Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2023.1176655 Marine Science Original Research Addressing marine restoration success: evidence of species and functional diversity recovery in a ten-year restored macroalgal forest Galobart Cristina 1 Ballesteros Enric 1 Golo Raül 2 Cebrian Emma 1 * 1 Ecologia Marina, Centre d’Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain 2 Biodiversitat i Recursos Marins, Universitat de Girona (UdG), Girona, Spain

Edited by: Ronald Osinga, Wageningen University and Research, Netherlands

Reviewed by: Dan Smale, Marine Biological Association of the United Kingdom, United Kingdom; Sarah Caronni, University of Milan Bicocca, Italy

*Correspondence: Emma Cebrian, emma@ceab.csic.es

02 06 2023 2023 10 1176655 28 02 2023 02 05 2023 Copyright © 2023 Galobart, Ballesteros, Golo and Cebrian 2023 Galobart, Ballesteros, Golo and Cebrian

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Active restoration actions are becoming increasingly common for the recovery of degraded ecosystems. However, establishing when an ecosystem is fully restored is rarely achieved, since the recovery of entire communities needs long-term trajectories. The lack of evidence of success is even more severe in marine ecosystems, especially in the context of macroalgal forests, where beyond the vegetation structure and species diversity there is no approximation determining the recovery of the overall functionality. Trait-based ecology facilitates the link between species composition and ecosystem functions and processes. In this study, we used a trait-based approach to assess functional recovery ten years after the start of a restoration action in a marine macroalgal forest. Species and functional diversity were compared among the restored locality, a nearby locality where the expansion of the restoration is naturally occurring, a neighbouring non-restored locality (at a distance of a few meters), and the only two remaining localities dominated by the same structural macroalga that were used as reference (non-perturbed). Species diversity and composition of the restored locality were similar to those found in reference macroalgal forests, while the non-restored and expansion locality showed different species composition and lower species diversity. Functional richness was 4-fold higher in the restored locality than in the non-restored one, even surpassing one reference macroalgal locality. The restored locality showed a greater number of trait categories, especially traits related to higher structural complexity and longer life spans, indicating changes in ecosystem functions and processes. The restoration of a canopy-forming macroalga is the first step to achieving the recovery of an entire macroalgal forest (i.e., associated species and functional diversity). The application of traditional taxonomical indices plus functional parameters provides useful insights into the assessment of the success of restoration actions at the community level, emerging as a promising approach to be replicated and contrasted in other marine and terrestrial ecosystems.

marine restoration ecosystem functioning species diversity functional diversity functional traits macroalgal forests Ministerio de Ciencia e Innovación10.13039/501100004837 Executive Agency for Small and Medium-sized Enterprises10.13039/100013284 Fundación Tatiana Pérez de Guzmán el Bueno10.13039/501100010805 Ministerio de Ciencia, Innovación y Universidades10.13039/100014440 section-in-acceptance Marine Ecosystem Ecology

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The impact of humans on natural environments occurs in a wide variety of the world’s ecosystems, mainly derived from changes in land use, pollution, and exploitation of natural resources (Sanderson et al., 2002; Foley et al., 2005; Ellis et al., 2010). These human alterations have led to widespread habitat loss, changes in biodiversity, species invasions and extinctions, and declines in ecosystem condition (Butchart et al., 2010; Ceballos et al., 2015). Consequently, shifts in the functioning of ecosystems have been detected and, in some cases, changes in some ecosystems services that are of value for human societies (Dobson et al., 2006; Cardinale et al., 2012).

      Some ecosystems are so degraded that natural recovery is almost impossible in short and medium terms, even when the impacts leading to their collapse have been removed. Human-mediated restoration initiatives are often applied, becoming one of the only tools capable of reverting the loss of an ecosystem (Dobson et al., 1997; Holl & Aide, 2011). Ecological restoration has emerged as a critical measure for the management of heavily degraded ecosystems and is now a global priority (Aronson & Alexander, 2013; Suding et al., 2015). Supporting this idea, the Convention on Biological Diversity has set restoration targets (Secretariat of the Convention on Biological Diversity, 2014), and in 2019 the “United Nation Decade of ecosystem restoration 2021-2030” was declared. In fact, the number of undertaken restoration actions has increased notably over the past decades (Wortley et al., 2013; Carlucci et al., 2020), evolving from mitigation – removing human disturbances to allow for unassisted recovery – to active restoration – direct interventions in an effort to intentionally influence the trajectory of recovery (Simenstad et al., 2006; Elliott et al., 2007).

      Some ecosystems have traditionally been more actively restored than others (e.g., terrestrial forests and grasslands) and several years of practice have determined what characterizes successful restoration. In general, vegetation structure, species diversity, and ecosystem functions have been suggested as the three key attributes to assess restoration outcomes (Ruiz-Jaen & Aide, 2005; Wortley et al., 2013). However, while the trajectory of vegetation structure (e.g., vegetation cover, density, and biomass) and species diversity (e.g., richness and abundance) following restoration is well understood, knowledge regarding the recovery effect on ecosystem functions is still limited (Brudvig, 2011; Kollmann et al., 2016). Many evaluations of restoration success first focus on the development of the target species because it is broadly assumed that following its recovery it will add structure to the habitat (Geist & Hawkins, 2016). In doing so, other associated organisms should benefit from the increase in structural complexity and the ecosystem will eventually recover its processes and functions (Geist & Hawkins, 2016). However, recent studies have demonstrated that in some cases either species composition or ecosystem processes have not been fully re-established, pointing to the need to empirically test the relationship between the recovery of a target – usually foundation species – and the processes and functions of the ecosystem (Rey Benayas et al., 2009; Moreno-Mateos et al., 2012; Crouzeilles et al., 2016). In this line, assessment of ecosystem functional recovery should include not only target species viability but also quantifiable properties to describe the community in terms of structure alongside ecosystem functions (Montoya et al., 2012).

      Trait-based ecology enables the analysis of the influence of species identity and composition on ecosystem functions and processes (Garnier et al., 2004; McGill et al., 2006). Functional traits are determined by morphological, physiological, and biological characteristics of the species and are considered relevant to influence the environment, affecting ecosystem properties and services (Violle et al., 2007; Díaz et al., 2013). Thus, functional diversity indices based on trait information improve the understanding of the functioning of an ecosystem (Mouillot et al., 2013), and when used together with traditional taxonomic-based indices they can provide a comprehensive evaluation of restoration projects (Cadotte et al., 2011; Montoya et al., 2012; Laughlin, 2014). Indeed, the application of functional trait approaches to ecological restoration is receiving growing attention worldwide (Carlucci et al., 2020), with some examples mainly focused on vegetation (e.g., Piqueray et al., 2015; Engst et al., 2016; Zirbel et al., 2017). To achieve in-depth and thorough assessments of functional recovery, studies should include as many species as possible and a broad combination of traits encompassing different facets of ecological processes. To this effect, comprehensive assessments are still needed for many ecosystems, probably because the required surveys to gather information about different species groups and species traits is challenging and time consuming.

      In marine coastal regions, brown seaweeds can create complex ecosystems often described as macroalgal forests, where macroalgae are the major contributors to primary production, providing food and shelter for other organisms, and consequently hosting an important biodiversity hotspot (Steneck et al., 2002; Smale et al., 2013). In the Mediterranean Sea, macroalgal forests are characterized by canopy-forming species of the genus Cystoseira sensu lato (including the genera Cystoseira C. Agardh, Gongolaria Boehmer and Ericaria Stackhouse; Molinari & Guiry, 2020), representing the highest level of complexity. However, several Mediterranean macroalgal forests have been declining over the last decades, such that previously widespread Cystoseira s.l. species have become locally extinct or their populations have been severely reduced and fragmented (e.g., Thibaut et al., 2005; Thibaut et al., 2015; Mariani et al., 2019). The first example of a self-sustaining macroalgal population after restoration in the Mediterranean Sea was reported by Verdura et al. (2018). In March 2011, a single restoring action allowed the recovery of a previously extinct population of the macroalga Gongolaria barbata in the Bay of Maó, Menorca (NW Mediterranean) ( Figure 1 ). The species thrived in the area one hundred years ago, but it became locally extinct following a reduction in water quality related to waste water effluents and harbour operations (Sales et al., 2011). Even when water quality was improved due to management measures involving stopping wastewater dumping, G. barbata populations were unable to recover. The success of the restoring action was first assessed considering the density and size structure distribution of the target species, which showed comparable values to those obtained in the reference population (Verdura et al., 2018) ( Figure 1 ). The presence of fertile individuals and new recruits confirmed that the restored population was self-maintained. More recently, a high-resolution cartography was carried out to describe the expansion patterns of the population, finding an increase of three orders of magnitude in the area occupied by G. barbata since the restoring action took place (Gran et al., 2022).

      (A, B) Gongolaria barbata locality after the restoring action in the Bay of Maó (Menorca); (C) the “before-the-action” locality sat in the Bay of Maó; and (D) G. barbata habitat in one reference locality, in Cala Rotja. Photo credits: Xavi Calsina (@XCalsi; A), Enric Ballesteros (B), Cristina Galobart (C) and Jordi Boada (D).

      The lack of recovery evidence is even more severe in marine ecosystems, since marine restoration science is very young in comparison to its terrestrial counterpart (Elliott et al., 2007; Rey Benayas et al., 2009; Kollmann et al., 2016, but see Saunders et al., 2020), representing only 7% of all restoring actions available in the literature (Blignaut et al., 2013). In the context of macroalgal forests, the few worldwide successful examples of active restoration are focused on the recovery of canopy-forming species (Whitaker et al., 2010; Verdura et al., 2018; Fredriksen et al., 2020; Layton et al., 2020; Cebrian et al., 2021). To our knowledge, only two studies have introduced the measurement of the re-established diversity, addressed by species composition and their abundance (Ling, 2008; Marzinelli et al., 2016). Further, macroalgal restoration projects are in general maintained over time spans of less than 2 years (Eger et al., 2022).

      Here, we assess for the first time the recovery of ecosystem functions in a ten-year restored macroalgal forest dominated by Gongolaria barbata. Using both traditional taxonomical indices and a functional trait approach, we test the assumption that after the reintroduction of the primary and structural species the associated biodiversity will recover and, in turn, the associated ecosystem functions and processes. We also hypothesised that the time since the presence of the structural species will influence the outcomes, with longer periods showing better recoveries. To do so, we considered the entire algal species composition and included 14 functional traits related to major aspects of the macroalgal species ecology. The main aim of the present study is to provide evidence of macroalgal taxonomical and functional recovery by describing a valid and solid approach which can be easily replicated and compared among marine and terrestrial ecosystems.

      Materials and methods Localities and sample collection

      To study the taxonomical and functional recovery following restoration we have surveyed five different localities: the focus of the initial restoration intervention, with > than 9 years of the structural species presence (hereafter “Restored”); a nearby locality where G. barbata is growing and represents the natural expansion of the restoration, with > than 3 years of the structural species presence (hereafter “Expansion Area”); a non-restored locality placed 100 m from the restored one and where the structural species has not yet arrived, representing the “before-the-action” locality (hereafter, “Non-Restored”); and two reference localities where the specimens used in the restoration come from, Cala Rotja (hereafter, “Reference 1”) and Miami (hereafter, “Reference 2”) ( Figure 2 ). “Reference 1” and “Reference 2” corresponded to the only two remaining G. barbata populations in the Spanish Mediterranean and nearby France (the closest population is found hundreds of km away), and represent mature and well-established G. barbata habitats (Sales & Ballesteros, 2009; Verdura et al., 2018; Mariani et al., 2019). All the studied localities were shallow (0-1 m depth) and sheltered.

      (A) Map of Menorca, NW Mediterranean; (B, C) Restored, Expansion Area and Non-Restored sampling localities in the Bay of Maó (collected 100 m apart); (D) Reference localities of Gongolaria barbata in Fornells Bay. The lower plot (C) was produced by Gran et al. (2022) and represents the abundance of G. barbata restored population, showing the two focal points of the restoration action (delimited by square quadrats) and the expansion area (where G. barbata is naturally growing and expanding after the action). Colours indicate % abundance according to the scale included.

      To determine the benthic macroalgal composition, three samples (replicates) were randomly collected at each locality in summer 2019. For each sample, the whole community was removed from an area of 20 x 20 cm with hammer and chisel (Ballesteros, 1986). The sampling area and the number of replicates were based on the information provided by previous studies that defined the minimum sampling area for Mediterranean infra-littoral assemblages dominated by canopy-forming macroalgae (Cinelli et al., 1977; Dhondt & Coppejans, 1977; Boudouresque and Belsher, 1979; Coppejans, 1980; Ballesteros, 1992; Sant et al., 2017). The use of this number of replicates and the area of each sample represents a well-established method across Mediterranean literature (e.g., Mangialajo et al., 2008; Orlando-Bonaca & Rotter, 2018; Piazzi et al., 2018; Sedano et al., 2019). Samples were placed in plastic bags and preserved in 4% seawater-formalin solution for further laboratory identification. Most macroalgal individuals were identified to species level and, whenever this was not possible, to genera level. Species abundances were calculated as dry weights (in g), obtained after 48 hours of drying at 60°C.

      Traditional biodiversity indices

      For each sample, we calculated species biomass (B), species richness (S), and species diversity (Shannon-Wiener index, H’). One-way ANOVA with locality (five levels: Non-Restored, Restored, Expansion Area, Reference 1 and Reference 2) as a fixed factor was then performed for each index. We tested for normal distribution of residuals and homogeneity of variances using Shapiro-Wilk and Levene’s tests, respectively, to check the assumptions of the model (all p-values > 0.05). When the ANOVA proved significant results we performed Tukey pairwise-comparisons to test for differences between locality pairs.

      To investigate patterns of variation in the species composition among samples and localities, we used a 3D non-metric multidimensional scaling (nMDS) ordination analysis based on Bray-Curtis similarities, with species abundance data previously square-root transformed. To test for differences in Bray-Curtis distances between our samples we used a permutational analysis of variance (PERMANOVA), again with locality (five levels: Non-Restored, Restored, Expansion Area, Reference 1 and Reference 2) as a fixed factor (Anderson, 2017).

      Functional characterization of macroalgal species

      Functional diversity was assessed using species trait information. Following the methods described in Teixidó et al. (2018), we considered the traits strictly related to macroalgae and adapted their categorization. We focused on the following 14 traits: morphological form, solitary-colonial life history, maximum longevity, maximum height, maximum width, epibiosis, major photosynthetic pigments, age of reproductive maturity, potential of asexual reproduction, growth rates, physical defences/calcification, and chemical defences. In addition, we added two more traits to better capture species ecological functions: algal biological cycle and type of vegetative ( Supplementary Table 1 ). Trait category values for each species were obtained from Teixidó et al. (2018) or were assigned by team member expertise and the published literature. Hereafter, species sharing the same values in all trait categories were defined as functional entities (FEs, unique combinations of traits).

      Functional diversity

      For each locality we calculated the number of species, the number of FE, and the functional richness (Fric). Fric represents the amount of functional space calculated as the volume inside a convex hull, shaped by the position of FEs (Mouillot et al., 2013). The convex hull algorithm determines the most external FEs and joins these points to calculate the volume inside, in a way that the final multidimensional space is the minimum space that includes all the present FEs. To determine the position of each FE, we first used the Gower metric – which allows for mixing different types of variables – to calculate a pairwise distance matrix (Podani & Schmera, 2006). Using the distance matrix, a Principal Coordinate Analysis (PCoA) was computed to build the multidimensional space. The number of axes was selected using the mean squared-deviation index (mSD), which was calculated between FEs initial distances and FEs final distances in the functional space (Maire et al., 2015). Including five PCoA dimensions allowed us to retain 64% of the explained variation and a reasonably low mSD value (0.0082). Last, we obtained the percentage of functional volume that overlaps between pairs of localities (that is, the proportional volume of one locality that is shared with another locality).

      All analyses were conducted in R version 4.0.2 (R Development Core Team, 2018).

      Results Traditional biodiversity indices and species composition

      A total of 60 macroalgal and one seagrass species were found in the five localities ( Supplementary Table 2 ). Species biomass (B), species richness (S), and species diversity (measured with Shannon-Wiener index, H’) significantly varied among localities ( Supplementary Table 3 ). Species biomass was 3-fold greater in “Restored” than in “Non-Restored” (393 ± 75 and 122 ± 87 g m-2, respectively), while “Expansion Area” showed intermediate values (254 ± 93 g m-2). The biomass of “Restored”, “Reference 1” and “Reference 2” was similar (407 ± 153 and 357 ± 44 g m-2 in “Reference 1” and “Reference 2”, respectively) ( Figure 3A ). In the same line, mean species richness (S) and species diversity (H’) were also high in “Restored”, with values reaching those found in the richest reference locality (“Reference 1”) ( Figures 3B, C ). In contrast, “Non-Restored” and “Expansion Area” consistently showed the lowest values of species richness and diversity ( Figures 3B, C ).

      Variability of biomass (A); mean species richness (B); and Shannon-Weiner diversity (C) between localities. Dissimilar letters above boxes indicate significant differences (p-values of Tukey test with 95% confidence intervals). Locality codes: “Non-Restored” (Non-Rest), “Restored” (Rest), “Expansion Area” (Exp), “Reference 1” (Ref 1), “Reference 2” (Ref 2).

      Species composition also differed among localities (PERMANOVA: r2 = 0.59, F = 3.61, p-value = 0.001). The nMDS ordination showed that whereas species composition of “Restored” and “Expansion Area” was similar, leading to closer and sometimes overlapping positions in the ordination space, “Non-Restored” (which was collected only few meters apart) was distinctly separated from them ( Figure 4 ). Both “Reference 1” and “Reference 2” also differed from all other localities (“Restored”, “Expansion Area” and “Non-Restored”), thus showing variability in species composition among different G. barbata populations ( Figure 4 ).

      Non-metric multidimensional scaling (nMDS) ordination of species assemblages, based on square-root transformed abundance data (dry weight) and Bray-Curtis dissimilarity. Locality codes: “Non-Restored” (Non-Rest), “Restored” (Rest), “Expansion Area” (Exp), “Reference 1” (Ref 1), “Reference 2” (Ref 2).

      Functional diversity

      The total number of identified macroalgal species ranged from 13 in “Expansion Area” to 39 in “Restored” ( Figure 5 ). “Non-Restored” and “Reference 2” showed similar number of species (17 and 19, respectively), while the value found in “Reference 1” was greater and closer to “Restored” (34 and 39, respectively). The high value of species richness in “Restored” is linked to a high number of functional entities (FEs, unique combination of traits). Accordingly, we found 36 FEs in “Restored”, while 13 and 16 FEs in “Expansion Area” and “Non-Restored”, respectively. In addition to the gain of species and FEs, “Restored” showed a 4-fold increase in functional richness (Fric see methods section) when compared to “Non-Restored”, from 0.0016 to 0.0069, respectively ( Figure 5 ). The functional richness in “Expansion Area” did not increase as in “Restored” and was the one with less functional volume (0.0012). For both “Reference 1” and “Reference 2”, the number of species, FEs and functional richness were consistently higher than in “Non-Restored” and “Expansion Area”, but were always lower than in “Restored”. Interestingly, while “Non-Restored” and “Reference 2” presented similar numbers of FEs (16 and 18, respectively), the functional volume that “Reference 2” occupied doubled that of “Non-Restored” (0.0033 and 0.0016, respectively), since the FEs found in “Non-Restored” had similar combination of traits thus leading to closer positions in the functional space ( Figure 6 ). Indeed, the visual representation of FEs and their abundance in the functional space revealed that in “Non-Restored” only two main and similar FEs accounted for the majority of total abundance, whereas in “Restored”, “Expansion Area”, and both reference localities, abundances were distributed among a greater number of FEs ( Figure 6 ). “Restored” and “Expansion Area” showed a similar distribution of FEs, especially when considering the most abundant ones ( Figure 6 ). However, “Restored” supported a high number of non-abundant FEs that were not present in “Expansion Area” ( Figure 6 ).

      Upper plots: Number of species (Sp) and number of functional entities (FE) in left axis, and functional diversity (Vol. 5D) in right axis, among the five studied localities (values are displayed above corresponding bars). Lower plots: Functional diversity is calculated as the space filled by all the FEs (filled points) present in each locality. The axes (PCoA 1 and PCoA 2) represent the first two dimensions of the 5D space from a Principal Coordinate Analysis (PCoA = computed on functional-trait values). Total number of species = 61; total number of FE = 54.

      Distribution of FE abundance across the functional space. Each point represents a functional entity and point sizes are proportional to the relative abundance (measured as dry weight).

      Functional traits across localities

      The FEs in “Restored”, “Expansion Area”, and both reference localities were characterized by a wide variety of categories within the traits, whereas in “Non-Restored” were more homogenous ( Figure 7 ). After 9 years of the restoration of G. barbata, macroalgal species from “Restored” reached the same varied combination of morphological forms as “Reference 1”, including 8 different morphologies ( Figure 7 ). The “Expansion Area”, representing the area with 3 years of presence of the structural species, also showed 7 different morphologies. The diversity of categories of all the other traits considered in this study was consistently higher for “Restored” and “Reference 1”, which showed categories related to slower life histories, with examples of FEs measuring up to 50 cm, living up to 10-20 years and reaching reproductive maturity mostly between 1 and 2 years old ( Figure 7 ). In contrast, 98% of FEs in “Non-Restored” accounted for only two morphologies (foliose erect/sheets and branched thallus) derived from the macroalgae Padina pavonica and Halopteris scoparia. The predominance of these two species in “Non-Restored” resulted in only one leading category in 9 out of 14 traits: solitary/colonial, height, width, major photosynthetic pigments, age at maturity reproduction, asexual reproduction, growth rates, chemical defences, and biological cycle. Moreover, FEs in “Non-Restored” exhibited categories describing more seasonal life histories, generally with smaller size (5-20 cm), shorter-lived species (1 year as a maximum) and rapid reproductive maturity ages (3-5 months). Overall, both reference localities, “Restored” and “Expansion Area” presented more heterogeneity within traits, with trait categories that were not present in “Non-Restored”, highlighting the higher functional diversity of these assemblages ( Figure 7 ).

      Relative abundances of each trait category in each locality. Trait codes: Morphological form: (A) filaments, (B) stolonial, (C) encrusting, (D) encrusting, leaf-like, with blades, (E) foliose erect thallus, sheets/blades, (F) coarsely branched, (G) articulated, (H) cup-like, (I) massive encrusting, (J) massive-hemispheric, (K) massive-erect, (L) tree-like, (M) grass-like; Solitary-colonial: (1) solitary, (2) gregarious, (3) colonial; Maximum longevity: (1) weeks, (2) 3–11 months, (3) 1 year, (4) 2 years, (5) 5 years, (6) 10–20 years, (7) >20 years; Height: (1) up to 1 mm, (2) 1–10 mm, (3) 10–50 mm, (4) 50–200 mm, (5) 200–500 mm, (6) 500 mm-2000 mm; Width: (1) up to 0.1 mm, (2) 0.1–1 mm, (3) 1–10 mm, (4) 10–50 mm, (5) 50–200 mm, (6) >200 mm; Epibiosis: (1) obligate, (2) facultative, (3) never; Major photosynthetic pigments: (A) Chl a, Chl b, β-carotene, xanthophyll, (B) Chl a, xanthophyll/fucoxanthin, Chl c1 + c2, (C) Chl a, phycocyanin, phycoerythrin; Age reproductive maturity: (1) weeks, (2) 3–5 months, (3) 6–11 months, (4) 1 year, (5) 2 years, (6) 2–5 years, (7) >5 years; Asexual reproduction: (1) no, (2) yes; Growth rates: (1) extreme slow (<1 cm/year), (2) slow (1 cm/year), (3) moderate (>1 cm/year), (4) high (5–10 cm/year), (5) very high (>10 cm/year); Calcification: (A) without, (B) external carbonate, (C) carbonate with discontinuities, (D) continuous carbonate; Chemical defenses: (1) no, (2) yes; Biological cycle: (1) monophasic, (2) diphasic isomorph, (3) diphasic heteromorph, (4) triphasic isomorph, (5) triphasic heteromorph; Vegetative reproduction: (1) without, (2) stolon, (3) fragments, (4) propagules.

      Discussion

      In this study, we provide the first example of recovery of ecosystem functions, under a functional-trait framework, after an active restoration in a macroalgal forest. The patterns in species and functional diversity reported here suggest that restoration is an important strategy in mitigating biodiversity losses and reinstating part of the lost functionality. Due to the limited restoration examples, marine restoration success is often based on short-term periods (1-2 years on average, Bayraktarov et al., 2016; Kollmann et al., 2016, but see Saunders et al., 2020). In terrestrial projects, however, the time elapsed since restoration started has been a key factor to reach similar conditions as those found in reference systems (Martin et al., 2013; Crouzeilles et al., 2016). Considering that the recovery of many marine ecosystems can take up to 15-25 years (Jones & Schmitz, 2009; Borja et al., 2010), the current time span used in most marine restoration activities might be insufficient to reliably evaluate the outputs. To this effect, where short-lived and high-turnover species are the target biological components of an ecosystem, full recovery could be achieved within shorter timescales (see examples in Borja et al., 2010). However, this is not the case of the structural components of macroalgal forests, where some of the foundational species are considered mid-/long-lived seaweeds (see examples in Schiel & Foster, 2006; Smale et al., 2013). Knowledge regarding the dynamics of the target species (e.g., growth rates, turnover, and longevity) should guide restoration efforts, pointing to the importance of long-term monitoring assessments for assemblages constituted of species with long life spans, such as some Mediterranean macroalgal forests (e.g., Ballesteros et al., 2002; Ballesteros et al., 2009; Capdevila et al., 2016).

      Also derived from the short-term evaluations, especially in marine ecosystems, restoration success often considers parameters related to the target species’ survival, with common measures of growth or density of the individuals (Bayraktarov et al., 2016; Jacob et al., 2018; Cebrian et al., 2021). In terrestrial ecological restoration, vegetation structure is also the most common quantitative indicator (Ruiz-Jaen & Aide, 2005; Gómez-Aparicio, 2009) together with community measures such as the species richness, the biodiversity indices and the species composition (Gatica-Saavedra et al., 2017; Hughes et al., 2017). In this study, species biomass, mean number of species, and species diversity (Shannon-Weiner index) of the restored locality reached the values of one reference locality (“Reference 1”). The restored locality even surpassed mean values of the other reference locality (“Reference 2”), supporting restoration success. Variations in biodiversity of the two reference localities could be explained by differences in local factors, since a priori similar communities might be subjected to different environmental conditions, resulting in species composition variations (Bernhardt-Römermann et al., 2015; and see examples in Matthews et al., 2009; da Costa et al., 2019). Thus, local environmental factors (e.g., type of substrate or sediment loading) and biotic factors (e.g., grazing pressure) might determine species composition and diversity. For this reason, the inclusion of more than one reference locality in restoration assessments is highly recommendable to account for the variability of natural communities and to describe different, but possible, restoration outcomes (Gann et al., 2019; Prach et al., 2019).

      The macroalgal species assemblage of the restored and expansion localities differed from the non-restored locality, and were also different when compared with the macroalgal forests of reference ( Figure 8 ). This trend has also been found in other restoration projects, where restored systems do not strictly follow the expected direction toward references (e.g., Sluis, 2002; Matthews & Spyreas, 2010; Suganuma et al., 2014). Time will determine whether the restored locality will eventually mirror a reference macroalgal forests or it will remain structurally and functionally dissimilar. Recent restoring frameworks and directives suggest that ecosystem restoration should first aim to recover past ecosystems where viable, but where not, a shift in objectives targeting novel but still improved ones should be adopted (Jackson & Hobbs, 2009; Gann et al., 2019). Restored ecosystems may have new combinations of species that have not occurred previously, but that could ensure the maintenance of the structure and functions of the system (Suding & Gross, 2006; Choi et al., 2008). Even so, historical knowledge is highly valuable and should always be used as a guide which accepts multiple trajectories, considers future environmental changes, and seeks for the recovery of ecosystem services (Higgs et al., 2014; Martin, 2017; Gann et al., 2019).

      Upper right: Diagram of the functional volume of the studied localities, where circle sizes are proportional to the amount of functional space occupied by each locality. Percentages indicate the proportion of functional volume contained in one locality that is also contained within another locality (e.g., 99.5% of “Non-Restored” volume is shared with “Restored” volume, 37.7% of “Restored” volume is shared with “Reference 2” volume). Upper left: Representation of the variability of trait categories in each locality (three high variable traits were selected as an example and categories with an abundance greater than 2% are represented). Lower right: The potential ecosystem functions recovered in the restored locality. Lower left: Summarised representation of the species diversity in each locality. Graphics were obtained from the Integration and Application Network (ian.umces.edu/media-library).

      We also demonstrated an increase of functional richness (Fric) with restoration ( Figure 8 ), indicating that the recovery of macroalgal species filling vacant functional space not occupied prior to restoration, effectively occurred. Interestingly, we observed that the species composition, the distribution and the abundance of FEs and the variability within traits in the area where G. barbata is naturally spreading (“Expansion Area”) is highly similar to those of the restored locality ( Figure 8 ). These similarities are due to the most dominant and abundant species in the restored locality being already present in the area of expansion. Despite this, functional diversity was lower since a high number of less abundant species are still lacking, showing that the recovery of some species and part of the biomass does not directly translate into a full recovery of all other species and their functionality ( Figure 8 ). These results highlight, again, the need of long periods to allow the recovery of the whole community after restoration.

      In the restored locality, there were more functional entities (FEs) and they were more distanced in the functional space, deriving from a greater range of categories within each trait (that is, more varied traits). In particular, after restoration, the macroalgal assemblage shifted from having only two main taxa and a small number of trait categories (e.g., two morphological forms, only solitary species, and one category of height and width) to a more heterogeneous assemblage involving six morphologies, the presence of gregarious and colonial taxa, and varied sizes with some large species but also other smaller ones. In addition, the restored assemblage included species with longer life spans and later reproductive maturity. In the same way as terrestrial plants, an increase in species architecture and size suggests a superior ability to compete for light (Reich, 2014) and it is sometimes associated with higher accumulation of standing biomass (de Bello et al., 2010). Similarly, recovering long-lived species along with morphological complexity is likely to increase the creation of three-dimensional biogenic habitats, increasing, for instance, long-term nutrient storage (de Bello et al., 2010; Teixidó et al., 2011) ( Figure 8 ). Adding stable structure and complexity also offers shelter for other organisms and reinstates the nursery capacity of these communities (Ørberg et al., 2018; Fulton et al., 2019). Hence, restoration not only benefited the macroalgal species but also probably lead to further consequences for other groups (i.e., invertebrates and fishes) ( Figure 8 ). Nonetheless, it is important to consider that one process or function is not controlled by a single trait belonging to a specific trophic level (e.g., primary producers, herbivores or carnivores) but by some key traits related to various trophic levels, which are simultaneously involved in the control of multiple functions (de Bello et al., 2010; Pistón et al., 2019). Like the restored locality, both reference macroalgal forests were also characterised by a high variability in the different functional trait categories. A greater range of trait categories in these reference forests could increase the likelihood of some species responding differently to variable conditions and perturbations (e.g., extreme climatic events), which also contributes to assemblage stability and resilience and to the maintenance of long-term ecosystem functioning (Díaz & Cabido, 2001; Cadotte et al., 2011). Last, and of interest, is that the non-restored locality and one reference macroalgal locality (Reference 2) showed similar low diversity values through the application of taxonomical information, the reference macroalgal locality doubled the diversity results when using functional information, underlining the utility and complementarity of these metrics.

      Predictable outcomes are a major goal of restoration ecology (Choi, 2007; Rey Benayas et al., 2009; Matthews & Spyreas, 2010), thus studies assessing ecosystem functioning through the lens of trait-based approaches can help to promote more generalizable outcomes (Suding et al., 2008). Even so, few studies have tested these ideas and, to our knowledge, they have never been applied in marine benthic ecosystems. We have demonstrated that if we are dealing with the structural species of an assemblage, a single restoring action can lead to the recovery of the associated biodiversity and, in turn, to the recovery of its functioning. Our study showed that the application of functional metrics together with traditional taxonomical indices provide valuable information for the understanding of macroalgal ecosystem functioning, and this approach has the potential to be extended and replicated in other restoration evaluations.

      Data availability statement

      The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/ Supplementary Material . The R code used to perform all the statistical analyses can be found in Git Hub: https://github.com/cgalobart/Macroalgal-restoration-functional-traits.

      Author contributions

      EC conceived the ideas; CG and EC collected the data; EB and CG identified the species and defined the traits; CG, RG and EC performed the data analyses; CG and EC drafted the manuscript. All authors contributed to the article and approved the submitted version.

      Funding

      This research was supported by the Sustainable Blue Economy program (European Union) under the grant agreement – AFRIMED - EASME/EMFF/2017/1.2.1.12/S4/01/SI2.789059, the Spanish Ministry of Science and Innovation under the grant FORESTA - N° PID2020-112985GB-I00, funded by MCIN/AEI/10.13039/501100011033 (European Union), and under the grant FoRescue – N° PCI2022-135070-2 funded by Biodiversa+ (European Biodiversity Partnership). CG was funded by Fundación Tatiana Pérez de Guzmán el Bueno predoctoral fellowship (Medioambiente 2019). RG was supported by an FPI grant (ANIMA – BES-2017-079907).

      Acknowledgments

      Authors acknowledge the D.G. d’Espais Naturals i Biodiversitat, the D.G. de Pesca i Medi Marí, and the Servei en Recerca i Desenvolupament del Govern de les Illes Balears for providing licenses, and the Jaume Ferrer Marine Station (IEO) for technical and facility support. We specially thank Dra. Maria Elena Cefalì for her support during sample collection. CG, RG, EC are members of the MedRecover Research Group (www.medrecover.org, 2017 SGR 1521) from the Generalitat de Catalunya.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2023.1176655/full#supplementary-material

      References Anderson M. J. (2017). Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, 115. doi: 10.1002/9781118445112.stat07841 Aronson J. Alexander S. (2013). Ecosystem restoration is now a global priority: time to roll up our sleeves. Restor. Ecol. 21 (3), 293296. doi: 10.1111/rec.12011 Ballesteros E. (1986). Métodos de análisis estructural en comunidades naturales, en particular del fitobentos. Oecologia Aquatica 8, 117131. Ballesteros E. (1992). “Els vegetals i la zonació litoral: especies, comunitats i factors que influeixen en la seva distribució,” in Arxius secció ciències, 101. (Barcelona, SpAain: Institut d’Estudis Catalans), 616. doi: 10.1017/CBO9781107415324.004 Ballesteros E. Garrabou J. Hereu B. Zabala M. Cebrian E. Sala E. (2009). Deep-water stands of Cystoseira zosteroides c. agardh (Fucales, ochrophyta) in the northwestern Mediterranean: insights into assemblage structure and population dynamics. Estuarine Coast. Shelf Sci. 82 (3), 477484. doi: 10.1016/j.ecss.2009.02.013 Ballesteros E. Hereu B. Zabala M. Alcoverro T. Garrabou J. Sala E. (2002). Rapport mission scandola: cystoseira 2000. Travaux Scientifiques du Parc Naturel Régional la Corse 60, 95115. Bayraktarov E. Saunders M. I. Abdullah S. Mills M. Beher J. Possingham H. P. . (2016). The cost and feasibility of marine coastal restoration. Ecol. Appl. 26 (4), 10551074. doi: 10.1890/15-1077.1 Bernhardt-Römermann M. Baeten L. Craven D. De Frenne P. Hédl R. Lenoir J. . (2015). Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biol. 21 (10), 37263737. doi: 10.1111/gcb.12993 Blignaut J. Esler K. J. de Wit M. P. Le Maitre D. Milton S. J. Aronson J. (2013). Establishing the links between economic development and the restoration of natural capital. Curr. Opin. Environ. Sustainability 5 (1), 94101. doi: 10.1016/j.cosust.2012.12.003 Borja Á. Dauer D. M. Elliott M. Simenstad C. A. (2010). Medium- and long-term recovery of estuarine and coastal ecosystems: patterns, rates and restoration effectiveness. Estuaries Coasts 33 (6), 12491260. doi: 10.1007/s12237-010-9347-5 Boudouresque C. F. Belsher T. (1979). Le peuplement algal du port de port-vendres: recherches sur l’aire minimale qualitative. Cahiers Biologie Mar. 20, 259269. Brudvig L. A. (2011). The restoration of biodiversity: where has research been and where does it need to go? Am. J. Bot. 98 (3), 549558. doi: 10.3732/ajb.1000285 Butchart S. H. M. Walpole M. Collen B. van Strien A. Scharlemann J. P. W. Almond R. E. A. . (2010). Global biodiversity: indicators of recent declines. Science 328 (5982), 11641168. doi: 10.1126/science.1187512 Cadotte M. W. Carscadden K. Mirotchnick N. (2011). Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48 (5), 10791087. doi: 10.1111/j.1365-2664.2011.02048.x Capdevila P. Hereu B. Riera J. L. Linares C. (2016). Unravelling the natural dynamics and resilience patterns of underwater Mediterranean forests: insights from the demography of the brown alga Cystoseira zosteroides . J. Ecol. 104 (6), 17991808. doi: 10.1111/1365-2745.12625 Cardinale B. J. Duffy J. E. Gonzalez A. Hooper D. U. Perrings C. Venail P. . (2012). Biodiversity loss and its impact on humanity. Nature 486 (7401), 5967. doi: 10.1038/nature11148 Carlucci M. B. Brancalion P. H. S. Rodrigues R. R. Loyola R. Cianciaruso M. V. (2020). Functional traits and ecosystem services in ecological restoration. Restor. Ecol. 28 (6), 13721383. doi: 10.1111/rec.13279 Ceballos G. Ehrlich P. R. Barnosky A. D. García A. Pringle R. M. Palmer T. M. (2015). Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1 (5), 913. doi: 10.1126/sciadv.1400253 Cebrian E. Tamburello L. Verdura J. Guarnieri G. Medrano A. Linares C. . (2021). A roadmap for the restoration of Mediterranean macroalgal forests. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.709219 Choi Y. D. (2007). Restoration ecology to the future: a call for new paradigm. Restor. Ecol. 15 (2), 351353. doi: 10.1111/j.1526-100X.2007.00224.x Choi Y. D. Temperton V. M. Allen E. B. Grootjans A. P. Halassy M. Hobbs R. J. . (2008). Ecological restoration for future sustainability in a changing environment. Ecoscience 15 (1), 5364. doi: 10.2980/1195-6860(2008)15[53:ERFFSI]2.0.CO;2 Cinelli F. Fresi E. Idato E. Mazzella L. (1977). L'aire minima du phytobenthos dans un peuplement à Cystoseira mediterranea de l'île d'Ischia (Golfe de Naples). Rapport la Comission Internationale pour l’Exploration Scientifique la Mer Méditerranée 24 (4), 113115. Coppejans E. (1980). “Phytosociological studies on Mediterranean algal vegetation: rocky surfaces of the photophilic infralittoral zone,” in The shore environment: ecosystems. Systematic association special volume (London: Academic Press), vol. 2., 371393. Crouzeilles R. Curran M. Ferreira M. S. Lindenmayer D. B. Grelle C. E. V. Rey Benayas J. M. (2016). A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666. doi: 10.1038/ncomms11666 da Costa N. Arnan X. de Paiva Farias R. Leão Barros I. C. (2019). Community responses to fine-scale enviromental conditions: ferns alpha and beta diversity along Brazilian Atlantic forests remnants. Acta Oecologica 101, 103475. doi: 10.1016/j.actao.2019.103475 de Bello F. Lavorel S. Díaz S. Harrington R. Cornelissen J. H. C. Bardgett R. D. . (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiver. Conserv. 19 (10), 28732893. doi: 10.1007/s10531-010-9850-9 Dhondt F. Coppejans E. (1977). Résultats d'une étude d'aire minima de peuplements algaux photophiles sur substrat rocheux à port-cros et à banyuls (France). Rapports Procès-Verbaux Des. Réunions la Commission Internationale pour l'Exploration Scientifique la Mer Méditerranée 24 (4), 141142. Díaz S. Cabido M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16 (11), 646655. doi: 10.1016/S0169-5347(01)02283-2 Díaz S. Purvis A. Cornelissen J. H. C. Mace G. M. Donoghue M. J. Ewers R. M. . (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3 (9), 29582975. doi: 10.1002/ece3.601 Dobson A. P. Bradshaw A. D. Baker A. J. (1997). Hopes for the future: restoration ecology and conservation biology. Science 277 (5325), 515522. doi: 10.1126/science.277.5325.515 Dobson A. Lodge D. Alder J. Cumming G. S. Keymer J. McGlade J. . (2006). Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87 (8), 19151924. doi: 10.1890/0012-9658(2006)87[1915:HLTCAT]2.0.CO;2 Eger A. M. Marzinelli E. M. Christie H. Fagerli C. W. Fujita D. Gonzalez A. P. . (2022). Global kelp forest restoration: past lessons, present status, and future directions. Biol. Rev. 97 (4), 14491475. doi: 10.1111/brv.12850 Elliott M. Burdon D. Hemingway K. L. Apitz S. E. (2007). Estuarine, coastal and marine ecosystem restoration: confusing management and science - a revision of concepts. Estuarine Coast. Shelf Sci. 74 (3), 349366. doi: 10.1016/j.ecss.2007.05.034 Ellis E. C. Goldewijk K. K. Siebert S. Lightman D. Ramankutty N. (2010). Anthropogenic transformation of the biomes 1700 to 2000. Global Ecol. Biogeogr. 19 (5), 589606. doi: 10.1111/j.1466-8238.2010.00540.x Engst K. Baasch A. Erfmeier A. Jandt U. May K. Schmiede R. . (2016). Functional community ecology meets restoration ecology: assessing the restoration success of alluvial floodplain meadows with functional traits. J. Appl. Ecol. 53 (3), 751764. doi: 10.1111/1365-2664.12623 Foley J. A. DeFries R. Asner G. P. Barford C. Bonan G. Carpenter S. R. . (2005). Global consequences of land use. Science 309 (5734), 570574. doi: 10.1126/science.1111772 Fredriksen S. Filbee-Dexter K. Norderhaug K. M. Steen H. Bodvin T. Coleman M. A. . (2020). Green gravel: a novel restoration tool to combat kelp forest decline. Sci. Rep. 10, 3983. doi: 10.1038/s41598-020-60553-x Fulton C. J. Abesamis R. A. Berkström C. Depczynski M. Graham N. A. J. Holmes T. H. . (2019). Form and function of tropical macroalgal reefs in the anthropocene. Funct. Ecol. 33 (6), 989999. doi: 10.1111/1365-2435.13282 Gann G. D. McDonald T. Walder B. Aronson J. Nelson C. R. Jonson J. . (2019). International principles and standards for the practice of ecological restoration. second edition. Restor. Ecol. 27 (S1), S1S46. doi: 10.1111/rec.13035 Garnier E. Cortez J. Billès G. Navas M. L. Roumet C. Debussche M. . (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology 85 (9), 26302637. doi: 10.1890/03-0799 Gatica-Saavedra P. Echeverría C. Nelson C. R. (2017). Ecological indicators for assessing ecological success of forest restoration: a world review. Restor. Ecol. 25 (6), 850857. doi: 10.1111/rec.12586 Geist J. Hawkins S. J. (2016). Habitat recovery and restoration in aquatic ecosystems: current progress and future challenges. Aquat. Conservation: Mar. Freshw. Ecosyst. 26 (5), 942962. doi: 10.1002/aqc.2702 Gómez-Aparicio L. (2009). The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and ecosystems. J. Ecol. 97 (6), 12021214. doi: 10.1111/j.1365-2745.2009.01573.x Gran A. Movilla J. I. Ballesteros E. Sales M. Bolado I. Galobart C. . (2022). Assessing the expansion and success of a restored population of Gongolaria barbata (Stackhouse) kuntze (Fucales, phaeophyceae) using high-precision positioning tools and size distribution frequencies. Mediterr. Mar. Sci. 23 (4), 907916. doi: 10.12681/mms.30500 Higgs E. Falk D. A. Guerrini A. Hall M. Harris J. Hobbs R. J. . (2014). The changing role of history in restoration ecology. Front. Ecol. Environ. 12 (9), 499506. doi: 10.1890/110267 Holl K. D. Aide T. M. (2011). When and where to actively restore ecosystems? For. Ecol. Manage. 261 (10), 15581563. doi: 10.1016/j.foreco.2010.07.004 Hughes A. R. Grabowski J. H. Leslie H. M. Scyphers S. Williams S. L. (2017). Inclusion of biodiversity in habitat restoration policy to facilitate ecosystem recovery. Conserv. Lett. 11 (3), 18. doi: 10.1111/conl.12419 Jackson S. T. Hobbs R. J. (2009). Ecological restoration in the light of ecological history. Science 325 (5940), 567569. doi: 10.1126/science.1172977 Jacob C. Buffard A. Pioch S. Thorin S. (2018). Marine ecosystem restoration and biodiversity offset. Ecol. Eng. 120, 585594. doi: 10.1016/j.ecoleng.2017.09.007 Jones H. P. Schmitz O. J. (2009). Rapid recovery of damaged ecosystems. PloS One 4 (5), e5653. doi: 10.1371/journal.pone.0005653 Kollmann J. Meyer S. T. Bateman R. Conradi T. Gossner M. M. de Souza Mendonça M. . (2016). Integrating ecosystem functions into restoration ecology–recent advances and future directions. Restor. Ecol. 24 (6), 722730. doi: 10.1111/rec.12422 Laughlin D. C. (2014). Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. Lett. 17 (7), 771784. doi: 10.1111/ele.12288 Layton C. Coleman M. A. Marzinelli E. M. Steinberg P. D. Swearer S. E. Vergés A. . (2020). Kelp forest restoration in Australia. Front. Mar. Sci. 7. doi: 10.3389/fmars.2020.00074 Ling S. D. (2008). Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156 (4), 883894. doi: 10.1007/s00442-008-1043-9 Maire E. Grenouillet G. Brosse S. Villéger S. (2015). How many dimensions are needed to accurately assess functional diversity? a pragmatic approach for assessing the quality of functional spaces. Global Ecol. Biogeogr. 24 (6), 728740. doi: 10.1111/geb.12299 Mangialajo L. Chiantore M. Cattaneo-Vietti R. (2008). Loss of fucoid algae along a gradient of urbanisation, and structure of benthic assemblages. Mar. Ecol. Prog. Ser. 358, 6374. doi: 10.3354/meps07400 Mariani S. Cefalì M. E. Chappuis E. Terradas M. Pinedo S. Torras X. . (2019). Past and present of fucales from shallow and sheltered shores in Catalonia. Regional Stud. Mar. Sci. 32, 100824. doi: 10.1016/j.rsma.2019.100824 Martin D. M. (2017). Ecological restoration should be redefined for the twenty-first century. Restor. Ecol. 25 (5), 668673. doi: 10.1111/rec.12554 Martin P. A. Newton A. C. Bullock J. M. (2013). Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proc. R. Soc. B: Biol. Sci. 280, 20132236. doi: 10.1098/rspb.2013.2236 Marzinelli E. M. Leong M. R. Campbell A. H. Steinberg P. D. Vergés A. (2016). Does restoration of a habitat-forming seaweed restore associated faunal diversity? Restor. Ecol. 24 (1), 8190. doi: 10.1111/rec.12292 Matthews J. W. Peralta A. L. Flanagan D. N. Baldwin P. M. Soni A. Kent A. D. . (2009). Relative influence of landscape vs. local factors on plant community assembly in restored wetlands. Ecol. Appl. 19 (8), 21082123. doi: 10.1890/08-1836.1 Matthews J. W. Spyreas G. (2010). Convergence and divergence in plant community trajectories as a framework for monitoring wetland restoration progress. J. Appl. Ecol. 47 (5), 11281136. doi: 10.1111/j.1365-2664.2010.01862.x McGill B. J. Enquist B. J. Weiher E. Westoby M. (2006). Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21 (4), 178185. doi: 10.1016/j.tree.2006.02.002 Molinari E. A. Guiry M. D. (2020). Reinstatement of the genera Gongolaria boehmer and Ericaria stackhouse (Sargassaceae, phaeophyceae). Notulae Algarum 172, 110. Montoya D. Rogers L. Memmott J. (2012). Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends Ecol. Evol. 27 (12), 666672. doi: 10.1016/j.tree.2012.07.004 Moreno-Mateos D. Power M. E. Comín F. A. Yockteng R. (2012). Structural and functional loss in restored wetland ecosystems. PloS Biol. 10 (1), e1001247. doi: 10.1371/journal.pbio.1001247 Mouillot D. Graham N. A. J. Villéger S. Mason N. W. H. Bellwood D. R. (2013). A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28 (3), 167177. doi: 10.1016/j.tree.2012.10.004 Ørberg S. B. Krause-Jensen D. Mouritsen K. N. Olesen B. Marbà N. Larsen M. H. . (2018). Canopy-forming macroalgae facilitate recolonization of sub-Arctic intertidal fauna and reduce temperature extremes. Front. Mar. Sci. 5. doi: 10.3389/fmars.2018.00332 Orlando-Bonaca M. Rotter A. (2018). Any signs of replacement of canopy-forming algae by turf-forming algae in the northern Adriatic Sea? Ecol. Indic. 87, 272284. doi: 10.1016/j.ecolind.2017.12.059 Piazzi L. Bonaviri C. Castelli A. Ceccherelli G. Costa G. Curini-Galletti M. . (2018). Biodiversity in canopy-forming algae: structure and spatial variability of the Mediterranean Cystoseira assemblages. Estuarine Coast. Shelf Sci. 207, 132141. doi: 10.1016/j.ecss.2018.04.001 Piqueray J. Ferroni L. Delescaille L. M. Speranza M. Mahy G. Poschlod P. (2015). Response of plant functional traits during the restoration of calcareous grasslands from forest stands. Ecol. Indic. 48, 408416. doi: 10.1016/j.ecolind.2014.08.039 Pistón N. de Bello F. Dias A. T. C. Götzenberger L. Rosado B. H. P. de Mattos E. A. . (2019). Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107 (5), 23172328. doi: 10.1111/1365-2745.13190 Podani J. Schmera D. (2006). On dendrogram-based measures of functional diversity. Oikos 115 (1), 179185. doi: 10.1111/j.2006.0030-1299.15048.x Prach K. Durigan G. Fennessy S. Overbeck G. E. Torezan J. M. Murphy S. D. (2019). A primer on choosing goals and indicators to evaluate ecological restoration success. Restor. Ecol. 27 (5), 917923. doi: 10.1111/rec.13011 R Development Core Team (2018) R: a language and environment for statistial computing. Available at: https://www.r-project.org/. Reich P. B. (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J. Ecol. 102 (2), 275301. doi: 10.1111/1365-2745.12211 Rey Benayas J. M. Newton A. C. Diaz A. Bullock J. M. (2009). Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325 (5944), 11211124. doi: 10.1126/science.1172460 Ruiz-Jaen M. C. Aide T. M. (2005). Restoration success: how is it being measured? Restor. Ecol. 13 (3), 569577. doi: 10.1111/j.1526-100X.2005.00072.x Sales M. Ballesteros E. (2009). Shallow Cystoseira (Fucales: ochrophyta) assemblages thriving in sheltered areas from menorca (NW mediterranean): relationships with environmental factors and anthropogenic pressures. Estuarine Coast. Shelf Sci. 84 (4), 476482. doi: 10.1016/j.ecss.2009.07.013 Sales M. Cebrian E. Tomas F. Ballesteros E. (2011). Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, heterokontophyta). Estuarine Coast. Shelf Sci. 92 (3), 347357. doi: 10.1016/j.ecss.2011.01.008 Sanderson E. W. Jaiteh M. Levy M. A. Redford K. H. Wannebo A. V. Woolmer G. (2002). The human footprint and the last of the wild. BioScience 52 (10), 891904. doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 Sant N. Chappuis E. Rodríguez-Prieto C. Real M. Ballesteros E. (2017). Cost-benefit of three different methods to study Mediterranean rocky assemblages. Scientia Marina 81 (1), 129138. doi: 10.3989/scimar.04463.04A Saunders M. I. Doropoulos C. Bayraktarov E. Babcock R. C. Gorman D. Eger A. M. . (2020). Bright spots in coastal marine ecosystem restoration. Curr. Biol. 30 (24), R1500R1510. doi: 10.1016/j.cub.2020.10.056 Schiel D. R. Foster M. S. (2006). The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu. Rev. Ecol. Evolution Systematics 37, 343372. doi: 10.1146/annurev.ecolsys.37.091305.110251 Secretariat of the Convention on Biological Diversity (2014). Global biodiversity outlook 4 (Montréal). Sedano F. Florido M. Rallis I. Espinosa F. Gerovasileiou V. (2019). Comparing sessile benthos on shallow artificial versus natural hard substrates in the Eastern Mediterranean Sea. Mediterr. Mar. Sci. 20 (4), 688702. doi: 10.12681/mms.17897 Simenstad C. Reed D. Ford M. (2006). When is restoration not? incorporating landscape-scale processes to restore self-sustaining ecosystems in coastal wetland restoration. Ecol. Eng. 26 (1), 2739. doi: 10.1016/j.ecoleng.2005.09.007 Sluis W. J. (2002). Patterns of species richness and composition in re-created grassland. Restor. Ecol. 10 (4), 677684. doi: 10.1046/j.1526-100X.2002.01048.x Smale D. A. Burrows M. T. Moore P. O’Connor N. Hawkins S. J. (2013). Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol. Evol. 3 (11), 40164038. doi: 10.1002/ece3.774 Steneck R. S. Graham M. H. Bourque B. J. Corbett D. Erlandson J. M. Estes J. A. . (2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29 (4), 436459. doi: 10.1017/S0376892902000322 Suding K. N. Gross K. L. (2006). “The dynamic nature of ecological systems: multiple states and restoration trajectories,” in Foundations of restoration ecology. (Washington, DC, USA: Island Press). 190209. Suding K. Higgs E. Palmer M. Callicott J. B. Anderson C. B. Baker M. . (2015). Committing to ecological restoration. Science 348 (6235), 638640. doi: 10.1126/science.aaa4216 Suding K. Lavorel S. Chapin F. S. Cornelissen J. H. C. Díaz S. Garnier E. . (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biol. 14 (5), 11251140. doi: 10.1111/j.1365-2486.2008.01557.x Suganuma M. S. Assis G. B. Durigan G. (2014). Changes in plant species composition and functional traits along the successional trajectory of a restored patch of Atlantic forest. Community Ecol. 15 (1), 2736. doi: 10.1556/ComEc.15.2014.1.3 Teixidó N. Gambi M. C. Parravacini V. Kroeker K. Micheli F. Villéger S. . (2018). Functional biodiversity loss along natural CO2 gradients. Nat. Commun. 9, 5149. doi: 10.1038/s41467-018-07592-1 Teixidó N. Garrabou J. Harmelin J.-G. (2011). Low dynamics, high longevity and persistence of sessile structural species dwelling on Mediterranean coralligenous outcrops. PloS One 6 (8), e23744. doi: 10.1371/journal.pone.0023744 Thibaut T. Blanfuné A. Boudouresque C. F. Verlaque M. (2015). Decline and local extinction of fucales in French Riviera: the harbinger of future extinctions? Mediterr. Mar. Sci. 16 (1), 206224. doi: 10.12681/mms.1032 Thibaut T. Pinedo S. Torras X. Ballesteros E. (2005). Long-term decline of the populations of fucales (Cystoseira spp. and sargassum spp.) in the albères coast (France, north-western Mediterranean). Mar. pollut. Bull. 50 (12), 14721489. doi: 10.1016/j.marpolbul.2005.06.014 Verdura J. Sales M. Ballesteros E. Cefalì M. E. Cebrian E. (2018). Restoration of a canopy-forming alga based on recruitment enhancement: methods and long-term success assessment. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01832 Violle C. Navas M.-L. Vile D. Kazakou E. Fortunel C. Hummel I. . (2007). Let the concept of trait be functional! Oikos 116 (5), 882892. doi: 10.1111/j.2007.0030-1299.15559.x Whitaker S. G. Smith J. R. Murray S. N. (2010). Reestablishment of the southern California rocky intertidal brown alga, Silvetia compressa: an experimental investigation of techniques and abiotic and biotic factors that affect restoration success. Restor. Ecol. 18 (s1), 1826. doi: 10.1111/j.1526-100X.2010.00717.x Wortley L. Hero J. M. Howes M. (2013). Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21 (5), 537543. doi: 10.1111/rec.12028 Zirbel C. R. Bassett T. Grman E. Brudvig L. A. (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. J. Appl. Ecol. 54 (4), 10701079. doi: 10.1111/1365-2664.12885
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.hexlabs.com.cn
      lj1bt.net.cn
      gzgywq.com.cn
      hilliot.com.cn
      www.pf9jf.com.cn
      www.mkchain.com.cn
      www.uigsnj.com.cn
      www.ntyhhg.com.cn
      si4.com.cn
      www.ly100.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p