Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2023.1142061 Marine Science Original Research Low content of highly reactive iron in sediments from Prydz Bay and the adjacent Southern Ocean: Controlling factors and implications for sedimentary organic carbon preservation Huang Wenhao 1 2 Guo Xiaoze 1 2 3 Zhao Jun 1 2 * Li Dong 1 2 Hu Ji 1 2 Zhang Haifeng 1 2 Zhang Cai 1 2 Han Zhengbing 2 Sun Weiping 2 Sun Yongge 3 Pan Jianming 1 2 1 Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou, China 2 Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China 3 Institute of Environmental and Biogeochemistry (eBig), School of Earth Sciences, Zhejiang University, Hangzhou, China

Edited by: Khan M. G. Mostofa, Tianjin University, China

Reviewed by: Zhaokai Xu, Institute of Oceanology (CAS), China; Pier Christian van der Merwe, University of Tasmania, Australia

*Correspondence: Jun Zhao, jzhao@sio.org.cn

This article was submitted to Marine Biogeochemistry, a section of the journal Frontiers in Marine Science

29 03 2023 2023 10 1142061 11 01 2023 20 03 2023 Copyright © 2023 Huang, Guo, Zhao, Li, Hu, Zhang, Zhang, Han, Sun, Sun and Pan 2023 Huang, Guo, Zhao, Li, Hu, Zhang, Zhang, Han, Sun, Sun and Pan

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Examining iron (Fe) speciation in marine sediments is critical to understand Fe and carbon biogeochemical cycling in polar regions. In this study, we investigated the speciation of Fe in sediments from Prydz Bay and the adjacent Southern Ocean, and examined the factors controlling Fe speciation and its relationship with total organic carbon (TOC). Our results reveal that unreactive silicate Fe (FeU) is the dominant pool of total Fe (FeT), followed by poorly reactive sheet silicate Fe (FePRS), reducible crystalline Fe oxides (Feox2), easily reducible amorphous/poorly crystalline Fe oxides (Feox1), and magnetite (Femag), with carbonate-associated ferrous Fe (Fecarb) being the smallest pool. The highly reactive Fe (FeHR)/FeT ratios (0.13 ± 0.06) in our study area are among the lowest end-member globally, primarily due to weak bedrock weathering and slow glacier melting. The Feox1/FeT ratios are similar to those in continental shelf and marginal seas containing highly weathered materials, while the Feox2/FeT ratios are significantly lower. This result implicates that low temperature inhibits the aging of iceberg melting-sourced Feox1 potentially, and accordingly the regulation of weathering on the FeHR/FeT ratio is mainly reflected in Feox2/FeT ratio. There are no significant correlations between TOC and FeHR, Fecarb, Feox1 or Feox2 in the research region. Four distinct patterns of TOC/FeHR ratio can be discerned by summarizing the global data set: (a) high TOC/FeHR ratios (> 2.5) are likely the result of high marine primary productivity and low chemically weathered source materials; (b) low TOC/FeHR ratios (< 0.6) are caused by high rates of FeHR inputs and OC remineralization; (c) mid-range TOC/FeHR ratios (0.6 – 2.5) typical of most river particulates and marginal sea sediments indicate the same FeHR and OC sources and/or interactions between each other; (d) both low TOC and FeHR content is the result of low marine primary productivity and weak chemical weathering. Our findings provide new insights into the relationship between FeHR and TOC in polar sediments.

Fe speciation highly reactive Fe Southern Ocean marine sediment organic carbon 41976228, 42276255, 41976227, 42176227 National Natural Science Foundation of China10.13039/501100001809

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The role of iron (Fe) speciation, rather than its total amount, is critical in Fe biogeochemical processes such as activity, migration, and bioavailability in marine sediments (Tagliabue et al., 2017). Due to its diverse mineralogy, crystallography, morphology, and chemical composition, Fe exhibits significant oxidation-reduction and adsorption reactivities (Kostka and Iii, 1994; Thamdrup, 2000). The sequential separation of different Fe species from the reaction phase is the foundation of Fe biogeochemistry (Poulton and Raiswell, 2005). Marine sediments serve as both a crucial Fe sink and source (Wadley et al., 2014; Homoky et al., 2016). The characteristics of Fe speciation in sediments are influenced by multiple factors, including the mixing of source materials with varying intensities of chemical weathering, bedrock type, redox conditions, pH values, chemical properties of organic matter, and diagenesis (Canfield, 1989; Poulton and Raiswell, 2005; Konhauser et al., 2011; Wehrmann et al., 2014; Thomasarrigo et al., 2019; Wei et al., 2021; Pasquier et al., 2022). Furthermore, highly reactive Fe (FeHR, operationally defined as Fe (oxyhydr)oxides and carbonates that readily react with sulfide to form sulfide minerals and eventually pyrite [Canfield, 1989]) in sediments has a significant impact on the biogeochemical cycling and fate of carbon (C) and other trace elements (Tagliabue et al., 2017). Therefore, the analysis of Fe speciation in sediments and the identification of controlling factors are crucial in studying Fe and C biogeochemical cycles.

      Early studies demonstrated that Antarctic glacial sediments, which contain poorly chemically weathered material, exhibit significantly lower FeHR content and FeHR/total Fe (FeT) ratios compared to terrestrial riverine particulates (Poulton and Raiswell, 2002; Raiswell et al., 2006). Recent studies on polar regions have revealed that glacial runoff meltwater contributes additional FeHR to coastal Antarctic waters (Bhatia et al., 2013; Hawkings et al., 2014; Wehrmann et al., 2014; Lyons et al., 2015; Dinniman et al., 2020), presenting a promising opportunity to enhance primary productivity in the Southern Ocean and accelerate carbon dioxide consumption from the atmosphere in this region (Blain et al., 2007). Correspondingly, the FeHR content and FeHR/FeT ratio in Antarctic marine sediments may rise (Henkel et al., 2018). Given the increasing melting rate of Antarctic glaciers in recent decades (Shepherd et al., 2018), these impacts may become more significant. However, limited data on Fe species in Antarctic sediments pose challenges in assessing the impact of glacial melting on the biogeochemical cycles of Fe and C in polar regions under the context of global warming.

      The natural process of “Fe fertilization”, which involves the transport of more FeHR to the ocean due to increased glacial melting, not only enhances the transport of organic carbon (OC) to the deep sea (Pollard et al., 2009), but also has the potential to promote sedimentary OC burial. OC-FeHR complexes formed by the combination of FeHR and OC exhibit long-term preservation potential (Lalonde et al., 2012; Faust et al., 2021), and their formation is therefore significant for improving the burial efficiency of marine sedimentary OC and mitigating global warming (Salvadó et al., 2015). However, the proportion of OC in OC-FeHR complexes to total OC (TOC) (f OC-Fe) in global marine surface sediments varies widely (0.5% – 80%) (Lalonde et al., 2012; Longman et al., 2021; Longman et al., 2022). Fe speciation and FeHR content in different sedimentary environments are significantly differ, which may be a crucial factor influencing the degree of OC-FeHR complexing (Ma et al., 2018; Faust et al., 2021). Therefore, investigating the species composition of FeHR in Antarctic marine sediments and its potential relationship with OC preservation is of great significance for comprehending the OC-FeHR coupling mechanism and evaluating the response of the Antarctic C cycle to climate change.

      Prydz Bay is the largest bay in the Indian Ocean sector of Antarctica. Its seaward perimeter is delineated by two shallower water depth banks, namely Fram Bank to the northwest and Four Ladies Bank to the northeast. The continental shelf region in Prydz Bay is comparable to that of the Weddell Sea and the Ross Sea, which are the two major Antarctic coastal seas and have the most productive coastal polynyas (Arrigo et al., 2015). However, Prydz Bay has fewer ice-free zones (Campbell et al., 1993) and less ice shelf melting (Shepherd et al., 2018; The IMBIE team, 2018), leading to weak chemical weathering and low FeHR inputs. The accumulation of marine materials in the surface sediments of Prydz Bay is primarily driven by primary production, as indicated by the distribution of chlorophyll a in surface waters and sedimentary TOC and total nitrogen (TN) (Vaz and Lennon, 1996; Liu et al., 2014). Therefore, Prydz Bay and the adjacent Southern Ocean provide an ideal area for studying Fe speciation and its relationship with OC, given the specific geographical environment and material source conditions.

      In this study, we conducted the sequential extraction of Fe species and measured TOC, FeT, grain size and specific surface area (SSA) in 20 surface sediments from Prydz Bay and the adjacent Southern Ocean. The aim was to characterize the distribution of Fe species, particularly FeHR, and speculate on its controlling factors. Additionally, we preliminarily discussed the relationship between TOC and Fe speciation in the research region and the implications from a global perspective.

      Materials and methods Sampling procedure

      During the 24th to 29th Chinese National Antarctic Research Expeditions (CHINARE-24 to -29, 2007 – 2013), a total of 20 surface sediment samples were collected from Prydz Bay and the adjacent Southern Ocean ( Figure 1 ; Table 1 ). The box sampler was used to collect the sediment samples, and the topmost 0 – 1 cm layer was considered as the surface sample. The samples were immediately frozen at –20°C and transported to the laboratory where they were stored at the same temperature until analysis.

      Surface sediment sampling stations in Prydz Bay and the adjacent Southern Ocean during the 24th to 29th Chinese National Antarctic Research Expeditions (CHINARE-24 to -29). The circumfluence map is modified after Williams et al. (2016). PBG, Prydz Bay Gyre; mCDW, modified Circumpolar Deep Water; DSW, Dense Shelf Water; ISW, Ice Shelf Water.

      Sampling information, sand, clay, silt and categories of surface sediment from Prydz Bay and the adjacent Southern Ocean.

      Station Longitude (°E) Latitude (°S) Water Depth (m) Cruise Silt (%) Sand (%) Clay (%) Category
      P4-09 70.87 67.52 285 CHINARE-29 22.1 72.7 5.12 Coarse
      P4-07 70.49 66.99 293 CHINARE-29 25.5 68.7 5.75
      P7-12 78.00 66.94 218 CHINARE-29 41.3 51.5 7.15 Medium
      IS-05 74.11 68.99 707 CHINARE-24 39.5 50.6 9.84
      IS-21 71.05 68.49 777 CHINARE-27 51.5 38.6 9.88
      P5-07 73.02 66.97 510 CHINARE-29 48.2 40.0 11.8
      P7-14 77.18 67.44 312 CHINARE-29 45.9 37.1 17.1
      P5-10 72.92 68.00 642 CHINARE-29 62.3 21.1 16.5 Fine
      P7-16 76.20 68.38 559 CHINARE-29 65.1 17.5 17.5
      P3-09 68.01 67.51 251 CHINARE-29 72.8 15.3 11.9
      IS-12 72.95 68.42 748 CHINARE-27 72.4 14.1 13.5
      P2-14 70.52 68.01 496 CHINARE-25 69.0 18.1 12.9
      P4-11 75.38 67.96 491 CHINARE-24 81.9 2.75 15.4
      IS-X1 76.11 69.28 / CHINARE-27 79.5 3.69 16.8
      P6-12 75.49 68.91 700 CHINARE-29 75.1 8.14 16.7
      P6-08 75.49 67.25 386 CHINARE-29 66.8 8.29 24.9 Ultra-fine
      P6-03 75.68 65.99 2920 CHINARE-29 60.7 12.9 26.4
      P7-07 77.82 65.48 3250 CHINARE-29 61.5 11.7 26.9
      P5-01 73.21 64.90 3421 CHINARE-29 55.5 16.8 27.7
      P3-03 67.81 66.00 2689 CHINARE-29 51.0 9.03 40.0
      Grain size and specific surface area analysis

      The sediment grain size was analyzed using a laser particle size analyzer (Malven Mastersizer 3000, UK) with an analysis range of 0.01 – 3500 μm and a precision better than 1%. Approximately 1 g of wet sediment was placed into pure water and mixed well with ultrasonication. The bulk sediment samples were then separated into 3 standard size fractions: sand (> 63 μm), silt (4 – 63 μm), and clay (< 4 μm). The freeze-dried sediments were heated in a muffle oven at 350°C for 12 h to remove organic matter. The SSA of the sediments was measured by the static volumetric method using an automatic analyzer (Bessed 3H-2000 PS1, China) with an analysis range of > 0.005 m2/g and a precision better than 1%.

      TOC analysis

      The TOC content in the sediments was determined using an elemental analyzer–isotope ratio mass spectrometer (EA–IRMS) (Thermo Delta V advantage, US). The freeze-dried sediment samples were analyzed after removing carbonates by acid fumigation and oven drying at 60°C for 24 h (Harris et al., 2001). The precision of the reference material (Acetanilide) was ± 0.23% (n = 5). One sample was selected to run as replicates in parallel (P7-16), and the relative standard deviation (RSD) of TOC measurements was < 16% (n = 2, Table S2 ).

      Total Fe and Al determination

      The FeT and Al content were analyzed using an inductively coupled plasma–atomic emission spectrometer (ICP–AES) (Thermo Fisher IRIS Intrepid II XSP, US). The freeze-dried sediment samples were placed in a polytetrafluoroethylene inner tank, which was immersed in nitric acid and leached with deionized water. The samples were then digested with mixed HF–HClO4–HNO3 acids (guaranteed reagent) in a microwave digestion instrument. The acid was expelled, and the volume was calibrated by adding Rhodium. The FeT and Al content in the digestion fluid were determined by subtracting blanks. Reference materials (GBW07314 [offshore marine sediments, The State Bureau of Quality and Technical Supervision of China], GBW07103 [granite rock composition analysis reference materials, The State Bureau of Quality and Technical Supervision of China] and GSP-2 [granodiorite powdered reference materials, USGS]) were also digested using the same method for quality control. The recovery efficiencies of FeT and Al for the reference materials were 100.2% – 101.9% and 100.1% – 100.4%, respectively. Replicates were analyzed for two samples (P4-07, P7-07), and the RSDs were ≤ 5.3% (n = 2, Table S2 ).

      Fe speciation

      Fe species analyses, including carbonate associated ferrous Fe (Fecarb), easily reducible amorphous/poorly crystalline Fe oxides (Feox1), reducible crystalline Fe oxides (Feox2), magnetite (Femag), and poorly reactive sheet silicate Fe (FePRS), were conducted following the methods of Poulton and Canfield (2005) and März et al. (2012) as shown in Table S1 . Briefly, the surface sediments were homogenized after freeze-drying, weighed accurately to 0.1 g, and then sequentially extracted by adding the respective reagents necessary for each Fe species to the centrifuge tube containing the sediments. The tubes were centrifuged at 4800 rpm for 10 min and the supernatants were transferred into PET bottles for Fe species analysis. The sediment residuals from the previous step were then washed twice with distilled water, which was added to the extracted supernatants. The Fe content in the supernatants was determined on a flame atomic absorption spectrophotometer (ZEE nit 700P, Germany). The RSDs for 10 samples were < 6.5% for Fecarb, < 8.2% for Feox1, < 4.9% for Feox2, < 13% for Femag (n = 3); and the RSDs for 2 samples was < 5.5% for FePRS (n = 2) ( Table S2 ). The sediments exhibited no observable indications of Fe sulfides (black mottles), leading to the assumption that pyrite-bound Fe was insignificant (März et al., 2012) and was not subject to analysis in this study. Here, we established FeHR = Fecarb + Feox1 + Feox2 + Femag as per Poulton and Canfield (2005). Consequently, the equation for unreactive silicate Fe (FeU) was: FeU = FeT – (FeHR + FePRS).

      Statistical analyses

      To establish relationships between the measured parameters, a Pearson correlation analysis and a two-tailed test of significance were conducted using the statistical software SPSS (Version 25). Additionally, a cluster analysis was performed using the same software. One-way analysis of variance with a 95% confidence interval (p < 0.05) was used to identify statistically significant differences.

      Results Grain size and grouping

      The sediment composition in the study area is analyzed in terms of the content of clay (5.12% – 40.0%), sand (2.75% – 72.7%), and silt (22.1% – 81.9%). Silt is found to be the dominant component, accounting for an average of 57.4% of the sediment volume ( Table S3 ). Sandy silt is identified as the main sediment type in the study area ( Figure 2 ) according to the sediment classification method of Folk (1980). Cluster analysis of grain size results in the division of sediment samples into 4 categories: “Coarse”, “Medium”, “Fine” and “Ultra-fine”, as shown in Figure 2 . The “Coarse” category includes 2 stations from Fram Bank, the “Medium” category includes 5 stations from the Amery Ice Shelf front, Four Ladies Bank and Prydz Channel, the “Fine” category includes 8 stations from the Cape Darnley polynya and Amery Basin, and the “Ultra-fine” category includes 5 stations from the deep Southern Ocean and Four Ladies Bank ( Table 1 ).

      Classification of surface sediments in Prydz Bay and the adjacent Southern Ocean. Samples are classified into 4 categories based on a cluster analysis: “Coarse” (red squares), “Medium” (blue triangles), “Fine” (green dots) and “Ultra-fine” (yellow diamonds).

      SSA, TOC and OC loading

      The SSA of the sediment samples ranges from 1.78 to 41.2 m2/g. The highest SSA is found in the “Ultra-fine” sediment category (33.9 ± 8.13 m2/g), followed by “Fine” (17.7 ± 4.86 m2/g) and “Medium” (8.57 ± 4.06 m2/g) sediments. The “Coarse” sediment category has the lowest SSA (1.87 ± 0.128 m2/g) ( Table S3 ).

      The TOC content ranges from 0.13% to 1.65%, similar to values (0.14% – 1.20%) in Liu et al. (2014). The “Fine” sediment category has significantly (p < 0.005) higher TOC content (1.02% ± 0.35%) than the other 3 categories (0.19% ± 0.02%, 0.32% ± 0.28%, 0.34% ± 0.19% for “Coarse”, “Medium” and “Ultra-fine”, respectively) ( Table S3 ).

      The OC loading (i.e., the TOC/SSA ratio) ranges from 0.04 to 1.29 mg/m2. The “Coarse” sediment category has the highest OC loading (0.99 ± 0.18 mg/m2), followed by “Fine” (0.62 ± 0.33 mg/m2), “Medium” (0.38 ± 0.21 mg/m2), and “Ultra-fine” (0.12 ± 0.11 mg/m2) sediments ( Table S3 ).

      Total Fe and Fe speciation

      The FeT content ranges from 1.22% to 5.19% (2.72% ± 0.993%), and is significantly (p < 0.01) higher in the “Ultra-fine” category sediments (3.99% ± 0.950%) than “Fine” (2.01% ± 0.387%) and “Medium” (2.37% ± 0.430%) sediments, with the middle value in “Coarse” category (3.25% ± 0.348%) ( Table S3 ).

      The characteristics of Fe speciation are reported in Table S3 . A comparison of the average yields of various Fe pools and their ratios to FeT in the 4 grain size categories are shown in Figure 3 . FeU is the largest Fe pool (290 ± 125 μmol/g), followed by FePRS (134 ± 105 μmol/g) and FeHR (64.0 ± 43.7 μmol/g) ( Figure 3B ). Within FeHR, the content of Feox2 (24.7 ± 19.4 μmol/g) and Feox1 (21.0 ± 15.9 μmol/g) is significantly (p < 0.001) higher than Fecarb (3.70 ± 1.31 μmol/g), with Femag in the mid-range of these values (14.7 ± 9.99 μmol/g) ( Figure 3A ).

      The average content of (A) Fecarb, Feox1, Feox2, Femag and (B) FeHR, FePRS, FeU, FeT in “Coarse”, “Medium”, “Fine” and “Ultra-fine” categories of sediments from Prydz Bay and the adjacent Southern Ocean. Note: FeHR = Fecarb + Feox1 + Feox2 + Femag.

      Regarding different grain size categories, Feox1, Feox2, Femag, FeHR and FePRS content is all significantly (p < 0.01) higher in “Ultra-fine” sediments (44.6 ± 11.7, 53.7 ± 8.02, 27.8 ± 6.87, 129 ± 26.0, 285 ± 83.6 μmol/g, respectively) than “Coarse” (4.37 ± 0.0778, 3.59 ± 0.601, 4.42 ± 2.16, 15.1 ± 3.37, 29.5 ± 13.5 μmol/g, respectively), “Medium” (11.1 ± 3.04, 16.0 ± 8.44, 14.1 ± 8.82, 44.4 ± 17.7, 80.0 ± 43.9 μmol/g, respectively) and “Fine” (16.5 ± 5.73, 17.2 ± 9.82, 9.43 ± 3.79, 47.7 ± 17.9, 98.0 ± 39.1 μmol/g, respectively) categories. FeU is significantly (p < 0.01) higher in “Coarse” sediments (538 ± 45.5 μmol/g) than in “Medium” (300 ± 68.6 μmol/g), “Fine” (215 ± 67.4 μmol/g) and “Ultra-fine” (300 ± 135 μmol/g) sediments, while there is no significant difference (p > 0.05) in Fecarb (2.72 ± 1.90, 3.20 ± 0.830, 4.59 ± 1.41 and 3.16 ± 0.605 μmol/g for “Coarse”, “Medium”, “Fine” and “Ultra-fine” categories, respectively) ( Figure 3 ).

      Discussion Fe<sub>HR</sub> characteristics and controlling factors Control of weak weathering and slow glacier melting on low Fe<sub>HR</sub>/Fe<sub>T</sub> ratio

      In the sediments from Prydz Bay and the adjacent Southern Ocean, there is a significant positive correlation between FeHR and FeT, as well as between FeHR and Al (R2 = 0.55, p < 0.001; R2 = 0.31, p < 0.05; Figure S1 ). This finding is consistent with the global riverine and glacial particulates, implying that FeHR are closely associated with Fe-bearing aluminosilicate minerals (Poulton and Raiswell, 2002; Poulton and Raiswell, 2005). The FeHR/FeT ratios in the research region (0.13 ± 0.06) are similar to those in Antarctic glacial particulates (0.11 ± 0.05), and lower than those in global river particulates (0.43 ± 0.03) and modern marine sediments (0.26 ± 0.08) ( Figure 4 ) (Poulton and Raiswell, 2002). This result suggests that the sediments in our study area are mainly influenced by weak chemical weathering. Generally, during chemical weathering, the easily solubilized major elements (such as Na, K, Ca, etc.) in rock minerals are leached, while the insoluble elements, such as Al and Fe, are enriched. As a result, Fe forms insoluble mineral phases (mainly Fe oxides) that continuously adsorb on the surface of parent rock minerals (Martin and Meybeck, 1979; Canfield, 1997). Therefore, the degree of chemical weathering can determine the FeHR content as well as the FeHR/FeT ratio (Poulton and Raiswell, 2002; Wei et al., 2021).

      Comparison of FeHR/FeT and FeT in “Coarse”, “Medium”, “Fine” and “Ultra-fine” categories of sediments from Prydz Bay and the adjacent Southern Ocean with global riverine particulates and modern marine sediments, Antarctic glaciers (Raiswell and Canfield, 1998; Poulton and Raiswell, 2002), off the western Antarctic Peninsula (Burdige and Christensen, 2022), off King George Island (Henkel et al., 2018), South Yellow Sea (Ma et al., 2018), East China Sea (Zhu et al., 2012), Barents Sea (Faust et al., 2021), Umpqua (Roy et al., 2013) and the Jiaozhou Bay (Zhu et al., 2015). Data are averages of surface sediments (0 – 2 cm) by recalculation of Henkel et al. (2018) and Burdige and Christensen (2022).

      River and glacier particulates are known to represent the high and low end-members of weathering intensity, respectively, and their mixing in varying proportions determines the FeHR/FeT ratio characteristics of sediments in different marine environments (Poulton and Raiswell, 2005). In the research region, the FeHR/FeT ratios belong to the lower end-member compared to other polar sediments ( Figure 4 ). For example, in the Arctic Barents Sea, off the Antarctic Peninsula and King George Island, the FeHR/FeT ratios of surface sediments (shallower than 2 cm) are 0.28 ± 0.07, 0.21 ± 0.05 and 0.35 ± 0.06, respectively (Henkel et al., 2018; Faust et al., 2021; Burdige and Christensen, 2022), all significantly (p < 0.01) higher than our result (0.13 ± 0.06) ( Figure 4 ). This difference can be attributed to the differences in the glacier melting and the bedrock weathering. In our study region, the ice-free area is small and the glacier melting rate is slow (Campbell et al., 1993; The IMBIE team, 2018). However, in the Arctic Barents Sea, off the Antarctic Peninsula and King George Island, there are larger ice-free zones and higher glacier melting rates (Stammerjohn et al., 2008; Screen and Simmonds, 2010; Rueckamp et al., 2011; The IMBIE team, 2018). Therefore, intense weathering process occurs: the runoff formed from ice melting continuously erodes the bedrock, producing soluble Fe2+ and secondary nanoparticulates, which are then oxidized and aged into Fe oxides, and transported to the marginal seas along with the runoff (Henkel et al., 2018). This situation is similar to those in rivers of middle and low latitudes, which can continuously transport Fe-containing particulates with high FeHR/FeT ratio. Besides, the FeHR/FeT ratios are significantly (p < 0.05) higher off King George Island ( Figure 4 ), probably due to the semi-enclosed bay topography, which is conducive to FeHR enrichment, similar to the Jiaozhou Bay and Bohai Sea (Zhu et al., 2015; Wang et al., 2019).

      Our findings demonstrate that the FeHR/FeT ratios vary across the 4 grain size-based sediment categories in the study area. Specifically, the FeT content in “Coarse” sediments (3.25% ± 0.348%) is comparable to that of the Earth’s crust (3.5%) (Taylor, 1964), and the FeHR/FeT ratios are extremely low (0.03 ± <0.005), representing minimal weathering of the input material from the Antarctic continent. In “Medium” and “Fine” sediments, the FeT content (2.37% ± 0.430% and 2.01% ± 0.387%, respectively) and FeHR/FeT ratios (0.10 ± 0.03 and 0.13 ± 0.04, respectively) are comparable to those of the Antarctic glacial particulates (2.10% ± 0.539% and 0.11 ± 0.05) (Poulton and Raiswell, 2002), indicating that sediments along the shelf of Prydz Bay primarily originate from the weak weathering Antarctic continent. While in “Ultra-fine” sediments, mainly from the deep Southern Ocean, the FeT content (3.99% ± 0.950%) is comparable to that of global deep sea sediments (4.29% ± 0.98%), and the FeHR/FeT ratios (0.18 ± 0.03) are slightly lower than those in global deep sea sediments (0.25 ± 0.10) (Poulton and Raiswell, 2002), indicating relatively enhanced weathering in this sediment category.

      Indications of the relative content of Fe<sub>carb</sub>, Fe<sub>ox1</sub> and Fe<sub>ox2</sub>

      The Fecarb/FeT ratios of the 4 grain size-based sediment categories in our research region (0.005 ± 0.003, 0.008 ± 0.003, 0.013 ± 0.005 and 0.005 ± 0.001 for “Coarse”, “Medium”, “Fine” and “Ultra-fine” categories, respectively) exhibit similarity (p > 0.05) to values from oxygen-rich sedimentary environments (e.g., 0.013 ± 0.004 and 0.019 ± 0.007 for the South Yellow Sea and off King George Island, respectively) (Henkel et al., 2018; Ma et al., 2018), but are significantly (p < 0.001) lower than those from anoxic or hypoxic sedimentary environments (e.g., 0.11 and 0.06 ± 0.02 for FOAM and the East China Sea, respectively) (Canfield, 1989; Zhu et al., 2012) ( Figure 5 ). Generally, in an Fe-rich and sulfide-free hypoxic or anoxic environment, intense microbially-mediated dissimilatory Fe reduction promotes the transformation of Feox1 and Feox2 to Fe(II) (Canfield, 1989; Mathew et al., 2022). Under neutral pH and oxidizing conditions, Fe(II) can rapidly oxidize to Fe(III) and hydrolyze to Fe (hydrogen)oxides (Konhauser et al., 2011; Ma et al., 2018). Therefore, our results indicate that the formation and accumulation of Fe(II) are restricted in oxygen-rich Antarctic marine environments (Meijers et al., 2010; Katsumata et al., 2015).

      Fecarb/FeT, Feox1/FeT and Feox2/FeT ratios in “Coarse”, “Medium”, “Fine” and “Ultra-fine” categories of sediments from Prydz Bay and the adjacent Southern Ocean, as well as in sediments from FOAM (friends of anoxic mud) (Canfield, 1989), the ECS (East China Sea) (Zhu et al., 2012), SYS (South Yellow Sea) (Ma et al., 2018) and KGI (King George Island) (Henkel et al., 2018). Data are averages of surface sediments (0 – 2 cm) by recalculation of Canfield (1989) and Henkel et al. (2018).

      Interestingly, the Feox2/FeT ratios of the 4 categories in our research region (0.01 ± <0.005, 0.04 ± 0.02, 0.05 ± 0.02 and 0.08 ± 0.01 for “Coarse”, “Medium”, “Fine” and “Ultra-fine” categories, respectively) are significantly (p < 0.001) lower than those in highly weathered marginal seas, such as the East China Sea and off King George Island (0.13 ± 0.03 and 0.16 ± 0.04) (Zhu et al., 2012; Henkel et al., 2018). However, the Feox1/FeT ratios (0.03 ± <0.005, 0.05 ± 0.01 and 0.06 ± 0.01 for “Medium”, “Fine” and “Ultra-fine” categories, respectively) are similar (p > 0.05) to those from the East China Sea, South Yellow Sea, and off King George Island (0.05 ± 0.01, 0.04 ± 0.01 and 0.04 ± 0.01) (Zhu et al., 2012; Henkel et al., 2018; Ma et al., 2018) ( Figure 5 ).

      There are 3 potential explanations for the observed differences in patterns between Feox1/FeT and Feox2/FeT. Firstly, the transformation of Feox1 to Feox2 in the sediments of our study area is restricted. Generally, the initial Fe oxides in the redox cycle are highly reactive and amorphous: i.e., Feox1. Over time, Feox1 gradually transforms into more stable and crystalline Fe oxides: i.e., Feox2 (Senn et al., 2017). However, the half-life of Fe oxides aging in low temperature environments (< 0°C) is 4 – 6 times longer than in mid-latitude areas (15°C – 20°C) (Canfield et al., 1992; Raiswell and Canfield, 1998; Schwertmann et al., 2004). Considering the relatively new surface sediment ages in the continental shelf of Prydz Bay (Wu et al., 2017), the insufficient conversion time may be responsible for the low Feox2/FeT ratios observed.

      Secondly, there may be additional Feox1 sources in the study area. Icebergs are considered to be an important FeHR source to the Southern Ocean (Lin et al., 2011; Raiswell et al., 2016; Raiswell et al., 2018). The Fe in icebergs is often isolated by the ice, limiting Fe contact with water and organic matter and preventing Fe from further aging (Raiswell et al., 2016; Raiswell et al., 2018). Therefore, a high content of ferrihydrite exists in icebergs and may rapidly settle into sediments during melting by scavenging. However, due to a lack of systematic studies, it is still impossible to quantitatively assess the importance of iceberg contributions to sedimentary Fe pools, especially Feox1.

      Finally, the dynamic equilibrium of the conversion between the transformation from Feox1 to Feox2 promoted by aging and the transformation from FeT to Feox1 promoted by chemical weathering (Schwertmann et al., 2004; Poulton and Raiswell, 2005) also explains our Feox1/FeT results. In summary, these results demonstrate that the regulation of FeHR/FeT ratio by weathering is mainly reflected in the control of Feox2/FeT ratio rather than Feox1/FeT ratio.

      Relationship between Fe<sub>HR</sub> and TOC

      The correlation between FeHR and TOC was investigated in the sediments of Prydz Bay and the adjacent Southern Ocean. Results show a significant negative correlation between TOC and Al, and TOC and FeT (R2 = 0.53, p < 0.01; R2 = 0.35, p < 0.01, Figures S2A, B ). The source of Fe in the sediments is mainly from weak-weathered rock of the Antarctic continent (see section 4.1), while TOC is mainly derived from primary production by phytoplankton based on organic biomarkers (Zhao et al., 2014) and TOC/TN ratios (Liu et al., 2014). Therefore, the negative correlations indicate significant differences in the sources of TOC (biogenic) versus Al and FeT (lithogenic), and the dilution relationship between each other.

      Previous studies have shown that TOC is often positively correlated with FeHR in surface sediments from riverine particulates, glaciers and marginal seas (Poulton and Raiswell, 2005; Zhu et al., 2012; Roy et al., 2013; Zhu et al., 2015). However, there is no significant (p > 0.05) correlation between the TOC and FeHR, Fecarb, Feox1 or Feox2 content in the sediments of our study area ( Figures S2C–F ), possibly due to the complex sedimentary environment. Based on a wide range of samples, we summarize and classify the relationship between TOC and FeHR in different sedimentary environments around the world ( Figure 6 ), as follows.

      Diagram of the relationship between the content of TOC and FeHR. Specific ranges of TOC/FeHR ratios characterize different sedimentary environments, and reflect the degree of OC-FeHR complexing in different environments. Data related to OC/FeHR ratios are derived from this study, Wijsman et al. (2001); Roy et al. (2013); Jessen et al. (2017); Ma et al. (2018); Faust et al. (2021) and Zhu et al. (2012); Zhu et al. (2015). The f OC-Fe data are from Lalonde et al. (2012); Shields et al. (2016); Ma et al. (2018); Faust et al. (2021) and Zhao et al. (2018). OET, oxygen-exposure time; SYS, South Yellow Sea; ECS, East China Sea, JZ Bay, the Jiaozhou Bay. Data are averages of surface sediments (0 – 2 cm) by recalculation of Jessen et al. (2017); Faust et al. (2021) (stations 393, 506 and 448), Shields et al. (2016) and Wijsman et al. (2001) (station 19).

      The first scenario pertains to high TOC/FeHR ratios (> 2.5), observed in “Fine” sediments with elevated TOC content (1.02% ± 0.35%) and high OC loading (TOC/SSA = 0.62 ± 0.33 mg/m2) in this study ( Table S3 ), as well as in anoxic environments like the Black Sea (Wijsman et al., 2001; Jessen et al., 2017). Usually, the extremely high TOC content and TOC/FeHR ratios in anoxic environments are due to the reduced remineralization of TOC (Jessen et al., 2017). In contrast, “Fine” sediments are mainly located in the center of Prydz Bay, with shallow water depths (251 – 748 m), and high primary productivity (412 mmol C m–2 d–1), summer particulate deposition fluxes (2515 ± 1828 μmol C m–2 d–1) and sedimentation rates (2.9 – 8.7 g C m–2 a–1) (Behrenfeld and Falkowski, 1997; Yu et al., 2009; Han, 2018). These conditions favor high OC accumulation rates and OC loading (Blair and Aller, 2012). However, the effect of dilution by marine OC on FeHR content is more significant due to the low FeHR content caused by inputs of relatively unweathered materials, as described in section 4.1. It should be noted that, unlike in anoxic environments, the situation in our study area is a novel discovery in oxygen-rich polar marine environments and may have significant global implications for the long-term preservation of marine OC (Liu et al., 2014).

      The second scenario pertains to low TOC/FeHR ratios (< 0.6), observed in suspended particulates of rivers with high discharge rates (the Amazon River and the Yellow River) (Poulton and Raiswell, 2005) and deep-sea sediments (Lalonde et al. (2012) and this study). In the former, there are substantial inputs of terrestrial materials (OC and FeHR) to the ocean; however, more than 90% of the OC is remineralized into CO2 (Aller and Blair, 2006), and most FeHR is oxidized and crystallized into hematite, which has relatively poor bioavailability (Zhao et al., 2018, and references therein), due to frequent physical transformations and rapid redox cycling. In the latter, such as “Ultra-fine” sediments in this study, the prolonged oxygen exposure time of OC in deeper waters (> 3000 m) promotes OC remineralization, and the enhanced weathering leads to more FeHR development (Poulton and Raiswell, 2002).

      The third scenario pertains to sediments with both low TOC and FeHR content, such as “Coarse” and “Medium” sediments in this study, and in icebergs (Poulton and Raiswell, 2005). The former are usually located at the front edge of Amery Ice Shelf or in shallow waters where sea ice cover persists for extended periods, resulting in low rates of OC deposition (1.1 – 5.7 g C m–2 a–1) (Yu et al., 2009) and limited TOC accumulation in sediments (Mayer, 1994; Blair and Aller, 2012). Additionally, weak weathering hinders the development of FeHR.

      The final scenario pertains to mid-range TOC/FeHR ratios (0.6 – 2.5), including typical riverine particulates and marginal shelf sediments (Poulton and Canfield, 2005; Roy et al., 2013). In this scenario, there is a significant positive correlation between TOC and FeHR, as both are derived from terrestrial sources and interact with each other to form OC-FeHR complexes through adsorption/coprecipitation. These complexes are then transported to the coastal and shelf sediments and preserved for extended periods (Faust et al., 2021). Therefore, mid-range TOC/FeHR ratios represent the characteristics of the residual portion of relatively stable terrestrial OC (Poulton and Raiswell, 2005; Lalonde et al., 2012; Roy et al., 2013; Faust et al., 2021).

      Based on the preceding discussion, we have deduced that the TOC/FeHR ratios to some extent can reflect the degree of OC-FeHR complexing in various environments. This implies that the contribution of FeHR to OC preservation may differ across different sedimentary settings. For example, in continental shelf marginal sea sediments with mid-range TOC/FeHR ratios, the f OC-Fe is 16.1% ± 9.5% (n = 73) (Lalonde et al., 2012; Salvadó et al., 2015; Shields et al., 2016; Ma et al., 2018; Faust et al., 2021). In the mobile mud area of the Changjiang Estuary, characterized by low TOC/FeHR ratios, the f OC-Fe is only 8.1% ± 4.2% (n = 26) (Zhao et al., 2018). In the deep-sea sediments with prolonged oxygen exposure, the f OC-Fe is 13.7% ± 8.7% (n = 13) (Longman et al., 2022). Therefore, we propose that the f OC-Fe may exhibit significant variation across different sediment categories in Prydz Bay and the adjacent Southern Ocean. However, research on the f OC-Fe in Antarctic marine sediments is scarce, with only one Antarctic deep sea sediment out of 406 samples worldwide (Lalonde et al., 2012; Longman et al., 2022). Further research on the f OC-Fe in Antarctic marine sediments is necessary in consideration of the low FeHR/FeT ratios and complex TOC/FeHR ratios.

      Conclusion

      The FeHR/FeT ratios observed in marine sediments from Prydz Bay and the adjacent Southern Ocean are similar to those in the Antarctic glacial particulates, but lower than those in global riverine particulates and modern marine sediments. This suggests that FeHR is mainly derived from the Antarctic bedrock with weak weathering. Our FeHR/FeT ratios are also lower than those in sediments from the Arctic Barents Sea, off the Antarctic Peninsula and King George Island, likely due to the slower glacier melting. The Feox1/FeT ratios in our study area are equivalent to, those in sediments from other continental shelf marginal seas with intense weathering, but the Feox2/FeT ratios are lower. This indicates that there is a potential inhibitory effect of low temperatures on aging of iceberg melting Feox1, and the regulation of weathering on FeHR/FeT ratio is mainly reflected in Feox2/FeT ratio. There is no significant correlation between TOC and FeHR, Fecarb, Feox1 or Feox2 content, due to the complex and diverse sedimentary environments in the research region: “Fine” sediments with high TOC/FeHR ratios, TOC content, OC loading and low FeHR content, “Ultra-fine” sediments with contrary characteristics, and “Medium” and “Coarse” sediments with both low TOC and FeHR content.

      Data availability statement

      The original contributions presented in the study are included in the article/ Supplementary Material . Further inquiries can be directed to the corresponding author.

      Author contributions

      WH and JZ made substantial contributions to draft the manuscript. XG and WH made substantial contributions to the data analysis. DL, JH, HZ, CZ, ZH, WS, YS and JP made substantial contributions to participate the manuscript discussion. All authors contributed to the article and approved the submitted version.

      Funding

      This research was jointly supported by the National Natural Science Foundation of China (NSFC) (Nos. 41976228, 42276255, 41976227, 42176227), the Scientific Research Fund of the Second Institute of Oceanography, MNR (No. JG1805), National Polar Special Program “Impact and Response of Antarctic Seas to Climate Change” (Nos. IRASCC 01-01-02A and 02-02), and the China Scholarship Council (No. 201704180017).

      Acknowledgments

      The authors would like to thank Dr. Jihao Zhu for helping in FeT determination, and Ms. Huijuan Zhang for grain size measurements. We also extend thanks to the R/V Xuelong crews who devoted their time and effort to sample sediments in the CHINARE-24 to -29.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2023.1142061/full#supplementary-material

      Abbreviations

      Fecarb, carbonate associated ferrous Fe; Feox1, easily reducible amorphous/poorly crystalline Fe oxides (ferrihydrite, lepidocrocite); Feox2, reducible crystalline Fe oxides (goethite, akaganéite, hematite); Femag, magnetite; FePRS, poorly reactive sheet silicate Fe; FeT, Total Fe; FeHR, Highly reactive Fe (Fecarb + Feox1 + Feox2 + Femag); FeU, Unreactive silicate Fe (FeT – FeHR – FePRS); SSA, Specific surface area; TOC, Total organic carbon; f OC-Fe, Proportion of OC in OC-FeHR complexes to TOC.

      References Aller R. C. Blair N. E. (2006). Carbon remineralization in the Amazon–guianas tropical mobile mudbelt: A sedimentary incinerator. Cont. Shelf Res. 26, 22412259. doi: 10.1016/j.csr.2006.07.016 Arrigo K. R. Van Dijken G. L. Strong A. L. (2015). Environmental controls of marine productivity hot spots around Antarctica. J. Geophys. Res. Oceans 120, 55455565. doi: 10.1002/2015jc010888 Behrenfeld M. J. Falkowski P. G. (1997). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 120. doi: 10.2307/2838857 Bhatia M. P. Kujawinski E. B. Das S. B. Breier C. F. Henderson P. B. Charette M. A. (2013). Greenland Meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6, 274278. doi: 10.1038/ngeo1746 Blain S. Queguiner B. Armand L. Belviso S. Bombled B. Bopp L. . (2007). Effect of natural iron fertilization on carbon sequestration in the southern ocean. Nature 446, 10701074. doi: 10.1038/nature05700 Blair N. E. Aller R. C. (2012). The fate of terrestrial organic carbon in the marine environment. Ann. Rev. Mar. Sci. 4, 401423. doi: 10.1146/annurev-marine-120709-142717 Burdige D. J. Christensen J. P. (2022). Iron biogeochemistry in sediments on the western continental shelf of the Antarctic peninsula. Geochim. Cosmochim. Acta 326, 288312. doi: 10.1016/j.gca.2022.03.013 Campbell I. B. Balks M. R. Claridge G. G. C. (1993). A simple visual technique for estimating the impact of fieldwork on the terrestrial environment in ice-free areas of Antarctica. Polar Rec 29, 321328. doi: 10.1017/S0032247400023974 Canfield D. E. (1989). Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53, 619632. doi: 10.1016/0016-7037(89)90005-7 Canfield D. E. (1997). The geochemistry of river particulates from the continental USA: Major elements. Geochim. Cosmochim. Acta 61, 33493365. doi: 10.1016/S0016-7037(97)00172-5 Canfield D. E. Raiswell R. Bottrell S. H. (1992). The reactivity of sedimentary iron minerals toward sulfide. Amer. J. Sci. 292, 659683. doi: 10.2475/ajs.292.9.659 Dinniman M. S. St-Laurent P. Arrigo K. R. Hofmann E. E. Van Dijken G. L. (2020). Analysis of iron sources in Antarctic continental shelf waters. J. Geophys. Res. Oceans 125, 119. doi: 10.1029/2019jc015736 Faust J. C. Tessin A. Fisher B. J. Zindorf M. Papadaki S. Hendry K. R. . (2021). Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nat. Commun. 12, 275. doi: 10.1038/s41467-020-20550-0 Folk R. L. (1980). Petrology of sedimentary rocks (Austin Texas: Hemphill Publishing Company), 184pp. Han Z.-B. (2018). “Biological pump” and its response to changes in sea ice in the Prydz Bay, East Antarctic (Wuhan: China University of Geosciences) 135. Harris D. Horwáth W. Kessel C. V. (2001). Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci. Soc Amer. J. 65, 18531856. doi: 10.2136/sssaj2001.1853 Hawkings J. R. Wadham J. L. Tranter M. Raiswell R. Benning L. G. Statham P. J. . (2014). Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929. doi: 10.1038/ncomms4929 Henkel S. Kasten S. Hartmann J. F. Silva-Busso A. Staubwasser M. (2018). Iron cycling and stable fe isotope fractionation in Antarctic shelf sediments, king George island. Geochim. Cosmochim. Acta 237, 320338. doi: 10.1016/j.gca.2018.06.042 Homoky W. B. Weber T. Berelson W. M. Conway T. M. Henderson G. M. Van Hulten M. . (2016). Quantifying trace element and isotope fluxes at the ocean-sediment boundary: A review. Philos. Trans. A Math. Phys. Eng. Sci. 374, 143. doi: 10.1098/rsta.2016.0246 Jessen L. G. Lichtschlag A. Ramette A. Pantoja S. Rossel E. P. Schubert C. J. . (2017). Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 3, e1601897. doi: 10.1126/sciadv.1601897 Katsumata K. Nakano H. Kumamoto Y. (2015). Dissolved oxygen change and freshening of Antarctic bottom water along 62°S in the Australian-Antarctic basin between 1995/1996 and 2012/2013. Deep Sea Res. II Top. Stud. Oceanogr. 114, 2738. doi: 10.1016/j.dsr2.2014.05.016 Konhauser K. O. Kappler A. Roden E. E. (2011). Iron in microbial metabolisms. Elements 7, 8993. doi: 10.1002/chin.201227254 Kostka J. E. Iii G. (1994). Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochim. Cosmochim. Acta 58, 17011710. doi: 10.1016/0016-7037(94)90531-2 Lalonde K. Mucci A. Ouellet A. Gélinas Y. (2012). Preservation of organic matter in sediments promoted by iron. Nature 483, 198200. doi: 10.1038/nature10855 Lin H. Rauschenberg S. Hexel C. R. Shaw T. J. Twining B. S. (2011). Free-drifting icebergs as sources of iron to the weddell Sea. Deep Sea Res. II Top. Stud. Oceanogr. 58, 13921406. doi: 10.1016/j.dsr2.2010.11.020 Liu R. Yu P. Hu C. Y. Han Z. B. Pan J. M. (2014). Contents and distributions of organic carbon and total nitrogen in sediments of prydz bay, Antarctic. Acta Oceanol. Sin. 36, 118125. doi: 10.3969/j.issn.0253-4193.2014.04.003 Longman J. Faust J. C. Bryce C. Homoky W. B. März C. (2022). Organic carbon burial with reactive iron across global environments. Global Biogeochem. Cycles 36, e2022GB007447. doi: 10.1029/2022gb007447 Longman J. Gernon T. M. Palmer M. R. Manners H. R. (2021). Tephra deposition and bonding with reactive oxides enhances burial of organic carbon in the Bering Sea. Global Biogeochem. Cycles 35, e2021GB007140. doi: 10.1029/2021gb007140 Lyons W. B. Dailey K. R. Welch K. A. Deuerling K. M. Welch S. A. Mcknight D. M. (2015). Antarctic Streams as a potential source of iron for the southern ocean. Geology 43, 10031006. doi: 10.1130/g36989.1 Ma W. W. Zhu M.-X. Yang G.-P. Li T. (2018). Iron geochemistry and organic carbon preservation by iron (oxyhydr)oxides in surface sediments of the East China Sea and the south yellow Sea. J. Mar. Syst. 178, 6274. doi: 10.1016/j.jmarsys.2017.10.009 Martin J. M. Meybeck M. (1979). Elemental mass-balance of material carried by major world rivers. Mar. Chem. 7, 173206. doi: 10.1016/0304-4203(79)90039-2 März C. Poulton S. W. Brumsack H. J. Wagner T. (2012). Climate-controlled variability of iron deposition in the central Arctic ocean (southern mendeleev ridge) over the last 130,000 years. Chem. Geol. 330-331, 116126. doi: 10.1016/j.chemgeo.2012.08.015 Mathew D. Gireeshkumar T. R. Udayakrishnan P. B. Shameem K. Nayana P. M. Deepulal P. M. . (2022). Geochemical speciation of iron under nearshore hypoxia: A case study of alappuzha mud banks, southwest coast of India. Cont. Shelf Res. 238, 104686. doi: 10.1016/j.csr.2022.104686 Mayer L. M. (1994). Surface area control of organic carbon accumulation in continental shelf sediments. Geochim. Cosmochim. Acta 58, 12711284. doi: 10.1016/0016-7037(94)90381-6 Meijers A. J. S. Klocker A. Bindoff N. L. Williams G. D. Marsland S. J. (2010). The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E. Deep Sea Res. II Top. Stud. Oceanogr. 57, 723737. doi: 10.1016/j.dsr2.2009.04.019 Pasquier V. Fike D. A. Révillon S. Halevy I. (2022). A global reassessment of the controls on iron speciation in modern sediments and sedimentary rocks: A dominant role for diagenesis. Geochim. Cosmochim. Acta 335, 211230. doi: 10.1016/j.gca.2022.08.037 Pollard R. T. Salter I. Sanders R. J. Lucas M. I. Moore C. M. Mills R. A. . (2009). Southern ocean deep-water carbon export enhanced by natural iron fertilization. Nature 457, 577580. doi: 10.1038/nature07716 Poulton S. W. Canfield D. E. (2005). Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209221. doi: 10.1016/j.chemgeo.2004.09.003 Poulton S. W. Raiswell R. (2002). The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Amer. J. Sci. 302, 774805. doi: 10.2475/ajs.302.9.774 Poulton S. W. Raiswell R. (2005). Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments. Chem. Geol. 218, 203221. doi: 10.1016/j.chemgeo.2005.01.007 Raiswell R. Canfield D. E. (1998). Sources of iron for pyrite formation in marine sediments. Amer. J. Sci. 298, 219245. doi: 10.2475/ajs.298.3.219 Raiswell R. Hawkings J. R. Benning L. G. Baker A. R. Death R. Albani S. . (2016). Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. Biogeosciences 13. doi: 10.3389/feart.2018.00222 Raiswell R. Hawkings J. Elsenousy A. Death R. Tranter M. Wadham J. (2018). Iron in glacial systems: Speciation, reactivity, freezing behavior, and alteration during transport. Front. Earth Sci. 6. doi: 10.3389/feart.2018.00222 Raiswell R. Tranter M. Benning L. G. Siegert M. De’ath R. Huybrechts P. . (2006). Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochim. Cosmochim. Acta 70, 27652780. doi: 10.1016/j.gca.2005.12.027 Roy M. Mcmanus J. Goñi M. A. Chase Z. Borgeld J. C. Wheatcroft R. A. . (2013). Reactive iron and manganese distributions in seabed sediments near small mountainous rivers off Oregon and California (USA). Cont. Shelf Res. 54, 6779. doi: 10.1016/j.csr.2012.12.012 Rueckamp M. Braun M. Suckro S. Blindow N. (2011). Observed glacial changes on the king George island ice cap, Antarctica, in the last decade. Global Planet. Change 79, 99109. doi: 10.1016/j.gloplacha.2011.06.009 Salvadó J. A. Tesi T. Andersson A. Ingri J. Dudarev O. V. Semiletov I. P. . (2015). Organic carbon remobilized from thawing permafrost is resequestered by reactive iron on the Eurasian Arctic shelf. Geophys. Res. Lett. 42, 81228130. doi: 10.1002/2015gl066058 Schwertmann U. Stanjek H. Becher H. H. (2004). Long-term in vitro transformation of 2-line ferrihydrite to goethite/hematite at 4, 10, 15 and 25°C. Clay Miner. 39, 433438. doi: 10.1180/0009855043940145 Screen J. A. Simmonds I. (2010). Increasing fall-winter energy loss from the Arctic ocean and its role in Arctic temperature amplification. Geophys. Res. Lett. 37, L16707. doi: 10.1029/2010gl044136 Senn A.-C. Kaegi R. Hug S. J. Hering J. G. Mangold S. Voegelin A. (2017). Effect of aging on the structure and phosphate retention of Fe(III)-precipitates formed by Fe(II) oxidation in water. Geochim. Cosmochim. Acta 202, 341360. doi: 10.1016/j.gca.2016.12.033 Shepherd A. Fricker H. A. Farrell S. L. (2018). Trends and connections across the Antarctic cryosphere. Nature 558, 223232. doi: 10.1038/s41586-018-0171-6 Shields M. R. Bianchi T. S. Gélinas Y. Allison M. A. Twilley R. R. (2016). Enhanced terrestrial carbon preservation promoted by reactive iron in deltaic sediments. Geophys. Res. Lett. 43, 11491157. doi: 10.1002/2015gl067388 Stammerjohn S. E. Martinson D. G. Smith R. C. Iannuzzi R. A. (2008). Sea Ice in the western Antarctic peninsula region: Spatio-temporal variability from ecological and climate change perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 55, 20412058. doi: 10.1016/j.dsr2.2008.04.026 Tagliabue A. Bowie A. R. Boyd P. W. Buck K. N. Johnson K. S. Saito M. A. (2017). The integral role of iron in ocean biogeochemistry. Nature 543, 5159. doi: 10.1038/nature21058 Taylor S. R. (1964). Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 28, 12731285. doi: 10.1016/0016-7037(64)90129-2 Thamdrup B. (2000). Bacterial manganese and iron reduction in aquatic sediments. Adv. Microbial Ecol. 16, 4184. doi: 10.1007/978-1-4615-4187-5_2 The IMBIE team (2018). Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, 219222. doi: 10.1038/s41586-018-0179-y Thomasarrigo L. K. Kaegi R. Kretzschmar R. (2019). Ferrihydrite growth and transformation in the presence of ferrous iron and model organic ligands. Environ. Sci. Technol. 53, 1363613647. doi: 10.1021/acs.est.9b03952 Vaz R. Lennon G. W. (1996). Physical oceanography of the prydz bay region of Antarctic waters. Deep Sea Res. I Oceanogr. Res. Pap. 43, 603641. doi: 10.1016/0967-0637(96)00028-3 Wadley M. R. Jickells T. D. Heywood K. J. (2014). The role of iron sources and transport for southern ocean productivity. Deep Sea Res. I Oceanogr. Res. Pap. 87, 8294. doi: 10.1016/j.dsr.2014.02.003 Wang D. Zhu M. X. Yang G. P. Ma W. W. (2019). Reactive iron and iron-bound organic carbon in surface sediments of the river-dominated bohai Sea (China) versus the southern yellow Sea. J. Geophys. Res. Biogeosci. 124, 7998. doi: 10.1029/2018jg004722 Wehrmann L. M. Formolo M. J. Owens J. D. Raiswell R. Ferdelman T. G. Riedinger N. . (2014). Iron and manganese speciation and cycling in glacially influenced high-latitude fjord sediments (West spitsbergen, svalbard): Evidence for a benthic recycling-transport mechanism. Geochim. Cosmochim. Acta 141, 628655. doi: 10.1016/j.gca.2014.06.007 Wei G.-Y. Chen T. Poulton S. W. Lin Y.-B. He T. Shi X. . (2021). A chemical weathering control on the delivery of particulate iron to the continental shelf. Geochim. Cosmochim. Acta 308, 204216. doi: 10.1016/j.gca.2021.05.058 Wijsman J. W. M. Middelburg J. J. Heip C. H. R. (2001). Reactive iron in black Sea sediments: Implications for iron cycling. Mar. Geol. 172, 167180. doi: 10.1016/S0025-3227(00)00122-5 Williams G. D. Herraiz-Borreguero L. Roquet F. Tamura T. Ohshima K. I. Fukamachi Y. . (2016). The suppression of Antarctic bottom water formation by melting ice shelves in prydz bay. Nat. Commun. 7, 12577. doi: 10.1038/ncomms12577 Wu L. Wang R. Xiao W. Ge S. Chen Z. Krijgsman W. (2017). Productivity-climate coupling recorded in pleistocene sediments off prydz bay (East Antarctica). Palaeogeogr. Palaeoclimatol. Palaeoecol. 485, 260270. doi: 10.1016/j.palaeo.2017.06.018 Yu P. Hu C. Liu X. Pan J. Zhang H. (2009). Modern sedimentation rates in Prydz Bay, Antarctic. Acta Sedimentol. Sin. 27, 11721177. Zhao J. Peter H.-U. Zhang H. Han Z. Hu C. Yu P. . (2014). Short- and long-term response of phytoplankton to ENSO in prydz bay, Antarctica: Evidences from field measurements, remote sensing data and stratigraphic biomarker records. J. Ocean Univ. China 13, 437444. doi: 10.1007/s11802-014-2231-3 Zhao B. Yao P. Bianchi T. S. Shields M. R. Cui X. Q. Zhang X. W. . (2018). The role of reactive iron in the preservation of terrestrial organic carbon in estuarine sediments. J. Geophys. Res. Biogeosci. 123, 35563569. doi: 10.1029/2018jg004649 Zhu M.-X. Hao X.-C. Shi X.-N. Yang G.-P. Li T. (2012). Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf. Appl. Geochem. 27, 892905. doi: 10.1016/j.apgeochem.2012.01.004 Zhu M.-X. Huang X.-L. Yang G.-P. Chen L.-J. (2015). Iron geochemistry in surface sediments of a temperate semi-enclosed bay, north China. Estuar. Coast. Shelf Sci. 165, 2535. doi: 10.1016/j.ecss.2015.08.018
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.gdhyzdh.org.cn
      www.mfchain.com.cn
      www.gbnzqg.com.cn
      echief.com.cn
      h-wain.com.cn
      www.wejgbd.com.cn
      www.nqyusu.com.cn
      www.minttu.com.cn
      www.x-gnd.com.cn
      wsdtop.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p