Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2021.642040 Marine Science Original Research Breaking All the Rules: The First Recorded Hard Substrate Sessile Benthic Community Far Beneath an Antarctic Ice Shelf Griffiths Huw J. 1 * Anker Paul 1 Linse Katrin 1 Maxwell Jamie 1 2 Post Alexandra L. 3 Stevens Craig 4 5 Tulaczyk Slawek 6 Smith James A. 1 1British Antarctic Survey, Cambridge, United Kingdom 2Ryan Institute, National University of Ireland Galway, Galway, Ireland 3Geoscience Australia, Canberra, ACT, Australia 4National Institute of Water and Atmospheric Research, Wellington, New Zealand 5Department of Physics, University of Auckland, Auckland, New Zealand 6Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, United States

Edited by: Christian Marcelo Ibáñez, Andres Bello University, Chile

Reviewed by: Sebastian Rosenfeld, University of Magallanes, Chile; Javier Sellanes, Catholic University of the North, Chile

*Correspondence: Huw J. Griffiths, hjg@bas.ac.uk

This article was submitted to Marine Evolutionary Biology, Biogeography and Species Diversity, a section of the journal Frontiers in Marine Science

15 02 2021 2021 8 642040 15 12 2020 18 01 2021 Copyright © 2021 Griffiths, Anker, Linse, Maxwell, Post, Stevens, Tulaczyk and Smith. 2021 Griffiths, Anker, Linse, Maxwell, Post, Stevens, Tulaczyk and Smith

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The seafloor beneath floating ice shelves accounts roughly a third of the Antarctic’s 5 million km2 of continental shelf. Prior to this study, our knowledge of these habitats and the life they support was restricted to what has been observed from eight boreholes drilled for geological and glaciological studies. The established theory of sub-ice shelf biogeography is that both functional and taxonomic diversities decrease along a nutrient gradient with distance from the ice shelf front, resulting in a depauperate fauna, dominated by mobile scavengers and predators toward the grounding line. Mobile macro-benthic life and mega-benthic life have been observed as far as 700 km under an ice shelf. New observations from two boreholes in the Filchner-Ronne Ice Shelf challenge the idea that sessile organisms reduce in prevalence the further under the ice you go. The discovery of an established community consisting of only sessile, probably filter feeding, organisms (sponges and other taxa) on a boulder 260 km from the ice front raises significant questions, especially when the local currents suggest that this community is somewhere between 625 km and 1500 km in the direction of water flow from the nearest region of photosynthesis. This new evidence requires us to rethink our ideas with regard to the diversity of community types found under ice shelves, the key factors which control their distribution and their vulnerability to environmental change and ice shelf collapse.

dropstone oligotrophic borehole sponge (Porifera) Filchner-Ronne Ice Shelf Weddell Sea

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Antarctic continental shelf benthos is often dominated by large, sessile, filter feeding communities (Gutt et al., 2013). These have been shaped by millennia of cold and highly seasonal conditions driven by glacial cycles, annual sea ice formation and melt, and the impacts of iceberg scour. The huge flux of food coming from the plankton above, driven by the summer melt and continuous daylight, allow these communities to thrive and achieve very high levels of biomass (Griffiths, 2010). This contrasts sharply with the areas beneath the floating ice shelves, which are hidden from daylight and often far from areas of primary productivity (Ingels et al., 2021).

      Ice shelves cover roughly a third of the Antarctic’s 5 million km2 of continental shelf (Ingels et al., 2018). The Ronne-Filchner Ice Shelf, in the Weddell Sea, is the second largest Antarctic ice shelf, accounting for ∼28% of the total area under ice shelves, covering around 420,000 km2 of seabed. Further north on the East Antarctic Peninsula, the collapses of the Larsen A and Larsen B ice-shelves, in 1995 and 2002, and the recent high-profile calving of the giant iceberg, A-68, from Larsen C, have highlighted how little we know about the habitat beneath these floating ice shelves.

      Our knowledge of the biological communities beneath these ice shelves is limited to sparse observations through boreholes and scientific expeditions that investigated the sites of Larsen A and B at least 5 years after their collapse (Ingels et al., 2021). Current theory suggests a gradient in abundance and community type exists under ice shelves with distance from open water. Sessile suspension-feeders are believed to be restricted to areas of inflow, close to the ice shelf front, with deposit-feeders and detritivores, feeding on ever more limited food, further under the ice shelf (Ingels et al., 2018).

      These borehole records are the result of images captured as part of geological and glaciological sampling which happened to record images of the seafloor life beneath the ice shelves. To date, the furthest “inland” from the ice shelf front where life has been observed is 700 km from the Ross Ice Shelf front (Table 1). To put this in perspective that is over 64 times the depth of the Mariana Trench in distance from any known primary productivity. The WISSARD Program observed amphipods and fish at the seafloor and pelagic gelatinous organisms in the cavity beneath the Whillans Ice Stream (Kingslake et al., 2018), but there was no evidence of benthic organisms or for bioturbation in the sediment cores. Similarly, the Ross Ice Shelf Project (1977-78) used baited traps and cameras to observe mobile fauna such as numerous amphipods, two fish and an isopod; however, no live sessile organisms were recorded (Bruchhausen et al., 1979; Lipps et al., 1979). Sediment samples obtained from the borehole, ∼475 km from the Ross Ice Shelf front, also contained the dead remains of meiofaunal foraminifera, bivalves, gastropods, ostracods, and possible polychete tubes but did not find any living infauna. The 2017 Aotearoa New Zealand Ross Ice Shelf Program drilled a borehole in the middle of the ice shelf, some 300 km from the shelf front (Stevens et al., 2020). In addition to multiple pelagic organisms, they observed an ophiuroid, a benthic fish, and what appeared to be infaunal burrows.

      Details of Antarctic Ice Shelf boreholes that have seafloor images, including those with living organisms.

      Site Year Region Latitude Longitude Depth (m) Ice Thickness (m) Water Column (m) Distance from open water (km) Substrate Benthic Fauna Pelagic/mobile Fauna References
      J9 1977 Ross 82°22.5′S 168°37.5′W 597 420 237 430 Clay/silt Amphipods, isopod, fish Mysid Lipps et al., 1979; Bruchhausen et al., 1979
      Jutulgryta 1991 Fimbulisen 71°18.6′S 0°17.2′E 11 391 140 Clean dropstones and muddy matrix Østerhus and Orheim, 1994
      AM01b 2003 Amery 69°25.86′S 71°26.77′E 775 479 361 100 Silt and sand Sponges, hydroids, polychetes, bivalves, bryozoans, ascidians, polychetes, holothurians, echinoids, gastropod Krill, amphipods, fish or squid Riddle et al., 2007
      AM03 2005 Amery 70°33.67′S 70°19.93′E 1254 722 617 200 Clay/silt Holothurian or flabelligerid polychete, ophiuroid, echinoid, possible sponge Post et al., 2014
      AM04 2006 Amery 69°53.97′S 70°17.42′E 931 603 399 160 clay/silt Polychetes, echinoid, sediment mounds Medusa, krill, amphipods Post et al., 2014
      SCINI 2008 Ross 78°13.2′S 164°14.1′E 188 1.1–20 188 80 Fine sediment and dropstones Polychete, ophiuroids, cerianthid anemones, octocoral, bryozoans, porifera, chordates, arthropods, mollusks Kim, 2019
      Site 1 2012 Langhovde Glacier 69°12.15′S 39°49.3′E 400 10 to 25 2.5 Silt and rocks Large isopod c.f. Glyptonotus antarcticus, fish krill Sugiyama et al., 2014
      WGZ-1 2015 Ross 84°19.5′S 163°40′W 600 755 10 700 Glaciomarine diamicton Amphipods, zoarcid and notothenioid fish Medusoid and ctenophorid jellies Kingslake et al., 2018
      FSW1 2016 Filchner 80°26.12′S 44°25.88′W 1215 853 471 260 Rock on silt Single glass sponge New findings
      FSW2 2016 Filchner 80°28.87′S 44°11.32′W 1233 872 472 260 Boulder and silt Stalked sponge, non-stalked sponges, unidentified stalked taxa, filamentous taxa New findings
      FSE1 2016 Filchner 80°58.44′S 41°26.92′W 1306 891 528 305 Small clasts and fine sediment New findings
      FSE2 2016 Filchner 81°04.55′S 40°49.65′W 1142 387 442 320 Small clasts and fine sediment Ctenophore New findings
      FNE1 2016 Filchner 78°33.85′S 38°05.25′W 1104 597 588 27 Small clasts and fine sediment New findings
      HWD2 2017 Ross 80°39.5′S 174°27.68′E 741 367.5 428 300 ∼5-cm clasts and fine mud Fish, ophiuroid, possible infauna burrows Krill, ctenophore, chaetognath, amphipod Stevens et al., 2020

      Multiple boreholes have been drilled through the Amery Ice Shelf at varying distances from the ice front. In 2003, a downward facing camera system investigated a borehole (AM01b) 100 km from the ice shelf front (Table 1 and Figure 1) and observed a diverse assemblage comparable with coastal, sea ice-dominated locations or deeper water communities (Riddle et al., 2007). Observed taxa were dominated by sessile suspension feeders such as bryozoans, ascidians, polychetes, hydroids, bivalves, and sponges, as well as mobile fauna such as echinoids, flabelligerid worms, holothurians, and gastropods (Riddle et al., 2007). A less diverse and more sparse community was found in 2005 by cameras in a borehole 200 km in from the Amery Ice Shelf front (AM03), recording mobile deposit feeders and evidence of potential suspension/filter feeders (Post et al., 2014). In 2006, a further borehole (AM04) revealed a surface-living benthic polychete, a heart urchin, and polychete tubes 160 km from the Amery Ice Shelf front (Table 1). All Amery Ice Shelf observations recorded evidence of krill and amphipods in the water column, with multiple observations of medusa at AM04. The overall distribution of life beneath the Amery appears to be strongly controlled by ocean circulation, with richer and more diverse taxa associated with nutrient-rich inflowing currents and more impoverished seafloor coinciding with nutrient-poor outflow (Post et al., 2014).

      Antarctic ice shelf borehole locations with seafloor images. Details for each location can be found in Table 1. New records with life present from this study are marked with a star, boreholes where life was observed with a black circle and where no life was observed or reported with a white circle. R-FIS, Ronne-Filchner Ice Shelf; RIS, Ross Ice Shelf; AIS, Amery Ice Shelf.

      Other studies have sampled narrower ice shelves or regions nearer to the ice shelf front. The most diverse fauna recorded came from the Ross Sea, 80 km inland from the ice front (Kim, 2019). They observed eight different phyla and a high biomass of organisms. Observations from only 2.5 km landward of the Langhovde Glacier ice front yielded only a single large isopod crustacean and a fish (Sugiyama et al., 2014). Not all boreholes have resulted in observations of benthic organisms. An expedition to the Fimbul Ice Shelf in 1991 found a seafloor of mud and dropstones, but no visible life, 140 km from the ice shelf front (Østerhus, 1994).

      Whilst the studies beneath the Amery and Ross Ice Shelf have been transformative to our understanding of sub-ice-shelf ecosystems, the paucity of information from other ice shelves undoubtedly means we are missing vital information about the diversity and structure of sub-ice-shelf habitats. Such information is important for our understanding of how ice shelf collapse might affect these communities and our interpretation of ice shelf history from sediment records. Here we present the first observations of the sub-ice shelf fauna of the Filchner-Ronne Ice Shelf (FRIS) and discuss its significance in relation to previous records elsewhere.

      Materials and Methods

      Access holes were drilled through the 387–890 m thick Filchner Ice Shelf (FIS) during the austral summer of 2015–2016 and 2016–2017 (Figure 2) using the British Antarctic Survey (BAS) hot water drill system (Makinson and Anker, 2014). Water column and seabed imagery was obtained using a GoPro HERO4 video camera, protected within an off-the-shelf pressure housing that was mounted above a BAS-modified UWITEC gravity corer. The GoPro recorded video at 30 frames per second, with a 1080 p resolution and a fixed ISO of 1600. Conductivity-temperature-depth (CTD) profiles were additionally obtained using a Seabird SBE49 with estimated accuracies of 0.004°C and 0.005, for temperature and salinity, respectively (Huhn et al., 2018).

      Map showing location of drill sites on Filchner Ice Shelf (FSW1-2, FSE1-2, and FNE2), comparable samples from continental shelf collected during JR275 as well as the major sub-ice shelf circulation. Black arrows show flows derived from High Salinity Shelf Water (HSSW) from the Ronne Depression. Purple arrow shows the flow from HSSW formed over Berkner Bank (Nicholls, 2004). Ice Shelf Water (ISW) exits along the eastern margin of Filchner Trough, with a possible seasonal influx of modified Warm Deep Water (mWDW) (Darelius et al., 2016). Dashed light blue arrows represent the flow of the slope front and coastal currents (Nicholls et al., 2009). Bathymetry is derived from ETOPO1 (NOAA National Geophysical Data Center, 2009).

      Drill sites FSW1 and FSW2 (Figures 1, 2 and Table 1) are located on the western margin of FIS close to Berkner Island, 260 km from the ice shelf front, in a region where the ice shelf base is experiencing no significant melting or freezing (Makinson et al., 2011). Sites FSW1 and FSW2 are on the opposite side of the Filchner Trough, over 300 km from the ice shelf front. Drill site FNE2 was located on the northern end of the FIS in an area of inflow, only 27 km from the ice shelf front (Figures 1, 2 and Table 1).

      The primary location of our observations is FSW2, where the ice shelf and water column are 872 and 472 m, respectively (Figures 1, 2 and Table 1). Despite multiple attempts to obtain a sediment core at FSW2, the corer hit a large sub-rounded boulder which is black/gray in color that was found to host a diverse benthic fauna (see Supplementary Video). Inspection of available video footage suggests that the boulder is mafic (gabbro?). Possible source regions include the Pensacola Mountains, which is part of an extensive Middle Jurassic igneous province related to and emplaced just prior to Gondwana break-up (Ford, 1976; Ferris et al., 1998). The Dufek Massif, for example, consists of well-layered pyroxene gabbro that contains abundant magnetite in higher levels that is visually similar to the boulder imaged here (Ford, 1976). We assume that the boulder has been transported by the ice shelf, eventually melting out at the drill site. In this context, a source in the Dufek Massif would make sense as the drill site lies directly downstream of this mountain range.

      The hydrography of site FSW2 is dominated by inflow of cold High Salinity Shelf Water (HSSW; Figure 1) which forms along Berkner Bank or is re-circulated, originally entering the cavity via Ronne Depression (Ronne Trough) (Nicholls et al., 2009). The water column is characterized by two well-mixed zones, the upper 100 m below the ice shelf base and in the 250 m thick layer above the bottom (Huhn et al., 2018). Potential temperature (θ) close to the ice shelf base is cold (−2.49°C), although this is still warmer than the in situ freezing temperature at this depth. The bottom layer is warmer (−2.2°C) and more saline (34.61) (Huhn et al., 2018). Ice Shelf Water exits Filchner Trough along the eastern margin, which is also characterized by the re-circulation of HSSW and seasonal input of modified Warm Deep Water (Figure 2) (Darelius et al., 2016; Nachtsheim et al., 2019). Currents at FSW2 are likely to be strong with model estimates of up to 0.25 m s–1 (Daae et al., 2020) and carry with them a visible particulate load of silt-sized detritus. It is unclear if this is entirely terrigenous or whether it also includes a biogenic component.

      The dimensions of the boulder and associated fauna were estimated by comparison with those of the corer which had a maximum radius of 11 cm and a height of 75 cm.

      Results

      The boulder below FSW2 is located at a depth of 1,233 m and approximately 260 km from the modern calving margin of FIS (measured as a straight line through water). However, this is in the opposite direction of the main flow of HSSW (Nicholls, 2004). Following the two main sources of HSSW would put the boulder at > 1500 km from FIS front (following HSSW from the Ronne Depression) or > 625 km from Ronnie Ice Shelf front (following HSSW formed over Berkner Bank) (Figure 2).

      The boulder itself is approximately 96 cm long by 69 cm wide and around 75 cm high. Fauna is largely concentrated on the sides of the boulder (Figure 3). The upper surface of the boulder seems to have a patchy coating of sediment of a similar color to the surrounding substrate The surrounding sediments show ripples formed by currents but there is no visible evidence of infauna or mobile epifauna.

      Dimensions and close-ups of the boulder, highlighting where life is clearly visible (A–E) and the top of the boulder where no obvious life is visible (F). The taxa visible on the boulder: Red, large stalked sponge; White, sponge; Orange, stalked taxa [possible sponge, ascidians, hydroid, barnacles, cnidaria (e.g., tubularia), and polychetes].

      The fauna associated with the boulder can be categorized into three main types of suspension feeders: a stalked sponge, non-stalked sponges, and unidentifiable stalked taxa (possible sponges, ascidians, hydroids, barnacles, cnidarian, or polychetes). It is also possible that the stalked sponge and/or stalked taxa might be carnivorous sponges, similar to Cladorhizidae. Only one confirmed stalked sponge (Figure 3E) was observed at a length of approximately 8.9 cm; 15 non-stalked sponges were observed around the edges of the boulder, the largest of which was 6.64 cm wide by 4 cm tall. Unidentifiable stalked taxa were the most numerous group, accounting for 58% of all observed individuals (22 individuals), the longest of which was estimated to be ∼6.6 cm long (Table 2). Figure 3B shows evidence of filamentous organisms of around 1 cm in length which could not be identified further but are possibly bacterial mats or hydroids. The upper surface of the boulder (Figure 3F) may also have a covering of filamentous organisms coated by the sediment layer but none of the images available had high enough resolution to investigate this.

      Counts of taxa observed on the boulder found at FSW2 (for location of transects refer to Figure 3).

      Transect Length (cm) Stalked sponge Non-stalked sponge Unidentified stalked taxa Filamentous organisms
      A 40 4 1
      B 26 2 Many
      C 10 3 1
      D 15 3 4
      E 28 1 5 14
      F 15

      A single, smaller rock with one non-stalked sponge on the surface was observed from under the nearby FSW1 borehole. No other benthic or pelagic life was seen, but the camera did not get as near to this rock as it did to the boulder in FSW2 so the images were not of comparable detail or scale. No benthic animals were observed on the seafloor at FNE2, FSE1 or FSE2. There was a single pelagic ctenophore observed in the borehole water at FSE2. The substrate was similar at each of these locations and consisted of fine-grained sediments and scattered pebble-sized clasts. From the video footage, the sediment, and bubbles from the corer at FNE2 are seen to be moved rapidly by a strong horizontal current.

      Discussion

      Under ice shelf assemblages are generally believed to resemble the communities of the oligotrophic deep sea, subsisting on advected food particles (Ingels et al., 2018). The few previous examples of these communities from boreholes have all been from soft substrates or glacial sediments (Bruchhausen et al., 1979; Lipps et al., 1979; Riddle et al., 2007; Post et al., 2014; Sugiyama et al., 2014; Kingslake et al., 2018; Kim, 2019; Stevens et al., 2020). This is the first recorded observation of an in situ hard substrate sessile community beneath an ice shelf. The discovery of this suspension feeding community 260 km under a floating ice shelf in an area of outflow is remarkable in itself and goes against the existing paradigm (Ingels et al., 2018). Even though the prevailing current at FSW2 was strong, it was flowing in the wrong direction to connect the location directly to the nearest open water at the point of measurement (Figure 2). Instead, the currents suggest that this community is somewhere between 625 and 1500 km from the nearest region of photosynthesis. The effect of seasonality and pulses in the currents of the region (Darelius and Sallée, 2018) is unknown given that we do not yet know where the food comes from or how often they feed, but may significantly impact these communities, their feeding, and their recruitment.

      Previous borehole records, excluding the new records from Filchner Ice Shelf (FSW1 and 2), show a general decrease in overall diversity and in the prevalence of sessile organisms with increasing distance from the ice shelf front (Figure 4). These data support the theory that in these oligotrophic environments mobile taxa are dominant (Ingels et al., 2018), with no sessile fauna previously observed from greater than 200 km under an ice shelf. The new findings from FSW1 and 2 go against this trend, with only sessile organisms present, but agree with the general trend of lower diversity at phylum level. The absence of any observed deposit feeding infauna or mobile epifauna on the sediments surrounding the boulder contrasts with existing theory (Ingels et al., 2018) and the dominance of these groups in the Amery and Ross Sea bore holes (Bruchhausen et al., 1979; Lipps et al., 1979; Riddle et al., 2007; Post et al., 2014; Kingslake et al., 2018; Kim, 2019; Stevens et al., 2020).

      Counts of phyla observed at each borehole with increasing distance from the ice shelf front, boreholes with no observed life are excluded. Miscellaneous, unidentifiable living organisms or evidence of infaunal activity.

      The abundance of organisms on the boulder is higher than would be expected so far from a source of primary production (Ingels et al., 2018) and is comparable with large dropstones in the seasonal sea ice regimes of the fjords of the West Antarctic Peninsula (Ziegler et al., 2017) or the Filchner Trough (∼450 km north of the ice shelf front, see Figure 2 and Supplementary Figure 1). However, the taxonomic and functional diversity is much lower than for the dropstones of the Peninsula (Ziegler et al., 2017) or the outer Filchner Trough (Supplementary Figure 1).

      The existence of this sessile and probable suspension feeding community so far under the ice shelf raises many ecological questions that cannot be fully answered given our current state of knowledge:

      What Species Are Present and Are They Endemic to This Environment?

      While it is reasonable to assume that many of the organisms visible are sponges, it is impossible to tell if they are glass sponges, demosponges, or calcareous. Antarctica has high percentages of endemic species from all groups of sponges (Downey et al., 2012), and species level identification would require physical specimens and genetic material. The uncertainty around the identity the other stalked and filamentous taxa lies in the lack of detail obtainable from the video. However, they are sessile and have not been observed at any other previous borehole locations. Given the inherent complexity of obtaining physical samples (except for mobile fauna caught in baited traps) future studies could use environmental DNA (eDNA) techniques on water and sediment samples to identify taxa. The origin of these communities is unknown and the advection of larvae might well play a role, it is also possible that given the huge physical extent of these regions that a specialist endemic fauna, similar in function to that of the oligotrophic deep sea, may have evolved in situ.

      How Old Is This Community?

      The time frame for survival of this community is unlikely to be limited by biology, assuming a sufficient food supply, with some living sponges estimated to be thousands of years old (Folkers and Rombouts, 2020). However, exposed dropstones are ephemeral in nature, especially in regions of high sedimentation. FSW2 is in a region of strong currents and no significant melt, meaning low sedimentation compared with regions nearer the grounding line or with slower currents. This could mean that the boulder would remain exposed for a long time, as evidenced by the very thin and patchy layer of sediment on the surface with areas of exposed rock, especially on the left-hand side of the image (Figure 3). If this is indeed an endemic and specialized community, for long-term survival it could “island hop” between dropstones, like hydrothermal vent communities between active vents (Tyler and Young, 2003) or between whale falls (Smith et al., 2017). It could also be continuously recruited from a more stable hard substrate region upstream, such as the flanks of Berkner Island or sheltered parts of the edge of the continent.

      How Often Does the Community Feed and What Is the Source of Its Food?

      Although these organisms observed on the boulder at FSW2 were all sessile, without physical specimens it is impossible to know their true mode of nutrition. At least some of these animals might be carnivorous sponges. Southern Ocean species represent ∼20% of all known carnivorous sponges and they are often found in oligotrophic bathyal regions or on isolated seamounts (Goodwin et al., 2017). Chemosynthesis is believed to play a role in some sub-ice shelf trophic pathways. Methane and hydrogen sulfide associated with cold seeps are suggested as a source of energy beneath the former Larsen B Ice Shelf (Domack et al., 2005), although no typically chemotrophic organisms have been observed through any of the boreholes to date. Nutrients and organic matter can also come from beneath the grounded ice sheet with subglacial water discharge (Gerringa et al., 2012; Death et al., 2014; Vick-Majors et al., 2020) or from sediment melting out of basal ice (Neuhaus et al., 2020).

      How Common Are These Hard Substrate Sub-Ice Shelf Communities?

      Given that this is the first hard sub-ice shelf substrate habitat observed, we have no estimate for the density, distribution, longevity, or size range of sub-ice shelf dropstones and boulders. Such a census would require the use of autonomous technology with downward facing sensors surveying the under-ice shelf environment. Large boulders, ca. 1 m in diameter and larger, were found to account for about 0.1 volume% of Alpine glacial till (Felletti and Pietro Beretta, 2009). This likely represents an overestimate for glaciomarine sub-ice-shelf sediments in Antarctica which can be reasonably expected to be more fine-grained than Alpine glacial till. But it does suggest that large boulders can be spaced at the bottom of sub-ice shelf cavities at intervals as short as 1 km, or greater.

      This study shows that there are regions where suitably stable hard substrate (suited for sessile fauna) coincides with currents that are sufficiently powerful to advect food from open waters. However, in other localities, such as FNE2, that are far closer (27 km) to the ice shelf front and experience significant currents showed no sign of life at all. To really understand sub-ice shelf communities, we need to combine information on both suitable oceanography and substrate. Other locations might provide one of these factors but not the other. The grounding line, for instance, may have a higher number of rocks, but may provide a poor food source or a higher sedimentation rate, burying the rocks more rapidly. These results demonstrate the potential for finding other similar communities elsewhere under large Antarctic ice shelves. We cannot currently pinpoint the exact location of similar habitats, future high-resolution modeling of sub-ice shelf oceanography and topography will enable us to target further investigation.

      In the case of WGZ-1 (Kingslake et al., 2018), being very close to the grounding line the factor that might prevent sessile fauna from becoming established is the rainout of debris from the melting ice base. Sediment deposition rates may be as high as a few centimeters per year. The water column is also heavily loaded with suspended fine sediment which would inhibit filter feeding organisms which tend to favor regions of low inorganic turbidity (Turner, 2009). Near to grounding lines, these factors may be as important as the distance from the open ocean, if not more so. This is supported by the fact that mobile predators, scavengers, and detritivores (amphipods and fish) were observed 700 km from the ice front, suggesting that the absence of sessile macroscopic benthic may not be from a lack of food but potentially because of the high sediment flux. The sedimentary material raining out of the ice base does contain organic matter (at a level of per mils by weight), and there may be organic material coming from beneath the ice sheet (Vick-Majors et al., 2020).

      How Does the Existence of This Community Inform Our Knowledge of the Physical Environment and Regime Under the Ronne-Filchner Ice Shelf and Other Ice Shelves?

      Our findings also suggest that sub-ice shelf oceanographic conditions that are capable of providing a food source may be more widespread than previously thought. The presence of a sessile community 260 km from the ice shelf front supports the possibility that diatoms or other advected organic material are traveling far beneath the ice shelf. This has major implications for the study of glaciology and Antarctic marine geology, as the presence and composition of these marine microfossils in the sedimentary record have traditionally been used to determine presence/absence of paleo-ice shelves, as well as the proximity to the open-ocean (Smith et al., 2019).

      What Would Become of These Communities in the Event of Ice Shelf Collapse?

      These findings may be evidence of an Antarctic sub-ice shelf hard substrate benthic community that is well adapted to a low food supply, which makes it particularly vulnerable to the effects of ice shelf collapse and associated changes in productivity regimes. However, if this community turns out to be a restricted subset of the more general Weddell Sea hard substrate community, then it would be logical to assume that ice shelf loss would allow the community to thrive and succession would result in a community resembling that of the sea ice zone (Supplementary Figure 1). In the smaller Larsen A and B regions, the shift to more open water conditions with high local primary productivity was rapid (Ingels et al., 2018). The Larsen A and B communities are believed to be derived from the nearby shelf communities restricted by limited food availability. This is also reflected in many of the boreholes, with mobile fish, echinoderms, and arthropods, recognizable from the sea ice zone, being the only fauna observed on soft or glacial sediments (Bruchhausen et al., 1979; Kingslake et al., 2018; Stevens et al., 2020).

      The first observation of a hard substrate community far under an ice shelf demonstrates that dropstones and boulders must play a similarly significant role in these regions as they do in the rest of the Southern Ocean acting as islands of hard substrate in a sea of mud (Ziegler et al., 2017). The biological and physical attributes that allow this community to survive, despite our current theories, suggest that these communities are either better connected to the outside world than we can currently explain or that the organisms themselves represent highly specialized extreme oligotrophic adaptation.

      Given that our combined knowledge of in situ under ice shelf habitats (more than 1.5 million km2) is drawn from 10 discrete observations covering a total area comparable to that of a tennis court, it should not come as a surprise that we are still discovering previously unseen types of sub-ice shelf communities far from open water. These findings raise more questions than they answer, highlighting the need for a concerted international effort to systematically observe, sample, and quantify these communities; their wider role in the Southern Ocean; and their physiological adaptations to this extreme environment. These observations challenge our understanding of what types of organisms can survive so far from daylight and have wider implications with regard to the evolution of the first complex organisms on earth, in particular through the “snowball earth” period, astrobiology, and the survival of polar organisms during more recent glacial maxima.

      Data Availability Statement

      The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

      Author Contributions

      JS and PA collected the seabed imagery in Antarctica. HG analyzed the images and compared with other studies. CS and ST provided images and data for comparison. HG wrote the manuscript with contributions from JS, PA, KL, AP, JM, CS, and ST. All authors have contributed to previous versions and approved the final, submitted version.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. HG, PA, KL, and JS are part of the British Antarctic Survey’s Polar Science for Planet Earth Program (NC-Science). Images from Filchner were obtained using the UK Natural Environment Research Council grant number NE/L013770/1, Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica. JM is funded by the Irish Research Council GOIPG/2019/4020. AP is funded by Geoscience Australia. CS is funded by the New Zealand Antarctic Research Institute Ross Ice Shelf Program and the New Zealand Antarctic Science Platform (ASP). ST was funded by NSF-OPP award 0838947 as part of the Whillans Ice Stream Subglacial Access Drilling (WISSARD) project supported by the ANDRILL drilling team at the University of Nebraska, Lincoln, and by logistics provided by the United States Antarctic Program.

      The fieldwork on the Filchner Ice Shelf in 2015–2016 was undertaken under the permit 45/2015 issued by the Foreign and Commonwealth Office, London, to section 3 of the Antarctic Act 1994. We would like to thank everyone at the Alfred Wegener Institute (AWI) and the British Antarctic Survey (BAS) who supported the FISP and FISS drilling campaigns 2015/2016 and 2016/2017 by logistics and funding. The 2017 Ross Ice Shelf borehole was made possible by Antarctica New Zealand and the Victoria of University of Wellington Antarctic Research Centre.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2021.642040/full#supplementary-material

      Comparable images of JR275 from open water (seasonal sea ice) sites for comparison with the fauna observed on the boulder.

      Video taken at the seafloor beneath borehole FSW2 in the Weddell Sea beneath the Ronne-Filchner Ice Shelf. Visible in the video are multiple sessile organisms attached to a large boulder.

      References Bruchhausen P. M. Raymond J. A. Jacobs S. S. Devries A. L. Thorndike E. M. Dewitt H. H. (1979). Fish, crustaceans, and the sea floor under the ross ice shelf. Science 203 449451. 10.1126/science.203.4379.449 17734141 Daae K. Hattermann T. Darelius E. Mueller R. D. Naughten K. A. Timmermann R. (2020). Necessary conditions for warm inflow toward the Filchner Ice Shelf, Weddell Sea. Geophy. Res. Lett. 47 111. 10.1029/2020gl089237 Darelius E. Fer I. Nicholls K. W. (2016). Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water. Nat. Commun. 7:12300. Darelius E. Sallée J. B. (2018). Seasonal outflow of ice shelf water across the front of the Filchner Ice Shelf, Weddell Sea, Antarctica. Geophys. Res. Lett. 45 35773585. 10.1002/2017gl076320 30034049 Death R. Wadham J. L. Monteiro F. Le Brocq A. M. Tranter M. Ridgwell A. (2014). Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences 11 26352643. 10.5194/bg-11-2635-2014 Domack E. Ishman S. Leventer A. Sylva S. Willmott V. Huber B. (2005). A chemotrophic ecosystem found beneath Antarctic Ice Shelf. EOS Transact. Am. Geophys. Union 86:269. 10.1029/2005eo290001 Downey R. V. Griffiths H. J. Linse K. Janussen D. (2012). Diversity and distribution patterns in high southern latitude sponges. PLoS One 7:e41672. 10.1371/journal.pone.0041672 22911840 Felletti F. Pietro Beretta G. (2009). Expectation of boulder frequency when tunneling in glacial till: a statistical approach based on transition probability. Eng. Geol. 108 4353. 10.1016/j.enggeo.2009.06.006 Ferris J. Johnson A. Storey B. (1998). Form and extent of the Dufek intrusion, Antarctica, from newly compiled aeromagnetic data. Earth Planet Sci. Lett. 154 185202. 10.1016/s0012-821x(97)00165-9 Folkers M. Rombouts T. (2020). Sponges Revealed: A Synthesis of Their Overlooked Ecological Functions Within Aquatic Ecosystems. YOUMARES 9 – The Oceans: Our Research, Our Future. Cham: Springer, 181193. 10.1007/978-3-030-20389-4-9 Ford A. B. (1976). Stratigraphy of the Layered Gabbroic Dufek Intrusion, Antarctica. Washington, D.C.: US Government Printing Office, 36. 10.3133/b1405d Gerringa L. J. A. Alderkamp A. C. Laan P. Thuróczy C. E. De Baar H. J. W. Mills M. M. (2012). Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): iron biogeochemistry. Deep Sea Res. 2 Top. Stud. Oceanogr. 7 1631. 10.1016/j.dsr2.2012.03.007 Goodwin C. E. Berman J. Downey R. V. Hendry K. R. (2017). Carnivorous sponges (Porifera : Demospongiae : Poecilosclerida : Cladorhizidae) from the drake passage (Southern Ocean) with a description of eight new species and a review of the family Cladorhizidae in the Southern Ocean. Inverteb. Syst. 31 3764. 10.1071/is16020 Griffiths H. J. (2010). Antarctic marine biodiversity–what do we know about the distribution of life in the Southern Ocean? PLoS One 5:e11683. 10.1371/journal.pone.0011683 20689841 Gutt J. Griffiths H. J. Jones C. D. (2013). Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar. Biodivers. 43 481487. 10.1007/s12526-013-0152-9 Huhn O. Hattermann T. Davis P. E. D. Dunker E. Hellmer H. H. Nicholls K. W. (2018). Basal melt and freezing rates from first noble gas samples beneath an ice shelf. Geophy. Res. Lett. 45 84558461. 10.1029/2018gl079706 Ingels J. Aronson R. B. Smith C. R. (2018). The scientific response to Antarctic ice-shelf loss. Nat. Clim. Chang. 8 848851. 10.1038/s41558-018-0290-y Ingels J. Aronson R. B. Smith C. R. Baco A. Bik H. M. Blake J. A. (2021). Antarctic ecosystem responses following ice-shelf collapse and iceberg calving: science review and future research. Wiley Interdiscip. Rev. 12:e682. 10.1002/wcc.682 Kim S. (2019). Complex life under the McMurdo Ice Shelf, and some speculations on food webs. Antarct. Sci. 31 8088. 10.1017/s0954102018000561 Kingslake J. Scherer R. P. Albrecht T. Coenen J. Powell R. D. Reese R. (2018). Extensive retreat and re-advance of the West Antarctic ice sheet during the holocene. Nature 558 430434. 10.1038/s41586-018-0208-x 29899456 Lipps J. H. Ronan T. E. Jr. Delaca T. E. (1979). Life below the ross ice shelf, antarctica. Science 203 447449. 10.1126/science.203.4379.447 17734140 Makinson K. Anker P. G. D. (2014). The BAS ice-shelf hot-water drill: design, methods and tools. Ann. Glaciol. 55 4452. 10.3189/2014aog68a030 Makinson K. Holland P. R. Jenkins A. Nicholls K. W. Holland D. M. (2011). Influence of tides on melting and freezing beneath Filchner-Ronne Ice Shelf, Antarctica. Geophys. Res. Lett. 38:L06601. 10.1029/2010gl046462 Nachtsheim D. A. Ryan S. Schröder M. Jensen L. Chris Oosthuizen W. Bester M. N. (2019). Foraging behaviour of Weddell seals (Leptonychotes weddellii) in connection to oceanographic conditions in the southern Weddell Sea. Prog. Oceanogr. 173 165179. 10.1016/j.pocean.2019.02.013 Neuhaus S. U. Tulaczyk S. M. Stansell N. D. Coenen J. J. Scherer R. P. Mikucki J. A. (2020). Did Holocene climate changes drive West Antarctic grounding line retreat and re-advance? Cryosph. Discuss [Preprint]. 10.5194/tc-2020-308 Nicholls K. W. (2004). Interannual variability and ventilation timescales in the ocean cavity beneath Filchner-Ronne Ice Shelf, Antarctica. J. Geophy. Res. 109:C04014. 10.1029/2003jc002149 Nicholls K. W. Østerhus S. Makinson K. Gammelsrød T. Fahrbach E. (2009). Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Rev. Geophy. 47:RG3003. 10.1029/2007rg000250 NOAA National Geophysical Data Center (2009). ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information (accessed March 4, 2019). Østerhus S. (1994). Report of the Norwegian Antarctic Research Expedition 1991/1992 Tromsø: Norsk polarinstitutt. Østerhus S. Orheim O. (1994). Oceanographic and glaciologic investigations through Jutulgryta, Fimbulisen in the 1991/92 season. Norsk Polarinst. Meddel. 124 2128. Post A. L. Galton-Fenzi B. K. Riddle M. J. Herraiz-Borreguero L. O’Brien P. E. Hemer M. A. (2014). Modern sedimentation, circulation and life beneath the Amery Ice Shelf, East Antarctica. Cont. Shelf Res. 74 7787. 10.1016/j.csr.2013.10.010 Riddle M. J. Craven M. Goldsworthy P. M. Carsey F. (2007). A diverse benthic assemblage 100 km from open water under the Amery Ice Shelf, Antarctica. Paleoceanography 22:PA1204. 10.1029/2006pa001327 Smith C. R. Amon D. J. Higgs N. D. Glover A. G. Young E. L. (2017). Data are inadequate to test whale falls as chemosynthetic stepping-stones using network analysis: faunal overlaps do support a stepping-stone role. Proc. Biol. Sci. 284 116. 10.1098/rspb.2017.1281 28954909 Smith J. A. Graham A. G. C. Post A. L. Hillenbrand C.-D. Bart P. J. Powell R. D. (2019). The marine geological imprint of Antarctic ice shelves. Nat. Commun. 10:5635. Stevens C. Hulbe C. Brewer M. Stewart C. Robinson N. Ohneiser C. (2020). Ocean mixing and heat transport processes observed under the ross ice shelf control its basal melting. Proc. Natl. Acad. Sci. U.S.A. 117 1679916804. 10.1073/pnas.1910760117 Sugiyama S. Sawagaki T. Fukuda T. Aoki S. (2014). Active water exchange and life near the grounding line of an Antarctic outlet glacier. Earth Planet. Sci. Lett. 399 5260. 10.1016/j.epsl.2014.05.001 Turner J. (2009). Antarctic Climate Change and the Environment: A Contribution to the International Polar Year 2007-2008. Cambridge: Scientific Committee on Antarctic Research. Tyler P. A. Young C. M. (2003). Dispersal at hydrothermal vents: a summary of recent progress. Hydrobiologia 503 919. 10.1023/b:hydr.0000008492.53394.6b Vick-Majors T. Achberger A. Michaud A. Priscu J. (2020). “Metabolic and taxonomic diversity in antarctic subglacial environments,” in Life in Extreme Environments: Insights in Biological Capability: Ecological Reviews, eds Prisco G. Di Edwards H. Elster J. Huiskes A. (Cambridge: Cambridge University Press), 279296. 10.1017/9781108683319.016 Ziegler A. F. Smith C. R. Edwards K. F. Vernet M. (2017). Glacial dropstones: islands enhancing seafloor species richness of benthic megafauna in West Antarctic Peninsula fjords. Mar. Ecol. Prog. Ser. 583 114. 10.3354/meps12363
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016kqynym.org.cn
      hdelec.com.cn
      www.formit.com.cn
      kubaow.com.cn
      kdchain.com.cn
      www.gersnq.com.cn
      www.jmchain.com.cn
      www.sxfkch.com.cn
      qitfmd.com.cn
      tflv7.net.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p