Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2022.1006010 Marine Science Original Research Response of plankton community respiration under variable simulated upwelling events Baños Isabel 1 * Arístegui Javier 1 * Benavides Mar 2 Gómez-Letona Markel 1 Montero María F. 1 Ortiz Joaquín 3 Schulz Kai G. 4 Ludwig Andrea 3 Riebesell Ulf 3 1 Oceanografía Biológica, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain 2 Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France 3 Marine Biogeochemistry, Biological Oceanography, GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany 4 Centre for Coastal Biogeochemistry, Southern Cross University, Faculty of Science and Engineering, Lismore, NSW, Australia

Edited by: Jun Sun, China University of Geosciences Wuhan, China

Reviewed by: Oscar E. Romero, University of Bremen, Germany; Haocai Huang, Zhejiang University, China

*Correspondence: Isabel Baños, isabel.banos@ieo.csic.es; Javier Arístegui, javier.aristegui@ulpgc.es

This article was submitted to Marine Biogeochemistry, a section of the journal Frontiers in Marine Science

14 10 2022 2022 9 1006010 28 07 2022 27 09 2022 Copyright © 2022 Baños, Arístegui, Benavides, Gómez-Letona, Montero, Ortiz, Schulz, Ludwig and Riebesell 2022 Baños, Arístegui, Benavides, Gómez-Letona, Montero, Ortiz, Schulz, Ludwig and Riebesell

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Climate change is expected to alter the intensity and frequency of upwelling in high productive coastal regions, thus impacting nutrient fluxes, primary productivity and consequently carbon cycling. However, it is unknown how these changes will impact the planktonic (phytoplankton and bacteria) community structure, which affects community respiration (CR) and hence the carbon available for sequestration or transfer to upper trophic levels. Here we present results from a 37-day mesocosm experiment where we examined the response of CR to nutrient additions by simulating upwelling events at different intensities (low, medium, high and extreme) and modes (singular and recurring additions). We also analysed the potential contribution of different plankton size classes and functional groups to CR. The trend in accumulated CR with respect to nutrient fertilisation (total nitrogen added during the experiment) was linear in the two modes. Microplankton (mostly diatoms) and nanoplankton (small flagellates) dominated under extreme upwelling intensities and high CR in both singular and recurring upwelling modes, explaining >65% of the observed variability in CR. In contrast, prokaryotic picoplankton (heterotrophic bacteria and autotrophic cyanobacteria) explained <43% of the variance in CR under the rest of the upwelling intensities and modes tested. Changes in planktonic community structure, while modulating CR variability, would regulate the metabolic balance of the ecosystem, shifting it towards net-heterotrophy when the community is dominated by small heterotrophs and to net-autotrophy when large autotrophs prevail; although depending on the mode in which nutrients are supplied to the system. This shift in the dominance of planktonic organism will hence affect not only CR but also carbon sequestration in upwelling regions

nutrient availability artificial upwelling carbon export EBUS mesocosm climate change

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1 Introduction

      Coastal upwelling regions are among the most productive ecosystems in the ocean (Ryther, 1969). Biological productivity in upwelling systems responds to nutrient inputs from deep layers, which can be highly variable among different regions, depending on wind intensity and frequency, as well as other physical drivers such as wind curl or coastal bathymetry (Kämpf and Chapman, 2016). Overall, nutrient inputs are the main drivers of phytoplankton blooms and organic matter accumulation (Hutchings et al., 1995), which in turn trigger changes in community respiration (CR) rates influencing the amount of carbon available for deep ocean sequestration or transfer to upper trophic levels (Williams and Del Giorgio, 2005; Azam and Malfatti, 2007; Capone and Hutchins, 2013). Climate change is expected to alter coastal wind regimes, impacting upwelling intensity and frequency, and the associated pumping of nutrients to the surface layers (Bakun, 1990; García-Reyes et al., 2015; Basu and Mackey, 2018). These alterations can profoundly impact planktonic community structure and productivity, modifying carbon fluxes at a regional level (Legrende and Michaud, 1998; Tamigneaux et al., 1999; Montero et al., 2007). The balance between the production and the respiratory loss of photosynthetically produced organic matter sets CR as an effective index of the movements of organic matter through ecosystems (Williams and Del Giorgio, 2005). Therefore, CR represents a critical parameter for assessing the metabolic balance of aquatic ecosystems (Basu and Mackey, 2018). However, how perturbations in upwelling intensity and frequency will impact CR in upwelling regions is still unclear.

      Mesocosm approaches have been widely used over the last decade to simulate climate change scenarios and assess the effects of multiple stressors such as warming or acidification on marine planktonic communities (e.g., Sommer et al., 2007; Riebesell et al., 2008; Schulz et al., 2017; Taucher et al., 2018). To the best of our knowledge, only one study has previously addressed the effect of different intensities of a simulated upwelling on CR (McAndrew et al., 2007). However, this study lasted only four days, being a very short period to assess stressor responses in planktonic community structure and metabolism (e.g., Filella et al., 2018). Moreover, the study focuses exclusively on the response of the autotrophic component of the community to nutrient fertilisation. Here we use a mesocosm approach to simulate changes in upwelling at different intensities and modes and assess their impact on CR over 37-days. The goal of the study was first to look at the short term variability of CR under nutrient pulses of different intensity and duration, and second to see how the autotrophic vs heterotrophic planktonic community structure contributed to this variability. Our results may therefore help predicting present and future changes in the metabolic balance of upwelling regions due to natural or anthropogenic-induced variability.

      2 Materials and methods 2.1 Experimental setup and sampling

      Between November and December 2018 (37 days in total) a mesocosms experiment was conducted in Gando Bay (Canary Islands, 27°55.673´ N, 15°21.870´ W) as part of the Ocean artUp project. Nine ~44 m3 mesocosms (Kiel Off-Shore Mesocosms for future Ocean Simulations or KOSMOS; Riebesell et al., 2013) were moored and filled with in situ oligotrophic water. Unfortunately, the planned deep water collection to a depth of ~600m could not be achieved due to technical limitations. Instead, deep water was collected between 28°00′N, 15°18′E and 27°57′N, 15°10′E from 330 m depth (day -10) and from 280 m depth (day 23), respectively, using a custom-built collector with a carrying capacity of 100 m3 (for technical details see Taucher et al., 2017). Subsequently, deep water was enriched with nitrate (NO3 -), phosphate (PO4 3-), and silicate [(Si(OH)4] to a final concentration of 25, 1.4, and 12.1 µmol L-1, respectively, necessary to achieve the planned simulated upwelling. Deep water was then added to the mesocosms to simulate different upwelling modes (singular and recurring additions) and intensities (low, medium, high and extreme additions), the latter defined according to the total amount of water volume replaced by deep water ( Figure 1 ). In the recurring mode, four mesocosms (M2, M4, M6, M8) received an addition of deep water every four days starting on day 4, and until the end of the experiment. In the singular mode, another four mesocosms (M1, M3, M7, M9) received a singular deep-water pulse on day 4 and were not further fertilised throughout the experiment. The amount of nutrients added in each of the four intensity levels (low, medium, high and extreme) was similar for both upwelling modes ( Figure 1B ). No deep water addition was carried out for M5 (Control). 152 samples (19 samplings from each of the 8 mesocosms) were obtained from the entire water column (0-13m) using a depth-integrated water sampler (IWS, Hydro-Bios, Kiel). In the present study, M9 was not sampled due to logistical issues in the supply of the glass bottles. For more details on the experimental setup and sampling procedures see Baumann et al. (2021).

      (A) Nitrate + nitrite evolution during the experiment. The solid black line indicates the first deep-water addition (except in the control). The dotted black lines indicate the addition made only to the recurring treatment. (B) Types of treatment, symbol encoded, mesocosms, volume exchange per addition (%) and total new N added (μmol L-1). (C) Mesocosms sampling timeline adapted from Baumann et al. (2021).

      2.2 Community respiration

      Mesocosm water samples for community respiration measurements were pre-filtered through a 250 µm mesh and carefully siphoned using a silicone tube into four replicate “time-zero” and four replicate “dark” 125 mL borosilicate bottles. Dark bottles were incubated in an outdoor pool at seawater temperature (~20.7-21.5°C) for ~24 h. CR was determined by oxygen consumption measured by the Winkler technique, following the recommendations of Carritt and Carpenter (1966); Bryan et al. (1976) and Grasshoff (1983). The entire content of the bottles was titrated during ~3 min by means of an automated, precise titration system with colorimetric end-point detection (Williams and Jenkinson, 1982). The precision achieved in replicates was %CV < 0.07. CR was estimated from the difference in oxygen concentration between the mean of the four time-zero and the mean of the four dark bottles.

      2.3 Phytoplankton community composition and biomass

      Samples for phytoplankton community composition were filtered onto 0.7 μm pore size glass fiber filters under low pressure (200 mbar, Whatman GF/F, Maidstone, UK). Filters were immediately frozen in liquid nitrogen and subsequently stored at -80°C until analysis. Prior to analysis, samples were mixed with 0.5 mm glass beads and 1.3 mL of 100% high-performance liquid chromatography (HPLC) grade acetone and extracted in a homogenizer. Then, they were centrifuged (10 min, 4°C, 10000 rpm) and the supernatant removed with a syringe and filtered through a PTFE filter (0.2 μm pore size). Photosynthetic pigments were analyzed through reverse-phase HPLC (Thermo Scientific). The relative contribution to Chla of different phytoplankton classes was calculated using the CHEMTAX algorithm developed by Mackey et al. (1996), applying pigment ratios typically found in the waters off Gran Canaria (Taucher et al., 2018).

      The biomass of different phytoplankton groups was estimated by transforming their estimated individual chlorophyll a (Chl-a) concentration to carbon using conversion ratios (g/g) from Sathyendranath et al. (2009): 141 (Prasinophytes and Chlorophytes), 53 (Dinoflagellates), 64 (Diatoms), 88 (Cryptophytes, Chrysophytes and Prymnesiophytes), 140 (Cyanobacteria).

      2.4 Heterotrophic bacteria biomass

      Seawater samples were fixed with 50 μL of 20% paraformaldehyde (2% final concentration), kept in darkness at 4°C for 30 min and subsequently preserved at -80°C. Heterotrophic bacterial abundance was determined using a FACSCalibur flow cytometer (Becton Dickinson) equipped with an air cooled blue (488nm) argon laser. Briefly, frozen samples were thawed and a 400 μL subsample stained with SYBR Green I (Invitrogen) at room temperature for 15 min. Heterotrophic bacteria were identified in a plot of side scatter (SSC) versus green fluorescence (FL1). Samples were run at low flow rate (22 μL min-1). A suspension of yellow-green 1 μm latex beads (~105 - 106 beads mL-1) was added as an internal standard (Polysciences, Inc., Warrington, PA, Unites States). Heterotrophic bacterial biomass was estimated by multiplying their abundance by a conversion factor (18 fgC cell-1) obtained empirically in coastal waters off Gran Canaria (Montero et al. unpublished).

      2.5 Statistics

      To assess the effect of upwelling intensity and mode on CR rates a linear mixed-effects (LME) model was applied using “treatment” and “day of experiment” as categorical variables, and “treatment” as a random factor. CR rates were compared by the Dunnet´s test after inspection of normality and homogeneity of the variance. LME models were applied using the nlme package in R (v. 3.1-153; Pinheiro et al., 2007). In order to evaluate the variables (biomass of plankton groups) influencing CR during the experiment, multivariate regression models were fitted via Stepwise Multiple Linear regressions (SMLR). The contribution of every statistically significant predictor variable to the explained variance was quantified calculating the Relative Importance (%) using the relaimpo package in R (v 2.2-6; Grömping, 2006). All statistical analyses were performed in R Statistical Environment (v. 4.1.2; R Core Team, 2021).

      3 Results 3.1 Temporal variability in plankton community respiration

      CR rates ranged between 19.6 (on average for all mesocosms at the beginning of the experiment) to 292.2 mg O2 m-3 d-1 in the singular addition extreme treatment (day 13) and 229.5 mg O2 m-3 d-1 in the recurring addition extreme treatment (day 35) ( Figure 2 ). These rates were slightly lower than those previously reported from the Canary Current and NW Africa upwelling (Arístegui and Montero, 1995; Robinson et al., 2002) and Benguela upwelling (Robinson et al., 2002), but higher than those observed in other coastal upwelling systems like the NW Iberian (Moncoiffé et al., 2000) or the Chilean upwelling systems (Daneri et al., 2000).

      Temporal development of plankton community respiration (CR). The solid black line indicates the first deep-water addition (except in the control). The dotted black lines indicate the addition made only to the recurring treatment.

      CR rates differed significantly among upwelling modes and intensities (LME model, p<0.005), reaching the highest values in the extreme intensity treatments. In the singular upwelling mode, CR rates increased after day 4 and peaked on day 7, 9 and 13 for low, medium and extreme intensities, respectively. The magnitude of this response increased with upwelling intensity. Following the peak, CR rates decreased and remained relatively constant until the end of the experiment. In contrast, the recurring mode showed a gradual rise in CR rates according to the intensity of the simulated upwelling with some fluctuations until the end of the experiment. In the extreme treatment of the recurring mode, CR rates dropped on day 19 and remained fairly constant until day 31 and increased again from day 33 to day 35, due to the development of a Prymnesiophyceae bloom (see section 3.2). Overall, maximum CR rates were observed on day 35 in all recurring intensities, diminishing at the end of the experiment (day 37), except in the low recurring mode treatment where it remained rather constant.

      Cumulative community respiration (CRcum) evolved differently in the various treatments from day 7 onwards ( Figure 3A ). The CRcum of the singular extreme treatment increased faster than in the rest of the treatments, although it reached similar values to the recurring extreme treatment at the end of the experiment. From day 9 to day 25, CRcum in the low and medium singular mode treatments were higher than those reported in the recurring mode treatments. However, this pattern shifted from day 25 onwards, when CRcum became higher in the low and medium recurring mode treatments than in the singular mode counterparts. CRcum displayed a positive relationship with upwelling intensity ( Figure 3B ), with a similar effect for both upwelling modes after the last deep water addition to the recurring treatment.

      (A) Temporal development of plankton community respiration as accumulated rates (CRcum) over the course of the experiment in the control and in the two treatments: singular and recurring. The solid black line indicates the first deepwater addition (except the control). The dotted black lines indicate the additions made only during the recurring treatment. (B) Accumulated community respiration (CRcum) at the end of the experiment (day 37) per µmol of nutrients added.

      3.2 Contribution of different planktonic groups to total community biomass and respiration

      The different upwelling modes and intensities impacted the contribution of different planktonic groups to total community biomass ( Figure 4 ). Microplankton was favoured under extreme upwelling intensities ( Figures 4F, G ), contributing up to 75% and 50% of the biomass in the singular and recurring modes, respectively. The contribution of nanoplankton to total community biomass was relatively high throughout the experiment in the low treatments of both upwelling modes ( Figures 4A, B ), as well as in the control ( Figure 4H ), ranging from 24 to 54%. In the high and extreme recurring mode treatments ( Figures 4E–G ) the contribution of nanoplankton increased at the end of the experiment (from day 31 onwards), due in large part to the development of a Prymnesiophyceae bloom, representing up to 55% and 60% respectively, but only after the last nutrient addition made on day 32.

      Relative contribution of plankton community composition (represented as size fractions: Pico-, Nano- and Microplankton) over the course of the experiment. Picoplankton: heterotrophic bacteria and cyanobacteria; Nanoplankton: prasynophyceae, chlorophyceae, cryptophyceae, chrysophyceae and prymnesiophyceae; Microplankton: dinophyceae and diatomea. The solid black line indicates the first deep-water addition (except in the control). The dotted black lines indicate the addition made only to the recurring treatment. Panels (A, C, E, G) refer to recurring mode, and panels (B, D, F) to singular mode from low to extreme upwelling intensities (respectively). Panel (H) is the control.

      The contribution of picoplankton to total community biomass was higher in the control and in the low and medium recurring treatments ( Figures 4A, C, H ) than in the rest of the treatments. In the low recurring treatment, cyanobacteria represented between 10 and 20% of the biomass, whereas heterotrophic bacteria represented from 25 to 50% of the biomass ( Figure 4A ). In the low singular treatment, cyanobacteria ranged between 4 and 18%, and heterotrophic bacteria between 25 and 40% ( Figure 4B ). From day 21 to 31, the contribution of heterotrophic bacteria increased in the extreme singular mode treatment, exceeding the contribution of microplankton to total biomass with values up to 75% ( Figure 4F ).

      Different plankton groups contributed to explaining the variance observed in CR, as revealed by the stepwise multiple regression analysis performed with the biomass of plankton groups and CR during the experiment ( Table 1 ). Particularly, large phytoplankton cells (i.e., microplankton and nanoplankton) were the most important variables explaining the variance in CR during extreme recurring and singular treatments, respectively, but also a notable proportion of the variance in the rest of the treatments, ranging from 57% in the medium recurrent treatment to 87% in the low recurrent treatment. In the case of picoplankton, their contributions to CR turned out to be relevant depending on the upwelling mode intensities. For example, in the recurring mode cyanobacteria explained 22 and 26% of the variance in the high and medium simulated-upwelling treatments, whereas heterotrophic bacteria explained 12 and 16% respectively. However, in the singular mode, heterotrophic bacteria explained 24% and 32% of the CR variance in the medium and low treatments respectively, whereas cyanobacteria did not appear as an explanatory variable.

      Stepwise multiple linear regression statistics between plankton community respiration (CR) with the biomasses of heterotrophic bacteria (Het. bacteria) and the different phytoplankton groups (Cyanobacteria, Prasynophyceae, Chlorophyceae, Cryptophyceae, Chrysophyceae and Prymnesiophyceae, Diatoms and Dinoflagellates), under the different upwelling modes and intensities, compared to the control (no upwelling).

      Upwelling mode Upwelling intensity Xi R2 adjust pvalue F statistic RI(%)
      Recurring Extreme DiatomsChlorophyceaeCryptophyceae 0.747 <0.001 17.72 46.6239.9113.47
      High CryptophyceaeCyanobacteriaDinoflagellatesPrymnesiophyceaeHet.bacteriaChlorophyceae 0.790 <0.001 10.4 25.9622.4914.7112.5712.2612.01
      Medium DinoflagellatesCyanobacteriaDiatomsHet. bacteria 0.647 <0.01 8.32 36.0526.612116.33
      Low ChlorophyceaePrymnesiophyceaeCyanobacteriaChrysophyceae 0.578 <0.01 6.48 44.7836.1912.696.34
      Control DinoflagellatesHet.bacteriaChlorophyceaePrymnesiophyceaeDiatoms 0.598 <0.05 4.72 48.3017.1817.138.718.66
      Singular Extreme DiatomsCryptophyceaePrymnesiophyceae 0.923 <0.0001 69.26 36.8037.8025.41
      Medium DiatomsHet.bacteriaDinoflagellatesCryptophyceaeChlorophyceae 0.876 <0.0001 23.71 41.6624.5013.9713.526.34
      Low PrymnesiophyceaeHet.bacteriaDinoflagellatesCryptophyceae 0.484 <0.05 4.51 48.4632.5012.047

      Xi, statistically significant predictor variables; R2 adjust, adjusted correlation coefficient; RI(%), percentage of the variance explained by each group.

      4 Discussion 4.1 Variability in community respiration in the different simulated-upwelling intensity and modes

      Here, we tested the effects of different simulated-upwelling modes and intensities in a longer (37-day) experiment and found that CR varied significantly among upwelling modes and intensities (LME model, p<0.005,  Figure 2 ), driven by changes in the planktonic community structure.

      Following the initial nutrient fertilization on day 4, the temporal variability in CR displayed two distinguishable patterns according to the upwelling modes. Singular treatments induced an abrupt increase in CR rates, reaching their maximum values between days 7 and 13, a few days after the deep-water addition. In contrast, recurring treatments provoked a gradual boost in CR, which reached its maximum rates towards the end of the experiment (day 35). The mode in which upwelling events release nutrients into oligotrophic waters, either through singular or recurring pulses, can consequently modulate CR in the short- or long-term, respectively.

      Interestingly, a different timing in the response of CR to nutrient fertilisation was observed under the singular treatments, showing a lag of between 5 and 9 days depending on the simulated-upwelling intensity. These results were also observed in another mesocosm experiment conducted at the same location (Filella et al., 2018). In that study, it took around 5 days for CR to be significantly stimulated after the singular deep-water fertilisation. This could explain the discrepancy between our study and the short-term (4 days) study carried out by McAndrew et al. (2007), as 4 days may not be sufficient to fully detect the CR response. Consequently, we stress that longer experiments (at least > 5 days) are needed to adequately assess the impact of variable upwelling events on CR and thus, to better understand their role within coastal upwelling systems.

      The effect of upwelling modes and intensities on CR are also evident from the trend of CRcum along the experiment ( Figure 3A ). A closer look at the slope of CRcum plotted for each treatment revealed changes throughout the experiment, which could be mainly explained by shifts in the planktonic community structure. For instance, the phytoplankton community under the extreme singular treatment shifted from a microplankton-dominated (between day 7 and day 15) to a pico- (heterotrophic bacteria) and nanoplankton-dominated community (between day 17 and day 29) and finally, was dominated by nano- and microplankton (from day 31 until the end of the experiment). Similarly, the observed changes in CRcum slope under the extreme recurring treatment corresponded to a shift from a microplankton-dominated (from day 13 to day 31) to a nano- and microplankton-dominated community (from day 33 onwards). In contrast, the slope of CRcum in the low and medium singular treatments was only higher than that in the recurring ones coinciding with the incipient microplankton bloom triggered by the nutrient fertilization on day 4 until its vanishing on day 25 (Ortiz et al., 2022), before falling below the slope of the recurring treatments as picoplankton dominated the community. A similar size-related pattern has been described in other coastal upwelling systems (Sherr et al., 2005; Lassiter et al., 2006; Wilkerson et al., 2006; Smayda and Trainer, 2010; Anabalón et al., 2014). Looking into the trend of CRcum relative to nutrient fertilisation (as total nitrogen added until the end of the experiment) ( Figure 3B ), increases in the intensity of both upwelling modes resulted in a linear rise in CRcum, consequently affecting the amount of carbon cycling.

      Our results reveal that changes in CRcum during different simulated upwelling events could therefore be attributed to the ways different plankton community structures responded to changes of upwelling modes and intensities. In the following sections, we describe the plankton functional groups that potentially accounted for the observed variance in CR and how these can affect the metabolic balance and therefore, carbon sequestration of upwelling regions.

      4.2 Contribution of plankton functional groups to community respiration and metabolic balance

      Diatoms bloomed in the extreme treatments, accounting for up to 75% of the total biomass ( Figures 4F ,G ). Similar increases in diatom biomass have been previously reported in oceanic regions after inorganic nutrient pulses via mixing, eddies, fronts and upwelling events (e.g., Hutchings et al., 1995; Arístegui et al., 2004; Edwards and Richardson, 2004; Arístegui and Montero, 2005; Clayton et al., 2014; Tréguer et al., 2018) as well as in experimental manipulations (Mahaffey et al., 2012; Anil et al., 2021). Temporal variations in CR matched shifts in community structure. Thus, the early rise in diatom biomass (75% on day 13 in the extreme singular treatment and 62% on day 17 in the recurring treatment) coincided with high CR rates (293 and 183 mg O2 m-3 d-1, respectively), meaning that a meaningful fraction of the intracellular carbon pool newly fixed through photosynthesis was potentially lost by autotrophic respiration. Multiple stepwise linear regressions further revealed that diatoms explained between 37% and 47% of the variance in CR, in the extreme singular and recurring treatments, respectively ( Table 1 ). Following nutrient depletion (day 9 and beyond day 32 onwards in the singular and extreme recurring treatment, respectively, Figure 1A ), diatoms were outcompeted by nanoplankton (Böttjer et al., 2007). Our results revealed that diatoms and nanoplankton were the main contributors to explaining the variance in CR under extreme upwelling intensities.

      Contrary to expectations (e.g., Edwards and Richardson, 2004; Du and Peterson, 2014; Bode et al., 2015), dinoflagellates did not thrive under low upwelling intensities ( Figures 4A,B ). On the other hand, picoplanktonic organisms (heterotrophic bacteria and cyanobacteria) are usually recognized as extremely efficient in nutrient acquisition at low concentrations due to their small size (i.e., higher surface/volume ratio). Hence, they are deemed to contribute more importantly to carbon fluxes in nutrient deplete rather than in nutrient replete regions (Del Giorgio et al., 1997; Gasol and Duarte, 2000; Zubkov 2014). In our study, heterotrophic bacteria displayed contrasting patterns between upwelling modes, decreasing in relative biomass as the upwelling intensities increased in the recurring mode (from ~40% in the low to 25% in the extreme treatment; Figures 4A-G ) and increasing in the singular ones (from ~40% in the low to >80% in the extreme treatment; Figures 4B-F ) with a posterior drop (between 25 – 10%) when nutrients were exhausted. Given that large blooms were induced in the extreme treatments (Ortiz et al., 2022) we expected that heterotrophic bacteria would be stimulated by the DOC released and would actively contribute to CR (Blight et al., 1995). Nonetheless, DOC remarkably accumulated in the extreme treatments (Gómez-Letona et al., 2022) suggesting that a major part of this DOC was not utilized by heterotrophic bacteria, which would explain the low contribution to CR in these treatments. A variable contribution of heterotrophic bacteria to the variance in CR was found in the other upwelling intensities (16% and 12% under medium and high recurring treatments and 33% and 25% under low and medium singular treatments). The fact that heterotrophic bacteria explained less than 33% of the CR variance in these singular treatments was surprising, given their high relative biomass. This points to a variable metabolic activity of bacteria, that does not depend only on the accumulated biomass.

      A previous study carried out along two latitudinal transects from 50°N to 44°S in the Atlantic Ocean showed that the contribution of bacteria to CR is highly variable (4-77%), suggesting that Chl-a and other factors rather than those assessed in that study (such as nutrient availability and temperature) must be driving such variability (García-Martín et al., 2017). Flagellate grazing is recognized as one of the main factors controlling marine bacterial communities (Böttjer and Morales, 2007; Bunse and Pinhassi, 2017). Accordingly, we observed declines in the relative biomass of heterotrophic bacteria coinciding with the enhancement of nanoplankton biomass, suggesting a strong predation pressure and, therefore, a potential top-down control over heterotrophic bacteria. Such drops in biomass contribution can be observed through the experiment in the different upwelling intensities and modes. Grazing could also affect cyanobacterial populations, which were only identified as predictors of the variance in CR in the singular mode. Nevertheless, we do not discard that other factors external to our observations may be acting. For example, there might be heterogeneity in the respiration rates dynamics of different bacterioplankton groups, derived from the strong metabolic heterogeneity among the different components of bacterial communities (Cottrell and Kirchman, 2000; Alonso-Sáez et al., 2012). Furthermore, viral lysis (not taken into account in this study) may play a significant role in controlling the abundance of different bacterioplankton groups (Breitbart et al., 2008), causing bacterial mortality and thus could affect the patterns observed here.

      The planktonic community structure, while modulating CR variability, would display a key role in regulating the metabolic balance of the ecosystem, shifting it towards net-heterotrophy when the planktonic community is dominated by small heterotrophs and to net-autotrophy when large autotrophs prevail (Ortiz et al., 2022). Altogether, our results suggest that upwelling regions subject to low upwelling intensities will tend to display a heterotrophic metabolism dominance during relaxation or low-intensity upwelling episodes, thus decreasing the carbon sequestration capacity. On the contrary, the metabolic balance in upwelling regions subjected to extreme upwelling intensities will depend on the mode in which nutrients are supplied to the system. Thus, in natural systems where upwelling pulses are markedly separated in time or under sudden dust deposition events (similar to our extreme singular treatment), upwelling regions could support a high CR, but decoupled in time from primary production. This would be followed by an increase in net heterotrophy as primary production decreases after the initial bloom. On the other hand, periods of recurring upwelling intensities would lead to a net-autotrophic system, potentially increasing the carbon sequestration of the system.

      5 Conclusions

      We studied the link between the variability in community respiration rates and shifts in the planktonic community structure under different modes and intensities of simulated upwelling over a long term (37 days) mesocosm experiment. Our results suggest that CR is particularly sensitive to changes in the upwelling intensities but more significantly to the mode in which nutrients are supplied to the oligotrophic waters. The simulated upwelling events in this study were responsible for profound modifications in planktonic community structure, which in turn acted as a strong driver of CR variability, modulating the carbon respired through the different microbial functional groups. Thus, as upwelling intensity became extreme, planktonic communities were entirely dominated by microplankton (mainly diatoms) and nanoplankton. Particularly in the singular mode, the extreme simulated-upwelling intensity reported the highest CR rates coinciding with a bloom of diatoms, giving evidence of the strong link between the autotrophic component and the observed variance in CR.

      On the contrary, less pronounced intensities favoured smaller cells (heterotrophic bacteria and cyanobacteria) identified as better predictors of the variance in CR, potentially channelling a more significant fraction of carbon through the microbial food web. Nonetheless, the contribution to biomass of picoplankton was variable, presumably due to grazing or viral pressure, affecting their contribution to CR.

      Our results offer insights into how future alterations in the modes and intensities of upwelling systems can potentially shift the planktonic community structure, affecting CR and therefore, the metabolic balance of the system. Thus, when the type of planktonic community is dominated by small heterotrophs the system shifts toward net-heterotrophy while net-autotrophy is observed when autotrophic-based communities prevailed. This highlights the importance of such changes in the carbon sequestration of upwelling regions. Understanding the link between respiratory losses and planktonic communities is a fundamental requisite to improving our predictive capacity of how these ecosystems will respond to future global change scenarios.

      Data availability statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Author contributions

      Conceived and designed the study: UR and JA. Execution of the experiment: all authors. Data analysis: IB, JA, MB, JO and KS. Manuscript writing: IB and JA with input from all co-authors. All authors contributed to the article and approved the submitted version.

      Funding

      This study was carried out within the framework of the Ocean Artificial Upwelling project (Ocean artUp, No. 695094), funded by an Advanced Grant of the European Research Council (ERC). Additional support was provided through projects TRIATLAS (AMD-817578-5) from the European Union’s Horizon 2020, FONIAC 2019 (Fundación Caja Canarias and Fundación Bancaria La Caixa), and e-IMPACT (PID2019-109084RB-C2) funded by the Spanish National Science Plan. IB is supported by a FPI fellowship (BES-2016-078407) from the Spanish Ministry of Economy, Industry and Competitiveness (MINECO). MGL is supported by the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (FPU17-01435) during his PhD. JA was supported by a Helmholtz International Fellow Award, 2015 (Helmholtz Association, Germany). JA also acknowledges support from the United States National Science Foundation grant OCE-1840868 to the Scientific Committee on Oceanic Research (SCOR, United States) WG 155.

      Acknowledgments

      We would like to thank the Oceanic Platform of the Canary Islands (Plataforma Oceánica de Canarias, PLOCAN) for their support throughout the experiment. We would like to thank the captain and crew of RV James Cook for the deployment of the mesocosms and the deep water collection, and the captain and crew of the vessel J. SOCAS for helping with the second deep water collection and the recovery of the mesocosms. Another special thanks goes to the whole KOSMOS team (GEOMAR) for their invaluable effort, organization and logistical support necessary to conduct the mesocosms experiment. Finally, we would like to thank to Minerva Espino and Acorayda González for their contribution to the CR measurements.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      References Alonso-Sáez L. Sánchez O. Gasol J. M. (2012). Bacterial uptake of low molecular weight organics in the subtropical Atlantic: Are major phylogenetic groups functionally different? Limnology Oceanography 57 (3), 798808. doi: 10.4319/lo.2012.57.3.0798 Anabalón V. Arístegui J. Morales C. E. Andrade I. Benavides M. Correa-Ramírez M. A. . (2014). The structure of planktonic communities under variable coastal upwelling conditions off cape ghir (31 n) in the canary current system (NW Africa). Prog. Oceanography 120, 320339. doi: 10.1016/j.pocean.2013.10.015 Anil A. C. Desai D. V. Khandeparker L. Krishnamurthy V. Mapari K. Mitbavkar S. . (2021). Short term response of plankton community to nutrient enrichment in central eastern Arabian Sea: Elucidation through mesocosm experiments. J. Environ. Manage. 288, 112390. doi: 10.1016/j.jenvman.2021.112390 Arístegui J. Barton E. D. Tett P. Montero M. F. García-Muñoz M. Basterretxea G. . (2004). Variability in plankton community structure, metabolism, and vertical carbon fluxes along an upwelling filament (Cape juby, NW Africa). Prog. Oceanography 62 (2-4), 95113. doi: 10.1016/j.pocean.2004.07.004 Arístegui J. Montero M. F. (1995). The relationship between community respiration rate and ETS activity in the ocean. J. Plankton Res. 17, 15631571. doi: 10.1093/plankt/17.7.1563 Arístegui J. Montero M. F. (2005). Temporal and spatial changes in plankton respiration and biomass in the canary islands region: The effect of mesoscale variability. J. Mar. System 54, 6582. doi: 10.1016/j.jmarsys.2004.07.004 Azam F. Malfatti F. (2007). Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5 (10), 782791. doi: 10.1038/nrmicro1747 Bakun A. (1990). Global climate change and intensification of coastal ocean upwelling. Science 247 (4939), 198201. doi: 10.1126/science.247.4939.198 Basu S. Mackey K. R. (2018). Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. Sustainability 10 (3), 869. doi: 10.3390/su10030869 Baumann M. Taucher J. Paul A. J. Heinemann M. Vanharanta M. Bach L. T. . (2021). Effect of intensity and mode of artificial upwelling on particle flux and carbon export. Front. Mar. Sci. 8, 742142. doi: 10.3389/fmars.2021.742142 Blight S. P. Bentley T. L. Lefevre D. Robinson C. Rodrigues R. Rowlands J. . (1995). Phasing of autotrophic and heterotrophic plankton metabolism in a temperate coastal ecosystem. Mar. Ecol. Prog. Ser. 128, 6175. doi: 10.3354/meps128061 Bode A. Estévez M. G. Varela M. Vilar J. A. (2015). Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Mar. Environ. Res. 110, 8191. doi: 10.1016/j.marenvres.2015.07.017 Böttjer D. Morales C. E. (2007). Nanoplanktonic assemblages in the upwelling area off concepción (36S), central Chile: Abundance, biomass, and grazing potential during the annual cycle. Prog. Oceanography 75 (3), 415434. doi: 10.1016/j.pocean.2007.08.024 Breitbart M. Middelboe M. Rohwer F. (2008). “Marine viruses: community dynamics, diversity and impact on microbial processes,” in Microbial ecology of the oceans. Ed. Kirchmam D. L. (Hoboken, NJ, USA: John Wiley & Sons Inc), 443479. Bryan J. R. Rlley J. P. Williams P. L. (1976). A winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. J. Exp. Mar. Biol. Ecol. 21 (3), 191197. doi: 10.1016/0022-0981(76)90114-3 Bunse C. Pinhassi J. (2017). Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 25 (6), 494505. doi: 10.1016/j.tim.2016.12.013 Capone D. G. Hutchins D. A. (2013). Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat. Geosci. 6 (9), 711717. doi: 10.1038/ngeo1916 Carritt D. E. Carpenter J. H. (1966). Comparison and evaluation of currently employed modifications of the winkler method for determining dissolved oxygen in seawater; a NASCO report. J. Mar. Res. 24, 286318. Clayton S. Nagai T. Follows M. J. (2014). Fine scale phytoplankton community structure across the kuroshio front. J. Plankton Res. 36 (4), 10171030. doi: 10.1093/plankt/fbu020 Cottrell M. T. Kirchman D. L. (2000). Natural assemblages of marine proteobacteria and members of the cytophaga-flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66 (4), 16921697. doi: 10.1128/AEM.66.4.1692-1697.2000 Daneri G. Dellarossa V. Quiñones R. Jacob B. Montero P. Ulloa O. (2000). Primary production and community respiration in the Humboldt current system off Chile and associated oceanic areas. Mar. Ecol. Prog. Ser. 197, 4149. doi: 10.3354/meps197041 Del Giorgio P. A. Cole J. J. Cimbleris A. (1997). Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature 385 (6612), 148151. doi: 10.1038/385148a0 Du X. Peterson W. T. (2014). Seasonal cycle of phytoplankton community composition in the coastal upwelling system off central Oregon in 2009. Estuaries Coasts 37 (2), 299311. doi: 10.1007/s12237-013-9679-z Edwards M. Richardson A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881884. doi: 10.1038/nature02808 Filella A. Baños I. Montero M. F. Hernández-Hernández N. Rodríguez-Santos A. Ludwig A. . (2018). Plankton community respiration and ETS activity under variable CO2 and nutrient fertilization during a mesocosm study in the subtropical north Atlantic. Front. Mar. Sci. 5. doi: 10.3389/fmars.2018.00310 García-Martín E. E. Aranguren-Gassis M. Hartmann M. Zubkov M. V. Serret P. (2017). Contribution of bacterial respiration to plankton respiration from 50 n to 44 s in the Atlantic ocean. Prog. oceanography 158, 99108. doi: 10.1016/j.pocean.2016.11.006 García-Reyes M. Sydeman W. J. Schoeman D. S. Rykaczewski R. R. Black B. A. Smit A. J. . (2015). Under pressure: Climate change, upwelling, and eastern boundary upwelling ecosystems. Front. Mar. Sci. 2. doi: 10.3389/fmars.2015.00109 Gasol J. M. Duarte C. M. (2000). Comparative analyses in aquatic microbial ecology: how far do they go? FEMS Microbiol. Ecol. 31 (2), 99106. doi: 10.1111/j.1574-6941.2000.tb00675.x Gómez-Letona M. Sebastian M. Baños I. Montero M. F. Barrancos C. P. Baumann M. . (2022). Artificial upwelling leads to a large increase in surface dissolved organic matter concentrations. bioRxiv. doi: 10.1101/2022.06.27.496799 Grasshoff K. (1983). Determination of oxygen. Methods seawater Anal., 6172. Grömping U. (2006). Relative importance for linear regression in r: The package relaimpo. J. Stat. Software 17 (1), 127. doi: 10.18637/jss.v017.i01 Hutchings L. Pitcher G. C. Probyn T. A. Bailey G. W. (1995). The chemical and biological consequences of coastal upwelling. Environ. Sci. Res. Rep. Es 18, 6582. Kämpf J. Chapman P. (2016). Upwelling systems of the world (Switzerland:Springer International Publishing), 3142. Lassiter A. M. Wilkerson F. P. Dugdale R. C. Hogue V. E. (2006). Phytoplankton assemblages in the CoOP-WEST coastal upwelling area. Deep Sea Res. Part II: Topical Stud. Oceanography 53 (25-26), 30633077. doi: 10.1016/j.dsr2.2006.07.013 Legendre L. Michaud J. (1998). Flux of biogenic carbon in oceans: Size-dependent regulation by pelagic food webs. Mar. Ecol. Prog. Ser. 164, 111. doi: 10.3354/meps164001 Mackey M. D. Mackey D. J. Higgins H. W. Wright S. W. (1996). CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144, 265283. doi: 10.3354/meps144265 Mahaffey C. Björkman K. M. Karl D. M. (2012). Phytoplankton response to deep seawater nutrient addition in the north pacific subtropical gyre. Mar. Ecol. Prog. Ser. 460, 1334. doi: 10.3354/meps09699 McAndrew P. M. Björkman K. M. Church M. J. Morris P. J. Jachowski N. Williams P. J. L. B. . (2007). Metabolic response of oligotrophic plankton communities to deep water nutrient enrichment. Mar. Ecol. Prog. Ser. 332, 6375. doi: 10.3354/meps332063 Moncoiffé G. Alvarez-Salgado X. A. Figueiras F. G. Savidge G. (2000). Seasonal and short-time-scale dynamics of microplankton community production and respiration in an inshore upwelling system. Mar. Ecol. Prog. Ser 196, 111126. doi: 10.3354/meps196111 Montero P. Daneri G. Cuevas L. A. González H. E. Jacob B. Lizárraga L. . (2007). Productivity cycles in the coastal upwelling area off concepción: The importance of diatoms and bacterioplankton in the organic carbon flux. Prog. Oceanography 75 (3), 518530. doi: 10.1016/j.pocean.2007.08.013 Ortiz J. Arístegui J. Taucher J. Riebesell U. (2022). Artificial upwelling in singular and recurring mode: Consequences for net community production and metabolic balance. Front. Mar. Sci 8, 743105. doi: 10.3389/fmars.2021.743105 Pinheiro J. Bates D. DebRoy S. Sarkar D. Team R. C. (2007). Linear and nonlinear mixed effects models. R Package versions 3 (57), 189. Riebesell U. Bellerby R. G. J. Grossart H. P. Thingstad F. (2008). Mesocosm CO 2 perturbation studies: from organism to community level. Biogeosciences 5 (4), 11571164. doi: 10.5194/bg-5-1157-2008 Riebesell U. Czerny J. von Bröckel K. Boxhammer T. Büdenbender J. Deckelnick M. . (2013). A mobile sea-going mesocosm system–new opportunities for ocean change research. Biogeosciences 10 (3), 18351847. doi: 10.5194/bg-10-1835-2013 Robinson C. Serret P. Tilstone G. Teira E. Zubkov M. V. Rees A. P. . (2002). Plankton respiration in the eastern Atlantic ocean. Deep Sea Res. Part I: Oceanographic Res. Papers 49 (5), 787813. doi: 10.1016/S0967-0637(01)00083-8 Ryther J. H. (1969). Photosynthesis and fish production in the sea. Science 166 (3901), 7276. doi: 10.1126/science.166.3901.72 Sathyendranath S. Stuart V. Nair A. Oka K. Nakane T. Bouman H. . (2009). Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Mar. Ecol. Prog. Ser. 383, 7384. doi: 10.3354/meps07998 Schulz K. G. Bach L. T. Bellerby R. G. J. Bermúdez R. Büdenbender J. Boxhammer T. . (2017). Phytoplankton blooms at increasing levels of atmospheric carbon dioxide: Experimental evidence for negative effects on prymnesiophytes and positive on small picoeukaryotes. Front. Mar. Sci. 4. doi: 10.3389/fmars.2017.00064 Sherr E. B. Sherr B. F. Wheeler P. A. (2005). Distribution of coccoid cyanobacteria and small eukaryotic phytoplankton in the upwelling ecosystem off the Oregon coast during 2001 and 2002. Deep Sea Res. Part II: Topical Stud. Oceanography 52 (1-2), 317330. doi: 10.1016/j.dsr2.2004.09.020 Smayda T. J. Trainer V. L. (2010). Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog. Oceanography 85, 92107. doi: 10.1016/j.pocean.2010.02.006 Sommer U. Aberle N. Engel A. Hansen T. Lengfellner K. Sandow M. . (2007). An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150 (4), 655667. doi: 10.1007/s00442-006-0539-4 Tamigneaux E. Legendre L. Klein B. Mingelbier M. (1999). Seasonal dynamics and potential fate of size-fractionated phytoplankton in a temperate nearshore environment (Western gulf of St Lawrence, Canada). Estuarine Coast. Shelf Sci. 48 (2), 253269. doi: 10.1006/ecss.1999.0416 Taucher J. Arístegui J. Bach L. T. Guan W. Montero M. F. Nauendorf A. . (2018). Response of subtropical phytoplankton communities to ocean acidification under oligotrophic conditions and during nutrient fertilization. Front. Mar. Sci. 5. doi: 10.3389/fmars.2018.00330 Taucher J. Bach L. T. Boxhammer T. Nauendorf A. Achterberg E. P. Algueró-Muñiz M. . (2017). Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical north Atlantic: insights from an in situ mesocosm study. Front. Mar. Sci. 4. doi: 10.3389/fmars.2017.00085 Tréguer P. Bowler C. Moriceau B. Dutkiewicz S. Gehlen M. Aumont O. . (2018). Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 2737. doi: 10.1038/s41561-017-0028-x Wilkerson F. P. Lassiter A. M. Dugdale R. C. Marchi A. Hogue V. E. (2006). The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep Sea Res. Part II: Topical Stud. Oceanography 53 (25-26), 30233048. doi: 10.1016/j.dsr2.2006.07.007 Williams P. L. B. Del Giorgio P. A. (2005). Respiration in aquatic ecosystems: history and background. Respiration Aquat. Ecosyst., 117. doi: 10.1093/acprof:oso/9780198527084.003.0001 Williams P. L. Jenkinson N. W. (1982). A transportable microprocessor controlled precise winkler titration suitable for field station and shipboard use 1. Limnology Oceanography 27 (3), 576584. doi: 10.4319/lo.1982.27.3.0576 Zubkov M. V. (2014). Faster growth of the major prokaryotic versus eukaryotic CO2 fixers in the oligotrophic ocean. Nat.Commun. 5 (1), 16. doi: org/10.1038/ncomms4776
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jjhgome.com.cn
      www.fwedu.org.cn
      www.eyzwnl.com.cn
      jjhgsme.com.cn
      www.krchain.com.cn
      knwjbr.com.cn
      t9179.com.cn
      qpxmlr.com.cn
      rkwy.com.cn
      www.nmgqzgwy.org.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p