Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2019.00712 Marine Science Original Research Characteristics of an Advective Marine Heatwave in the Middle Atlantic Bight in Early 2017 Gawarkiewicz Glen 1 * Chen Ke 1 Forsyth Jacob 1 2 Bahr Frank 1 Mercer Anna M. 3 Ellertson Aubrey 4 Fratantoni Paula 3 Seim Harvey 5 Haines Sara 5 Han Lu 5 1Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, United States 2Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States 3NOAA Fisheries, Northeast Fisheries Science Center, National Marine Fisheries Service, Woods Hole, MA, United States 4Commercial Fisheries Research Foundation, Saunderstown, RI, United States 5Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Edited by: Katrin Schroeder, National Research Council, Italy

Reviewed by: Alberto Ricardo Piola, Naval Hydrography Service, Argentina; Jacopo Chiggiato, Italian National Research Council (CNR), Italy

*Correspondence: Glen Gawarkiewicz, gleng@whoi.edu

This article was submitted to Physical Oceanography, a section of the journal Frontiers in Marine Science

22 11 2019 2019 6 712 27 05 2019 05 11 2019 Copyright © 2019 Gawarkiewicz, Chen, Forsyth, Bahr, Mercer, Ellertson, Fratantoni, Seim, Haines and Han. 2019 Gawarkiewicz, Chen, Forsyth, Bahr, Mercer, Ellertson, Fratantoni, Seim, Haines and Han

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

There has been wide interest in Marine Heatwaves and their ecological consequences in recent years. Most analyses have focused on remotely sensed sea surface temperature data due to the temporal and spatial coverage it provides in order to establish the presence and duration of Heatwaves. Using hydrographic data from a variety of sources, we show that an advective Marine Heatwave was initiated by an event in late December of 2016 south of New England, with temperature anomalies measuring up to 6°C and salinity anomalies exceeding 1 PSU. Similar features were observed off of New Jersey in February 2017, and are associated with the Shelfbreak Front migrating from its normal position to mid-shelf or further onshore. Shelf water of 34 PSU was observed just north of Cape Hatteras at the 30 m isobath and across the continental shelf in late April 2017. These observations reveal that the 2017 Marine Heatwave was associated with a strong positive salinity anomaly, that its total duration was approximately 4 months, and its advective path extended roughly 850 km along the length of the continental shelf in the Middle Atlantic Bight. The southward advective velocity implied by the arrival north of Cape Hatteras is consistent with previous estimates of alongshelf velocity for the region. The origin of this Marine Heatwave is likely related to cross-shelf advection driven by the presence of a Warm Core Ring adjacent to the shelfbreak south of New England.

Heatwave Middle Atlantic Bight shelfbreak front warm core ring coastal ocean circulation Division of Ocean Sciences10.13039/100000141 Division of Ocean Sciences10.13039/100000141 Woods Hole Oceanographic Institution10.13039/100005991

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      There has been considerable attention focused recently on Marine Heatwaves, which are warm anomalies persisting for days to months and on spatial scales from one to a thousand kilometers or more (Hobday et al., 2016). Further studies have examined the frequency of Marine Heatwaves in the North Pacific and North Atlantic (Scannell et al., 2016), the influence of global warming on the frequency of Marine Heatwaves under various carbon emission scenarios (Frohlicher et al., 2018), significant historical changes globally based on historical data (Oliver et al., 2018), and the contributions of various ocean-atmosphere modes on the global distribution of heatwaves (Holbrook et al., 2019).

      While Marine Heatwaves lasting over days may disturb the marine environment, it is the long lasting events that have the most significant impact. The most dramatic recent example in the Northwest Atlantic coastal ocean was the warming of 2012 (Mills et al., 2013; Chen et al., 2014). This event, which lasted over 6 months with ocean temperature anomalies exceeding 2°C, was caused by a northward shift in the atmospheric Jet Stream during winter that resulted in a 50% reduction of heat loss from the ocean to the atmosphere compared to a normal winter (Chen et al., 2014).

      As recent technological improvements and deployment of ocean observatories have allowed further examination of shelf and slope processes, it has become apparent that offshore forcing of the continental shelf and slope is becoming more prevalent and that processes driving shelfbreak exchange may be significant contributors to Marine Heatwaves in the Middle Atlantic Bight. Two observational programs that have been particularly important in recent years are the Ocean Observatories Initiative (OOI) Pioneer Array (Gawarkiewicz and Plueddemann, 2019) and the Commercial Fisheries Research Foundation/Woods Hole Oceanographic Institution Shelf Research Fleet (Gawarkiewicz and Malek Mercer, 2019). The Pioneer Array is a multi-scale shelfbreak observatory designed to study shelfbreak exchange processes, while the Shelf Research Fleet utilizes the commercial fishing fleet in Rhode Island to regularly sample the continental shelf using CTDs provided by Woods Hole Oceanographic Institution (WHOI). Data from these two programs have revealed a dramatic warming event in January 2017 south of New England in which warm water fish typically found in the Gulf Stream were caught at the 30 m isobath off Block Island, RI (Gawarkiewicz et al., 2018). The magnitude of the temperature anomaly reached 6°C relative to a monthly climatology of shelf temperature in the region (Fleming, 2016). However, this event was not examined closely in context with historical data from the region, nor was the fate of the warm water flooding the continental shelf established in Gawarkiewicz et al. (2018).

      In this study, we examine a broad suite of observations to characterize the origin of the event, compare its statistical properties with a Marine Heatwave definition, and track the fate of the anomalous water mass on the northeast US Shelf. The outline of the paper is as follows. Section “Data Sources and Methods,” describes the data sources used to examine the 2017 event as well as the criteria used to qualify as a Marine Heatwave using limited sub-surface data. The characteristics of the warm and salty anomalies and their duration south of New England are described in section “Shelfbreak Exchange–Initiation of the Marine Heatwave South of New England.” Anomalous conditions subsequently observed over the New Jersey shelf are described in section “The Marine Heatwave Over the New Jersey Continental Shelf.” The fate of the Heatwave is presented in section “The Fate of the Marine Heatwave” using data showing the anomalous water mass over the continental shelf north of Cape Hatteras. A discussion follows, which includes ecosystem effects and directions for future research. The results are briefly summarized in the final section.

      Data Sources and Methods

      Because of the spatial and temporal extent of this Extreme Shelfbreak Exchange Event, a number of different data sources were used to track the thermohaline anomalies along the length of the Middle Atlantic Bight. These include the Commercial Fisheries Research Foundation/Woods Hole Oceanographic Institution (CFRF/WHOI) Shelf Research Fleet, the Ocean Observatories Initiative Pioneer Array, the CMV Oleander ship of opportunity temperature data set, the National Marine Fisheries Service (NMFS) Ecosystem Monitoring (ECOMON) program, and the National Science Foundation Processes driving Exchange At Cape Hatteras (PEACH) experiment. It is interesting to note that the first identification of this Marine Heatwave event was from Captain Michael Marchetti of the F/V Mister G based in Point Judith, Rhode Island, who emailed photographs and descriptions of unusual conditions and catch to Anna Malek Mercer at CFRF and Glen Gawarkiewicz at WHOI. As reported in Gawarkiewicz et al. (2018), Marchetti noted several unusual species in his catch in January 2017, including Gulf Stream flounder and juvenile black sea bass. Marchetti is a participant in the CFRF/WHOI Shelf Research Fleet, and thus has frequent communications with both CFRF and WHOI.

      CFRF/WHOI Shelf Research Fleet

      The CFRF/WHOI Shelf Research Fleet was initiated in November, 2014 to enhance interactions between scientists and local communities to discuss adaptation to climate change impacts from the ocean in southern New England. Since then, a fleet of commercial fishing vessels, all based out of Rhode Island, have collected biweekly water column profiles within a region ranging from 40°00′ North to 41°18′ North and 70°30′ West to 71°30′ West. The depth range of the profiles used in the analysis in section “Shelfbreak Exchange–Initiation of the Marine Heatwave South of New England” extended from the 37 to 88 m isobaths. A description of the Shelf Research Fleet activities appears in Gawarkiewicz and Malek Mercer (2019). The domain of Shelf Research Fleet sampling appears in Figure 1.

      A map of the Middle Atlantic Bight showing the locations of the primary data sources used in the analysis. The Commercial Fisheries Research Foundation (CFRF)/WHOI Shelf Research Fleet operational area is denoted by the red box south of New England. Moorings from the OOI Pioneer Array are indicated by the purple circles. The region comprising the ECOMON profiles from February 2017 is denoted by the green rectangle. The blue dashed line indicates the path of the CMV Oleander, with the XBT stations used marked with blue circles. The B1 mooring from the PEACH mooring array is denoted by the orange circle just north of Cape Hatteras. The cross-shelf hydrographic transect from PEACH in April 2017 was at the same latitude as the B1 mooring. The 40, 100 m (bold line), 1000, 2000, and 3000 m isobaths are indicated by the contour lines offshore.

      Participant fishing vessels are trained to use the RBR Concerto CTD to collect water column profiles. The CTDs are routinely rotated and calibrated at RBR facilities in Ontario, Canada. Typical accuracy of the data for this particular CTD is ± 0.03 mS/cm and ± 0.002°C. The two primary considerations driving this choice of instrument were the high degree of accuracy as well as the wireless data communications that enable real-time plotting and viewing of profiles on an iPad without connecting cables to the CTD. Further details on the use of CTDs by the Shelf Research Fleet appear in Gawarkiewicz and Malek Mercer (2019).

      Profiles of temperature and salinity sampled by commercial fishers as part of Shelf Research Fleet sampling were examined for December 2016 and January/February 2017. Ten profiles were collected in December 2016, 11 in January 2017, and 24 profiles were collected in February 2017.

      Historical Hydrographic Data Archive and Sea Surface Temperature

      In order to produce statistics on historical temperature and salinity distributions south of New England, we used the World Ocean Database (WOD) 2018 from the National Center for Environmental Information. For southern New England, profiles from January were used to calculate the distribution of depth-averaged temperature and salinity to compare to data collected by the Shelf Research Fleet during January 2017. Historical profiles from 40°24′ North to 41°18′ North and 71°30′ West to 70°30′ West were included, spanning the northern edge of the Shelf Research Fleet operational area south to the latitude at which frequent excursions of the Shelfbreak Front were no longer evident in the historical data (40°24′ North). Forsyth et al. (2015) have shown that enhanced warming in the Middle Atlantic Bight (over the New Jersey shelf) has occurred since 2004. We wished to explicitly compare the 2017 warm event to conditions that occurred before the recent decadal warming. Thus we use all the historical profiles in WOD 2018 before 2004 for comparisons.

      The profiles within the historical archive for the months of January through March extend from 1940 to 1996 within the region defined by the sampling domain of the Shelf Research Fleet north of the typical range of variability of the Shelfbreak Front. For the purposes of comparison, the historical data was limited to 40°24′ North to 41°18′ North and 70°30′ West to 71°30′ West.

      For the purposes of calculating anomalies for temperature and salinity, the four-dimensional climatology compiled by Fleming (2016) is used. The climatological fields are monthly and are gridded onto a three dimensional field using a weighted least squares regression technique. The climatological fields, named MOCHA (Middle Atlantic Climatological and Hydrographic Atlas) are also described in Levin et al. (2018).

      The cross-shelf temperature and salinity fields from MOCHA along 71°00′ West in January appear in Figure 2. The Shelfbreak Front is the area of pronounced gradients extending offshore from the 100 m isobath. Typical shelf temperature values in January range from 4 to 7°C and typical shelf salinities are in the range of 32–34 PSU. For the purposes of interpretation, we take the inshore boundary of the Shelfbreak Front to be the 10°C isotherm and the 34.0 PSU isohaline. Slope Water is present offshore of the Shelfbreak Front with typical temperatures of 12–14°C and salinities greater than 35.0 PSU.

      Cross-shelf sections of Climatological mean temperature (A) and salinity (B) in January across the continental shelf and slope south of New England along 71°00′ West. The black contour lines indicate isopycnals. Units are Degrees Centigrade for temperature, Practical Salinity Units for salinity, and kg/m3 for density.

      A common feature in recent years south of New England are Warm Core Rings abutting the continental shelf. These have substantially increased in numbers since 2000 (Gangopadhyay et al., 2019). The rings are anti-cyclonic with typical diameters of 50–100 km and lifetimes on the order of months. Water mass properties include temperatures near 18°C and salinities greater than 35.5 PSU for rings nearing the edge of the continental shelf.

      The SST images are based on the Advanced Very High Resolution Radiometer (AVHRR) unmasked data provided by the Mid-Atlantic Regional Association Coastal Ocean Observing System (Dr. Matthew Oliver, University of Delaware)1.

      Long-Term Ship of Opportunity Temperature Measurements Off New Jersey

      To trace the Marine Heatwave through the New Jersey shelf, we utilize the CMV Oleander datasets. The CMV Oleander is a container ship that traverses a round trip from New Jersey to Bermuda every week (Figure 1). Since 1977, expendable bathythermographs (XBTs) have been deployed from the Oleander creating a consistent and continuous record of temperature across the shelf and to the Gulf Stream. XBTs are deployed along the line approximately 14 times a year, generally once a month during January for the time period of analysis. Here we restrict the XBT data set to the shelf region, only using data collected between the 40 m isobath and the 80 m isobath, the latter corresponding with the climatological position of the foot of the shelfbreak front (Linder and Gawarkiewicz, 1998). For comparison with the New England shelf data we consider data from the months of January to March from 1977 to 2017 as our baseline to calculate Heatwave statistics. This baseline includes 24 cross-shelf transects of XBT data. Four transects were occupied during the period of the event, including January 14th, January 21st, February 18th, and March 18th in 2017. We also use thermosalinograph (TSG) data from January to March to track surface salinity and temperature changes through the New Jersey Bight. Data from the CMV Oleander have been previously used to describe the variability of the shelf and slope velocity structure (Flagg et al., 2006) as well as recent accelerated warming over the New Jersey shelf (Forsyth et al., 2015).

      The Ecosystem Monitoring Program in the Middle Atlantic Bight

      The Ecosystem Monitoring program (ECOMON) is a long term hydrographic and ecosystem monitoring program that has been in operation since 1992. Earlier efforts with joint hydrographic and plankton sampling in this region extend back to the 1970s. It is conducted under the auspices of the Oceans and Climate Branch of NOAA’s Northeast Fisheries Science Center in Woods Hole, MA. Typically two of the ECOMON cruises in a given year are conducted jointly with bottom trawl surveys and four of the surveys involve both hydrographic and plankton sampling.

      Cruises normally involve stratified sampling with CTD profiles at 120 randomly selected stations and 35 stations at fixed locations in the northeast. The geographical coverage extends from Cape Hatteras in the south through the Gulf of Maine and Georges Bank.

      In February 2017, an ECOMON cruise on the R/V Henry Bigelow collected 23 CTD profiles over the New Jersey continental shelf in water depths ranging from 13 to 196 m. The profiles were collected between February 12 and 16, 2017.

      The Processes Driving Exchange at Cape Hatteras (PEACH) Experiment

      In addition to the long-term observational programs described above, a National Science Foundation sponsored experiment, the Processes driving Exchange at Cape Hatteras (PEACH) experiment was initiated in April 2017 with hydrographic sampling and mooring deployments from the R/V Neil Armstrong. The cruise occurred from April 15 to 29. Two cross-shelf CTD transects were sampled along 35°45′ North on April 18 and 25, 2017. Sampling was conducted with a SeaBird 911 + CTD.

      A surface meteorological buoy with CTDs at 3 and 15 m depths was deployed at 35°46.7′ North and 75°05.7′ West on April 17; a small bottom frame with CTD and ADCP was deployed on the 30 m isobath directly adjacent to the surface buoy. The time series from this mooring, designated B1 for this experiment, extended for 18 months until November 2018. Data from B1 is used to examine the progression of the anomalous water mass to the Cape Hatteras region, where it is evident as a salinity anomaly but only a mild temperature anomaly (section “The Fate of the Marine Heatwave”).

      Methodology for Identifying Marine Heatwave Status for the Sub-Surface

      The methodology for identifying Marine Heatwaves, initially formulated by Hobday et al. (2016), is problematic for the analysis of sub-surface data. There is significantly less sub-surface data than surface temperature data, so that the resolution in both time and space is orders of magnitude less than satellite-sensed surface temperature values. Two key criteria for the prior method are the use of a 30s year record and the use of a climatology with daily resolution. For sub-surface data, 30 years records are limited and daily resolution would likely be obtainable only from mooring records and not from hydrography.

      We choose to present for our baseline the time period 1940 to 1996 because this is the time period for which there is January data south of New England in the WOD data archive (we note that there is no January data between 1997 and 2004, which was when the warming rate increased substantially). January is a particularly bad month in terms of the number of CTD profiles available in the WOD archive.

      Fortunately, for the New Jersey shelf, we have data through the present and can use the data from the CMV Oleander for the time period from the start of the record (1977) through the present which extends through the significant warming period as described in Forsyth et al. (2015).

      The WOD archive is used for calculating the percentile of the present observations compared to the statistics of the historical data. For calculating anomalies, we use the climatology compiled by N. Fleming (Fleming, 2016; Levin et al., 2018). This climatology calculates monthly averages for the entire Middle Atlantic Bight with a high resolution spatially enabling the detailed comparison for the locations of CTD profiles from 2017. There is a scale mis-match temporally, using monthly averages for the climatology, but this is the best climatological field at present.

      We discuss the duration locally in terms of the 5 days duration criterion from Hobday et al. (2016). However, given the very intermittent nature of the hydrographic sampling, it is difficult to precisely define the duration at a specific location. A key point is that this thermohaline anomaly event occurred over a large alongshelf spatial scale, so time scales are both for the local passage as well as the eventual transport offshore north of Cape Hatteras. We also use the criterion of a temperature value above the 90th percentile, consistent with the definition of Hobday et al. (2016).

      We explicitly compare the statistics of the 2017 event with the time period before 2004 because of the recent significant warming. As shown in Gawarkiewicz et al. (2018), shelfbreak exchange events with considerable onshore penetration across the continental shelf have occurred since 2014. We wish to understand the 2017 event within the context of a previous state of shelfbreak variability that has been described in the literature and covered by previous large field programs such as the Shelf Edge Exchange Processes program in the early 1980s south of New England. There have clearly been other unusual events in the past 5–10 years, but it is unclear if the sub-surface data have sufficient resolution to place recent individual events in a proper statistical context given the rapid rate of warming for the past decade. The availability of consistent data from the CMV Oleander allows us to use statistics up to the present for the New Jersey shelf as well as to the beginning of the enhanced warming in 2004.

      Shelfbreak Exchange–Initiation of the Marine Heatwave South of New England

      The Warm Core Ring intrusion that initiated this event was briefly described in Gawarkiewicz et al. (2018) and a review of the data presented there sets the stage for the current analysis. Glider data from the OOI Pioneer Array roughly along the 200 m isobath was used to show that Ring water with a temperature of 15°C was present on January 22–24, 2017. Sea Surface Temperature imagery showed the presence of a large Warm Core Ring abutting the continental shelf south of New England on January 25. The glider data from February 11–13 shows temperatures in the range of 9–13°C, and by March 13–16 the temperature in the top 100 m of the water column was approximately 7°C (see Figure 5 in that paper). Two Shelf Research Fleet CTD profiles were presented to further detail the unusual conditions on the continental shelf south of New England. The first profile, from January 29, had a surface temperature of 10°C and a bottom temperature of 13.5°C, while the profile from February 14 had a well-mixed water column with a temperature of 7°C. The surface salinity value from January 29 was 33.9 PSU and the bottom value was 35 PSU. By February 14 the salinity was well mixed with a value of 33.2 PSU. These data all appear in Figure 5 of Gawarkiewicz et al. (2018). Climatological values of temperature and salinity from Fleming (2016) for January south of New England are 5°C and 33 PSU, so that the anomalies are over 5°C at the surface and 8.5°C at the bottom on January 29. Salinity anomalies were 0.9 PSU at the surface and 2.0 PSU at the bottom. Neither the temporal nor the spatial extent of the anomalies were addressed, nor the statistical properties relative to previous measurements.

      Eleven profiles were collected by the Shelf Research Fleet in January 2017. The depth-averaged temperature from these 11 profiles relative to the historical distribution by latitude (north of 40°24′ North) appears in Figure 3A. Seven of the 11 profiles from January 2017 exceed 10°C. The 11 profiles were collected between January 1 and January 31. The profile collected at 41°03′ North is particularly striking with a value of 11.6°C while the historical range does not exceed 7.5°C.

      (A) Latitudinal distribution of historical depth averaged temperature (blue circles) and January 2017 (red circles) from the Shelf Research Fleet. Values from January 2017 for which the positions are uncertain are denoted by the blue diamonds. (B) A histogram of historical depth-averaged temperatures compared to depth averaged values from January 2017 (red circles). The dashed line indicates the 90th percentile for the temperature in January–March for the historical data.

      The January 2017 values relative to the distribution of historical depth-averaged temperature data (January-March) appear in Figure 3B. The histogram is segmented into 1°C bins centered at integer values, with the most common value being centered at 6°C. The seven warmest profiles, that exceed 10°C, are above the 98th percentile of the historical values. Two of the coldest values of the month appear on January 29 and 30 (6.1°C) indicative of colder shelf water starting to sweep into the Shelf Research Fleet sampling area in 2017.

      The distribution of depth-averaged salinity values for January 2017 versus the historical values appears in Figure 4A. Six of the 11 profiles show salinities exceeding 34.0 PSU, with one profile at 41°03′ North with a value of 34.1 PSU. Only two of the historical profiles show values exceeding 34 PSU in this latitude range.

      Same as in Figure 3 but with depth-averaged salinity.

      There are a cluster of profiles with salinities above 33.8 PSU that occur above the 97th percentile of the historical values (Figure 4B). For both the temperature and salinity values, the January 2017 profiles exceed the 90th percentile, and the duration extends through all of January. Thus, the event in January 2017 exceeds the criteria established for a Marine Heatwave as defined in Hobday et al. (2016). The statistical thresholds are also exceeded for salinity. The high salinities combined with the warm temperatures strongly suggest that the origin of the anomalies was a Warm Core Ring abutting the continental shelf, as suggested in Gawarkiewicz et al. (2018), with mixing processes reducing salinities to 34 PSU from typical ring values of 35.5 PSU. Temperatures in the intrusion moving across the continental shelf were 10–11°C, cooler than the 15°C temperatures recorded by the Pioneer Array glider on January 22–24. The cooling may have resulted from air-sea interaction or mixing with cooler shelf waters as Ring water moved onshore across the continental shelf.

      Two important sources of uncertainty exist relative to the criteria for choosing Marine Heatwave events presented in Hobday et al. (2016). The first is that we have chosen a non-standard time period for the historical archive instead of the 30 years reference period previously suggested. In the WOD archive January profiles prior to 2004 are available from 1940 to 1996 south of New England. The second limitation is the absence of position information for 5 of the 11 profiles collected by the Shelf Research Fleet. These were not recorded at the time of data collection. In order to include these points, we compared the depth of the collected profiles to the depth distribution of profiles collected in December 2016 and February 2017. We used the latitude of the December or February profile that was closest in depth. The points with uncertain positions are marked with blue diamonds in Figures 3A, 4A. This does introduce uncertainty in the exact latitude for the profiles. However, given the difficulty of collecting data in the middle of winter while active fishing activities are underway and rare nature of this event relative to historical data we feel that it is important to include the 5 profiles even with the uncertainty in position.

      In order to establish the spatial structure of the warm anomalies as well as establish the temporal evolution of the anomalously warm shelf water in winter (>10°C), a sequence of Sea Surface Temperature images ranging from November 11, 2016 to February 18, 2017 appears in Figure 5. In mid-November 2016, an extremely large Warm Core Ring with surface temperatures of 20°C abutted the shelfbreak from approximately 66°–68° West. Surface water warmer than 10°C extended from Nantucket Shoals to Delaware in the images at least from December 25, 2016 to January 1 2017 across virtually the entire continental shelf (two upper right panels in Figure 5). Cooler water appears near the coast by January 25, and colder shelf water advects into the entire Shelf Research Fleet operational area by February 18, 2017. Because of long periods of cloud cover during the winter, these six images offer the best view of the spatial structure of the Sea Surface Temperature, but do not appear frequently enough to provide a detailed evolution of the spatial structure of the intrusion and surface temperature anomalies.

      A sequence of Sea Surface Temperature images of the Middle Atlantic Bight from November 14, 2016 through February 18, 2017. The dates are given in the upper left portion of each panel. The 50 and 200 m isobaths are also plotted.

      The Marine Heatwave Over the New Jersey Continental Shelf

      The normal continental shelf circulation in the Middle Atlantic Bight continues to the southwest from south of New England to the Cape Hatteras region, where the shelf water deflects offshore under the influence of the Gulf Stream (e.g., Gawarkiewicz et al., 2008). As seen in the Sea Surface Temperature imagery, the warm water observed in January 2017 extended a substantial alongshelf distance to the southwest. Two sources of data can be used to examine the sub-surface thermohaline properties of this feature, the temperature data from the CMV Oleander XBT line and the temperature and salinity data from ECOMON surveys. We will use the CMV Oleander XBT data to examine the temperature fields to see if the anomalies reach the threshold of declaring a Marine Heatwave using data collected from the CMV Oleander from 1977 to 2017. We then use near surface data from the thermo-salinograph to further characterize the timing and cross-shelf extent of the anomalies.

      The depth-averaged temperatures observed by CMV Oleander during January 2017 appear as filled red circles in Figure 6. These are superimposed on a histogram of temperature values from prior Oleander transects occupied between 1977 to 2017. Only temperature profiles from positions between the 40 and 80 m isobaths over the continental shelf are considered in order to minimize variability from the Shelfbreak Front and influence by the coastal current from the Hudson River. The dashed line in Figure 6 indicates the 90th percentile for temperature for the historical depth-averaged data from January. Half of the XBT profiles in January 2017 exceed the criterion for designation as a Marine Heatwave.

      Depth-averaged temperature from New Jersey from January 2017 relative to the distribution of historical depth averaged values from 1977 to 2017. Four of the eleven profiles qualify as a Marine Heatwave over the outer portion of the continental shelf. Two of the profiles have nearly identical temperatures. The area covered is between the 40 and 80 m isobaths, thus shoreward of the climatological position of the foot of the Shelfbreak Front. The dashed line indicates the 90th percentile for the historical temperature data.

      The thermo-salinograph data confirms maximum cross-shelf penetration of warm saline water in late January (Figure 7). The temperature exceeded 10°C and 34.0 PSU as far west as 73°15′ West on January 21, more than 50 km west of the shelfbreak (marked by the vertical dotted line in the figure). The Oleander data show that the Shelfbreak Front extended approximately halfway across the continental shelf in late January. The ECOMON data from February 2017 confirms this onshore displacement of the Shelfbreak Front and allows estimation of the duration of the Heatwave.

      Time series of (A) cross-shelf salinity and (B) temperature (lower panel) from the CMV Oleander thermo-salinograph from mid-January 2017 through late March 2017. The dotted line on the left is near the Ambrose Light off New Jersey at the 30 m isobath and the shelfbreak is at the dotted line on the right. The crosses indicate the most shoreward position of the 34.0 isohaline and 10°C isotherm. The units are Practical Salinity Units for salinity and Degrees Centigrade for temperature.

      A map of the depth-averaged temperature from the ECOMON cruise in February 2017 appears in Figure 8A. The profiles with temperatures that exceed 10°C are generally seaward of the 80 m isobath, in contrast to both the Oleander data in January 2017 as well as observations from the shelf south of New England where 10°C water occurred well shoreward of the shelfbreak. Between the 40 and 80 m isobaths the temperature was generally in the range of 8–10°C (8 of 12 profiles) with the remaining values between 7 and 8°C.

      (A) Depth averaged temperature from an ECOMON cruise of the R/V Bigelow in February 2017. Note the warm temperatures (8–9°C) extending to the 40 m isobath. (B) Temperature anomalies relative to the MOCHA climatology for January. (C) Depth-averaged salinity. Note that the 34.0 isohaline extends to the 40 m isobath, it is typically seaward of the 80 m isobath. (D) Salinity anomalies relative to the MOCHA climatology for January. The dark rings indicate stations in which either temperature is higher than 10°C or salinity is greater than 34.0 PSU.

      The spatial pattern of the temperature anomalies in February 2017 relative to the climatology of Fleming (2016) appears in Figure 8B. The largest anomalies are located from mid-shelf to the coast, and range in value from 1.5 to 2.0°C.

      The depth-averaged salinity distributions from the ECOMON cruise in February 2017 suggest that the Shelfbreak Front migrated well shoreward of its mean position. Typically, the foot of the front (bottom outcrop) is located at the 80 m isobath over the New Jersey shelf (Linder and Gawarkiewicz, 1998), but observations in 2017 show salinities exceeding 34.0 PSU as far inshore as the 40 m isobath with values over 34.5 PSU reaching the 60 m isobath. Lentz et al. (2003) have defined shelf water in the Middle Atlantic Bight as less than 34.0 PSU, with frontal water in the range of 34.0–35.0 PSU. By this definition the Shelfbreak Front did indeed translate onshore to the 40 m isobath, as shown in the map in Figure 8C. It is important to note that the foot of the front is likely further shoreward of the depth-averaged salinity value of 34.0 PSU for individual profiles.

      The spatial pattern of the salinity anomalies appears in Figure 8D. The largest salinity anomalies, approaching 1 PSU, are adjacent to the coast extending offshore to the 50 m isobath. This is consistent with the pattern of the temperature anomalies. Combined, the patterns suggest that the thermohaline anomalies that originated up in New England are most unusual at their greatest cross-shelf extent, i.e., closer to the coast.

      The ECOMON cruise on the R/V Henry Bigelow sampled the New Jersey continental shelf from February 12 to 16 and thus does not quite reach the 5 days duration used in the Hobday et al. (2016) criteria. The difficulty of collecting data during January and February in this region can be extreme as this particular cruise was cut short due to stormy conditions. However, combined with the near-surface thermo-salinograph data from the CMV Oleander, the duration of the unusual conditions over the New Jersey shelf can be estimated. The time frame is roughly a month between the first CMV Oleander line in 2017 and the end of the ECOMON survey (January 14 to February 16).

      The Fate of the Marine Heatwave

      The mean flow over the continental shelf in the Middle Atlantic Bight progresses southward to the vicinity of Cape Hatteras where the flow is exported near the Gulf Stream (Savidge and Bane, 2001; Gawarkiewicz and Linder, 2006; Gawarkiewicz et al., 2008). Fortunately, during 2017 a field program, the Processes driving Exchange at Cape Hatteras (PEACH), began on April 12–29 with a mooring deployment and hydrographic sampling cruise on the R/V Neil Armstrong.

      The CTDs present near the surface (2 m depth) and bottom at the B1 mooring in the PEACH array (see Figure 1 for location) indicate the arrival of a surge of near bottom Cold Pool water (Houghton et al., 1982) on April 23 2017 (Figure 9). During the initial deployment on April 18 there was a near bottom water mass present with a temperature of 14°C and salinity of 35.0 PSU, indicative of the presence of Slope water over the continental shelf. However, a strong southward flow appeared on April 23 with a velocity of over 0.4 m/s carrying near bottom temperature of 9.8°C and a salinity of 34.0 PSU. Relative to the climatology of Fleming (2016), the anomaly was approximately 1°C and 1 PSU along 35°45′ North.

      Time series of temperature (upper panel) and salinity (middle panel) and depth-averaged velocity (bottom panel) from the B1 mooring in the PEACH array. Note the rapid drop in temperature and salinity near April 23, 2017, potentially indicative of the remnants of the Marine Heatwave reaching the continental shelf just north of Cape Hatteras.

      While the evolution of temperature and salinity near Cape Hatteras (Figure 9) cannot conclusively establish that this is the same water mass initially transported onto the continental shelf in early January south of New England, a crude estimate of the advection rate offers a hint as to how plausible this scenario is. If we assume that the initial onshore transport of Warm Core Ring water occurred near 40°00′ North and 70°00′ West on January 1 2017, the estimated along-isobath distance to the PEACH array is approximately 850 km. The anomalous watermass was observed at the B1 mooring approximately 113 days after the Warm Core Ring intrusion on the New England Shelf, giving an estimated advection rate of 8.7 cm/s. This is in reasonable agreement with estimated flow rates of 5–10 cm/s over the outer continental shelf (e.g., Lentz, 2008). Thus we find it plausible for the pulse recorded at the B1 mooring of the PEACH array on April 23 to be a remnant of the upstream Marine Heatwave as it passed through the Middle Atlantic Bight. Because of the extreme variability of the water mass properties over the continental shelf in the vicinity of Cape Hatteras, it is unlikely that the anomalies recorded in the hydrographic cross-shelf transect on April 25 (1°C and 1 PSU) exceeded the 90th percentile for temperature or salinity. Nevertheless, the similarity of the T/S properties (Figure 10) to those recorded south of New England and over the New Jersey shelf suggests that the ultimate fate of the water mass carried in the Marine Heatwave was to exit the shelf near Cape Hatteras. This is consistent with Lagrangian properties of the flow field near Cape Hatteras (e.g., Gawarkiewicz and Linder, 2006). While the temperature recorded in the hydrographic section and the B1 mooring does not meet the definition of a Marine Heatwave by Hobday et al. (2016), it is suggestive that the Warm Core Ring intrusion that initiated south of New England was carried the length of the Middle Atlantic Bight, influencing the continental shelf in this region over a 4 months period and an along-shelf span of 850 km. A schematic of the Ring Intrusion with the timing and temperature range at various locations is shown in Figure 11.

      T/S diagram from three profiles from New England in January (red circles) and three profiles north of Cape Hatteras (blue crosses) in April 2017. Note that the New England water mass properties fall in the middle of the three outermost profiles inside the shelfbreak from the cross-shelf transect of the R/V Neil Armstrong on April 25, 2017. Isopycnals are plotted in 0.2 kg/m3 increments, with a value of 1025.6 km/m3 in the upper left corner and 1027.0 km/m3 in the lower right corner.

      A schematic diagram of the Marine Heatwave from January–April 2017 extending through the entire Middle Atlantic Bight. The date of passage is indicated along with the temperature values as it advects through the region. The dotted arrow near Cape Hatteras indicates that the feature was no longer a Marine Heatwave but retained a distinct salinity anomaly with salinity greater than 34.0 PSU.

      We suggest that the continental shelf south of Nantucket Shoals has in recent years become a hotspot for shelfbreak exchange, with Warm Core Ring water masses preferentially carried onshore in this region. Recent evidence has shown that the upper continental slope has become considerably more saline, from a 2.5 year record of glider transects from the OOI Pioneer Array (Gawarkiewicz et al., 2018). This is consistent with evidence from Sea Surface Height Anomalies that large amplitude meanders of the Gulf Stream have been more frequent and occur further to the west than in previous decades (Gawarkiewicz et al., 2012; Andres, 2016). There has been a recent regime shift occurring in the year 2000 with a substantial increase in the number of Warm Core Rings forming each year (33 per year from 2000 to 2017 and 18 per year from 1980 to 1999; Gangopadhyay et al., 2019). We hypothesize that the continental shelf south of Nantucket Shoals traps Warm Core Rings. Because of the proximity of Nantucket Shoals, ring water masses that travel onshore here would flow along isobaths that curve well to the north toward Block Island, Rhode Island. Further investigation is warranted to see if other Marine Heatwaves that have occurred in recent years originate south of Nantucket Shoals to establish whether this area is indeed a new hot spot for shelfbreak exchange. We note that this area was not an area of enhanced onshore flow in the late 1990s, based on drifters released in the Gulf of Maine (Limeburner et al., 2000; Lozier and Gawarkiewicz, 2001). It is possible that the greater amplitude of Gulf Stream meanders combined with the more frequent appearance of Warm Core Rings may have resulted in the formation of a new hot spot for enhanced shelfbreak exchange.

      Discussion Implications for the Marine Ecosystem

      The Marine Heatwave in January 2017 was an unprecedented event that had significant impacts on the marine ecosystem, including unusual occurrences of warm water fish in Rhode Island coastal waters, as reported by commercial fishers.

      According to the NOAA National Marine Fisheries Service ECOMON survey, the annual average sea surface temperature in 2017 was above 13°C, among the highest in the times series that stretches back to 1854. Conversely, the average chlorophyll a concentrations over the northeastern continental shelf in 2017 were the lowest since 1998 (approximately 1.06 mg/m3). In general, Chlorophyll a over the northeastern continental shelf has been in decline since 2011, when the annual average value was approximately 1.49 mg/m3 (National Marine Fisheries Service [NOAA], 2018). While other factors, including mixing dynamics, impact chlorophyll production, the Marine Heatwave likely contributed to the low productivity on the northeastern continental shelf in 2017.

      Another possible effect of the Marine Heatwave is the enhanced mortality of Humpback Whales. The National Marine Fisheries Service declared an unusual mortality event for Humpback Whales in 2017. Thirty-four strandings of Humpback whales were reported in 2017, with the majority occurring in the Middle Atlantic Bight. The strandings are broken down by state at https://www.fisheries.noaa.gov/national/marine-life-distress/2016-2019-humpback-whale-unusual-mortality-event-along-atlantic-coast.

      We suggest that the onshore shift of the Shelfbreak Front in January/February south of New England and off New Jersey may have resulted in an onshore displacement of the Humpback Whales relative to their normal cross-shelf position. The Shelfbreak Front is known to have persistent upwelling (e.g., Linder et al., 2004; Zhang et al., 2013). It is quite possible that Humpback Whales may have tracked the frontal zone with associated upwelling cell and thus moved into areas with both higher concentrations of fishing gear as well as greater shipping activity. NOAA reported that over 50% of humpback strandings had evidence of human activity in terms of either entanglement or ship strike. Further investigation is needed into the exact timing of the Humpback Whale mortality events relative to the passage of the Marine Heatwave in 2017.

      Future Research Directions

      There is a clear need to examine the dynamics of this Marine Heatwave using numerical hindcasts. The exact mechanisms and processes by which Warm Core Ring water is transported across the shelfbreak and eventually to the 30–40 m isobaths must be explored in detail to determine the triggering mechanism. Both vertical mixing processes as well as altered air-sea fluxes are likely to modify Warm Core Ring water as it passes onto the continental shelf. One possible mechanism for initiation of this event is the reversal of density gradients at the shelfbreak. We note that Zhang and Gawarkiewicz (2015) have previously shown that ring water may be less dense than shelf water during spring (April/May 2014) and this may even be more pronounced in winter. Further investigation is necessary to establish how density gradients across the shelfbreak may be varying in the presence of more frequent Warm Core Ring encounters with the outer continental shelf. The OOI Pioneer Array should be useful in providing systematic (seasonal and inter-annual) reversals of density gradients that might generate large temperature and salinity anomalies over the continental shelf.

      Future research should also be directed to establish whether the shelfbreak south of Nantucket Shoals has become a recent Hot Spot for the onshore transport of Warm Core Ring water masses. The presence of the Great South Channel likely complicates the interaction of Warm Core Ring induced flows over the continental shelf due to bathymetric steering and the establishment of local along and cross-isobath pressure gradients. Further analysis of both sea surface temperature imagery and OOI Pioneer Array glider data is clearly warranted.

      Conclusion

      A suite of observations is used to establish the occurrence of a Marine Heatwave south of New England in January 2017 and over the New Jersey continental shelf in late January and February 2017. The warm anomalies reached 6°C relative to a long-term climatology and salinity anomalies as large as 1 PSU could be tracked downstream to the continental shelf north of Cape Hatteras in late April.

      The Marine Heatwave and associated salinity anomalies traversed the entire Middle Atlantic Bight, moving from the shelf south of Nantucket Shoals to a region just north of Cape Hatteras over a period of 4 months. Much more research is needed to investigate the dynamics of these ring intrusions and their frequency of occurrence as well as their possible effects on shelf and slope ecosystems.

      Data Availability Statement

      The datasets generated for this study are available on request to the corresponding author.

      Author Contributions

      GG identified Heatwave event initially organized analysis, wrote first draft, directed figures and made some figures, identified possible link to Unusual Mortality Event for Humpback whales, oversaw edits, compiled references. KC analyzed SST data, discussed historical databases and obtained WOD data and analyzed this data, discussed interpretation and overall structure of manuscript at every stage, placed event into larger context of Heatwave literature. JF analyzed Oleander data from New Jersey, made figures, and wrote section. FB processed Shelf Fleet data, made preliminary figures, discussed choices of data presentation, extensively discussed comparisons between Shelf Fleet data and historical observations. AM and AE oversaw collection of Shelf Fleet data, added material on ecosystem impacts, and edited first draft of manuscript. PF provided ECOMON data and assisted in analysis and improvement of figures, provided important feedback and comments on first draft of manuscript. HS, SH, and LH deployed B1 mooring, made figures, commented on first draft, important edits, and feedback on first draft.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. GG was supported by the van Beuren Charitable Foundation, the National Science Foundation under grants OCE-1657853 and OCE-1558521 as well as a Senior Scientist Chair from the Woods Hole Oceanographic Institution. KC was supported by the National Science Foundation under grants OCE-1558960 and OCE-1634094. JF was supported by the National Science Foundation OCE-1634094. AM and AE were supported by the van Beuren Charitable Foundation. HS, SH, and LH were supported by the National Science Foundation OCE-1558920.

      References Andres M. (2016). On the recent destabilization of the gulf stream path downstream of cape hatteras. Geophys. Res. Lett. 43 836839. 10.1002/2016GL069966 Chen K. Gawarkiewicz G. G. Lentz S. J. Bane J. M. (2014). Diagnosing the warming of the northeastern US coastal ocean in 2012: a linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. 119 218227. 10.1002/2013JC009393 Flagg C. Dunn M. Wang D.-P. Rossby H. Benway R. L. (2006). A study of the currents of the outer shelf and upper slope from a decade of shipboard ADCP observations in the middle atlantic bight. J. Geophys. Res. Oceans 111:C06003. Fleming N. (2016). Seasonal and Spatial Variability in Temperature, Salinity, and Circulation of the Middle Atlantic Bight. Ph.D. thesis, Rutgers University, Camden, NJ. Forsyth J. S. T. Andres M. Gawarkiewicz G. G. (2015). Recent accelerated warming of the continental shelf off New Jersey: observations from the CMV Oleander expendable bathythermograph line. J. Geophys. Res. Oceans 120 370372. 10.1002/2014JC010516 Frohlicher T. Fischer E. Gruber N. (2018). Marine heatwaves under global warming. Nature 560 360366. 10.1038/s41586-018-0383-9 30111788 Gangopadhyay A. Gawarkiewicz G. Etige E. N. Monim M. Clarke J. (2019). An observed regime shift in the formation of warm core rings from the gulf stream. Sci. Rep. 9:12319. 10.1038/s41598-019-48661-9 31444372 Gawarkiewicz G. Bahr F. Linder C. Marquette C. (2008). Shelfbreak frontal structure and processes north of cape hatteras in winter. J. Mar. Res. 66 775799. 10.1357/002224008788064595 Gawarkiewicz G. Linder C. (2006). Lagrangian flow patterns north of Cape Hatteras using near-surface drifters. Prog. Oceanogr. 70 181195. 10.1016/j.pocean.2006.03.020 Gawarkiewicz G. Malek Mercer A. (2019). Partnering with fishing fleets to monitor ocean conditions. Ann. Rev. Mar. Sci. 11 391411. 10.1146/annurev-marine-010318-095201 29924690 Gawarkiewicz G. Plueddemann A. J. (2019). Scientific rationale and conceptual design of a process-oriented shelfbreak observatory: the OOI Pioneer Array. J. Operat. Oceanogra. 118. 10.1080/1755876X.2019.1679609 Gawarkiewicz G. Todd R. Plueddemann A. Andres M. (2012). Direct interaction between the gulf stream and the shelf break south of new England. Sci. Rep. 2:553. 10.1038/srep00553 22870382 Gawarkiewicz G. Todd R. E. Zhang W. Partida J. A. Gangopadhyay M.-U.-H. Monim P. (2018). The changing nature of shelfbreak exchange revealed by the OOI pioneer array. Oceanography 31 6070. 10.5670/oceanog.2018.110 Hobday A. J. Lisa V. A. Sarah E. P. Dan A. S. Sandra C. S. Eric C. J. O. (2016). A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141 227238. 10.1016/j.pocean.2015.12.014 Holbrook N. J. Scannell H. A. Sen Gupta A. Benthuysen J. A. Feng M. Oliver E. C. J. (2019). A global assessment of marine heatwaves and their drivers. Nat. Commun. 10:2624. 10.1038/s41467-019-10206-z 31201309 Houghton R. W. Schlitz R. Beardsley R. C. Butman B. Lockwood Chamberlin J. (1982). The middle atlantic bight cold pool: evolution of the temperature structure during summer 1979. J. Phys. Oceanogr. 12:19. Lentz S. (2008). Observations and a model of the mean circulation over the middle atlantic bight continental shelf. J. Phys. Oceanogr. 38 12031221. 10.1175/2007jpo3768.1 Lentz S. Shearman K. Anderson S. Plueddemann A. Edson J. (2003). Evolution of stratification over the new england shelf during the coastal mixing and optics study. J. Geophys. Res. 108:3008. 10.1029/2001JC001121 Levin J. Wilkin J. Fleming N. Zavala-Garay J. (2018). Mean circulation of the Mid-atlantic bight from a climatological data assimilative model. Ocean Model. 128 114. 10.1016/j.ocemod.2018.05.003 Limeburner R. Beardsley R. Brink K. (2000). GLOBEC Drifter Data Report. Falmouth, MA: Woods Hole Oceanographic Institution. Linder C. A. Gawarkiewicz G. (1998). A climatology of the shelfbreak front in the middle atlantic bight. J. Geophys. Res. 103 405418. 10.1029/98JC01438 Linder C. A. Gawarkiewicz G. G. Pickart R. S. (2004). Seasonal characteristics of bottom boundary layer detachment at the shelfbreak front in the middle atlantic bight. J. Geophys. Res. 109:C03049. 10.1029/2003JC002032 Lozier M. S. Gawarkiewicz G. (2001). Cross-frontal exchange in the middle atlantic bight as evidenced by surface drifters. J. Phys. Oceanogr. 31 24982510. 10.1175/1520-0485(2001)031<2498:cfeitm>2.0.co;2 Mills K. Pershing A. Brown C. Chen Y. Chiang F.-S. Holland D. (2013). Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26 191195. 10.5670/oceanog.2013.27 National Marine Fisheries Service [NOAA] (2018). Ecosystem Monitoring Cruise Results. Silver Spring, MD.: NOAA. Oliver E. C. J. Donat M. G. Burrows M. T. Moore P. J. Smale D. A. Alexander L. V. (2018). Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9:1324. 10.1038/s41467-018-03732-9 29636482 Savidge D. Bane J. (2001). Wind and gulf stream influences on along-shelf transport and off-shelf export at cape hatteras, North Carolina. J. Geophys. Res. Oceans 106 1150511527. 10.1029/2000jc000574 Scannell H. A. Pershing A. Alexander M. Thomas A. Mills K. (2016). Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43 20692076. 10.1002/2015gl067308 Zhang W. Gawarkiewicz G. (2015). Dynamics of the direct intrusion of gulf stream ring water onto the mid-atlantic bight shelf. Geophys. Res. Lett. 42 687687. 10.1002/2015GL065530 Zhang W. McGillicuddy D. Gawarkiewicz G. (2013). Is biological productivity enhanced at the new england shelfbreak front? J. Geophys. Res. Oceans 118 517535. 10.1002/jgrc.20068

      http://tds.maracoos.org/thredds/dodsC/AVHRR/

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.lysc0311.org.cn
      game339.com.cn
      www.mkchain.com.cn
      mjsnud.com.cn
      www.szbgjjdz.com.cn
      slchain.com.cn
      www.njchain.com.cn
      www.sptqyh.com.cn
      sybn100.com.cn
      www.ubdex.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p