°C (Spaet et al., 2020a; Lipscombe et al., 2023). Consequently, the seasonal changes detected in our study are likely linked to the changes in prey availability associated with water temperature and season. The East Australian Current strongly influences water temperatures (Malcolm et al., 2011) and prey distribution on the east coast of Australia (Booth et al., 2007). Thus, these factors also influence shark occurrence and capture (Spaet et al., 2020a; Lipscombe et al., 2023), and habitat use by potential prey species (Gillanders et al., 2001; Zischke et al., 2012). Fatty acids are known to be influenced by sea surface temperature (Dalsgaard et al., 2003; Meyer et al., 2019); therefore, by combining these with stable isotopes, we have greater confidence in the inferences of diet. Future studies should focus on how changes in prey distribution and availability in response to the strengthening East Australian Current may impact the trophic ecology of immature white sharks.

      Changes in nutritional condition among seasons

      Seasonal variations in diet have the potential to impact the nutritional condition of white sharks. The higher proportions of saturated fatty acids and lower proportions of essential dietary fatty acids in autumn and winter suggest that prey consumed in these months is of lower nutritional quality or certain prey species are less abundant. Saturated fatty acids are ubiquitous in all animals and, combined with monounsaturated fatty acids, are the primary fatty acids catabolised for energy (Tocher, 2003). In contrast, polyunsaturated fatty acids are conserved for critical biological processes (Tocher, 2010). Lipid metabolism is relatively understudied in elasmobranchs, yet unlike teleost fishes, lipid storage occurs in the large liver (Zammit and Newsholme, 1979). The proportions of saturated fatty acids in muscle may suggest a metabolic adjustment to compensate for the lack of high-quality prey. Conversely, substantial increases in the proportions of the essential fatty acids, particularly DHA, in spring and summer imply a shift in diet to prey that supports cellular functions and physiological processes, such as growth, during these periods. Although the seasonal change in diet is evident, links to nutritional condition and the implications of poor nutrition in sharks are speculative and should be examined in more detail in future studies. Additionally, assessing responses and metabolic adaptations to dynamic coastal ecosystems may be invaluable for forecasting distribution changes associated with anthropogenic impacts.

      Ontogenetic changes in diet

      Ontogenetic diet shifts are well documented in white sharks from the Pacific (Estrada et al., 2006; Kim et al., 2012b). Due to limitations in sample availability, few (n = 8) samples were collected from sharks > 3 m; therefore, only a small increase in δ15N was detected with shark length. Furthermore, there was high variability among individuals, with a smaller shark (2.5 m) having the highest δ15N value and larger sharks exhibiting values below 15.5‰, lower than those recorded for immature sharks in Mexico and the north-east Pacific (Carlisle et al., 2012; Tamburin et al., 2020).

      An animal’s energy and nutritional requirements typically increase with size (Gallagher et al., 2014). Although the relationships between fatty acid proportions and length are yet to be described in white sharks, the negative relationships seen here are vastly different from those of other shark species (de Sousa Rangel et al., 2021a; de Sousa Rangel et al., 2021c). We expected fatty acid proportions to increase with size as larger and higher quality prey were consumed. However, we observed decreasing proportions of DHA and EPA in muscle. Increases in DHA with total length were found in the plasma of tiger sharks (Galeocerdo cuvier) in the Atlantic (de Sousa Rangel et al., 2021a), where larger mature sharks exhibited higher values compared to immature sharks, which was linked to nutritional adjustments in preparation for reproduction. Similar results have been observed for mature male blacktip sharks in EPA, DHA and ARA (de Sousa Rangel et al., 2021b). Based on these results, it is plausible that our results reflect the immature life stage of white sharks, where energetic investments for reproduction are not yet required. More extensive sampling of mature white sharks across a broader spatial scale may assist in clarifying the relationships between total length and specific fatty acids when sharks are closer to maturity.

      Experimental considerations

      Consideration must be given to the limitations of using bulk tissue stable isotopes in trophic ecology studies. Specifically, mixing models are sensitive to trophic enrichment factors and isotopic routing, which can lead to inaccurate results (Phillips et al., Bond and Diamond, 2011). Species- and tissue-specific trophic enrichment factors are limited for large sharks, as controlled feeding experiments are impractical. Currently, no trophic enrichment factor is available for white sharks, and as a large-bodied predator occupying a high trophic level, there are several physiological (e.g., growth rate, isotope routing) and environmental (e.g., temperature) factors that may impact the discrimination of stable isotopes (Caut et al., 2009; Hussey et al., 2010; Phillips et al., 2014). Subsequently, the value provided by Hussey et al. (2010) from multiple species of sharks was deemed the best alternative. Isotopic routing remains unclear in shark tissues, yet it is well documented to cause significant issues when interpreting mixing models in teleosts, resulting in over or underestimating the contribution of sources to diet (Kelly and Martínez del Rio, 2010). We also acknowledge that while we aimed to include a range of prey items of white sharks, δ13C values indicate many of these sharks are feeding on coastal prey with values around -15‰, that were not included in the mixing model. There may also be another prey group between the low trophic and high trophic level δ13C enriched groups that these sharks are feeding on that we have been unable to sample in this study. One of the many limitations of mixing models is their inability to detect missing prey or differentiate if consumers values are the average of two separate prey groups with distinct isotopic signatures (Phillips et al., 2014; Stock et al., 2018). Additionally, the more prey included in the mixing model, the less precise the estimates of contribution (Phillips et al., 2014). Furthermore, interpretation of stable isotopes requires caution, as spatial and temporal variation of isotopes exists in marine environments and are influenced by environmental and anthropogenic factors (Pethybridge et al., 2018; Matich et al., 2021).

      Conclusion

      We examined the diet and habitat use of immature white sharks on the east coast of Australia using a combination of fatty acid and stable isotope analyses. White sharks are highly dependent on coastal resources with high contributions from low trophic level coastal prey, corroborating previous studies of white shark diet in this region. There was evidence of a seasonal shift in diet, which may be associated with changes in prey availability with varying water temperatures. These seasonal changes may influence the nutritional condition of white sharks and negatively affect physiological processes that support health and growth. This study expands on the recent dietary studies of white sharks, providing a holistic understanding of a species that is typically characterised as a generalist predator. Yet, the seasonal variations detected here reveal that their diet is more complex than previously described. Further studies investigating how ocean warming may impact prey distribution and white shark foraging would prove valuable, in addition to changes in the biochemistry and metabolism of white sharks and what implications this may have on the nutritional condition of these sharks.

      Data availability statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Ethics statement

      The animal study was approved by NSW DPI and Southern Cross University Animal Care and Ethics Committee (ACEC 07/08: ARA 21/034). The study was conducted in accordance with the local legislation and institutional requirements.

      Author contributions

      RL: Conceptualization, Data curation, Formal analysis, Methodology, Writing – original draft, Writing – review & editing. LM: Conceptualization, Formal analysis, Writing – review & editing. PB: Conceptualization, Writing – review & editing. SM: Formal analysis, Writing – review & editing. CH: Conceptualization, Formal analysis, Writing – review & editing. AS: Conceptualization, Supervision, Writing – review & editing. PB: Conceptualization, Supervision, Writing – review & editing.

      Funding

      The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The New South Wales Department of Primary Industries provided funding through the NSW Shark Management Program. RL is supported by an Australian Government Research and Training Program Stipend and a post-graduate scholarship from Southern Cross University. New South Wales Department of Primary Industries provided primary project funding and support. Southern Cross University provided funding to RL through a Research Training Program Scholarship.

      Acknowledgments

      This work was completed under NSW DPI ‘Scientific’ [Ref. P01/0059(A)], ‘Marine Parks’ (Ref. P16/0145-1.1) and ‘Animal Care and Ethics’ (ACEC 07/08: ARA 21/034) permits. This project would not have been possible without the dedicated support of contracted fishers and the NSW DPI shark research team.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2024.1359785/full#supplementary-material

      References Alderete-Macal M. J. Caraveo-Patiño J. Hoyos-Padilla E. M. (2020). Ontogenetic differences in muscle fatty acid profile of white sharks Carcharodon carcharias off Guadalupe Island, México. Rev. Biol. Mar. Oceanogr 55, 3746. doi: 10.22370/rbmo.2020.55.1.2372 Anderson M. J. (2017). “Permutational multivariate analysis of variance (PERMANOVA),” in Wiley StatsRef: Statistics Reference Online. 1-15. doi: 10.1002/9781118445112.stat07841 Ballantyne J. S. (1997). Jaws: the inside story. The metabolism of elasmobranch fishes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118, 703742. doi: 10.1016/S0305-0491(97)00272-1 Beckmann C. L. Mitchell J. G. Stone D. A. Huveneers C. (2013). A controlled feeding experiment investigating the effects of a dietary switch on muscle and liver fatty acid profiles in Port Jackson sharks Heterodontus portusjacksoni . J. Exp. Mar. Biol. Ecol. 448, 1018. doi: 10.1016/j.jembe.2013.06.009 Beng K. C. Corlett R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biol.Conserv 29, 20892121. doi: 10.1007/s10531-020-01980-0 Bligh E. G. Dyer W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. 37, 911917. doi: 10.1139/o59-09 Bond A. L. Diamond A. W. (2011). Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol. Appl. 21, 10171023. doi: 10.1890/09-2409.1 Booth D. J. Figueira W. F. Gregson M. A. Brown L. Beretta G. (2007). Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuar. Coast. Shelf Sci. 72, 102114. doi: 10.1016/j.ecss.2006.10.003 Brodie S. Hobday A. J. Smith J. A. Spillman C. M. Hartog J. R. Everett J. D. . (2017). Seasonal forecasting of dolphinfish distribution in eastern Australia to aid recreational fishers and managers. Deep Sea Res. 2 Top. Stud. Oceanogr. 140, 222229. doi: 10.1016/j.dsr2.2017.03.004 Bruce B. D. Bradford R. W. (2012). “Habitat use and spatial dynamics of juvenile white sharks, Carcharodon carcharias, in eastern Australia,” in Global perspectives on the biology and life history of the white shark. Ed. Domeier M. L. (CRC Press, Boca Raton, FL), 225254. Bruce B. Harasti D. Lee K. Gallen C. Bradford R. (2019). Broad-scale movements of juvenile white sharks Carcharodon carcharias in eastern Australia from acoustic and satellite telemetry. Mar. Ecol. Prog. Ser. 619, 115. doi: 10.3354/meps12969 Budge S. M. Iverson S. J. Koopman H. N. (2006). Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. mamm Sci. 22, 759801. doi: 10.1111/j.1748-7692.2006.00079.x Caraveo-Patiño J. Wang Y. Soto L. A. Ghebremeskel K. Lehane C. Crawford M. A. (2009). Eco-physiological repercussions of dietary arachidonic acid in cell membranes of active tissues of the Gray whale. Mar. Ecol. 30, 437447. doi: 10.1111/j.1439-0485.2009.00289.x Carlisle A. B. Allan E. A. Kim S. L. Meyer L. Port J. Scherrer S. . (2021). Integrating multiple chemical tracers to elucidate the diet and habitat of Cookiecutter Sharks. Sci. Rep. 11, 11809. doi: 10.1038/s41598-021-89903-z Carlisle A. B. Kim S. L. Semmens B. X. Madigan D. J. Jorgensen S. J. Perle C. R. . (2012). Using stable isotope analysis to understand the migration and trophic ecology of north-eastern Pacific white sharks (Carcharodon carcharias). PloS One 7, e30492. doi: 10.1371/journal.pone.0030492 Carlisle A. B. Litvin S. Y. Madigan D. J. Lyons K. Bigman J. S. Ibarra M. . (2017). Interactive effects of urea and lipid content confound stable isotope analysis in elasmobranch fishes. Can. J. Fish Aquat Sci. 74, 419428. doi: 10.1139/cjfas-2015-0584 Carvalho M. C. (2021). Miau, a microbalance autosampler. HardwareX 10, e00215. doi: 10.1016/j.ohx.2021.e00215 Caut S. Angulo E. Courchamp F. (2009). Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443453. doi: 10.1111/j.1365-2664.2009.01620.x Chaguaceda F. Eklöv P. Scharnweber K. (2020). Regulation of fatty acid composition related to ontogenetic changes and niche differentiation of a common aquatic consumer. Oecologia 193, 325336. doi: 10.1007/s00442-020-04668-y Clark Z. S. Fish J. J. Butcher P. A. Holland O. J. Sherman C. D. Rizzari J. . (2023). Insights into the diet and trophic ecology of white sharks (Carcharodon carcharias) gained through DNA metabarcoding analyses of cloacal swabs. Environ. DNA. 5 (6), 13621377. doi: 10.1002/edn3.454 Couturier L. I. Rohner C. A. Richardson A. J. Pierce S. J. Marshall A. D. Jaine F. R. . (2013). Unusually high levels of n-6 polyunsaturated fatty acids in whale sharks and reef manta rays. Lipids 48, 10291034. doi: 10.1007/s11745-013-3829-8 Dalsgaard J. John M. S. Kattner G. Müller-Navarra D. Hagen W. (2003). Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225340. doi: 10.1016/S0065-2881(03)46005-7 Davidson B. Sidell J. Rhodes J. Cliff G. (2011). A comparison of the heart and muscle total lipid and fatty acid profiles of nine large shark species from the east coast of South Africa. Fish Physiol. Biochem. 37, 105112. doi: 10.1007/s10695-010-9421-8 de Sousa Rangel B. Hammerschlag N. Sulikowski J. A. Moreira R. G. (2021a). Dietary and reproductive biomarkers in a generalist apex predator reveal differences in nutritional ecology across life stages. Mar. Ecol. Prog. Ser. 664, 149163. doi: 10.3354/meps13640 de Sousa Rangel B. Hammerschlag N. Sulikowski J. A. Moreira R. G. (2021b). Physiological markers suggest energetic and nutritional adjustments in male sharks linked to reproduction. Oecologica 196, 9891004. doi: 10.1007/s00442-021-04999-4 de Sousa Rangel B. Moreira R. G. Niella Y. V. Sulikowski J. A. Hammerschlag N. (2021c). Metabolic and nutritional condition of juvenile tiger sharks exposed to regional differences in coastal urbanization. Sci. Total Environ. 780, 146548. doi: 10.1016/j.scitotenv.2021.146548 Dunstan G. A. Sinclair A. J. O’Dea K. Naughton J. M. (1988). The lipid content and fatty acid composition of various marine species from southern Australian coastal waters. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 91, 165169. doi: 10.1016/0305-0491(88)90130-7 El Kebir M. V.O. Barnathan G. Gaydou E. M. Siau Y. Miralles J. (2007). Fatty acids in liver, muscle and gonad of three tropical rays including non-methylene-interrupted dienoic fatty acids. Lipids 42, 525535. doi: 10.1007/s11745-007-3040-x Estrada J. A. Rice A. N. Natanson L. J. Skomal G. B. (2006). Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87, 829834. doi: 10.1890/0012-9658(2006)87[829:UOIAOV]2.0.CO;2 Everett J. D. Baird M. E. Roughan M. Suthers I. M. Doblin M. A. (2014). Relative impact of seasonal and oceanographic drivers on surface chlorophyll a along a Western Boundary Current. Prog. Oceanog 120, 340351. doi: 10.1016/j.pocean.2013.10.016 Franks B. R. Tyminski J. P. Hussey N. E. Braun C. D. Newton A. L. Thorrold S. R. . (2021). Spatio-temporal variability in White Shark (Carcharodon carcharias) movement ecology during residency and migration phases in the Western North Atlantic. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.744202 Gallagher A. J. Meyer L. Pethybridge H. R. Huveneers C. Butcher P. A. (2019). Effects of short-term capture on the physiology of white sharks Carcharodon carcharias: amino acids and fatty acids. Endanger Species Res. 40, 297308. doi: 10.3354/esr00997 Gallagher A. J. Shiffman D. S. Byrnes E. E. Hammerschlag-Peyer C. Hammerschlag N. (2017). Patterns of resource use and isotopic niche overlap among three species of sharks occurring within a protected subtropical estuary. Aquat Ecol. 51, 435448. doi: 10.1007/s10452-017-9627-2 Gallagher A. J. Wagner D. N. Irschick D. J. Hammerschlag N. (2014). Body condition predicts energy stores in apex predatory sharks. Consev Physiol. 2, cou022. doi: 10.1093/conphys/cou022 Gillanders B. M. Ferrell D. J. Andrew N. L. (2001). Estimates of movement and life-history parameters of yellowtail kingfish (Seriola lalandi): how useful are data from a cooperative tagging programme? Mar. Freshw. Res. 52, 179192. doi: 10.1071/MF99153 Govan E. Jackson A. L. Inger R. Bearhop S. Parnell A. C. (2023). simmr: A package for fitting stable isotope mixing models in R. arXiv preprint arXiv:2306.07817. doi: 10.48550/arXiv.2306.07817 Grainger R. Peddemors V. M. Raubenheimer D. Machovsky-Capuska G. E. (2020). Diet composition and nutritional niche breadth variability in juvenile white sharks (Carcharodon carcharias). Front. Mar. Sci. 7, 422. doi: 10.3389/fmars.2020.00422 Hartwich M. Martin-Creuzburg D. Wacker A. (2013). Seasonal changes in the accumulation of polyunsaturated fatty acids in zooplankton. J. Plankton Res. 35, 121134. doi: 10.1093/plankt/fbs078 Heithaus M. R. (2007). “Nursery areas as essential shark habitats: a theoretical perspective,” in American Fisheries Society Symposium, vol. 50. (American Fisheries Society), 3. Heithaus M. R. Dill L. M. (2002). Food availability and tiger shark predation risk influence bottlenose dolphin habitat use. Ecology 83, 480491. doi: 10.1890/0012-9658(2002)083[0480:FAATSP]2.0.CO;2 Heithaus M. R. Frid A. Vaudo J. J. Worm B. Wirsing A. J. (2010). Unraveling the ecological importance of elasmobranchs. In Carrier C.C. Musik J. A. Heithaus M. R. , (Eds.), Sharks and their relatives II (CRC Press), pp. 627654. Hobday A. J. Young J. W. Moeseneder C. Dambacher J. M. (2011). Defining dynamic pelagic habitats in oceanic waters off eastern Australia. Deep Sea Res. 2 Top. Stud. Oceanogr. 58, 734745. doi: 10.1016/j.dsr2.2010.10.006 Hobson K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 314326. doi: 10.1007/s004420050865 Hughes J. (2012). The biology and population structure of eastern Australian salmon (Arripis trutta) in south-eastern Australia (Sydney, Australia: University of New South Wales). Hussey N. E. Brush J. McCarthy I. D. Fisk A. T. (2010). δ15N and δ13C diet–tissue discrimination factors for large sharks under semi-controlled conditions. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 155, 445453. doi: 10.1016/j.cbpa.2009.09.023 Hussey N. E. Dudley S. F. Mccarthy I. D. Cliff G. Fisk A. T. (2011). Stable isotope profiles of large marine predators: viable indicators of trophic position, diet, and movement in sharks? Can. J. Fish Aquat Sci. 68, 20292045. doi: 10.1139/f2011-115 Hussey N. E. Macneil M. A. Olin J. A. Mcmeans B. C. Kinney M. J. Chapman D. D. . (2012a). Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions. J. Fish Biol. 80, 14491484. doi: 10.1111/j.1095-8649.2012.03251.x Hussey N. E. MacNeil M. A. Siple M. C. Popp B. N. Dudley S. F. Fisk A. T. (2015). Expanded trophic complexity among large sharks. Food webs 4, 17. doi: 10.1016/j.fooweb.2015.04.002 Hussey N. E. Mccann H. M. Cliff G. Dudley S. F. Wintner S. P. Fisk A. T. (2012b). “Size-based analysis of diet and trophic position of the white shark (Carcharodon carcharias) in South African waters,” in Global perspectives on the biology and life history of the white shark. Ed. Domeier M. L. (CRC Press, Boca Raton, FL), 2749. Huveneers C. Apps K. Becerril-García E. E. Bruce B. Butcher P. A. Carlisle A. B. . (2018). Future research directions on the “elusive”white shark. Front. Mar. Sci. 5. doi: 10.3389/fmars.2018.00455 Iverson S. J. (2009). “Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination,” in Lipids in aquatic ecosystems (Springer New York, New York, NY), 281308. Iverson S. J. Field C. Don Bowen W. Blanchard W. (2004). Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211235. doi: 10.1890/02-4105 Kelly L. J. Martínez del Rio C. (2010). The fate of carbon in growing fish: an experimental study of isotopic routing. Physiol. Biol. Zool 83, 473480. doi: 10.1086/649628 Kim S. L. Del Rio C. M. Casper D. Koch P. L. (2012a). Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J. Exp. Biol. 215, 24952500. doi: 10.1242/jeb.070656 Kim S. L. Koch P. L. (2012). Methods to collect, preserve, and prepare elasmobranch tissues for stable isotope analysis. Environ. Biol. Fishes 95, 5363. doi: 10.1007/s10641-011-9860-9 Kim S. L. Tinker M. T. Estes J. A. Koch P. L. (2012b). Ontogenetic and among-individual variation in foraging strategies of northeast Pacific white sharks based on stable isotope analysis. PloS One 7, e45068. doi: 10.1371/journal.pone.0045068 Kohl K. D. Coogan S. C. Raubenheimer D. (2015). Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37, 701709. doi: 10.1002/bies.201400171 Krausman R. P. (1999). Some basic principles of habitat use, grazing behavior of livestock and wildlife. Wildlife Range Experiment Station Bull. 70, 8590. Last P. R. White W. T. Gledhill D. C. Hobday A. J. Brown R. Edgar G. J. . (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Glob Ecol. Biogeogr 20, 5872. doi: 10.1111/j.1466-8238.2010.00575.x Lee K. A. Butcher P. A. Harcourt R. G. Patterson T. A. Peddemors V. M. Roughan M. . (2021). Oceanographic conditions associated with white shark (Carcharodon carcharias) habitat use along eastern Australia. Mar. Ecol. Prog. Ser. 659, 143159. doi: 10.3354/meps13572 Lester R. J. G. Rawlinson S. E. Weaver L. C. (2009). Movement of sea mullet Mugil cephalus as indicated by a parasite. Fish Res. 96, 129132. doi: 10.1016/j.fishres.2008.10.006 Lipscombe R. S. Scott A. Morris S. Peddemors V. M. Smoothey A. F. Butcher P. A. (2023). The influence of bait position on the catch of target and non-target sharks in a SMART drumline bather protection program. Fish Res. 257, 106501. doi: 10.1016/j.fishres.2022.106501 Liu J. Zheng S. Feng M. Xie L. Feng B. Liang P. . (2022). Seasonal variability of eddy kinetic energy in the East Australian current region. Front. Mar. Sci. 9, 1069184. doi: 10.3389/fmars.2022.1069184 Malcolm H. A. Davies P. L. Jordan A. Smith S. D. (2011). Variation in sea temperature and the East Australian Current in the Solitary Islands region between 2001–2008. Deep Sea Res. 2 Top. Stud. Oceanogr. 58, 616627. doi: 10.1016/j.dsr2.2010.09.030 Matich P. Shipley O. N. Weideli O. C. (2021). Quantifying spatial variation in isotopic baselines reveals size-based feeding in a model estuarine predator: implications for trophic studies in dynamic ecotones. Mar. Biol. 168, 108. doi: 10.1007/s00227-021-03920-0 Meyer L. Chambers S. Gervais C. Pethybridge H. Beckmann C. Bruce B. . (2021). The use of muscle lipids and fatty acids to assess shark diet and condition. J. Fish Biol. 98, 566571. doi: 10.1111/jfb.14602 Meyer L. Pethybridge H. Nichols P. D. Beckmann C. Bruce B. D. Werry J. M. . (2017). Assessing the functional limitations of lipids and fatty acids for diet determination: the importance of tissue type, quantity, and quality. Front. Mar. Sci. 4. doi: 10.3389/fmars.2017.00369 Meyer L. Pethybridge H. Nichols P. D. Beckmann C. Huveneers C. (2019). Abiotic and biotic drivers of fatty acid tracers in ecology: A global analysis of chondrichthyan profiles. Funct. Ecol. 33, 12431255. doi: 10.1111/1365-2435.13328 Munroe S. Meyer L. Heithaus M. (2018). “Dietary biomarkers in shark foraging and movement ecology. Shark research: emerging technologies and applications for the field and laboratory,” in Shark research: emerging technologies and applications for the field and laboratory. Eds. Carrier J. C. Heithaus M. R. Simpfendorfer C. A. (CRC Press, Boca Raton, FL), 124. Munroe S. E. M. Simpfendorfer C. A. Heupel M. R. (2014). Defining shark ecological specialisation: concepts, context, and examples. Rev. Fish Biol. Fishes 24, 317331. doi: 10.1007/s11160-013-9333-7 Newsome S. D. Clementz M. T. Koch P. L. (2010). Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm Sci. 26, 509572. doi: 10.1111/j.1748-7692.2009.00354.x Peng S. Chen C. Shi Z. Wang L. (2013). Amino acid and fatty acid composition of the muscle tissue of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). J. Food Sci. Nutr. Res. 1, 4245. doi: 10.12691/jfnr-1-4-2 Peterson B. J. Fry B. (1987). Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Evol. Syst. 18, 293320. doi: 10.1146/annurev.es.18.110187.001453 Pethybridge H. R. Choy C. A. Polovina J. J. Fulton E. A. (2018). Improving marine ecosystem models with biochemical tracers. Ann. Rev. Mar. Sci. 10, 199228. doi: 10.1146/annurev-marine-121916-063256 Pethybridge H. Daley R. K. Nichols P. D. (2011). Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. J. Exp. Mar. Biol. Ecol. 409, 290299. doi: 10.1016/j.jembe.2011.09.009 Pethybridge H. R. Parrish C. C. Bruce B. D. Young J. W. Nichols P. D. (2014). Lipid, fatty acid and energy density profiles of white sharks: insights into the feeding ecology and ecophysiology of a complex top predator. PloS One 9, e97877. doi: 10.1371/journal.pone.0097877 Phillips D. L. Inger R. Bearhop S. Jackson A. L. Moore J. W. Parnell A. C. . (2014). Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823835. doi: 10.1139/cjz-2014-0127 Phillips K. L. Jackson G. D. Nichols P. D. (2001). Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Islands: stomach contents and fatty acid analyses. Mar. Prog. Ecol. Ser. 215, 179189. doi: 10.3354/meps215179 Poloczanska E. S. Babcock R. C. Butler A. Hobday A. J. Hoegh-Guldberg O. Kunz T. . (2007). Climate change and Australian marine life. Oceanog Mar. Biol. 45, 407. Post D. M. Layman C. A. Arrington D. A. Takimoto G. Quattrochi J. Montana C. G. (2007). Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179189. doi: 10.1007/s00442-006-0630-x Raoult V. Broadhurst M. K. Peddemors V. M. Williamson J. E. Gaston T. F. (2019). Resource use of great hammerhead sharks (Sphyrna mokarran) off eastern Australia. J. Fish Biol. 95, 14301440. doi: 10.1111/jfb.14160 R Core Team . (2023). _R: A Language and Environment for Statistical Computing (Vienna Austria: R Foundation for Statisical Computing). Available at: https://www.R-project.org. Ridgway K. R. Godfrey J. S. (1997). Seasonal cycle of the East Australian current. J. Geophys. Res. Oceans 102, 2292122936. doi: 10.1029/97JC00227 Rohner C. A. Couturier L. I. Richardson A. J. Pierce S. J. Prebble C. E. Gibbons M. J. . (2013). Diet of whale sharks Rhincodon typus inferred from stomach content and signature fatty acid analyses. Mar. Ecol. Prog. Ser. 493, 219235. doi: 10.3354/meps10500 Roughan M. Middleton J. H. (2002). A comparison of observed upwelling mechanisms off the east coast of Australia. Cont Shelf Res. 22, 25512572. doi: 10.1016/S0278-4343(02)00101-2 Sardenne F. Bodin N. Chassot E. Amiel A. Fouché E. Degroote M. . (2016). Trophic niches of sympatric tropical tuna in the Western Indian Ocean inferred by stable isotopes and neutral fatty acids. Prog. Oceanogr. 146, 7588. doi: 10.1016/j.pocean.2016.06.001 Sardenne F. Hollanda S. Lawrence S. Albert-Arrisol R. Degroote M. Bodin N. (2017). Trophic structures in tropical marine ecosystems: a comparative investigation using three different ecological tracers. Ecol. Indic. 81, 315324. doi: 10.1016/j.ecolind.2017.06.001 Sargent J. Bell J. Bell M. Henderson R. Tocher D. (1995). Requirement criteria for essential fatty acids. J. Appl. Ichthyol. 11, 183198. doi: 10.1111/j.1439-0426.1995.tb00018.x Schimmelmann A. Qi H. Coplen T. B. Brand W. A. Fong J. Meier-Augenstein W. . (2016). Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, L-valines, polyethylenes, and oils. Anal. Chem. 88, 42944302. doi: 10.1021/acs.analchem.5b04392 Skomal G. B. Braun C. D. Chisholm J. H. Thorrold S. R. (2017). Movements of the white shark Carcharodon carcharias in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 580, 116. doi: 10.3354/meps12306 Spaet J. L. Manica A. Brand C. P. Gallen C. Butcher P. A. (2020a). Environmental conditions are poor predictors of immature white shark (Carcharodon carcharias) occurrences on coastal beaches of eastern Australia. Mar. Ecol. Prog. Ser. 653, 167179. doi: 10.3354/meps13488 Spaet J. L. Patterson T. A. Bradford R. W. Butcher P. A. (2020b). Spatiotemporal distribution patterns of immature Australasian white sharks (Carcharodon carcharias). Sci. Reps. 10, 113. doi: 10.1038/s41598-020-66876-z Stock B. C. Jackson A. L. Ward E. J. Parnell A. C. Phillips D. L. Semmens B. X. (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. doi: 10.7717/peerj.5096 Tamburin E. Elorriaga-Verplancken F. R. Estupiñan-Montaño C. Madigan D. J. Sánchez-González A. Padilla M. H. . (2020). New insights into the trophic ecology of young white sharks (Carcharodon carcharias) in waters off the Baja California Peninsula, Mexico. Mar. Biol. 167, 114. doi: 10.1007/s00227-020-3660-8 Tate R. D. Cullis B. R. Smith S. D. Kelaher B. P. Brand C. P. Gallen C. R. . (2019). The acute physiological status of white sharks (Carcharodon carcharias) exhibits minimal variation after capture on SMART drumlines. Conserv. Physiol. 7, coz042. doi: 10.1093/conphys/coz090 Tate R. D. Kelaher B. P. Brand C. P. Cullis B. R. Gallen C. R. Smith S. D. . (2021). The effectiveness of Shark-Management-Alert-in-Real-Time (SMART) drumlines as a tool for catching white sharks, Carcharodon carcharias, off coastal New South Wales, Australia. Fish Manag Ecol. 28, 496506. doi: 10.1111/fme.12489 Terraube J. Arroyo B. Madders M. Mougeot F. (2011). Diet specialisation and foraging efficiency under fluctuating vole abundance: a comparison between generalist and specialist avian predators. Oikos 120, 234244. doi: 10.1111/j.1600-0706.2010.18554.x Tocher D. R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish Sci. 11, 107184. doi: 10.1080/713610925 Tocher D. R. (2010). Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac Res. 41, 717732. doi: 10.1111/are.2010.41.issue-5 Towner A. V. Underhill L. G. Jewell O. J. Smale M. J. (2013). Environmental influences on the abundance and sexual composition of white sharks Carcharodon carcharias in Gansbaai, South Africa. PloS One 8, e71197. doi: 10.1371/journal.pone.0071197 Weng K. C. Boustany A. M. Pyle P. Anderson S. D. Brown A. Block B. A. (2007). Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol. 152, 877894. doi: 10.1007/s00227-007-0739-4 Williams J. J. Papastamatiou Y. P. Caselle J. E. Bradley D. Jacoby D. M. (2018). Mobile marine predators: an understudied source of nutrients to coral reefs in an unfished atoll. Proc. Biol. Sci. 285, 20172456. doi: 10.1098/rspb.2017.2456 Young J. W. Lansdell M. J. Campbell R. A. Cooper S. P. Juanes F. Guest M. A. (2010). Feeding ecology and niche segregation in oceanic top predators off eastern Australia. Mar. Biol. 157, 23472368. doi: 10.1007/s00227-010-1500-y Zammit V. A. Newsholme E. A. (1979). Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch fish. Biochem. J. 184, 313322. doi: 10.1042/bj1840313 Zhang B. Pethybridge H. Virtue P. Nichols P. D. (2023). Lipid dynamics in the southern hemisphere: a 30-year meta-analysis of marine consumers. Mar. Ecol. Prog. Ser. 710, 114. doi: 10.3354/meps14295 Zischke M. T. Griffiths S. P. Tibbetts I. R. (2012). Catch and effort from a specialised recreational pelagic sport fishery off eastern Australia. Fish Res. 127, 6172. doi: 10.1016/j.fishres.2012.04.011
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016gthmjs.com.cn
      www.haoryuan.com.cn
      ipingo.com.cn
      jmchain.com.cn
      www.icitu.com.cn
      mka518.com.cn
      www.suomai.net.cn
      www.mydario.com.cn
      obpzpl.com.cn
      wldgame.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p