Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2018.00238 Marine Science Review Impacts of Marine Plastic Pollution From Continental Coasts to Subtropical Gyres—Fish, Seabirds, and Other Vertebrates in the SE Pacific Thiel Martin 1 2 3 * Luna-Jorquera Guillermo 1 2 3 Álvarez-Varas Rocío 2 4 Gallardo Camila 1 2 Hinojosa Iván A. 1 2 5 Luna Nicolás 1 2 Miranda-Urbina Diego 6 Morales Naiti 1 2 Ory Nicolas 1 2 7 Pacheco Aldo S. 8 Portflitt-Toro Matías 1 2 Zavalaga Carlos 9 1Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile 2Millennium Nucleus Ecology and Sustainable Management of Oceanic Island, Coquimbo, Chile 3Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile 4Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile 5Facultad de Ciencias, Departamento de Ecología, Universidad Católica de la Santísima Concepción, Concepción, Chile 6Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile 7GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 8Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile 9Universidad Científica del Sur, Lima, Peru

Edited by: Francois Galgani, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), France

Reviewed by: André Ricardo Araújo Lima, Universidade Federal de Pernambuco, Brazil; Hans Uwe Dahms, Kaohsiung Medical University, Taiwan

*Correspondence: Martin Thiel thiel@ucn.cl

This article was submitted to Marine Pollution, a section of the journal Frontiers in Marine Science

24 07 2018 2018 5 238 01 02 2018 20 06 2018 Copyright © 2018 Thiel, Luna-Jorquera, Álvarez-Varas, Gallardo, Hinojosa, Luna, Miranda-Urbina, Morales, Ory, Pacheco, Portflitt-Toro and Zavalaga. 2018 Thiel, Luna-Jorquera, Álvarez-Varas, Gallardo, Hinojosa, Luna, Miranda-Urbina, Morales, Ory, Pacheco, Portflitt-Toro and Zavalaga

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Anthropogenic Marine Debris (AMD) in the SE Pacific has primarily local origins from land-based sources, including cities (coastal and inland), beach-goers, aquaculture, and fisheries. The low frequency of AMD colonized by oceanic biota (bryozoans, lepadid barnacles) suggests that most litter items from coastal waters of the Humboldt Current System (HCS) are pulled offshore into the South Pacific Subtropical Gyre (SPSG). The highest densities of floating micro- and macroplastics are reported from the SPSG. An extensive survey of photographic records, unpublished data, conference proceedings, and published studies revealed interactions with plastics for 97 species in the SE Pacific, including 20 species of fish, 5 sea turtles, 53 seabirds, and 19 marine mammals. Sea turtles are most affected by interactions with plastics, underlined by the fact that 4 of the 5 species suffer both from entanglement and ingestion. Reports gathered in this review suggest that interactions along the continental coast are mostly via entanglement. High frequencies of microplastic ingestion have been reported from planktivorous fish and seabirds inhabiting the oceanic waters and islands exposed to high densities of microplastics concentrated by oceanic currents in the SPSG. Our review also suggests that some species from the highly productive HCS face the risk of negative interactions with AMD, because food and plastic litter are concentrated in coastal front systems. In order to improve the conservation of marine vertebrates, especially of sea turtles, urgent measures of plastic reduction are needed.

anthropogenic marine debris impacts biota-litter interactions entanglement microplastic ingestion

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Marine plastic pollution is generating impacts on marine biota and ecosystems at many different levels (Ryan, 2016). Impacts are reported from a wide range of organisms, including microbiota, invertebrates, and vertebrates (Galloway et al., 2017; Law, 2017). An increasing number of reports document microplastic ingestion by marine invertebrates (Lusher, 2015); certain species also grow on large, floating plastic items, and can be transported to new habitats they had not previously inhabited (Kiessling et al., 2015). Interactions with vertebrates are best known, because vertebrates are larger and therefore more visible and recognizable than small marine invertebrates. Entanglement of seabirds and marine mammals in large plastic litter (nets, ropes, etc.) has been known since the early 1970s (Derraik, 2002). Similarly, ingestion of microplastics by fishes and seabirds is well known since about the same time period (Kenyon and Kridler, 1969; Carpenter et al., 1972; Ryan, 1987), and the number of affected species, such as seabirds (Wilcox et al., 2015), is continuously increasing.

      The risk of interactions between marine organisms and plastics is not equal across the oceans. It depends on feeding biology and amount of plastic litter in the environment where the organisms are foraging. For example, seabird species feeding at the sea surface are more susceptible to plastic ingestion than diving species (Ryan, 1987). Species that ingest small microplastics, such as many fishes and surface-foraging seabirds might be at highest risk in areas where microplastics concentrate, such as the subtropical gyres, whereas species ingesting larger plastic items could potentially encounter these closer to the continental coasts where rivers and other human activities spill and accumulate large quantities of plastic litter (Rech et al., 2014, 2015; Di-Méglio and Campana, 2017; Fossi et al., 2017). Indeed, many reports of meso- and macroplastics ingestion include sea turtles and whales stranded on continental shores (Schuyler et al., 2014; Lusher et al., 2018). Similarly, the risk of entanglement for marine vertebrates is likely to be higher in areas with large amounts of derelict fishing gear, such as the North Pacific subtropical convergence zone (Pichel et al., 2007) or coastal areas where ghost nets accumulate (Wilcox et al., 2013).

      These considerations suggest that the risk of harmful interactions with marine plastic pollution depends on (a) the biology of the species, and (b) the distribution and abundance of the different plastic types. To examine these predictions, herein we gather reports of interactions with plastic litter for marine vertebrates in the SE Pacific. We compare reports from the highly productive Humboldt Current System (HCS) with those from the oligotrophic open ocean, in particular the Easter Island ecoregion close to the South Pacific Subtropical Gyre (SPSG) accumulation zone (for methodological details see Supplement 1).

      Plastic litter in the South-East Pacific Litter sources and pathways in the South-East Pacific

      In the South Pacific Ocean, anthropogenic marine debris (AMD) originates from the surrounding landmasses and oceanic sources (Thiel et al., 2003, 2013; Kiessling et al., 2017). Especially in the eastern part of the S Pacific, litter pollution comes from land sources (e.g., Hidalgo-Ruz et al., 2018), beach-goers (Bravo et al., 2009), and marine activities including aquaculture (Astudillo et al., 2009; Hinojosa and Thiel, 2009), coastal (Perez-Venegas et al., 2017) and high seas fisheries (Kiessling et al., 2017). Rivers also contribute large amounts of macro- and microplastics (Rech et al., 2014, 2015).

      The majority of the litter from land sources is probably trapped in coastal waters or on shores very close to its sources (Hinojosa and Thiel, 2009; Thiel et al., 2011; Rech et al., 2014). The low incidence of marine organisms growing on marine litter stranding on the continental coasts of the SE Pacific suggests that this fouling-free litter has likely passed very little time (if at all) at sea. On the other hand, strong offshore currents within the HCS are thought to move floating plastics quickly to the open ocean, where they become trapped in the SPSG (Martinez et al., 2009).

      Floating macro- and microplastics in the SE Pacific

      Given the multiple sources and transport dynamics of floating AMD in the SE Pacific, the density of macroplastics is high in immediate coastal waters, but rapidly decreases further away from the continental coast (Thiel et al., 2003; Miranda-Urbina et al., 2015). When approaching the center of the SPSG, densities of floating AMD reach very high abundances, as also reflected in recent data taken in two surveys conducted in 2015 and 2016 (Figure 1). A total of 477 items of floating AMD were observed across both surveys, the majority corresponding to 2015 when a major area including the Easter Island ecoregion was surveyed (Figure 1). Of the total floating AMD, 77% were macroplastics, most of which were large plastic fragments (95.4%). Other items included lines (17.7%), buoys (7.6%), plastic trays (4.9%), and plastic bags and nets (2.5 and 2.2%, respectively) (Figure 1). Accounting for the total number of AMD in both years, it seems that the distribution of floating AMD is comparable to patterns previously determined for the SE Pacific (see Miranda-Urbina et al., 2015). Out of the total (477 items), 8% were found in the HCS, only 3% occurred around Juan Fernandez and Desventuradas Islands, while 78 and 11% of all floating AMD were concentrated in the Oceanic and Polynesian sector, respectively. Large numbers of marine litter accumulate on beaches of Rapa Nui (Easter Island) and the uninhabited island Salas and Gómez in the Polynesian sector (Kiessling et al., 2017). Furthermore, marine litter on Salas and Gómez imposes a severe risk of entanglement for several seabird species breeding on the island (Miranda-Urbina et al., 2015).

      Types and density of marine debris in different sectors of the central SE Pacific, in 2015 (CIMAR 21) and 2016 (CIMAR 22). Open circles at the top indicate the proportions of different plastic types; numbers inside the circles represent the total of items observed in each sector. Dots show the density of marine debris from visual ship surveys (for details see Miranda-Urbina et al., 2015). Thin lines show the Exclusive Economic Zone.

      The distribution of floating microplastics in the SE Pacific shows the typical distribution documented for other ocean basins (Eriksen et al., 2014; Law, 2017), with highest concentrations in the subtropical gyre (Eriksen et al., 2013, 2018). Microplastic densities in the HCS generally remain far below the densities reported from the gyre (Figure 2; NO, unpublished data). This distribution pattern is also well reflected in concentrations of small plastics from sandy beaches in the SE Pacific, where beaches along the HCS feature moderate densities, while sandy beaches on Rapa Nui have very high densities (Hidalgo-Ruz and Thiel, 2013). This pattern, with the abundances of microplastics increasing with distance from the continental coast (Figure 2), is also suggestive of progressive fragmentation of large plastics during their journey toward the SPSG.

      Density of microplastics (0.3–5 mm) in the central SE Pacific, in 2015 (CIMAR 21) and 2016 (CIMAR 22). Data from Eriksen et al. (2013, 2018) and MT, unpublished data. Thin lines show the Exclusive Economic Zone.

      Interactions of marine vertebrates from the SE Pacific with plastic litter

      A large number of marine vertebrate species from the SE Pacific were documented to have interacted with marine litter, including fishes, seabirds, sea turtles, and marine mammals (Thiel et al., 2011; Miranda-Urbina et al., 2015; Ory et al., 2017). In revising and compiling information from diverse sources we found that marine litter affects at least 97 different species (see Table 1 and text below for details). These reports comprise those of entanglement (including incorporation of plastics in seabird nests) and the ingestion of plastics.

      Reports on entanglement with macroplastics or plastic ingestion by marine vertebrates from open ocean (OO) and continental coastal (CC) (<5 nm from the land) waters of the southeast Pacific, based on literature, or anecdotal reports.

      Species Diet Environment Effect Source
      Ent Ing
      FISHES
      Acanthurus leucopareius H OO + Video by Nicolas Luna
      Aplodactylus punctatus H CC + Nicolas Ory, unpubl. data
      Auchenionchus microcirrhis C CC + Mizraji et al., 2017
      Brama australis P CC + Nicolas Ory, unpubl. data
      Carcharhinus galapagensis C OO + Video by Naiti Morales
      Cetengraulis mysticetus P CC + Ory et al., 2018
      Cheilodactylus variegatus C CC 0 Nicolas Ory, unpubl. data
      Cheilopogon rapanouiensis P OO + Chagnon et al., unpubl. data
      Decapterus muroadsi P OO +++ Ory et al., 2017
      Engraulis ringens P CC + Ory et al., 2018
      Girella laevifrons O CC + Mizraji et al., 2017
      Graus nigra C CC + Mizraji et al., 2017
      Helcogramoides chilensis C CC + Mizraji et al., 2017
      Kyphosus sandwicensis H OO + Photo by Tim Kiessling
      Kyphosus sandwicensis H OO ++ José Abalos, unpubl. data
      Odontesthes regia P CC + Ory et al., 2018
      Opisthonema libertate P CC + Ory et al., 2018
      Pinguipes chilensis C CC 0 Nicolas Ory, unpubl. data
      Prionace glauca C OO + Photo by Carlos Canales-Cerro
      Sardinops sagax P CC 0 Ory et al., 2018
      Scarthychthys viridis H CC + Mizraji et al., 2017
      Scomber japonicas P CC + Ory et al., 2018
      Sebastes capensis C CC + Nicolas Ory, unpubl. data
      Strangomera bentincki P CC 0 Ory et al., 2018
      Thunnus albacares C OO + Chagnon et al., unpubl. data
      SEA TURTLES
      Caretta caretta O OO + 0 Duncan et al., 2017; Photo by Camila González
      Chelonia mydas O CC + ++ Brito, 2001; IMARPE, 2011; Alemán, 2014; Duncan et al., 2017; Jiménez et al., 2017; Photo by Guerra-Correa et al., 2007
      Dermochelys coriacea O OO + + Brito, 2001; IMARPE, 2011; Duncan et al., 2017
      Eretmochelys imbricata O CC + + Brain et al., 2015; Duncan et al., 2017; Photo by Anita Espinoza
      Lepidochelys olivacea O CC-OO + ++ Brito, 2001; IMARPE, 2011; Alemán, 2014; Duncan et al., 2017; Photos by Miguel Angel Mansilla, Rubén Alemán
      SEABIRDS
      Ardenna griseus Pis CC-OO + Ainley et al., 1990; Spear et al., 1995
      Ardenna pacifica Pis OO + Ainley et al., 1990; Spear et al., 1995
      Ardenna creatopus Pis CC-OO + Cañoles et al., 2017; Photo by OIKONOS Chile
      Cinclodes nigrofumosus I CC + Photo by Carolina Henríquez
      Daption capense Pis OO + Ainley et al., 1990
      Fregata minor Pis OO n+ Miranda-Urbina et al., 2015; Luna Jorquera, unpubl. data
      Fregetta grallaria P OO + Ainley et al., 1990; Spear et al., 1995
      Gygis alba Pis OO + Spear et al., 1995
      Haematopus ater I CC + Photo by Matías Portflitt-Toro
      Haematopus palliatus I CC + Photo by Pedro Valencia
      Larosterna inca Pis CC + Photo by Fernanda Barilari
      Larus belcheri Pis CC + Photo by Ana García
      Larus dominicanus Pis CC + Ludynia et al., 2005
      Larus dominicanus Pis CC n+ Thiel et al., 2011; Arce et al., 2014; Photo by Matías Portflitt-Toro, Pedro Valencia, Katherine Muñoz, Angélica Contador, Shannon Montecinos, Jorge Rivera Torres
      Leucophaeus modestus Pis/I CC + Photo by Matías Portflitt-Toro, Andrés Puiggros
      Leucophaeus scoresbii C/Pis/I CC + Photo by Cristían Larrere
      Macronectes sp. C/Pis/I OO + Photy by Paulo Davalos—Revista Trile
      Nesofregetta fuliginosa P OO + Miranda-Urbina et al., 2015; Luna Jorquera, unpubl. data
      Nesofregetta fuliginosa P OO n Luna Jorquera, unpubl. data
      Oceanodroma leucorhoa P OO + Ainley et al., 1990; Spear et al., 1995
      Oceanodroma markhami P OO + Ainley et al., 1990; García-Godos et al., 2002
      Oceanodroma tethys P OO + Ainley et al., 1990; Spear et al., 1995
      Onychoprion fuscatus P OO + Spear et al., 1995
      Pachyptila belcheri P OO + Ainley et al., 1990
      Pachyptila vittata P OO + Matías Portflitt-Toro, unpubl. data
      Pelagodroma marina Pis/I OO + Ainley et al., 1990; Spear et al., 1995
      Pelecanoides garnotii P CC + Luna-Jorquera in: Thiel et al., 2011
      Pelecanoides urinatrix P CC + Ryan, 1987
      Pelecanus thagus Pis CC n+ Thiel et al., 2011; Arce et al., 2014
      Phaethon rubricauda Pis OO + Guillermo Luna-Jorquera, unpubl. data
      Phaethon rubricauda Pis OO n+ Miranda-Urbina et al., 2015
      Phalacrocorax atriceps Pis CC n Photo by Jorge Navarro
      Phalacrocorax bougainvillii Pis CC + Photo by Carlos Vallejos
      Phalacrocorax bougainvillii Pis CC + Carlos Zavalaga, unpubl. data
      Phalacrocorax brasilianus Pis CC n+ Thiel et al., 2011; Arce et al., 2014; Photo by Victor Rios
      Phalacrocorax gaimardi Pis CC n Fernández et al., 2011; Photo by Ivan Torres, Paola Araneda, Manuel Segovia
      Procellaria aequinoctialis I OO + Ainley et al., 1990, Matías Portflitt-Toro, unpubl. data
      Procelsterna albivitta Pis OO + Luna Jorquera, unpubl. data
      Procelsterna albivitta Pis OO n+ Luna Jorquera, unpubl. data
      Pseudobulweria rostrata Pis/I OO + Ainley et al., 1990; Spear et al., 1995
      Pterodroma brevipes Pis/I OO + Spear et al., 1995
      Pterodroma cervicalis Pis/I OO + Ainley et al., 1990; Spear et al., 1995
      Pterodroma defilippiana Pis/I OO + Ainley et al., 1990
      Pterodroma externa Pis/I OO + Ainley et al., 1990; Spear et al., 1995
      Pterodroma leucoptera Pis/I OO + Ainley et al., 1990; Spear et al., 1995
      Pterodroma longirostris Pis/I OO + Ainley et al., 1990; Spear et al., 1995
      Pterodroma nigripenis I OO + Ainley et al., 1990; Spear et al., 1995
      Pterodroma pycrofti I OO + Ainley et al., 1990; Spear et al., 1995
      Pterodroma ultima Pis/I OO + Spear et al., 1995; Luna-Jorquera, unpubl. data
      Puffinus bulleri Pis/I OO + Ainley et al., 1990; Spear et al., 1995
      Puffinus nativitatis Pis/I OO + Ainley et al., 1990; Spear et al., 1995; Luna-Jorquera, unpubl. data
      Rynchops niger Pis CC + Photo by Pedro Valencia
      Spheniscus humboldti Pis CC + Photo by Matías Portflitt-Toro; Carlos Zavalaga unpubl. data
      Spheniscus humboldti Pis CC n Arce et al., 2014
      Stercorarius longicaudus C/Pis/I OO + Spear et al., 1995
      Sternula lorata Pis CC + Thiel et al., 2011
      Sula variegata Pis CC + Thiel et al., 2011; Photo by Issa Ramos
      Thalassarche chrysostoma Pis/I OO + Cristían Suazo, unpubl. data
      Thalassarche chrysostoma Pis/I OO n Cristían Suazo, unpubl. data
      Thalassarche melanophrys Pis/I OO + Cristían Suazo, unpubl. data
      Thalassarche melanophrys Pis/I OO n Photo by Cristían Suazo
      MAMMALS
      Arctocephalus philippi C CC + Thiel et al., 2011, Photo by Lukas Mekis
      Balaeonoptera bonaerensis C CC + Campbell et al., 2017, Photo by Aldo S. Pacheco
      Balaeonoptera edeni C CC + Campbell et al., 2017
      Balaeonoptera musculus C CC + Campbell et al., 2017
      Cephalorhynchus commersonii C CC + Aguayo-Lobo, 1999
      Cephalorhynchus eutropia C CC + Aguayo-Lobo, 1999
      Delphinus capensis C CC + Mangel et al., 2013
      Eubalaena australis C CC + Aguayo-Lobo, 1999
      Globicephala spp. C CC + Mangel et al., 2013
      Grampus griseus C CC-OO + Photo by Macararena Bravo
      Lagenorhynchus australis C CC + Aguayo-Lobo, 1999
      Lagenorhynchus obscurus C CC + Mangel et al., 2013
      Lissodelphis peronii C CC + Aguayo-Lobo, 1999
      Lontra felina C CC + Photo by Fernando Olivares, Juan Valqui
      Megaptera novaeangliae C CC + Photo by Aldo S. Pacheco
      Otaria byronia C CC + Photo by Claudio Godoy, Aldo Pacheco, Natalie Pozo, Mauricio Ulloa, ONG Vuelve al Océano
      Phocoena spinipinnis C CC + Mangel et al., 2013
      Physeter macrocephalus C CC + Campbell et al., 2017
      Tursiops truncatus C CC + Mangel et al., 2013

      Information based on photographic evidence is given together with the name of the author of the photograph or video; all photographers agreed that this information be included in this table and publication. Abundance categories: + present, ++ common, +++ very frequent. 0 means that the species was examined and no plastic items were found in its stomach; n = seabirds reported with plastics entangled in nests, n+ = individuals and nests with plastic entanglement; please, note that herein we consider incorporation of plastics in seabird nests also as a case of entanglement (see also Supplement 1). The Diet can be: C, Carnivorous; H, Herbivorous; I, Invertivorous; O, Omnivorous; P, Planktivorous; and Pis, Piscivorous.

      Fishes

      The few studies documenting the interaction of microplastics with fishes in the SE Pacific revealed a high incidence of microplastics in planktivorous fish from the coast of Rapa Nui, located within the SPSG: 80% of the examined individuals of the amberstripe scad Decapterus muroadsi (Ory et al., 2017) and 14% of the flying fish Cheilopogon rapanouienesis (Chagnon et al., unpublished data) had ingested microplastics, many of which were similar in size and color to blue-pigmented planktonic organisms (copepods, crustacean larvae), which are common prey of these fish (Figure 3B). These findings suggest that visually-oriented planktivorous fish mostly ingest microplastics resembling their prey. The study of the digestive tracts of 7 planktivorous fish species from the HCS revealed that, overall, few of the fish analyzed (~2%) had ingested microplastics (Ory et al., 2018). Microplastics were also found more often (23% of all individuals analyzed) in herbivorous fish from Rapa Nui than in bottom-dwelling carnivorous and herbivorous fish species from the HCS (Table 1; NO, unpublished data). Such contrasting ingestion of microplastics well reflects the observed gradient of low microplastic densities in surface waters along the SE Pacific continental coast and high densities within the SPSG (Eriksen et al., 2013, 2014, 2018), and in particular along the Rapa Nui coast (Ory et al., 2017; Eriksen et al., 2018).

      Examples of ingestion of plastic litter by marine species. (A) Microplastics collected from the stomach of one Christmas shearwater Puffinus nativitatis found dead on Salas y Gómez Island; Image by Matías Portflitt Toro. (B) Blue microplastics found in the stomach of amberstripe scads Decapterus muroadsi, fished at Rapa Nui; Image by Nicolas Ory. (C) Meso- and macroplastics found obstructing the cloacal opening of a green turtle Chelonia mydas found near Antofagasta. After carefully taking out these items the turtle recovered and later was liberated by the Wildlife Rescue and Rehabilitation Centre (Centro de Rescate y Rehabilitación de Fauna Silvestre) from Universidad de Antofagasta, Chile; Photo by Guerra-Correa et al. (2007). (D) Meso- and macroplastics found in the stomach of a blue shark Prionace glauca; Image courtesy of Carlos Canales-Cerro.

      Apex predators play an important role in the exchange of energy between upper trophic levels in the marine environment (Markaida and Sosa-Nishizaki, 2010). However, little is known about the interaction of these species with AMD (Choy and Drazen, 2013). Plastics have been documented in the stomachs of tuna from Rapa Nui (Table 1), but little is known about plastic ingestion by other piscivorous fish from the open ocean. Publications on the diet of piscivorous fishes from the continental coast have not reported plastics (Fariña and Ojeda, 1993; Fariña et al., 2000), which indeed have not been found in the stomach contents of the investigated fish species (Jose Miguel Fariña, personal comment). Similarly, plastic ingestion by oceanic sharks seems to be very rare, estimated to occur in <1% of all analyzed stomachs (Sebastian Klarian, personal comment). Plastics found in sharks were PVC fragments in deep-sea species, and (positively buoyant) bottle and pen caps in coastal species (S. Klarian, personal comment; Figure 3D).

      Reports on entangled fish are scarce, but there are three notable exceptions. In December 2016, an entangled Pacific chub Kyphosus sandwicensis was observed in a derelict fishing net found floating in the SPSG (28°23′S, 105°42′W) (Table 1). There were several living chubs swimming around the mass of net and ropes, and it is likely that the individual was trapped and died while this raft floated in the gyre. On the coast of Rapa Nui a surgeon fish Acanthurus leucopareius was entangled in a fishing line (NL, personal observation). The other case of an entangled fish is of a juvenile Galapagos shark Carcharhinus galapagensis that was documented in the waters around Rapa Nui. In June 2017 one specimen (about 160 cm in total length) of C. galapagensis was recorded swimming in shore waters with a plastic collar-like debris obstructing its gill region (Figure 4A). The animal appeared otherwise healthy, presenting an active feeding behavior. It showed initial tissue damage, which indicates that the collar recently became attached to the animal; similar records have shown that the internal projections of plastic collars have the potential to severely damage the tissue by affecting normal feeding and ventilation (Sazima et al., 2002), followed by body deformations as the animal grows (Wegner and Cartamil, 2012). The plastic ring attached to the animal was identified as the screwing part of a plastic barrel; this type of plastic debris is most likely coming from the industrial fishery that operates in the S Pacific and is an important source of recognizable plastic litter stranding on the shores of Rapa Nui (Kiessling et al., 2017).

      Examples of species entangled with marine plastic litter. (A) Galapagos shark Carcharhinus galapagensis from coastal waters of Rapa Nui (Easter Island) entangled with a closure ring for plastic drums; Image Naiti Morales. (B) Humpback whale Megaptera novaeangliae from the Peruvian coast entangled in large fishing net; Image Aldo Pacheco. (C) Inca tern Larosterna inca found entangled in remains of fishing net near Valparaiso; Image courtesy of Fernanda Barilari. (D) Red-legged cormorant Phalacrocorax gaimardi from Taltal in nest; Image courtesy of Ivan Torres.

      Continental coastal species of Chondrichthyes are also known to interact with marine litter. Oviparous species like cat sharks (Scyliorhinidae) and skates from the genus Symperygia lay egg capsules with long tendrils (Oddone and Vooren, 2002, 2008; Hernández et al., 2005; Flammang et al., 2007; Concha et al., 2013). These long tendrils are used to entangle the egg capsule to different substrata in order to maintain the vertical positioning and facilitate oxygen flow (Flammang et al., 2007). Along the central coast of Chile, dense multispecies coils of capsules are commonly found firmly attached to algae and/or plastic debris floating close to the coast or stranded on the shores after storms (MT and NM, personal observations).

      Sea turtles

      Sea turtles are exposed to a variety of anthropogenic stressors, including marine plastic pollution, because of their use of diverse habitats, migratory behavior, and complex life histories (Nelms et al., 2016). Indeed, litter ingestion and entanglement in plastic debris have been recognized as serious threats to these species worldwide (Nelms et al., 2016; Clukey et al., 2017; Duncan et al., 2017). Five sea turtle species inhabit the SE Pacific (Caretta caretta, Chelonia mydas, Dermochelys coriacea, Eretmochelys imbricata, and Lepidochelys olivacea); all are listed from vulnerable to critically endangered on the IUCN Red List (IUCN, 2018) and have documented interactions with marine litter.

      The green turtle (C. mydas) is the species most commonly mentioned to have ingested plastic items, with a frequency ranging from 28% in the Ecuadorian part of the HCS (Alemán, 2014) to 56 and 91% in Peru (Alfaro-Shigueto et al., 2005; Jiménez et al., 2017). The olive ridley turtle (L. olivacea) also has a high incidence of plastic ingestion, reaching up to 43% in Ecuador (Alemán, 2014), but this species has a lower incidence in other parts of the HCS (8%), both in Peru and southern Chile (de Paz et al., 2005; Brito et al., 2007). Furthermore, specific cases of plastic ingestion have been reported for leatherback turtles (D. coriacea) from the HCS in southern Peru and central Chile (Brito, 2001; IMARPE, 2011) and a hawksbill turtle (E. imbricata) in Rapa Nui (Brain et al., 2015).

      Items most commonly found in stomachs or intestines of sea turtles are plastic pieces of intermediate size, including plastic bags, monofilament nylon, rope, and fishing nets (Brito, 2001; Guerra-Correa et al., 2007; IMARPE, 2011; Jiménez et al., 2017; Figure 3C). Several authors suggested that plastic ingestion has been the cause of death of stranded turtles in Ecuador and Chile (Brito et al., 2007; Silva et al., 2007; Alemán, 2014).

      Even though many studies have focused on evaluating sea turtle bycatch rates (in active fishing gear) in the Pacific Ocean (Wallace et al., 2010), to date almost no reports exist on sea turtle entanglements (derelict fishing gear) in the region (Nelms et al., 2016). In fact, to our knowledge no peer-reviewed articles have informed incidents of entanglements from the SE Pacific. In Rapa Nui, a case of C. caretta with fishing line in both anterior flippers caused their amputation and subsequent death a few hours later (RAV, personal observation). In addition, several cases of entanglements of green and olive ridley turtles have been informed from Ecuador (Rubén Alemán, personal communication).

      Seabirds

      Many different seabird species have been reported to be entangled in marine debris or have ingested plastic (Table 1). Interestingly, for most fish-feeding species from the HCS, the incidence of individuals with microplastics in their stomachs is low, although these species face other threats to their conservation (Luna-Jorquera et al., 2012). We found 6 species in which plastic litter has been found in their stomachs, 3 of them (Pelecanoides garnotii, P. urinatrix, Phalacrocorax bougainvillii, and Spheniscus humboldti) being true diving species, and one a plunge diver (Pelecanus thagus). One species with relatively high frequency of plastic ingestion is the kelp gull Larus dominicanus, which is commonly observed feeding in fishing ports, at garbage containers, and on waste disposal facilities.

      In addition to the low number of continental species with plastic in their stomach, it seems that the number of affected individuals per species is relatively low: 10 out of 450 examined individuals (2.2%) S. humboldti, 4 out of 103 (3.9%) Pelecanoides garnotii, and 12 out of 363 studied pellets (3.3%) of Phalacrocorax bougainvillii (CZ, unpublished data). The diet of the Humboldt penguin S. humboldti has also been examined in another study, but the authors did not mention any plastic items in the species' stomach contents (Herling et al., 2005). The tendency of low incidence of plastic ingestion in seabirds inhabiting the HCS is supported by several other studies. Jahncke et al. (1997) and García-Godos and Goya (2006) studied the diet of P. bougainvillii, Sula variegata, and Pelecanoides garnotii, and did not find any plastic artifacts in any of the examined individuals (I. García-Godos, personal communication).

      In contrast to continental seabirds, oceanic species are severely affected (see Table 1). Of the 37 seabird species from the SE Pacific with reported ingestion of plastic, 31 are oceanic and the majority are Procellariiformes, which retain particles for several months before the particles are evacuated from the digestive system by regurgitation (Terepocki et al., 2017; Figure 3A). The high incidence of microplastic ingestion in the species listed in Table 1 is very likely due to the high concentration of AMD observed in the Oceanic and Polynesian sectors of the SE Pacific (see Figure 2). Several harmful effects have been reported due to microplastic ingestion, ranging from stomach ulcers, intestinal obstruction, reduced body condition, and increased contaminant load (Derraik, 2002; Lavers et al., 2014).

      Body injuries, severe negative effects on behavior, and even mortality, are typical consequences of seabird entanglement in floating or stranded marine litter. As opposed to the observed tendency of plastic ingestion, entanglement mostly affects continental species. Seventeen seabird species inhabiting the HCS are affected by entanglement, which most of the time occurs during foraging activities at sea, when seabirds are trapped in discarded fishing lines, derelict fishing nets (Figure 4C) (Thiel et al., 2011), and single-use plastic bags on beaches (see Supplements 2, 3). We have also observed that lines and rope fragments discarded by aquaculture activities affect coastal species, such as gulls and cormorants (Figure 4C) (MPT and GLJ, own unpublished data). Entanglement in derelict fishing nets is also affecting diving waterbirds, including grebes (Podilymbus podiceps, Photo PP01 in Supplement 3 by P. Valencia, and Podiceps occipitalis, Portflitt-Toro et al., 2016). During the winter season, grebes are often observed foraging in nearshore waters in the bays of the Coastal System of Coquimbo, where fishermen use gillnets to capture pelagic fishes.

      A handful of seabird species are affected by both entanglement and ingestion (Larus dominicanus and Phalacrocorax bougainvilli), but the negative effects of marine litter are also reaching the nests of several species. The incidence of anthropogenic marine litter for nest construction is not well known for the SE Pacific, but gulls from the Peruvian coast have been reported to use plastic in their nests (Stucchi and Figueroa, 2006). Our revision revealed that 12 species are using litter for nest construction, comprising both continental and oceanic seabirds; at least 10 of those 12 species are also exposed to organism entanglement and plastic ingestion at sea. Species like cormorants (Phalacrocorax spp.), frigatebirds (Fregata minor), and albatrosses (Thalassarche spp.) are actively selecting and transporting marine litter to their nests, while other species inhabiting the oceanic Salas and Gómez Island are affected by plastic litter accumulated by oceanic currents near their foraging grounds. Abundant incorporation of plastic litter in nests (see Figure 4D) calls for further research due to (i) the risk of entanglement of adults and chicks, and (ii) the potential effects of anthropogenic litter on the thermal properties of the nest both during nesting and chick-rearing phases.

      Marine mammals

      There is no published information regarding the ingestion of marine debris for marine mammals in the SE Pacific. Overall, few studies examined the stomach contents of marine mammals. In a study on the diet of the South American sea lion Otaria flavescens, George-Nascimento et al. (1985) did not report any plastic items in stomach contents. Feces from the South American sea otter Lontra felina contained a diverse range of prey remains from fishes, crustaceans, and molluscs, but no plastic items were listed (Medina-Vogel et al., 2004; Córdova et al., 2009). A study of four delphinid species captured along the central coast of Peru reported prey items in stomach contents based on fish otoliths and cephalopod beaks, but no marine debris was documented (García-Godos et al., 2007). In southern Chile, an examination of seven stranded false killer whale carcasses reported only empty stomachs (Haro et al., 2015). Similarly, a study on the diet of long-finned pilot whales from southern Chile (Mansilla et al., 2012) found no plastic particles or marine litter (Carlos Olavarría, personal communication). However, the case of a Risso's dolphin Grampus griseus with a plastic bag in its mouth (Photo by M. Bravo) in the Coastal System of Coquimbo, in northern-central Chile, shows that plastic ingestion by cetaceans should not be ruled out.

      Reports on the entanglement of marine mammals along the SE Pacific are much more common than reports about plastic ingestion. Throughout the HCS, fisheries are very intense at both artisanal and industrial levels (Thiel et al., 2007; Alfaro-Shigueto et al., 2010), and many of the observed entanglements are likely to have occurred with active fishing gear. An important number of pinnipeds, large baleen whales, and Odontocetes in general (dolphins, porpoises, and toothed whales) have been reported entangled in fishing gear throughout neritic and oceanic waters off Peru and Chile (Table 1). Entanglements may occur when large gillnets are deployed at the bottom or drifting near the sea surface, depending on the fishery (Aguayo-Lobo, 1999; Alfaro-Shigueto et al., 2010). Marine mammals swim or dive through the mesh and become entangled. Small animals, such as sea otters and sea lions, may die shortly after entanglement, as these species may not have the necessary strength to escape from nets and being air-breathers will consequently drown. This is probably also the case for dolphins such as the dusky dolphin (Lagenorhynchus obscurus), bottlenose dolphin (Tursiops truncatus), long-beaked common dolphin (Delphinus capensis), and the Burmeister porpoise (Phocoena spinipinnis) in Peru. In addition to the aforementioned species, in Chile the southern right whale dolphin (Lissodelphis peronii), Commerson's dolphin (Cephalorhynchus commersonii), Chilean dolphin (Cephalorhynchus eutropia), and Peale's dolphin (Lagenorhynchus australis) also suffer mortality from entanglements (Table 1).

      Large baleen whales get into nets but may keep moving, subsequently carrying large pieces of entangled nets on their body. Along the HCS of Peru, the humpback whale Megaptera novaeangliae is the most affected large whale species. Campbell et al. (2017) reported that 51% of stranded whales off Peru were humpback whales and all individuals showed evidence of entanglement (Figure 4B). Observations made during daily sightings of humpback whales throughout their breeding migration (mid July to late October, Guidino et al., 2014) in northern Peru (~4°S) suggest that in the HCS, humpback whales frequently get entangled with drifting gillnets (ASP, unpublished data). As the stranding data suggest (Campbell et al., 2017), the fate of entangled whales is often death, unless the net is quickly removed from the whale.

      Along the HCS of Chile, artificial coastal structures such as breakwaters and harbors appear to accumulate more marine debris than the natural rocky intertidal shore (Aguilera et al., 2016). This accumulation could be a problem for the marine otter (Lontra felina), a small mustelid endemic along the Pacific coast of South America. This species uses natural rocks or artificial constructions as habitat. At the northern-most location of its distributional range in northern Peru, the marine otter has been observed resting in an artificial cave full of marine debris (see Figure 3 in Alfaro-Shigueto et al., 2011). While this case does not constitute a direct interaction with marine plastic litter, the risk for entanglement or ingestion is evident.

      Overview of plastic ingestion and entanglement by marine vertebrates from the SE Pacific

      This first review of interactions with AMD of marine vertebrates from the SE Pacific reported a total of 97 species (Table 1). Seabirds represent nearly 55% of the total, followed by fishes with 21%, marine mammals with 19%, and sea turtles with 5%. Considering the number of species per taxonomic group, the type of interaction (ingestion or entanglement), and environment (continental or oceanic), an overall pattern is emerging. For fishes, more species with plastic ingestion were documented along the continental coast than in the open ocean, and few oceanic species become entangled near oceanic islands (Rapa Nui and Salas and Gómez Island). However, it needs to be taken into account that the simple species list presented in Table 1 only shows whether a species had ingested microplastics or not, which does not allow for inferences on the individual risk of ingestion. For example, in the case of the Peruvian anchoveta Engraulis ringens from the HCS, of 116 studied individuals only one (<1%) had one microplastic in its stomach (Ory et al., 2018), whereas of 20 amberstrip scads Decapterus muroadsi from Rapa Nui 16 individuals (80%) had ingested on average 2.5 microplastics per individual (Ory et al., 2017), underscoring that the risk of microplastic ingestion is much higher for oceanic planktivorous species than for species from the HCS. In contrast to the general pattern documented for fishes, the incidence of microplastic ingestion in seabirds is much higher for oceanic species than for those from the HCS, but the latter are suffering intense entanglement (Table 2). Marine mammals are scarce in oceanic waters, so marine mammals are principally affected by entanglement with AMD floating in the productive waters of the HCS (Table 2). Regarding sea turtles, none of the species from the SE Pacific are safe from interactions with AMD, ingestion or entanglement, and thus are equally threatened in coastal and oceanic waters. This overall pattern agrees well with the spatial distribution of micro- and macroplastics in the SE Pacific (see Figures 1, 2). Future systematic studies in the SE Pacific should provide more information about the actual number of species affected, which will also help authorities to improve efforts for efficient solutions.

      Number of species of marine vertebrates for which ingestion and entanglement has been documented.

      Group Entanglement Ingestion Entang. and Ingest. Total
      Continental Oceanic Continental and Oceanic Continental Oceanic Continental and oceanic Continental Oceanic Continental and oceanic
      Fishes 0 2 0 13 4 0 0 1 0 20a
      Sea turtles 0 1 0 0 0 0 2 1 1 5
      Seabirds 14 2 0 3 24 2 3 5 0 53
      Marine mammals 18 0 0 0 0 1 0 0 0 19

      Total refers to the numbers of species that have been reported for plastic ingestion and entanglement (based on the data presented in Table 1).

      This value does not consider four fish species that were examined but in which no plastic was found in their stomachs (see Table 1).

      Other interactions

      Similar to other oceans (Carson, 2013), in the SE Pacific litter is frequently bitten by large marine organisms, which are thought to be vertebrates (Eriksen et al., 2017), but might also originate from large invertebrates with powerful jaws, in particular squids and/or cuttlefish. On Rapa Nui, up to 10% of stranded AMD can have bitemarks (MT, unpublished data).

      Discussion Ingestion of plastics

      The results from this review indicate that microplastic ingestion is uncommon along the Pacific coast of South America. Neither fishes nor seabirds from the continental coast had high frequencies of microplastic ingestion, and information on the diet of marine mammals in the SE Pacific is very limited and thus does not allow inference on the risk of microplastic ingestion. An exception from this pattern seems to be the relatively high incidences of plastic ingestion in sea turtles in the HCS, but most of those plastics are of larger sizes and can be characterized as meso- and macroplastics. Also, intertidal habitats, such as beaches, tidepools, estuarine saltmarshes, and especially the seashores in the fjords of southern Chile require future research attention, because intense microplastic pollution may cause localized impacts in species from shore habitats (see e.g., Mizraji et al., 2017).

      The low incidences of microplastic ingestion in most marine vertebrates from the HCS could be resulting from low concentrations of microplastics in coastal waters or due to specific foraging behaviors, or a combination of both. A data comparison from the SPSG and from other parts of the world can shed some light on these questions. For example, some planktivorous fish species from the SPSG had a very high frequency of microplastic ingestion (Ory et al., 2017), and other species had ingested microplastics more frequently than any of the planktivorous species from the HCS (Chagnon et al., unpublished data; Ory et al., 2018). For seabirds, the pattern was similar: microplastic ingestion was much more common in oceanic species than in species from the HCS (Tables 1, 2), regardless of feeding types (planktivorous, invertivorous, and piscivorous). This suggests that the observed pattern might not be due to differences in foraging and feeding behaviors, but rather to differences in microplastic abundances. Nevertheless, plastic ingestion was also documented in a number of species from the HCS, which might be consequence of their biology. For example, incidence of plastics in the digestive system of different seabird species is related to their foraging behavior (e.g., surface feeders, pursuit feeders, among others) and the digestive system morphology (i.e., muscular gizzard in petrels) (Ainley et al., 1990; Spear et al., 1995; Roman et al., 2016). This latter aspect causes indigestible items to become trapped in the bird's gut system (Ainley et al., 1990).

      Other factors such as the geographic distribution may impact the amount of plastic ingested, as found by Spear et al. (1995), who reported that seabirds foraging predominantly in the North Pacific had higher incidence of ingestion than species from the South Pacific. However, the paper suggested that this pattern may be biased by the lack of studies from the SE Pacific. This is very similar for marine mammals, in particular dolphins and whales. Since the end of whaling in the region during the early 80's, the scientific examination of body parts (including stomachs) of large baleen and sperm whale carcasses have considerably ceased in the region. Scientific treatment of stranded animals is limited due to the difficult logistics needed to examine cases of cetacean strandings in remote areas (e.g., Haro et al., 2015; Häussermann et al., 2017). In this regard, there is an urgent need for the implementation of effective action plans for the scientific treatment of stranded whales and dolphins, if we aim to understand the impacts of the ingestion of marine litter in megafauna. This is particularly important since researchers are adopting non-invasive methods (e.g., stable isotopes, DNA analysis) for both live (Haro et al., 2016) and stranded charismatic animals. At present, it is difficult to understand the magnitude of the plastic ingestion problem for marine mammals in the SE Pacific. However, plastic ingestion by diverse cetacean species has been reported in several coastal areas elsewhere (Baulch and Perry, 2014; Lusher et al., 2018), often with lethal consequences (see Jacobsen et al., 2010; de Stephanis et al., 2013; for cases on sperm whales). Microplastics of several polymer types have been documented for the first time in a humpback whale stranded on the coast of the Netherlands (Besseling et al., 2015). In the SE Pacific, the problem is likely being underestimated.

      The relatively high frequency of bitemarks in plastics stranded on Rapa Nui shores indicates that some species directly bite into floating plastics. It is currently not well known which species engage in this behavior and why (Carson, 2013), but most of the bitemarks found on plastics from Rapa Nui resemble those of the green turtle Chelonia mydas (Eriksen et al., 2017), a species commonly reported to ingest larger plastic pieces (see above). The potential risk of plastic ingestion as a result of biting into floating plastic litter is reason for concern.

      Entanglement

      Entanglement reports of fishes are very rare, while they are common for seabirds, marine mammals, and sea turtles. The lack of reports from fishes might be due to the fact that mortality at sea would immediately cause sinking, whereas seabird, mammal, and sea turtle carcasses float at the sea surface; not surprisingly many reports of entanglement come from dead animals (see above).

      From all the records of top fish predators interacting with plastic debris around the world, carcharhinid sharks seem to be most at risk of entanglement (Laist, 1997; Sazima et al., 2002; Ceccarelli, 2009), probably due the high abundance and species diversity in this group (Compagno, 1984). Cliff et al. (2002) reported an increase over time in entanglement of a carcharhinid species from South Africa, which furthermore underscores that species from this group are at highest risk of negative interactions with floating litter. Oceanic shark species are also likely to be impacted by plastic debris, but the limited number of studies on oceanic sharks underscores that more research is required to determine the full extent of this problem.

      Seabird entanglement is common in the world's oceans (Kühn et al., 2015). Herein entanglement was reported mostly for species from the HCS, and observations included fisheries litter (nets, lines) and consumer plastics (mostly plastic bags). While interactions with fisheries items are likely to happen at sea (e.g., Moore et al., 2009), entanglement with consumer plastics may occur on the shore or at waste disposal facilities, as highlighted by the frequent observations of kelp gulls L. dominicanus with plastic bag entanglement (Table 1). Our data suggest that entanglement is more common in species from the continental coast than in oceanic species. The fact that Procellariiformes (which are mostly oceanic species) have the lowest frequencies of entanglement (Kühn et al., 2015) seems to support this pattern. However, herein we observed plastic litter in the nests of several oceanic species (Table 1), which underscores the imminent risk of entanglement for these species.

      Although sea turtle entanglement in AMD has been recognized as a cause of mortality globally, there are quantitative knowledge gaps on rates and population implications (Duncan et al., 2017). Recent studies report entanglements across all species, life stages, and ocean basins, with higher vulnerability in pelagic juveniles (Nelms et al., 2016; Duncan et al., 2017). However, reports of entanglement incidents in the scientific literature are scarce and it is likely that many individual cases are never published, and therefore these data may be highly underestimated (Nelms et al., 2016). Duncan et al. (2017) reported that derelict fishing gear contributed globally to the majority of entanglements, while debris from land-based sources contributed to a lesser extent. Entanglements are a greater threat to sea turtles than climate change and direct exploitation, but less of a threat than plastic ingestion and bycatch (active gear) (Duncan et al., 2017).

      Incidences of entanglement were reported for many species of marine mammals from the SE Pacific (Table 1), mostly with items of fisheries origin. Similar to other areas of the southern hemisphere (e.g., Page et al., 2004), sea lions seem to be most at risk of entanglement with derelict fishing gear as indicated by several independent observations recorded herein (Table 1). However, our review also reveals that many whale species from the HCS become entangled in (active?) fishing gear. Some efforts are being conducted to mitigate the entanglement problem. In Peru, the implementation of acoustic alarms (pingers) has proven to have dissuasive effects, thus reducing dolphin entanglements (Mangel et al., 2013). The use of modified long lines in the Patagonian toothfish (Dissostichus eleginoides) fishery in southern Chile reduces the interaction of killer and sperm whales with active fishing gear (Moreno et al., 2008). Yet, these efforts are only localized and eventually should be implemented at the whole scale of the respective fisheries.

      Differential risk of marine litter interactions across the oceanic gradient

      Several studies highlight that risk of both ingestion and entanglement is highest where main foraging grounds overlap with accumulation areas of floating AMD (Wilcox et al., 2013; Fossi et al., 2017). Our study showed that some species foraging in the highly productive HCS frequently interact with marine plastics, which at first glance might be surprising given that litter densities are substantially lower than in the open ocean. However, many of these species feed in areas where hydrographic features, e.g., frontal systems or meso-scale gyres, concentrate food and also floating plastics (Pichel et al., 2007). Interestingly, one of the first direct observations of this phenomenon comes from the HCS off the central coast of Chile, where Bourne and Clark (1984) observed planktivorous seabirds feeding in a coastal front that also had concentrated large amounts of floating plastics. The high incidences of entanglement and also plastic ingestion, especially by sea turtles and some seabird species from the HCS, likely occurred in these temporary hotspots. These interactions are common in the productive upwelling systems of the eastern boundary currents (for overview see Scales et al., 2014), and cause high risk for marine vertebrates despite the fact that densities of floating litter are lower than in the subtropical gyres.

      In the open ocean, especially in the oligotrophic subtropical gyres, marine productivity is low, and often concentrated above seamounts or near oceanic islands. If these islands are located within the range of the litter accumulation zones of the subtropical gyres, some species are at high risk of negative interactions with floating plastics (Figure 5). Our review showed that planktivorous fish and seabirds living on the oceanic islands in the vicinity of the SPSG have high incidences of microplastic ingestion, possibly due to the extraordinarily high densities of floating microplastics in this region (Figure 5). The limited number of entanglement reports from this area is likely a combination of lower densities of marine vertebrates in the subtropical gyres (see also Titmus and Hyrenbach, 2011) and the limited number of observers, compared to the continental coasts.

      Conceptual model of (A) ingestion, and (B) entanglement by marine vertebrates with anthropogenic marine plastics, highlighting the litter sources and abiotic processes (upper part of figures) and the interactions with marine invertebrates (bottom part of figures).

      Conclusions and outlook

      Herein interactions with marine plastic litter were documented for a total of 97 species of marine vertebrates. The risk of microplastic ingestion seems to be high in nearshore waters (including tidepools), decreases above the continental shelf of the eastern boundary currents, but again reaches very high probabilities in oceanic waters associated with the gyre accumulation zones, especially for fishes and seabirds (Figure 5). The current interaction records suggest that marine vertebrate species living in the productive waters of the HCS are at higher risk of facing entanglement than species from the open ocean, albeit several oceanic species have also been observed to be entangled in marine plastics, mostly from high seas fisheries (Figure 5).

      Further systematic research on the ingestion and entanglement rates in marine vertebrates and their impacts on populations from the SE Pacific is required. Investigations to determine hotspots of marine plastic pollution will also enable prioritizing resources and to focus and steer conservation measures. Detailed stranding data and a centralized regional database are recommendable for a better documentation of negative interactions of marine vertebrates with plastic litter. Education, community involvement, together with effective measures to reduce the amounts of plastic litter entering the ocean, are essential to reduce the impact on marine vertebrates, particularly the highly threatened sea turtles.

      Ethics statement

      The paper is based mostly on previously published information and does not include any sampling and laboratory analysis of marine organisms. Therefore, no ethics approval was required.

      Author contributions

      MT and GL-J designed the review, coordinated the team, and led the writing. RÁ-V, CG, IH, NL, DM-U, NM, NO, ASP, MP-T, and CZ contributed the observations and helped with the writing. IH and MP-T coordinated the quest for entanglement observations from citizen scientists. CG, DM-U, and MP-T prepared the figures.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to thank all citizen science observers for contributing their photographic records about entanglement. We are especially grateful to all our colleagues for freely sharing their insights, unpublished observations, and images that significantly enhanced the scientific value of this contribution. Two reviewers provided many helpful suggestions and Annie Mejaes kindly revised the English of the final manuscript.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fmars.2018.00238/full#supplementary-material

      References Aguayo-Lobo A. (1999). The cetaceans and their conservation perspectives. Estud. Oceanol. 18, 3543. Aguilera M. A. Broitman B. R. Thiel M. (2016). Artificial breakwaters as garbage bins: structural complexity enhances anthropogenic litter accumulation in marine intertidal habitats. Environ. Pollut. 214, 737747. 10.1016/j.envpol.2016.04.05827149151 Ainley D. G. Spear L. B. Ribic C. A. (1990). The incidence of plastic in the diets of pelagic seabirds in the eastern equatorial pacific region, in Proceedings of the Workshop on the Fate and Impact of Marine Debris, eds Shomura R. S. Godfrey M. L. (Honolulu, HI: U.S. Dep. Commer., NOAA Tech. Memo. NMFS), 653665. Alemán R. (2014). Informe de Actividades realizadas en Conservación de Tortugas Marinas durante el año 2013. Informe Técnico MAE-PN-PNMRA- 2014-N°010, 9. Alfaro-Shigueto J. Mangel J. C. Pajuelo M. Dutton P. H. Seminoff J. A. Godley B. J. (2010). Where small can have a large impact: structure and characterization of small-scale fisheries in Peru. Fish. Res. 106, 817. 10.1016/j.fishres.2010.06.004 Alfaro-Shigueto J. Montes D. Acleto C. Zuñiga R. Huamán P. (2005). Diet analysis from green turtle Chelonia mydas agassizii from central Peruvian Coast, in Proceedings of the Twenty-first Annual Symposium on Sea Turtle Biology and Conservation, Vol. 368, eds Coyne M. Clark R. (Philadelphia, PA: NOAA Technical Memorandum NMFS–SEFSC-528), 11. Alfaro-Shigueto J. Valqui J. Mangel J. C. (2011). New record of the marine otter Lontra felina (Molina, 1782) north to its current distribution. Ecol. Apli. 10, 8791. 10.21704/rea.v10i1-2.417 Arce P. Daigre M. Simeone A. (2014). Uso diferencial de basura para la construcción de nidos en aves marinas de una colonia en chile central, in XI Congreso Chileno de Ornitología (La Serena). Astudillo J. Bravo M. Dumont C. Thiel M. (2009). Detached aquaculture buoys in the SE Pacific: potential dispersal vehicles for associated organisms. Aquat. Biol. 5, 219231. 10.3354/ab00151 Baulch S. Perry C. (2014). Evaluating the impacts of marine debris on cetaceans. Mar. Pollut. Bull. 80, 210221. 10.1016/j.marpolbul.2013.12.05024525134 Besseling E. Foekema E. M. Van Franeker J. A. Leopold M. F. Kühn S. Bravo Rebolledo E. L. . (2015). Microplastic in a macro filter feeder: humpback whale Megaptera novaeangliae. Mar. Pollut. Bull. 95, 248252. 10.1016/j.marpolbul.2015.04.00725916197 Bourne W. R. P. Clark G. C. (1984). The occurrence of birds and garbage at the Humboldt front off Valparaiso, Chile. Mar. Pollut. Bull. 15, 343344. 10.1016/0025-326X(84)90493-4 Brain M. J. Medrano C. Brito-Carrasco B. Del Río J. Álvarez-Varas R. (2015). First rehabilitation case of hawksbill turtle (Eretmochelys imbricata) stranded in Easter Island, Chile: the need to allocate resources to increase the chances of success, in Book of Abstracts of the 35th Annual Symposium on Sea Turtle Biology and Conservation, eds Kaska Y. Sonmez B. Turkecan O. Sezgin C. (Dalaman), 214. Bravo M. de Los Angeles Gallardo M. Luna-Jorquera G. Núñez P. Vásquez N. Thiel M. (2009). Anthropogenic debris on beaches in the SE Pacific (Chile): results from a national survey supported by volunteers. Mar. Pollut. Bull. 58, 17181726. 10.1016/j.marpolbul.2009.06.01719665738 Brito C. Brito J. L. Zúñiga M. Campos M. Toro S. (2007). Tortugas marinas en el centro de rescate y rehabilitación de fauna silvestre del museo de San Antonio, in VII Simposio Sobre Medio Ambiente: Estado Actual y Perspectivas de la Investigación y Conservación de las Tortugas Marinas en las Costas del Pacífico Sur Oriental. (Antofagasta), 96. Brito J. L. (2001). Informe preliminar de tortugas marinas en Chile: su situación actual, in Taller Nacional de Trabajo Para Definir las Líneas de Acción Prioritarias de un Programa Para la Conservación de las Tortugas Marinas (Valparaíso), 95. Campbell E. Alfaro-Shigueto J. Mangel J. C. (2017). Whale entanglements in Peru: frequency and cost, in 22nd Biennial Conference on the Biology of Marine Mammals (Halifax). Cañoles R. Fuentes-Garrido M. Vanerio M. Suazo G. Yates O. Cabezas L. A. (2017). Análisis de contenido estomacal en siete especies de aves marinas (Procellariiformes), in XII Congreso Chileno de Ornitología (Santa Cruz). Carpenter E. J. Anderson S. J. Harvey G. R. Miklas H. P. Peck B. B. (1972). Polystyrene spherules in coastal waters. Science 178, 749750. 10.1126/science.178.4062.7494628343 Carson H. S. (2013). The incidence of plastic ingestion by fishes: From the prey's perspective. Mar. Pollut. Bull. 74, 170174. 10.1016/j.marpolbul.2013.07.00823896402 Ceccarelli D. M. (2009). Impacts of Plastic debris on Australian Marine Wildlife. Report by C&R Consulting for the Department of the Environment, Water, Heritage and the Arts. Canberra, ACT, Australia. Choy C. A. Drazen J. C. (2013). Plastic for dinner? Observations of frequent debris ingestion by pelagic predatory fishes from the central North Pacific. Mar. Ecol. Prog. Ser. 485, 155163. 10.3354/meps10342 Cliff G. Dudley S. F. Ryan P. G. Singleton N. (2002). Large sharks and plastic debris in KwaZulu-Natal, South Africa. Mar. Freshw. Res. 53, 575581. 10.1071/MF01146 Clukey K. E. Lepczyk C. A. Balazs G. H. Work T. M. Lynch J. M. (2017). Investigation of plastic debris ingestion by four species of sea turtles collected as bycatch in pelagic Pacific longline fisheries. Mar. Pollut. Bull. 120, 117125. 10.1016/j.marpolbul.2017.04.06428487057 Compagno J. V. L. (1984). FAO Species Catalogue Vol. 4, part 2 Sharks of the World: An Annotated and Illustrated Catalogue of Shark Species Known to Date. Rome: Food and Agriculture Organization of the United Nations. Concha F. Morales N. Larraguibel J. (2013). Egg capsules of the Filetail fanskate Sympterygia lima (Poeppig 1835) (Rajiformes, Arhynchobatidae) from the southeastern Pacific Ocean, with observations on captive egg-laying. Ichthyol. Res. 60, 203208. 10.1007/s10228-012-0333-8 Córdova O. Rau J. R. Suazo C. G. Arriagada A. (2009). Estudio comparativo de la ecología alimentaria del depredador de alto nivel trófico Lontra felina (Molina, 1782) (Carnivora: Mustelidae) en Chile. Rev. Biol. Mar. Oceanog. 44, 429438. 10.4067/S0718-19572009000200016 de Paz N. Reyes J. Echegaray M. (2005). Capture and trade of marine turtles at San Andres, Southern Peru, in Proceedings of the Twenty-First Annual Symposium on Sea Turtle Biology and Conservation, Vol. 368, eds Coyne M. Clark R. (Philadelphia, PA: NOAA Technical Memorandum NMFS–SEFSC-528), 52. Derraik J. G. (2002). The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44, 842852. 10.1016/S0025-326X(02)00220-512405208 de Stephanis R. Giménez K. Carpinelli E. Gutierrez-Exposito C. Cañadas A. (2013). As main meal for sperm whales: plastic debris. Mar. Pollut. Bull. 69, 206214. 10.1016/j.marpolbul.2013.01.033 Di-Méglio N. Campana I. (2017). Floating macro-litter along the Mediterranean French coast: composition, density, distribution and overlap with cetacean range. Mar. Pollut. Bull. 118, 155166. 10.1016/j.marpolbul.2017.02.02628238484 Duncan E. M. Boterelli L. R. Broderick A. C. Galloway T. Lindeque P. K. Nuno A. . (2017). A global review of marine turtle entanglement in anthropogenic debris: a baseline for further action. Endang. Species. Res. 34, 431448. 10.3354/esr00865 Eriksen M. Lebreton L. C. Carson H. S. Thiel M. Moore C. J. Borerro J. C. . (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9:e111913. 10.1371/journal.pone.011191325494041 Eriksen M. Liboiron M. Kiessling T. Charron L. Alling A. Lebreton L. . (2018). Microplastic sampling with the AVANI trawl compared to two neuston trawls in the Bay of Bengal and South Pacific. Environ. Pollut. 232, 430439. 10.1016/j.envpol.2017.09.05828966027 Eriksen M. Maximenko N. Thiel M. Cummins A. Lattin G. Wilson S. . (2013). Plastic pollution in the South Pacific subtropical gyre. Mar. Pollut. Bull. 68, 7176. 10.1016/j.marpolbul.2012.12.02123324543 Eriksen M. Thiel M. Lebreton L. (2017). Nature of plastic marine pollution in the subtropical gyres, in Hazardous Chemicals Associated with Plastics in the Environment, eds Takada H. Karapanagioti H. K. (Heidelberg: Springer Verlag), 128. Fariña J. M. Aldana M. Ogalde F. Ojeda F. P. (2000). Trophic ecology of Girella laevifrons (Pisces: Kyphosidae) in rocky intertidal zones of northern Chile affected an non-affected by copper mine tailings. Rev. Chil. Hist. Nat. 73, 139149. 10.4067/S0716-078X2000000100013 Fariña J. M. Ojeda F. P. (1993). Abundance, activity, and trophic patterns of the redspotted catshark, Schroederichthys chilensis, on the Pacific temperate coast of Chile. Copeia 2, 545549. 10.2307/1447159 Fernández N. Muñoz S. Ardiles K. Torres I. Figueroa R. A. González-Acuña D. (2011). Uso de residuos plásticos en la construcción de nidos por el Lile (Phalacrocorax gaimardi) en el Norte de Chile, in X Congreso Chileno de Ornitología, (Santiago). Flammang B. E. Ebert D. A. Cailliet G. M. (2007). Egg cases of the genus Apristurus (Chondrichthyes: Scyliorhinidae): phylogenetic and ecological implications. Zoology 110, 308317. 10.1016/j.zool.2007.03.00117611091 Fossi M. C. Romeo T. Baini M. Panti C. Marsili L. Campani T. . (2017). Plastic debris occurrence, convergence areas and fin whales feeding ground in the Mediterranean marine protected area Pelagos sanctuary: a modelling approach. Front. Mar. Sci. 4:167. 10.3389/fmars.2017.00167 Galloway T. S. Cole M. Lewis C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1:0116. 10.1038/s41559-017-011628812686 García-Godos I. Goya E. (2006). Diet of the peruvian diving petrel Pelecanoides garnotii at La Vieja island, Peru, 1997 – 2000: potential fishery interactions and conservation implications. Mar. Ornithol. 34, 3341. García-Godos I. Goya E. Jahncke J. (2002). The diet of Markham's storm petrel Oceanodroma markhami on the central coast of Peru. Mar. Ornithol. 30, 7783. García-Godos I. Van Waerebeek K. Reyes J. C. Alfaro-Shigueto J. Arias-Schreiber M. (2007). Prey occurrence in the stomach contents of four small cetacean species in Peru. Lat. J. Aqua. Mamm. 6, 171183. 10.5597/lajam00122 George-Nascimento M. Bustamante R. Oyarzun C. (1985). Feeding ecology of the South American sea lion Otaria flavescens: food contents and food selectivity. Mar. Ecol. Prog. Ser. 21, 135143. 10.3354/meps021135 Guerra-Correa C. Valenzuela A. Retamal L. M. Malinarich A. (2007). Influencia de los desechos plásticos en la sobrevivencia de tortugas: el caso de Chelonia mydas en Antofagasta, in VII Simposio Sobre Medio Ambiente: Estado Actual y Perspectivas de la Investigación y Conservación de las Tortugas Marinas en las Costas del Pacífico Sur Oriental (Antofagasta), 96. Guidino C. Llapapasca M. A. Silva S. Alcorta B. Pacheco A. S. (2014). Patterns of spatial and temporal distribution of humpback whales at the southern limit of the Southeast Pacific breeding area. PLoS ONE 9:e112627. 10.1371/journal.pone.011262725391137 Haro D. Aguayo-Lobo A. Blank O. Cifuentes C. Dougnac C. Arredondo C. . (2015). A new mass stranding of false killer whale, Pseudorca crassidens in the Strait of Magellan Chile. Rev. Biol. Mar. Oceanogr. 50, 149155. 10.4067/S0718-19572015000100013 Haro D. Riccialdelli L. Acevedo J. Aguayo-Lobo A. Montiel A. (2016). Trophic ecology of humpback whales (Megaptera novaeangliae) in the Magellan strait as indicated by carbon and nitrogen stable isotopes. Aquat. Mamm. 42, 233244. 10.1578/AM.42.2.2016.233 Häussermann V. Gutstein C. Bedington M. Cassis D. Olavarria C. Dale A. . (2017). Largest baleen whale mass mortality during strong El Niño event is likely related to harmful toxic algal bloom. PeerJ 5:e3123. 10.7717/peerj.3123 Herling C. Culik B. Hennicke J. (2005). Diet of the Humboldt penguin (Spheniscus humboldti) in northern and southern Chile. Mar. Biol. 147, 1325. 10.1007/s00227-004-1547-8 Hernández S. Lamilla J. Dupré E. Stotz W. (2005). Desarrollo embrionario de la pintarroja común Schroederichthys chilensis (Guichenot, 1848) (Chondrichthyes: Scyliorhinidae). Gayana 69, 184190. 10.4067/S0717-65382005000100025 Hidalgo-Ruz V. Honorato-Zimmer D. Gatta-Rosemary M. Nuñez P. Hinojosa I. A. Thiel M. (2018). Spatio-temporal variation of anthropogenic marine debris on Chilean beaches. Mar. Pollut. Bull. 126, 15161524. 10.1016/j.marpolbul.2017.11.01429421133 Hidalgo-Ruz V. Thiel M. (2013). Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): a study supported by a citizen science project. Mar. Environ. Res. 87–88, 1218. 10.1016/j.marenvres.2013.02.01523541391 Hinojosa I. A. Thiel M. (2009). Floating marine debris in fjords, gulfs and channels of southern Chile. Mar. Pollut. Bull. 58, 341350. 10.1016/j.marpolbul.2008.10.02019124136 IMARPE (2011). Informe Nacional sobre la Conservación de las Tortugas Marinas en el Perú. Callao: Instituto del Mar del Perú. IUCN (2018). The IUCN Red List of Threatened Species. Available online at: http://www.iucnredlist.org/ Jacobsen J. K. Massey L. Gulland F. (2010). Fatal ingestion of floating net debris by two sperm whales (Physeter macrocephalus). Mar. Pollut. Bull. 60, 765767. 10.1016/j.marpolbul.2010.03.00820381092 Jahncke J. García-Godos A. Goya E. (1997). Dieta del Guanay Leucocarbo bougainvillii, del Piquero Peruano Sula variegata y otras aves de la costa peruana, Abril y Mayo de 1997. Inf. del Inst. del Mar. Perú 126, 7586. Jiménez A. Pingo S. Alfaro-Shigueto J. Mangel J. C. Hooker Y. (2017). Feeding ecology of the green turtle Chelonia mydas in northern Peru. Lat. Am. J. Aquat. Res. 45, 585596. 10.3856/vol45-issue3-fulltext-8 Kenyon K. W. Kridler E. (1969). Laysan albatrosses swallow indigestible matter. The Auk 86, 339343. 10.2307/4083505 Kiessling T. Gutow L. Thiel M. (2015). Marine litter as habitat and dispersal vector, in Marine Anthropogenic Litter, eds Bergmann M. Gutow L. Klages M. (Cham: Springer), 1447. Kiessling T. Salas S. Mutafoglu K. Thiel M. (2017). Who cares about dirty beaches? Evaluating environmental awareness and action on coastal litter in Chile. Ocean Coast. Manag. 137, 8295. 10.1016/j.ocecoaman.2016.11.029 Kühn S. Rebolledo E. L. B. van Franeker J. A. (2015). Deleterious effects of litter on marine life, in Marine Anthropogenic Litter, eds Bergmann M. Gutow L. Klages M. (Cham: Springer), 75116. Laist D. W. (1997). Impacts of marine debris: entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records, in Marine Debris. Springer Series on Environmental Management, eds Coe J. M. Rogers D. B. (New York, NY: Springer), 99139. Lavers J. L. Bond A. L. Hutton I. (2014). Plastic ingestion by flesh-footed shearwaters (Puffinus carneipes): implications for fledgling body condition and the accumulation of plastic-derived chemicals. Environ. Pollut. 187, 124129. 10.1016/j.envpol.2013.12.02024480381 Law K. L. (2017). Plastics in the marine environment. Annu. Rev. Mar. Sci. 9, 205229. 10.1146/annurev-marine-010816-06040927620829 Ludynia K. Garthe S. Luna-Jorquera G. (2005). Seasonal and regional variation in the diet of the kelp gull in northern Chile. Waterbirds 28, 359365. 10.1675/1524-4695(2005)028[0359:SARVIT]2.0.CO;2 Luna-Jorquera G. Fernández C. E. Rivadeneira M. M. (2012). Determinants of the diversity of plants, birds and mammals of coastal islands of the Humboldt current systems: implications for conservation. Biodivers. Conserv. 21, 1332. 10.1007/s10531-011-0157-2 Lusher A. (2015). Microplastics in the marine environment: distribution, interactions and effects, in Marine Anthropogenic Litter, eds Bergmann M. Gutow L. Klages M. (Cham: Springer), 1447. Lusher A. L. Hernandez-Milian G. Berrow S. Rogan E. O'Connor I. (2018). Incidence of marine debris in cetaceans stranded and bycaught in Ireland: recent findings and a review of historical knowledge. Environ. Pollut. 232, 467476. 10.1016/j.envpol.2017.09.07028987567 Mangel J. C. Alfaro-Shigueto J. Witt M. J. Hodgson D. J. Godley B. J. (2013). Using pingers to reduce bycatch of small cetaceans in Peru's small-scale driftnet fishery. Oryx 47, 595606. 10.1017/S0030605312000658 Mansilla L. Olavarría C. Vega M. A. (2012). Stomach contents of long-finned pilot whales (Globicephala melas) from southern Chile. Pol. Biol. 35, 19291933. 10.1007/s00300-012-1222-3 Markaida U. Sosa-Nishizaki O. (2010). Food and feeding habits of the blue shark Prionace glauca caught off Ensenada, Baja California, Mexico, with a review on its feeding. J. Mar. Biol. Assoc. UK. 90, 977994. 10.1017/S0025315409991597 Martinez E. Maamaatuaiahutapu K. Taillandier V. (2009). Floating marine debris surface drift: convergence and accumulation toward the South Pacific subtropical gyre. Mar. Pollut. Bull. 58, 13471355. 10.1016/j.marpolbul.2009.04.02219464033 Medina-Vogel G. Rodriguez C. D. Alvarez R. E. Bartheld V. (2004). Feeding ecology of the marine otter (Lutra felina) in a rocky seashore of the south of Chile. Mar. Mamm. Scien. 20, 134144. 10.1111/j.1748-7692.2004.tb01144.x Miranda-Urbina D. Thiel M. Luna-Jorquera G. (2015). Litter and seabirds found across a longitudinal gradient in the South Pacific Ocean. Mar. Pollut. Bull. 96, 235244. 10.1016/j.marpolbul.2015.05.02125998727 Mizraji R. Ahrendt C. Perez-Venegas D. Vargas J. Pulgar J. Aldana M. . (2017). Is the feeding type related with the content of microplastics in intertidal fish gut? Mar. Pollut. Bull. 116, 498500. 10.1016/j.marpolbul.2017.01.00828063703 Moore E. Lyday S. Roletto J. Litle K. Parrish J. K. Nevins H. . (2009). Entanglements of marine mammals and seabirds in central California and the north-west coast of the United States 2001–2005. Mar. Pollut. Bull. 58, 10451051. 10.1016/j.marpolbul.2009.02.00619344921 Moreno C. A. Castro R. Mújica L. J. Reyes P. (2008). Significant conservation benefits obtained from the use of a new fishing gear in the Chilean Patagonian toothfish fishery. CCAMLR Sci. 15, 7991. Nelms S. E. Duncan E. M. Broderick A. C. Galloway T. S. Godfrey M. H. Hamann M. . (2016). Plastic and marine turtles: a review and call for research. ICES J. Mar. Sci. 73, 165181. 10.1093/icesjms/fsv165 Oddone M. C. Vooren C. M. (2002). Egg cases and size at hatching of Sympterygia acuta in the southwestern Atlantic. J. Fish Biol. 61, 858861. 10.1111/j.1095-8649.2002.tb00919.x Oddone M. C. Vooren C. M. (2008). Comparative morphology and identification of egg capsules of skate species of the genera Atlantoraja Menni, 1972, Rioraja Whitley, 1939 and Sympterygia Müller & Henle, 1837. Arquivos de Ciências do Mar 41, 513. Ory N. Chagnon C. Felix F. Fernández C. Ferreira J. L. Gallardo C. . (2018). Low prevalence of microplastic contamination in planktivorous fish species from the southeast Pacific Ocean. Mar. Pollut. Bull. 127, 211216. 10.1016/j.marpolbul.2017.12.01629475656 Ory N. C. Sobral P. Ferreira J. L. Thiel M. (2017). Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre. Scien. Tot. Environ. 586, 430437. 10.1016/j.scitotenv.2017.01.17528196756 Page B. McKenzie J. McIntosh R. Baylis A. Morrissey A. Calvert N. . (2004). Entanglement of Australian sea lions and New Zealand fur seals in lost fishing gear and other marine debris before and after government and industry attempts to reduce the problem. Mar. Pollut. Bull. 49, 3342. 10.1016/j.marpolbul.2004.01.00615234872 Perez-Venegas D. Pavés H. Pulgar J. Ahrendt C. Seguel M. Galbán-Malagón C. J. (2017). Coastal debris survey in a Remote Island of the Chilean Northern Patagonia. Mar. Pollut. Bull. 125, 530534. 10.1016/j.marpolbul.2017.09.02628951055 Pichel W. G. Churnside J. H. Veenstra T. S. Foley D. G. Friedman K. S. Brainard R. E. . (2007). Marine debris collects within the North Pacific subtropical convergence zone. Mar. Pollut. Bull. 54, 12071211. 10.1016/j.marpolbul.2007.04.01017568624 Portflitt-Toro M. Miranda-Urbina D. Luna-Jorquera D. (2016). Captura incidental del blanquillo Podiceps occipitalis en una red de enmalle en Coquimbo, Norte de Chile. Rev. Chil. Ornitol. 22, 212214. Rech S. Macaya-Caquilpán V. Pantoja J. F. Rivadeneira M. M. Jofre Madariaga D. Thiel M. (2014). Rivers as a source of marine litter - a study from the SE Pacific. Mar. Pollut. Bull. 82, 6675. 10.1016/j.marpolbul.2014.03.01924726186 Rech S. Macaya-Caquilpán V. Pantoja J. F. Rivadeneira M. M. Campodónico C. K. Thiel M. (2015). Sampling of riverine litter with citizen scientists – findings and recommendations. Environ. Monit. Assess. 187:335. 10.1007/s10661-015-4473-y25957193 Roman L. Schuyler Q. A. Hardesty B. D. Townsend K. A. (2016). Anthropogenic debris ingestion by avifauna in Eastern Australia. PLoS ONE 11:e0158343. 10.1371/journal.pone.015834327574986 Ryan P. G. (1987). The incidence and characteristics of plastic particles ingested by seabirds. Mar. Environ. Res. 23, 175206. 10.1016/0141-1136(87)90028-6 Ryan P. G. (2016) Ingestion of Plastics by Marine Organisms, in Hazardous Chemicals Associated with Plastics in the Marine Environment. Handbook of Environmental Chemistry, eds Takada H. Karapanagioti H. K. (Berlin: Springer), 132. Sazima I. Gadig O. B. Namora R. C. Motta F. S. (2002). Plastic debris collars on juvenile carcharhinid sharks (Rhizoprionodon lalandii) in southwest Atlantic. Mar. Pollut. Bull. 44, 11491151. 10.1016/S0025-326X(02)00141-812474977 Scales K. L. Miller P. I. Hawkes L. A. Ingram S. N. Sims D. W. Votier S. C. (2014). On the Front Line: frontal zones as priority at-sea conservation areas for mobile marine vertebrates. J. Appl. Ecol. 51, 15751583. 10.1111/1365-2664.12330 Schuyler Q. Hardesty B. D. Wilcox C. Townsend K. (2014). Global analysis of anthropogenic debris ingestion by sea turtles. Conserv. Biol. 28, 129139. 10.1111/cobi.1212623914794 Silva A. Retamal L. M. Guerra-Correa C. (2007). Registro de tortugas marinas ingresadas al centro de rescate y rehabilitación de fauna silvestre, in VII Simposio sobre Medio Ambiente: Estado Actual y Perspectivas de la Investigación y Conservación de las Tortugas Marinas en las Costas del Pacífico Sur Oriental (Antofagasta), 96. Spear L. Ainley D. Ribic C. (1995). Incidence of plastic in seabirds from the Tropical Pacific 1984-91: relation with distribution of species, sex, age, season, year and body weight. Mar. Environ. Res. 40, 123146. 10.1016/0141-1136(94)00140-K Stucchi M. Figueroa J. (2006). La avifauna de las islas Lobos de Afuera y algunos alcances sobre su biodiversidad. Reporte de investigación N° 2, p.88, Asociación Ucumari, Lima, Perú. Terepocki A. K. Brush A. T. Kleine L. U. Shugart G. W. Hodum P. (2017). Size and dynamics of microplastic in gastrointestinal tracts of northern fulmars (Fulmarus glacialis) and sooty shearwaters (Ardenna grisea). Mar. Poll. Bull. 116, 143150. 10.1016/j.marpolbul.2016.12.06428063702 Thiel M. Bravo M. Hinojosa I. A. Luna G. Miranda L. Núñez P. . (2011). Anthropogenic litter in the SE Pacific: an overview of the problem and possible solutions. J. Integr. Coast. Zone Manage. 11, 115134. 10.5894/rgci207 Thiel M. Hinojosa I. A. Miranda L. Pantoja J. Rivadeneira M. M. Vasquez N. (2013). Anthropogenic marine debris in the coastal environment: a multi-year comparison between coastal waters and local beaches. Mar. Pollut. Bull. 71, 307316. 10.1016/j.marpolbul.2013.01.005 Thiel M. Hinojosa I. Vásquez N. Macaya E. (2003). Floating marine debris in coastal waters of the SE-Pacific (Chile). Mar. Pollut. Bull. 46, 224231. 10.1016/S0025-326X(02)00365-X12586118 Thiel M. Macaya E. C. Acuña E. Arntz W. E. Bastias H. Brokordt K. . (2007). The Humboldt Current System of northern and central Chile: oceanographic processes, ecological interactions and socioeconomic feedback. Ocean. Mar. Biol. Annu. Rev. 45, 195344. 10.1201/9781420050943.ch6 Titmus A. J. Hyrenbach K. D. (2011). Habitat associations of floating debris and marine birds in the North East Pacific Ocean at coarse and meso-spatial scales. Mar. Pollut. Bull. 62, 24962506. 10.1016/j.marpolbul.2011.08.00721889172 Wallace B. P. Lewison R. L. McDonald S. L. McDonald R. K. Kot C. Y. Kelez S. . (2010). Global patterns of marine turtle bycatch. Conserv. Lett. 3, 131142. 10.1111/j.1755-263X.2010.00105.x Wegner N. C. Cartamil D. P. (2012). Effects of prolonged entanglement in discarded fishing gear with substantive biofouling on the health and behavior of an adult shortfin mako shark, Isurus oxyrinchus. Mar. Pollut. Bull. 64, 391394. 10.1016/j.marpolbul.201122172235 Wilcox C. Hardesty B. D. Sharples R. Griffin D. A. Lawson T. J. Gunn R. (2013). Ghostnet impacts on globally threatened turtles, a spatial risk analysis for northern Australia. Conserv. Lett. 6, 247254. 10.1111/conl.12001 Wilcox C. Van Sebille E. Hardesty B. D. (2015). Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Nat. Acad. Sci. 112, 1189911904. 10.1073/pnas.150210811226324886

      Funding. This project received support from the Chilean Millennium Initiative to ESMOI (Millenium Nucleous Ecology and Sustainable Management of Oceanic Islands). Sampling of floating plastics in the South Pacific was funded by the Comité Oceanográfico Nacional (CONA) from Chile, project codes CONA C21-15-029 and CONA C22-16-11 to MT; and project codes CONA C21-15-113 and CONA C22-16-06 to GL-J. NO received support through a postdoctoral FONDECYT grant (No. 3150636) and NM received support through the CONICYT Beca Doctorado Nacional N°21151143, and NL received support from Beca Magister Nacional CONICYT N°22161894 from the Chilean Ministry of Education. Shark interactions with plastics were observed during the project entitled The lost fish from Easter Island funded by Save Our Seas Foundation Small Grant N°361.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016fjgths.com.cn
      www.jlfyuq.com.cn
      www.hyqpt.org.cn
      hdcsht.com.cn
      www.hilliot.com.cn
      lufxhh.com.cn
      qynytech.com.cn
      www.qtwtfm.com.cn
      www.xetyey.com.cn
      vivebest.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p