Front. Mar. Sci. Frontiers in Marine Science Front. Mar. Sci. 2296-7745 Frontiers Media S.A. 10.3389/fmars.2018.00185 Marine Science Review The Role of Horseshoe Crabs in the Biomedical Industry and Recent Trends Impacting Species Sustainability Krisfalusi-Gannon Jordan 1 2 Ali Waleed 1 3 Dellinger Kristen 4 Robertson Lee 1 Brady Terry E. 1 Goddard Melinda K. M. 5 Tinker-Kulberg Rachel 4 Kepley Christopher L. 1 5 Dellinger Anthony L. 1 4 * 1Kepley Biosystems Incorporated, Greensboro, NC, United States 2High Point University, High Point, NC, United States 3Department of Biology, Columbia University, New York, NY, United States 4Joint School of Nanoscience and Nanoengineering, Greensboro, NC, United States 5ClienTell® Consulting, LLC, The Valley, Anguilla

Edited by: Elvira S. Poloczanska, Alfred Wegener Institut Helmholtz Zentrum für Polar und Meeresforschung, Germany

Reviewed by: David Smith, United States Geological Survey, United States; Donald F. Boesch, University of Maryland, United States

*Correspondence: Anthony L. Dellinger adellinger@kepleybiosystems.com

This article was submitted to Global Change and the Future Ocean, a section of the journal Frontiers in Marine Science

05 06 2018 2018 5 185 15 11 2017 08 05 2018 Copyright © 2018 Krisfalusi-Gannon, Ali, Dellinger, Robertson, Brady, Goddard, Tinker-Kulberg, Kepley and Dellinger. 2018 Krisfalusi-Gannon, Ali, Dellinger, Robertson, Brady, Goddard, Tinker-Kulberg, Kepley and Dellinger

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Every year the Atlantic horseshoe crab (Limulus polyphemus) arrives on shore to spawn, a sight once taken for granted. However, in addition to the gradual climate changes impacting all ecosystems, commercial demand from the widespread application of Atlantic horseshoe crab blood in industrial endotoxin testing and steady use as eel and whelk bait has brought the future of this enduring species into question. In response, regulations have been adopted to enhance the traceability and record keeping of horseshoe crab harvest, which has historically been difficult to track. However, these regulations do not restrict or limit LAL harvest in any significant manner. Still, sometimes-lethal biomedical bleeding process and associated behavioral changes pose a risk to horseshoe crab viability after bleeding and once returned to the waters. As a result, regulators and environmentalists are concerned that current trends and overfishing of this marine arthropod will significantly impact the surrounding ecosystem. This review examines their role and recent trends in the biomedical industry that are impacting these ancient creatures and the derivative effect on shorebirds, while considering emerging alternatives where feasible, as well as ways to ensure sustainable and pragmatic harvesting strategies. Ultimately, healthy populations of horseshoe crabs are vital to restoring and maintaining ecosystems while balancing the need for medical and research applications entirely dependent on these unique creatures.

biomedical industry ecological status horseshoe crab Limulus amebocyte lysate assay Limulus polyphemus migrating shorebirds red knot ocean ecology 1555752 2017-IIP-4202 National Science Foundation10.13039/100000001 North Carolina Biotechnology Center10.13039/100005562 North Carolina Sea Grant10.13039/100005623

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The American horseshoe crab (Limulus polyphemus) is a valuable keystone species distributed across the Atlantic Coast of the United States and the Gulf of Mexico (Botton and Haskin, 1984; Botton and Ropes, 1989; Walls et al., 2002; Botton, 2009; Sekiguchi and Shuster, 2009). Horseshoe crabs play a key role in the eel and whelk fishing industry and an unparalleled, integral part in ensuring environmental safety and that of nearly every drug and medical device in use today (van Holde and Miller, 1995; Loveland et al., 1996).

      This ancient aquatic arthropod, more closely related to scorpions and spiders than to crabs (Størmer, 1952), belongs to its own distinct class, Merostomata (Woodward, 1866), literally meaning “legs attached to mouth.” The name “horseshoe crab” is derived from the Limulus polyphemus' most recognizable features, its extended prosoma (or cephalothorax), a large shell that resembles a horseshoe (Figure 1). Commonly referred to as a “living fossil,” the horseshoe crab has been able to survive nearly unchanged for an estimated 200 million years (Walls et al., 2002; Kin and Blazejowski, 2014)–prior to recent population dynamics in the face of growing commercial demand. Concerted conservation and research efforts are vital for this species' future wellbeing. Improved or alternative biomedical harvest practices, environmental protection considerations and the suggested partnership of multiple stake-holding organizations are examined further, as discussed herein.

      Basic anatomy of the horseshoe crab (L. polyphemus) (Top); and photograph of a mature female (Bottom).

      Factors affecting horseshoe crab populations

      Interest in the horseshoe crab has grown over last half century due to the distinctive nature of its blood and popular publications articulating the species link to migratory shorebirds. The animal's main commercial value is based on a substance found within its light blue blood (van Holde and Miller, 1995). Possessing an open circulatory system with no adaptive immune response, the horseshoe crab has survived through the ages by an “innate immunity” based on granular amebocytes, which comprise 99% of its hemocytes (Figure 2) (Shuster, 1978; Iwanaga et al., 1998; Medzhitov and Janeway, 2000). When these granular amebocytes come into contact with an endotoxin or 1,3ß-D-glucan (present in the cell walls of Gram-negative bacteria and fungi, respectively), a cascade of defense molecules is released, triggering coagulation and neutralization of the pathogens. The resulting clot effectively immobilizes the threat and prevents an infection from progressing beyond the wound (Isakova and Armstrong, 2003). While most recent research on horseshoe crabs has been focused on amebocytes and endotoxin detection (http://www.ncbi.nlm.nih.gov/pubmed/), some earlier studies have also yielded insights into human eyesight adaptation, the effect of circadian rhythms on vision, and the process by which sensory information is encoded (Hartline and McDonald, 1947; Barlow et al., 1977).

      Diagram of horseshoe crab circulatory system (Diagram modified from Patten, 1912; copyright permission, reuse or modifications of Figure 2 are not required for this image as it is in the Public Domain and holds no copyright).

      The unique ability of amebocytes to produce an instantaneous, visible reaction to endotoxins, in particular, has driven commercial demand from pharmaceutical and biomedical companies to confirm drug and medical device safety (Mikkelsen, 1988; Novitsky, 2009) using the Limulus amebocyte lysate (LAL) test, which has become the method of choice for endotoxin detection (Novitsky, 2009; Gauvry, 2015). These LAL test applications include quality assurance for: intravenous drugs; biologicals (e.g., clotting factors, insulin, and vaccines); recombinant drugs; and implantable medical devices (e.g., heart valves and orthopedic devices) (Novitsky, 2009). Environmental applications have also increased demand for the LAL test to ensure air quality and detect endotoxin concentrations in fresh water, sea water, and surrounding sediment (Novitsky, 2009).

      Such vital benefits are nonetheless dependent on a crude LAL test manufacturing process; whereby the horseshoe crabs are captured, bled, and the collected blood is centrifuged to concentrate the amebocytes. Water is then added to the packed amebocytes, causing them to lyse and release coagulation proteins; thus, the “lysate” nomenclature.

      Historically, horseshoe crabs have also been used apart from the extraction of blood for safety testing. They were once harvested for fertilizer and livestock feed; but this widespread practice ended in the 1920s, as the stock of horseshoe crabs began to decline and the public nuisance of the strong odor hastened the adoption of more competitive, alternative fertilizers (Walls et al., 2002). Thereafter, the use of horseshoe crabs as bait in commercial fishing became popular in the 1990s. Horseshoe crabs, particularly egg-bearing female crabs, proved to be an excellent bait for use in eel and whelk pots (Loveland et al., 1996). However, as the increasing biomedical industry requirements of horseshoe crab blood and the species link to migratory shorebirds viability were realized, new oversight agencies were established to mediate the risks from over-harvesting, and restrictions were placed on the number of horseshoe crabs collected for bait in order to regulate populations. These agencies further generated programs for stock management, developed state quota regulations, and established best practices for biomedical harvesting. In 2015, 583,208 horseshoe crabs were harvested as bait for eel and whelk (Atlantic States Marine Fisheries Commission, 2016), a significant reduction from the millions that were once harvested (Atlantic States Marine Fisheries Commission, 2013).

      Impact of amebocyte harvesting on horseshoe crab behavior and physiology

      The Atlantic States Marine Fisheries Commission (ASMFC) reported that in 2015, 559,903 horseshoe crabs were transported to biomedical facilities for the production of LAL (Atlantic States Marine Fisheries Commission, 2016). The raw materials for the preferred LAL test require careful extraction of blood from horseshoe crabs. Established methods entail introduction of a hypodermic needle placed directly into the exposed pericardial membrane of the horseshoe crab to draw from 50 to 400 mL of blood, depending on the sex and maturity of the horseshoe crab (Figure 2). The plasma is centrifuged, and LPS-free reagents, such as Na2EDTA or 3% NaCl, are added to help prevent clotting after extraction; this can occur as a result of the unintended introduction of endotoxins or other external factors, including undue stress during extraction and exposure to extreme temperatures. Careful handling of the horseshoe crab during bleeding, while maintaining the crab and blood at low and consistent temperatures, can help to prevent such coagulation issues (Armstrong and Conrad, 2008).

      The harvest and collection procedure for bleeding horseshoe crabs may appear straightforward, but there are significant risks posed to the crabs at various stages of the process, ranging from transportation and crab storage, to the blood drawing itself. Horseshoe crab mortality rates following such harvesting range from 10 to 30%; however, these figures do not account for any further trauma and/or detrimental behavioral changes once the animals are returned to the ocean, nor the derivative population impact from the disruption of horseshoe crab spawning (Walls and Berkson, 2003; Anderson et al., 2013).

      In fact, blood loss may not be the leading cause of death, but rather compounding factors, such as capture, handling and transportation. Biomedical harvest usually entails horseshoe crab collection from the bottom of the shallow seabed with dragging trawls and stacked on the bed of a boat before transferring them into plastic storage containers or bins for extended periods of time. During this process, crabs are crushed under the weight of other stacked crabs resulting in broken telsons and cracked shells, or accidentally impaled by the telsons of neighboring crabs. Each of these parameters must be evaluated when assessing overall mortality, rather than limiting the assessment to estimations. Prolonged survey and evaluation of recently bled horseshoe crabs could also provide more reliable extrapolation of morbidity if extended beyond the established 6-week assessment period.

      A study evaluating these factors recorded no such sequelae in horseshoe crabs that were removed from the water only for the bleeding process and immediately returned, without being exposed to the impact of transport and storage (Hurton and Berkson, 2006). These “low stressed” crabs were observed to recover from removal of up to 40% of their estimated blood volume. However, when conventional horseshoe crab capture, transport, storage and handling procedures at biomedical bleeding facilities were simulated, the time spent out of the water and extent of exposure to elevated temperatures appeared to play a role in increased mortality. In controlled laboratory simulations, crabs exposed to capture, transport and holding stressors without bleeding, compared to those exposed to both bleeding and other external influences, yielded 2.6 vs. 8.3% mortality rates; while crabs losing the greatest percentage of blood along with capture, transport and storage exhibited the highest mortality rates overall. When both groups of crabs had 40% of their blood volume extracted, only 6% of non-stressed crabs perished vs. 15.4% of stressed crabs. (Hurton and Berkson, 2006). Thus, improved harvest practices have the potential to reduce mortality rates during biomedical harvest by more than half.

      The stress from removing horseshoe crabs from the water during harvest may prove especially lethal. The horseshoe crab breathes through a set of gills and transports oxygen via hemocyanin (Towle and Henry, 2003). The primary function of the gills is to supply oxygen, not to remove CO2. Because carbon dioxide is water-soluble, it is easily removed when the animal is in an aquatic environment. However, when a crab is removed from the water, it is not able to efficiently remove CO2, and regulation of PCO2 results in abnormal hemolymph pH levels (Henry and Wheatly, 1992; Towle and Henry, 2003). While these animals can tolerate low oxygen environments based on various physiologic adaptations, such as a sharp decrease in heart rate and increased affinity of oxygen to hemocyanin (Towle and Henry, 2003); after removal from the water for only 5 min, they can develop severe hypoxia and metabolic acidosis. After 24 h of transportation out of water, horseshoe crabs have been shown to exhibit significantly diminished PO2 levels and extreme respiratory acidosis (Allender et al., 2010).

      A review on the effects of hypoxic conditions on multiple marine organisms demonstrated that survival times are reduced by an average of 74% when an animal experiences hypoxia (Vaquer-Sunyer and Duarte, 2011). Accordingly, hypoxia has been associated with decreased stamina in hermit crabs (Mowles et al., 2009) and with altered fish migration patterns and distance (Ultsch, 1989). Assuming similar side effects are likely in horseshoe crabs, oxygen deprivation and the resultant disturbance in homeostasis has the potential to disrupt normal functions, such as spawning, even after the horseshoe crabs are returned to their natural habitat.

      Exposing horseshoe crabs to high temperatures during capture and/or transportation has also been shown to negatively impact both blood quality and overall health (Coates et al., 2012). In a study to determine horseshoe crab response to varying temperatures, crabs held in the highest temperature (23°C) lost the most body weight and were among the only ones to expire. Hemocyanin and amebocyte concentrations were inversely proportional to temperature, with crabs held in the highest temperatures yielding the lowest concentrations. During the study, horseshoe crabs held in 18°C water yielded a 43.9% decrease in hemocyanin concentration, while those held in 23°C water showed a 69.3% decrease (Coates et al., 2012). Although the density of amebocytes decreased across all temperatures studied, the greatest decrease also occurred at the highest temperatures, with those held at 23°C yielding a decrease of 71.7%; which was also accompanied by notable morphological changes in the amebocytes.

      Other, more nuanced behavioral changes brought about by the bleeding process have also been documented. Behavioral changes in horseshoe crabs have been observed for up to 2 weeks after harvesting (Anderson et al., 2013). The horseshoe crabs showed: slower walking; a 33–66% reduction in overall activity; and decreased expression of tidal rhythms, which dictate movement and spawning activity. Harvesting, in particular, may reduce spawning activity of females; which is especially problematic, since horseshoe crab harvest often takes place while spawning, when the crabs are easily accessible on the beach (Leschen and Correia, 2010). Upon habitat reintroduction, females have demonstrated markedly lethargic behavior and failed to spawn entirely (Anderson et al., 2013). This negative impact on the horseshoe crab population is further compounded by the high mortality rate of 30% following the bleeding of female horseshoe crabs regardless of pre- or post-spawning phases (Leschen and Correia, 2010); whereas, bleeding male horseshoe crabs has demonstrated a mortality rate of 8% (Walls and Berkson, 2003). In 2013, the reported mortality rate of horseshoe crabs harvested for solely biomedical purposes was 15%. However, when the number of crabs harvested, bled, sold by biomedical companies for bait, and counted against state bait quotas was factored in, the mortality rate jumped to 26% (Atlantic States Marine Fisheries Commission, 2013).

      While research organizations continue to investigate the industry practices and associated effects of the horseshoe crab biomedical bleeding process, such studies have been largely dismissed or regarded as not following industry established Best Management Practices (BMP) in 2011 (Atlantic States Marine Fisheries Commission, 2014). Furthermore, some regulatory agencies have also asserted that such efforts would only be scientifically valid if all protocols were independently reviewed and approved by an advisory panel (Atlantic States Marine Fisheries Commission, 2010a). Notably, the current elected panel is predominantly comprised of stakeholders representing the agencies that control horseshoe crab biomedical assay commerce (Atlantic States Marine Fisheries Commission, 2013), suggesting that effective management strategies may be compromised by conflicting economic and environmental considerations.

      Declining populations of horseshoe crabs

      Atlantic States Marine Fisheries Commission reports on horseshoe crab harvest mortality date back to 2004. From 2004 to 2012, the number of crabs delivered to biomedical bleeding facilities increased from 343,126 to 611,827, or by about 78%; while total mortality correspondingly increased by 75% (Atlantic States Marine Fisheries Commission, 2013). The percentage of horseshoe crabs that died prior to being bled more than doubled from 2008 to 2012 (Atlantic States Marine Fisheries Commission, 2013), which may be attributed to deleterious harvest and transportation practices. The maximum harvest mortality limit of 57,500 set by the ASMFC (based on the 15% mortality allowance) has been exceeded at times by more than 20,000 horseshoe crabs every year since 2007 (Atlantic States Marine Fisheries Commission, 1998, 2013). More recently, ASMFC data has estimated the mortality of horseshoe crabs harvested for the biomedical industry to be 70,000 (with a range of 23,000–140,000; Atlantic States Marine Fisheries Commission, 2016).

      The cumulative effects of horseshoe crab harvest have also been well documented. An especially compelling example has been observed near Cape Cod at Mashnee Dike, where the spawning horseshoe crab count dwindled from around 3,000 to 148, representing a 95.3% decline over a 15-year period (1984–1999). Mashnee Dike was brought under the protection of the United States Army Corps of Engineers, and no external development in that area has been permitted since that time. As researchers have observed availability of a consistent food supply for the crabs (Widener and Barlow, 1999), human predation appears to be the primary cause of this collapse. Albeit not as severe, a Long Island-based study monitoring 68 sites showed horseshoe crab populations decreased just over 10%, or roughly one percent per year from 2003 to 2014 (Tanacredi and Portilla, 2015).

      Reports from Delaware Bay and a few additional sites have cited modest horseshoe crab recoveries, but such examples have been the exception and seem to have been more than offset by shifting commercial activity to other geographic regions (Smith et al., 2009). Stricter horseshoe crab regulations around the Delaware Bay/New Jersey coastlines have led to increased harvesting in New England, where continued population declines were noted in a 2009 survey (Atlantic States Marine Fisheries Commission, 2013). As a result, regional management plans require coordination to ensure that horseshoe crabs are protected throughout their purview (Berkson et al., 2009).

      The increased demands of the U.S. population, which is growing by 2.6 million people each year, and rapidly growing medical device and vaccine industries (Gauvry, 2015; Central Intelligence Agency, 2016) may not bode well for horseshoe crab populations. Based on current rates of horseshoe crab mortality and related population trends, over the next two decades, demand for the LAL test is likely to reach unsustainable levels. While horseshoe crab populations have moderately stabilized in some regions of the Atlantic, increases have also not been observed, which may be a result of negative behavioral or reproduction changes once the animals are returned to the ocean (Anderson et al., 2013) as well as deteriorating coastlines.

      Global endotoxin detection is also dependent upon the TAL (Tachypleus amebocyte lysate) test produced in China, which is derived from the amebocytes of Tachypleus tridentatus and Tachypleus giga, Asian horseshoe crab species. Because these horseshoe crabs are often secondarily sold for human consumption or for the production of chitin after biomedical bleeding, resulting in a 100% mortality rate, population decline of these two species is a serious concern (Gauvry, 2015). While specific survey data are not available as in the U.S., decreased harvest quantities suggest an 83% drop in abundance (Gauvry, 2015). Unless China begins to regulate the harvest of T. tridentatus and T. giga, declining availability of the TAL test would be expected to increase demand for the LAL test throughout Asia (Gauvry, 2015).

      Environmental considerations

      Sustaining the horseshoe crab population is also ecologically essential, as they play key roles as: bioturbators; hosts to a variety of epibionts on their shells; controllers of the population of many benthic invertebrates; and as a food source for a multitude of marine animals (Figure 3) (Botton and Haskin, 1984; Botton and Ropes, 1989; Walls et al., 2002; Botton, 2009). Barnacles, slipper limpets and blue mussels frequently live on the shells of horseshoe crabs, although the relationship is mostly neutral (Botton, 2009). Although they consume a broad, omnivorous diet, adult horseshoe crabs are important predators of benthic invertebrates, such as bivalves, polychaetes, crustaceans and gastropods, with a particular preference for thin-shelled bivalves, like small surf clams and blue mussels (Botton and Haskin, 1984; Botton and Ropes, 1989).

      Diagram of feeding interactions of the horseshoe crab. Directions of arrows indicate impacts of each group on others through feeding interactions.

      Shorebirds (e.g., red knots and ruddy turnstones), sand shrimp and fish (e.g., American eel, Atlantic silverside, catfish, devil ray, mullet, northern kingfish, silver perch, summer flounder, striped bass, swordfish, weakfish, white perch and winter flounder) consume horseshoe crab eggs and larvae (Warwell, 1897; Perry, 1931; Price, 1962; Spraker and Austin, 1997; Walls et al., 2002). In turn, crabs (e.g., blue, fiddler, green and hermit crabs) and pufferfish eat juvenile horseshoe crabs (Walls et al., 2002; Botton, 2009).

      Mature horseshoe crabs are not significantly threatened by natural predators due to their large size and thick shell, but some have been identified (Walls and Berkson, 2003). For example, large American alligators have been observed eating adult horseshoe crabs in the Indian River Lagoon in Florida on several occasions, and leopard sharks have occasionally consumed them, as well (Reid and Bonde, 1990; Walls et al., 2002). Whenever adult horseshoe crabs are upturned and stranded on the beach, herring and black-backed gulls typically eat them, removing the gills and legs in order to access eggs and internal organs (Botton and Loveland, 1993; Walls et al., 2002). However, loggerhead turtles (listed as threatened by the U.S. Endangered Species Act) are the most common predator of mature horseshoe crabs, which have comprised a significant portion of these turtles' stomach contents when found in the lower Chesapeake Bay (Keinath, 2003).

      That said, in the mid-1980s the diet of loggerhead turtles in Virginia was dominated by horseshoe crabs, before transitioning to blue crabs in the 1980s, and more recently to finfish (Seney and Musick, 2007). These shifts are believed to have been caused by the decline in horseshoe and blue crab populations. The drop in these two populations may also correlate to the overall decrease in the number of sea turtles in the Chesapeake Bay over the past few decades (Botton, 2009). In one survey, the sea turtle density in the lower Delaware Bay was comparable to the density of sea turtles in the lower Chesapeake Bay (Spotila et al., 2007), indicating the possibility that loggerheads in this area also feed on horseshoe crabs (Botton, 2009). While few such observations have been published to conclude whether many other species of sea turtles also consume horseshoe crabs, one of the most endangered, Kemp's Ridley turtles, have been observed eating them (Servis et al., 2015).

      Shorebirds as bellwethers

      The spawning of horseshoe crabs in the Delaware Bay occurs between May and June, with 70% occurring during the first two spring tides in May (Smith and Michels, 2006). The migration of many shorebirds, such as the red knot (Calidris canutus), semipalmated sandpiper (Calidris pusilla), ruddy turnstone (Arenaria interpres), and sanderling (Calidris alba), correspond to horseshoe crab spawning (Clark et al., 1993). The rufa subspecies of the red knot (Calidris canutus rufa), for example, is a shorebird with one of the longest migrations in the animal kingdom, traveling up to 19,000 miles from its wintering regions in the southeastern U.S., northeastern Gulf of Mexico, northern Brazil, or the southern tip of South America to its breeding ground in the Canadian Arctic (U.S. Fish and Wildlife Service, 2015).

      Arguably the most important site in the red knot migration is the final stop in the Delaware Bay, where shorebirds feed on horseshoe crab eggs and rely heavily on the nutrition they receive to survive the final stretch of their journey to the frigid, unpredictable Canadian or Arctic tundra, which is often barren of further sustenance when they arrive (Baker et al., 2004; Mizrahi and Peters, 2009). Once in the Delaware Bay, red knots and other shorebirds feed predominantly on the eggs laid by spawning horseshoe crabs while they are available (Tsipoura and Burger, 1999; Mizrahi and Peters, 2009; McGowan et al., 2011; Smith et al., 2013). It is unlikely that other food sources found at shorebird stopover sites would be as widely available or as nutritionally dense as horseshoe crab eggs (Mizrahi and Peters, 2009).

      Specifically, the high fatty acid content of these eggs makes them the ideal food source for migrating shorebirds that need to rapidly gain weight in order to ensure robust fitness, and consequently survival, on their journeys (Mizrahi and Peters, 2009). Survival and successful reproduction of the many migratory shorebirds that stop to feed at Delaware Bay are strongly linked to horseshoe crab reproduction. It is unlikely that these birds would be able to adjust their migration schedule over time (Baker et al., 2004; Mizrahi and Peters, 2009). From 1980 to 2014, red knot populations decreased by as much as 75% in some areas, largely due to the lack of horseshoe crab eggs in Delaware Bay (U.S. Fish and Wildlife Service, 2014).

      Stable isotope tracking to analyze the diets of shorebirds revealed that free-ranging shorebirds possessed 15N signatures identical to those of shorebirds raised in captivity and fed a diet solely comprised of horseshoe crab eggs (Haramis et al., 2007). An estimated 107 billion horseshoe crab eggs are necessary to support 423,000 shorebirds flying into Delaware Bay to feed before continuing on to their breeding grounds (U.S. Fish and Wildlife Service Shorebird Technical Committee, 2003). For example, when preparing for migration, sanderlings consume an average of 8,300 horseshoe crab eggs per day; ruddy turnstones, a daily average of 13,300 (with a peak daily consumption of 19,360 eggs); and red knots consume an average of 18,350 (with a peak consumption of 23,940 eggs/day) (Castro et al., 1989; Haramis et al., 2007).

      Ensuring a consistent and sustainable supply of horseshoe crab eggs is of particular concern with respect to the red knot, which has been listed as a threatened species and may be one of most studied proxies for tracking horseshoe crab populations and viability (U.S. Fish and Wildlife Service, 2014). The current red knot population is estimated to require 15.4 billion eggs to obtain sufficient energy levels for migration, which is equal to the number of eggs laid by about 170,000 female horseshoe crabs (U.S. Fish and Wildlife Service Shorebird Technical Committee, 2003). To be healthy enough to complete their migration, red knots need to double their body mass (usually arriving at 90–120 g and departing at 180–220 g) before the entire flock departs Delaware Bay at month's end (Baker et al., 2004). In total, 1,890 kilojoules (kJ) of stored energy is necessary to successfully complete the 2,400-kilometer flight from Delaware Bay to the Arctic (Baker et al., 2004).

      From 1997 to 2002, the number of red knots that reached their target weight decreased by 70%, possibly due to late arrival in the Delaware Bay, compounded by a shortage of horseshoe crab eggs. Average body mass upon departure showed significant decline from 1997 to 2002, going from 182.8 grams (±22.6 g) to 162.3 g (±24.5 g) (Baker et al., 2004). During these same 5 years, tagged survivors that made the journey back to Delaware Bay and were recaptured at least once were heavier than birds not seen again. Between May 2000 and May 2001, the number of returning red knots decreased by 47% (Baker et al., 2004). The trends in declining body mass and population of red knots in Delaware Bay have correlated to an increase in the harvest of horseshoe crabs. Beginning in 1990 and peaking in 1998, horseshoe crabs were used largely as bait for eel and whelk fisheries, further impacting the availability of eggs for shorebird consumption (Walls et al., 2002).

      The size of the population of red knots in Tierra del Fuego, Argentina, also rapidly declined from 51,000 in 2000 to 27,000 in 2002 (Morrison et al., 2004). In January 2003, an aerial survey of red knot sites along the Patagonian coast known to be abundant in the 1980s, located only 560 red knots. Likewise, a survey in December 2003 of northern Brazil indicated an abnormally small population of birds, suggesting evidence of red knot mortality, rather than just redistribution (Baker et al., 2004).

      The shorebirds' considerable nutritional requirements might appear to be decimating the horseshoe crab population. Although mortality in the early stages of life is a major impediment to horseshoe crab population growth (Sweka et al., 2007), shorebird predation on horseshoe crab eggs has not been found to reduce the size of the horseshoe crab population. Eggs brought to the surface by wave action (Nordstrom et al., 2006) or other spawning horseshoe crabs (Sweka et al., 2007) dry out and die if not consumed (Botton, 2009). In fact, the eggs most accessible to the birds in the upper 5 cm of the beach comprise about 10% or less of the total density of buried eggs (Smith, 2007; Botton, 2009).

      Further, red knots and other shorebirds have long been of interest to recreational birdwatchers, and efforts in recent years have been made to ensure that their foraging goes undisturbed. A combination of specified viewing locations and enforcement of policies, such as keeping unleashed dogs from roaming the beaches, have greatly reduced interruptions of these pivotal refueling stops during their migration (Burger et al., 2004).

      Conservation efforts

      Regulatory efforts are underway to address dwindling horseshoe crab numbers. The Horseshoe Crab Management Board of the ASMFC approved the Horseshoe Crab Fishery Management Plan (FMP) in October 1998, which provided initial management of horseshoe crabs in and around Delaware Bay. However, conservation efforts in Delaware ultimately led to increased biomedical and bait harvesting in other areas, offsetting the prospects for overall horseshoe crab population growth (Atlantic States Marine Fisheries Commission, 2013). Later addenda to the Horseshoe Crab FMP specified annual state-by-state landing quotas across the east coast and contributed to the establishment of the Carl N. Schuster Jr. Horseshoe Crab Reserve, a 1,500 square mile harvest-free zone (Atlantic States Marine Fisheries Commission, 2000). Historically, the most comprehensive data on horseshoe crab abundance has been based on the Benthic Trawl Survey conducted by Virginia Polytechnic Institute (VPI), but the survey faces inconsistent funding circumstances. Other studies including the Delaware Trawl Survey, the New Jersey Delaware Bay Trawl Survey, and the New Jersey Ocean Trawl Survey have been established and helped intermittent funding limitations (Smith et al., 2016). Funding for future years of the studies is undergoing evaluation.

      Addendum IV of the FMP delayed harvest in Maryland and Virginia and restricted bait harvest in Delaware and New Jersey to 100,000 male-only crabs. It was approved in May 2006; and the addendum was extended through October 2013 (Atlantic States Marine Fisheries Commission, 2006) with the addition of seasonal harvest restrictions on all horseshoe crabs from January to June and on female horseshoe crabs from June to December in Delaware and New Jersey (Atlantic States Marine Fisheries Commission, 2010b).

      An Adaptive Resource Management (ARM) framework, designed to account for populations of both red knots and horseshoe crabs when implementing regulations, was established by Addendum VII in 2012. The ARM framework uses models considering red knot stopovers in Delaware Bay to determine optimal horseshoe crab harvest; has shaped several initiatives that aid in the protection of both species; and is the basis for ongoing assessments to optimize management plans (Atlantic States Marine Fisheries Commission, 2012).

      As a result of these efforts, the aggregate harvest of horseshoe crabs declined 70% from 1998 to 2006, with the greatest reductions occurring in Delaware Bay states (Smith et al., 2009). The focus for conservation has also gradually shifted specifically to the spawning locations of the horseshoe crabs. As most crabs bury their eggs approximately 15 cm from the surface and above the high tide line toward the shore (Weber and Carter, 2009), protection of coastlines in which the horseshoe crabs spawn has been vital in working to restore their numbers to previous levels (Berkson et al., 2009).

      Actions have also been taken in the fishing industry to reduce harvesting of horseshoe crabs for use as bait. These include alternative baits (Ferrari and Targett, 2003; Fisher and Fisher, 2006; Atlantic States Marine Fisheries Commission, 2015) and using bait bags with improved efficiency that require as little as one-tenth of traditional quantities per bag (Atlantic States Marine Fisheries Commission, 2017). However, tensions persist due to the demand for horseshoe crab bait by both the eel and whelk fishing industries (Atlantic States Marine Fisheries Commission, 2013). Furthermore, in 2015, conservation groups listed the red knot as endangered in the U.S., which would result in increased protection for horseshoe crabs. Conversely, members of the fishing industry have also challenged quotas due to an apparent continuation in the decline of the red knot population, despite a 2-year ban on horseshoe crab harvest in 2006 and 2007 (Moore, 2008).

      Commercial considerations

      Given mixed results from these conservation efforts and impact from unabated LAL testing demands and utilization as a bait in the fishing industry, more sustainable approaches to horseshoe crab management and harvesting practices are urgently needed for medical and environmental applications.

      Before adoption of the LAL test, most research facilities, pharmaceutical and medical device companies used the United States Pharmacopeia (USP) rabbit pyrogen test to determine the presence of endotoxins (Pharmacopeial Forum, 1983). However, the method took significantly longer to obtain results, notwithstanding the inherent variability and ethical issues with the use of live rabbits. The World Health Organization (WHO) now recognizes several bacterial endotoxin test (BET) methods using amebocyte-derived LAL from the horseshoe crab, including measuring turbidity or chromophore release from the BET reaction; however, the preferred method is based on amebocyte lysate clotting upon exposure to endotoxins or β-glucans (World Health Organization, 2011). Notably, β-glucans can also be selectively “ignored” by removing the G factor responsible for the β-glucans clotting reaction.

      To date, the LAL test has been the test of choice, despite a more recently uncertain supply of horseshoe crab blood. Fortunately, it has been possible to increase the hemolymph extraction volume from L. polyphemus, as more accurate techniques for measuring blood volume have been discovered. It was initially estimated that the blood volume of a horseshoe crab was 10% of its total body weight; however, more recent findings have shown that blood volume is actually closer to 25% of the animal's total weight (Hurton et al., 2005).

      New endotoxin tests have been developed and may have the potential to replace or supplement the LAL test; and thus, reduce or eliminate the demand for wild horseshoe crab capture. The recombinant factor C (rFC) test, for example, uses a cloned rFC reagent extracted from the DNA of the Singapore horseshoe crab and thereby eliminates the need for repetitive bleeding (Ding et al., 1995). Like the LAL test, the rFC test triggers a pathway to coagulation when endotoxins come into contact with Factor C. The rFC molecule has multiple potential endotoxin binding sites, and as such, the rFC assay has been shown to be more sensitive and specific than the LAL test (Ding and Ho, 2001; Thorne et al., 2010). However, the rFC test is currently considered an “alternative assay” as outlined in the Pyrogen and Endotoxins Testing; Questions and Answers, released by the FDA in 2012 (U. S. Department of Health and Human Services, 2012), which also stipulates that manufacturers must provide method validation in compliance with requirements outlined in by United States Pharmacopeia (USP) section on Bacterial Endotoxin Testing (USP, Chapter 85).

      Another “alternative assay” to the LAL test is the Monocyte Activation Test (MAT) (U. S. Department of Health and Human Services, 2012), the MAT uses the monocytes of humans to mimic febrile reactions and thus requires no horseshoe crab byproducts, in contrast to the LAL and rFC assays (Stang et al., 2014). The MAT has been used reliably to resolve discrepancies between LAL test results; however, it has been shown to be ineffective in the presence of cytotoxic agents (Dobrovolskaia et al., 2014; Stang et al., 2014). The standard MAT procedure also lacks the sensitivity to detect the required amount of pyrogens on medical surfaces (which is also a limitation of the LAL assay). While the MAT has been optimized to detect such pyrogens, including the ability to ensure sensitivity by incubating test materials in the MAT, the modified version can take up to 20 h and is therefore too time-consuming for practical application in most settings (Stang et al., 2014).

      Although the rFC and MAT methods produce results comparable to the LAL test (Alwis and Milton, 2006; Thorne et al., 2010; Hermanns et al., 2011) while conserving the horseshoe crab and surrounding ecosystems, the widespread adoption of these alternative tests may prove to be extremely challenging. The industry has been reluctant to transition to newer methods due to the complex validation procedure and subsequent redesign of the manufacturing processes that would necessarily accompany the change to procedures that have been established and followed for approximately 40 years (Cohen, 1979; U. S. Department of Health and Human Services, 2012).

      In fact, revising the current system to improve efficiencies in horseshoe crab use may be more viable in the near term. Rather than adopting alternative tests, some biomedical companies have opted to make existing tests more sustainable. For example, LAL assays with specially designed cartridges have been developed to reliably screen for endotoxins, while also using one-twentieth of the raw horseshoe crab material required by conventional LAL tests (Wainwright, 2013).

      Another alternative would be the use of a line of amebocytes that could be cultured in vitro. Research in this arena has yielded promising but inconsistent results (Joshi et al., 2002; Hurton et al., 2005); whereas, mounting pressures on the harvest of horseshoe crabs may yet help justify continued efforts and investment into this approach.

      Alternatives to current horseshoe crab harvesting practices

      As more may be learned from further study, ranching of horseshoe crabs could be considered to help replenish populations. An instructive 56-day study of horseshoe crabs in captivity revealed decreases in body weight and deteriorating health, as reflected in various biological markers, including hemocyanin and amebocyte concentrations, which declined significantly (Coates et al., 2012). Although these changes occurred at all temperatures over time, horseshoe crabs held in higher temperatures (23°C) experienced the most significant decreases in these key metrics. To achieve the lowest horseshoe crab mortality and highest blood quality during biomedical bleeding, a more systematic understanding of the nuances of the optimal horseshoe crab environment, feeding and care would be required to pursue this alternative. Alternatively, if horseshoe crabs were allowed to reach maturity in the wild and transferred to native and protected estuary habitats with periodic monitoring, the species vitality could be improved and a better chance of survival might be achieved, as well as facilitate more controlled bleeding operations and schedules.

      Notwithstanding the deleterious effects of wild capture and transport, the mechanism of blood harvest via a needle puncture to the arthrodial membrane could also cause unintended damage to the horseshoe crab circulatory system. No studies to date have systematically examined the effects of the puncture wound itself; however, anatomy of the area whereby the cardiac rhythm is controlled by ganglia suggests the potential for such punctures to interfere with normal function (Watson and Groome, 1989). Given a better understanding of the bleeding process, more advanced protocols could assess the potential for using indwelling catheters or alternative extraction sites.

      Within this same paradigm, additional research focused on the optimization of bleeding volume and intervals could assess the potential to decrease horseshoe crab mortality and increase amebocyte yield. If bleeding horseshoe crabs in a controlled protocol (e.g., a temperature-controlled environment with the immediate return to their habitat) might correspond to human benefits from blood donation (Salonen et al., 1998), horseshoe crabs could potentially be bled more frequently with less trauma, while removing a smaller volume of blood per drawing. Also analogous to human plasmapheresis, the crab blood could be separated from the amebocytes and reinfused, or be replaced with a blood volume expander; this could alleviate hypovolemia while reducing stress and should allow for more rapid recovery.

      Another important improvement to the bleeding process would be to minimize or prevent horseshoe crab hypoxia caused by extended periods outside the water. This could be accomplished by transporting the crabs in compatible tanks; employing wet covers, or towels, etc. (Novitsky, 2015). Less stressful transportation might also be achieved with temperature-controlled containers and/or by locating bleeding facilities closer to the harvest sites.

      Further, using a formula to estimate the total hemolymph volume could help ensure that safer amounts of blood are extracted on an individual basis, rather than applying a broad standard to all crabs (Hurton et al., 2005). Well enforced restrictions on female horseshoe crab bleeding would also help mitigate any resulting behavioral changes; foster future spawning; and help stabilize egg production for migrating bird sustenance. Establishing optimal female to male bleeding ratios to manage commercial pressures associated with a greater yield from females would also help ensure necessary breeding ratios toward the species' long-term viability.

      Improving the survival rate of horseshoe crab larvae into adulthood would likewise contribute toward replenishing the horseshoe crab population. With a characteristically high mortality rate the early stages of life for numerous marine species, approximately 0.001% of crabs survive through the first year (Carmichael et al., 2003; Sweka et al., 2007). Researchers have had some success from collecting horseshoe crab eggs, rearing them in a laboratory, and releasing the crabs as juveniles. However, this approach has not been conducted on a large scale, and any objections to egg collection that might interfere with shorebird feeding would need to be addressed before advancing this notion to a broader initiative (Mishra, 2009; Schreibman and Zarnoch, 2009).

      Finally, various steps could be employed to reduce fishing industry demands on wild horseshoe crab populations, such as alternative and/or synthetic baits for whelk and eel, which could be used in lieu of horseshoe crabs. Such alternatives utilizing reduced quantities of horseshoe crab have been researched and field-tested with encouraging results (Ferrari and Targett, 2003; Fisher and Fisher, 2006).

      As horseshoe crabs harvested for bait have outnumbered biomedical counts in recent years (Atlantic States Marine Fisheries Commission, 2016), a reduction in bait harvest is vital for conservation of horseshoe crab populations. Yet, because biomedical harvesting does not typically result in immediate mortality, the full impact might be underestimated and unaccounted for once fatigued, traumatized, and sometimes dying horseshoe crabs are returned to their habitat. Given these factors, both bait and biomedical demands appear to pose unsustainable challenges to horseshoe crab populations. However, in the absence of a widely accepted alternative to the LAL test, and as it remains vital to global medicine, there are promising approaches that could be employed to lessen the impact and reduce the ultimate mortality from biomedical harvesting.

      Conclusions

      The unique characteristics of horseshoe crabs underpinning their irrefutable importance to medicine, environmental safety, and their role as a keystone species highlight an urgent and compelling need for conservation and sustainable practices. To date, horseshoe crab conservation has been largely unidimensional, with many of the regulations applying only to the commercial fishing industry (Berkson, 2009). However, ensuring the wellbeing of this enigmatic species—and those whose survival depends on it—requires a multi-faceted approach that combines informed and fair regulation; responsible and more innovative harvesting and bleeding practices; and a commitment to continued research in pursuit of viable alternatives to avert collapse, while working toward ultimately eliminating the demand for harvesting wild horseshoe crabs, entirely.

      Moving forward, effective horseshoe crab management must also extend beyond traditional approaches (e.g., stock abundance, recruitment, and growth rates) and begin to incorporate interventional ecosystem strategies. New and improved operational protocols should be established scientifically and implemented universally. In October 2011, early steps were taken to establish a blueprint for Best Management Practices for the collection, bleeding and releasing of horseshoe crabs (Atlantic States Marine Fisheries Commission, 2011, 2013). The document was generated by the Horseshoe Crab Biomedical ad hoc Working Group and was comprised of experts from each of the key biomedical bleeding organizations. The early draft of the document showed promise, but it has yet to be updated based on further research, nor has it progressed beyond recommendations to enforcement. The ability to assess the value of a document has also been undermined by unpublished industry reporting, whereby horseshoe crab mortality is neither reported publicly nor tabulated empirically: it is merely assumed that 15% of the harvested crabs perish (Atlantic States Marine Fisheries Commisson, 2009).

      While horseshoe crab populations have modestly stabilized in some regions (Smith et al., 2017), the International Union for Conservation of Nature (IUCN) has predicted declines of at least 30% over the next three generations (~40 years) (Smith et al., 2016). In sharp contrast, the global demand for vaccines, pharmaceuticals and medical devices over approximately the same period will require an increasing supply of LAL. These dynamics pose significant uncertainties as to whether current harvesting levels can be sustained, much less meet projected demands. With particularly rapid development in vaccine production, global pharmaceutical and the U.S. medical device markets have already been trending toward 6–8% and 25% annual growth, respectively.

      In addition to these projections, these challenges intensify if the Asian species continues to decline at its current rate (Gauvry, 2015). Utilized for analogous testing by Asian and Pacific-based pharmaceutical and medical device manufacturers in TAL assays, a shortfall in Asian horseshoe crabs could lead to a spike in the global demand for LAL or force adoption of costly, alternative testing methods. Dependent on these two species of horseshoe crabs that appear to be facing significant decline, the growth in vaccine production is especially problematic; whereby, a large percentage of endotoxin detection is also performed using TAL for vaccines destined for emerging markets (Gauvry, 2015). Despite recent, isolated recoveries, the IUCN forecast nonetheless suggests that the U.S. indigenous horseshoe crab biomass could not withstand the growth of the LAL market, much less absorb a shift from current TAL shares.

      Thoughtful and conservative approaches are needed, but require a fair understanding of the threats. Regulators are faced with the paradox of managing a species to protect and maintain dependent shorebird populations; facilitate multibillion dollar eel, whelk and conch fisheries; and support the growing global dependence on an essential medical safety resource (LAL). These drivers are both environmental and economic. Indeed, progress and effective management will only be achieved once Best Management Practices are universally adopted and implemented; as public reporting is instituted; and as empirical data are gathered and tracked over time to inform industry and environmental regulatory oversight so as to ensure the viability of this ancient and essential species.

      Author contributions

      AD, TB, JK-G, and WA conceived of the presented idea. JK-G, WA, KD, RT-K, TB, and MG developed the theory and performed primary research reviews. AD, KD, CK, and TB verified the materials and methods. TB encouraged AD, JK-G, KD, and WA to investigate the biomedical medial industry impact on horseshoe crabs. AD supervised the findings of this work. All authors prepared analysis of the primary research and contributed to the final review manuscript.

      Conflict of interest statement

      The authors have partnered with the Georgia Department of Natural Resources to support future scientific and management initiatives in effort that ensure that the Georgia Atlantic horseshoe crab populations remain vibrant and healthy through potential husbandry and bleeding protocols. Authors AD, JK-G, TB, and LR are employed by company Kepley BioSystems, Inc. CK is a full-time professor at the Joint School of Nanoscience and Nanoengineering and works three summer months with the company Kepley BioSystems, Inc. WA was a NSF research undergraduate employed by company Kepley BioSystems Inc. MG was employed by ClienTell® Consulting, LLC. The other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      The authors would like to acknowledge the following funding sources: National Science Foundation's Research Experience for Undergraduates (REU) program (Grant # 1555752), North Carolina Biotechnology Center Industrial Intern Partnership (2017-IIP-4202), and North Carolina Sea Grant (2017-R/MG-1712).

      References Allender M. C. Schumacher J. George R. Milam J. Odoi A. (2010). The effects of short- and long-term hypoxia on hemolymph gas values in the American horseshoe crab (Limulus polyphemus) using a point-of-care analyzer. J. Zoo Wildl. Med. 41, 193200. 10.1638/2008-0175R2.120597209 Alwis K. U. Milton D. K. (2006). Recombinant factor C assay for measuring endotoxin in house dust: comparison with LAL, and (1 –> 3)-beta-D-glucans. Am. J. Ind. Med. 49, 296300. 10.1002/ajim.20264 Anderson R. L. Watson W. H. Chabot C. C. (2013). Sublethal behavioral and physiological effects of the biomedical bleeding process on the American horseshoe crab, Limulus polyphemus. Biol. Bull. 225, 137151. 10.1086/BBLv225n3p13724445440 Armstrong P. Conrad M. (2008). Blood collection from the American horseshoe crab, Limulus polyphemus. J. Vis. Exp. 20:958. 10.3791/958 Atlantic States Marine Fisheries Commission (1998). Interstate Fishery Management Plan for Horseshoe Crab. Fishery Management Report No. 32 of the Atlantic States Marine Fisheries Commission (Washington, DC). Atlantic States Marine Fisheries Commission (2000). Addendum I to the Fishery Management Plan for Horseshoe Crab. Fishery Management Report No. 32a of the Atlantic States Marine Fisheries Commission. Washington, DC. Atlantic States Marine Fisheries Commission (2006). Addendum IV to the Fishery Management Plan for Horseshoe Crab. Fishery Management Report No. 32d of the Atlantic States Marine Fisheries Commission. Washington, DC. Atlantic States Marine Fisheries Commisson (2009). Horseshoe Crab Stock Assessment for Peer Review. Stock Assessment Report No. 09-02 (Supplement A) (Washington, DC). Atlantic States Marine Fisheries Commission (2010a). Horseshoe Crab Advisory Panel Report. Washington, DC. Atlantic States Marine Fisheries Commission (2010b). Addendum VI to the Fishery Management Plan for Horseshoe Crab. Fishery Management Report No. 32f of the Atlantic States Marine Fisheries Commission. Washington, DC. Atlantic States Marine Fisheries Commission (2011). Horseshoe Crab Biomedical ad-hoc Working Group Report. Washington, DC. Atlantic States Marine Fisheries Commission (2012). Addendum VII to the Fishery Management Plan for Horseshoe Crab. Fishery Management Report No. 32g of the Atlantic States Marine Fisheries Commission. Washington, DC. Atlantic States Marine Fisheries Commission (2013). Horseshoe Crab Stock Assessment Update. Arlington, VA. Atlantic States Marine Fisheries Commission (2014). Horseshoe crab technical committee meeting summary, in Conference Call (Arlington, VA). Atlantic States Marine Fisheries Commission (2015). 2015 Review of the Atlantic States Marine Fisheries Commission Fisheries Management Plan for Horseshoe Crab (Limulus polyphems) 2014 Fishing Year. Washington, DC. Atlantic States Marine Fisheries Commission (2016). 2016 Review of the Atlantic States Marine Fisheries Commission Fisheries Management Plan for Horseshoe Crab (Limulus polyphems) 2015 Fishing Year. Washington, DC. Atlantic States Marine Fisheries Commission (2017). “Horseshoe Crab”. Available online at: http://www.asmfc.org/species/horseshoe-crab Baker A. J. Gonzalez P. M. Piersma T. Niles L. J. do Nascimento Ide L. Atkinson P. W. . (2004). Rapid population decline in red knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay. Proc. Biol. Sci. 271, 875882. 10.1098/rspb.2003.266315255108 Barlow R. B. Jr. Bolanowski S. J. Jr. Brachman M. L. (1977). Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197, 8689. 10.1126/science.867057867057 Berkson J. (2009). An integrative approach to horseshoe crab multiple use and sustainability, in Biology and Conservation of Horseshoe Crabs, eds Tanacredi T. J. Botton M. L. Smith D. R. (New York, NY: Springer Science, U.S.), 387398. Berkson J. Chen C. P. Mishra J. Shin P. Spear B. Zaldivar-Rae J. (2009). A discussion of horseshoe crab management in five countries: Taiwan, India, China, United States, and Mexico, in Biology and Conservation of Horseshoe Crabs, edS Tanacredi T. J. Botton M. L. Smith D. R. (New York, NY: Springer Science, U.S.), 465475. Botton M. (2009). The ecological importance of horseshoe crabs in estuarine and coastal communities: a review and speculative summary, in Biology and Conservation of Horseshoe Crabs, eds Tanacredi T. J. Botton M. J. Smith D. R. (New York, NY: Springer Science, U.S.), 4564. Botton M. Haskin H. (1984). Distribution and feeding of the horseshoe crab, Limulus polyphemus, on the continental shelf off New Jersey. Fish. Bull. 82, 383389. Botton M. Loveland R. (1993). Predation by herring gulls and great black-backed gulls on horseshoe crabs. Wilson Bull. 105, 518521. Botton M. Ropes J. (1989). Feeding ecology of horseshoe crabs on the continental shelf, New Jersey to North Carolina. Bull. Mar. Sci. 45, 637647. Burger J. Jeitner C. Clark K. Niles L. (2004). The effect of human activities on migrating shorebirds: successful adaptive management. Environ. Conserv. 31, 283288. 10.1017/S0376892904001626 Carmichael R. H. Rutecki D. Valiela I. (2003). Abundance and population structure of the Atlantic horseshoe crab Limulus polyphemus in Pleasant Bay, Cape Cod. Mar. Ecol. Prog. Ser. 246, 225239. 10.3354/meps246225 Castro G. Myers J. Place A. (1989). Assimilation efficiency of sanderlings (Calidris alba) feeding on horseshoe crab (Limulus polyphemus) eggs. Physiol. Zool. 62, 716731. 10.1086/physzool.62.3.30157923 Central Intelligence Agency (2016). The World Factbook: United States. Available online at: https://www.cia.gov/library/publications/the-world-factbook/geos/us.html Clark K. E. Niles L. J. Burger J. (1993). Abundance and distribution of migrant shorebirds in Delaware Bay. Condor 95, 694705. 10.2307/1369612 Coates C. Bradford E. Krome C. Nairn J. (2012). Effect of temperature on biochemical and cellular properties of captive Limulus polyphemus. J. Aquac. 334337, 30–38. 10.1016/j.aquaculture.2011.12.029 Cohen E. (1979). Report on the symposium on biomedical applications of Limulus polyphemus (horseshoe crab). Dev. Biol. 3, 365371. 10.1016/S0145-305X(79)80032-4 Ding J. L. Ho B. (2001). A new era in pyrogen testing. Trends Biotechnol. 19, 277281. 10.1016/S0167-7799(01)01694-811451451 Ding J. L. Navas M. A. Ho B. (1995). Molecular cloning and sequence analysis of factor C cDNA from the Singapore horseshoe crab, Carcinoscorpius rotundicauda. Mol. Mar. Biol. Biotechnol. 4, 90103. 7538401 Dobrovolskaia M. A. Neun B. W. Clogston J. D. Grossman J. H. McNeil S. E. (2014). Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine 9, 18471856. 10.2217/nnm.13.15724359551 Ferrari K. M. Targett N. M. (2003). Chemical attractants in horseshoe crab, Limulus polyphemus, eggs: the potential for an artificial bait. J. Chem. Ecol. 29, 477496. 10.1023/A:102269843177612737271 Fisher R. A. Fisher D. L. (2006). The Use of Bait Bags to Reduce the Need for Horseshoe Crab as Bait in the Virginia Whelk Fishery. Gloucester Point, VA: Virginia Sea Grant. Gauvry G. (2015). Current horseshoe crab harvesting practices cannot support global demand for TAL/LAL: the pharmaceutical and medical device industries' role in the sustainability of horseshoe crabs, in Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management, eds Bottom M. L. Carmichael R. H. Shin P. K. S. Cheung S. G. (New York, NY: Springer Science, U.S.), 475482. Haramis G. Link W. Osenton P. Carter D. Weber R. Clark N. . (2007). Stable isotope and pen feeding trial studies confirm the value of horseshoe crab Limulus polyphemus eggs to spring migrant shorebirds in Delaware Bay. J. Avian Bio. 38, 367376. 10.1111/j.2006.0908-8857.03898.x Hartline H. K. McDonald P. (1947). Light and dark adaptation of single photoreceptor elements in the eye of Limulus. J. Cell. Comp. Physiol. 30, 225253. 10.1002/jcp.103030030318896923 Henry R. Wheatly M. (1992). Interaction of respiration, ion regulation, and acid-base balance in the everyday life of aquatic crustaceans. Amer. Zool. 32, 407416. 10.1093/icb/32.3.407 Hermanns J. Bache C. Bjoern B. Loeschner B. Montag T. Spreitzer I. (2011). Alternatives to animal use for the LAL-assay, in Paper Presented at the The 8th World Congress on Alternatives and Animal Use in the Life Science (Montreal, QC). Hurton L. Berkson J. (2006). Potential causes of mortality for horseshoe crabs (Limulus polyphemus) during the biomedical bleeding process. Fish. Bull. 104, 293298. Hurton L. Berkson J. Smith S. (2005). Estimation of total hemolymph volume in the horseshoe crab Limulus polyphemus. Mar. Freshwater. Behav. Physiol. 38, 139147. 10.1080/10236240500064354 Isakova V. Armstrong P. B. (2003). Imprisonment in a death-row cell: the fates of microbes entrapped in the Limulus blood clot. Biol. Bull. 205, 203204. 10.2307/154325314583530 Iwanaga S. Kawabata S. Muta T. (1998). New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J. Biochem. 123, 115. 10.1093/oxfordjournals.jbchem.a0218949504402 Joshi B. Chatterji A. Bhonde R. (2002). Long term in vitro generation of amoebocytes from the Indian horseshoe crab Tachypleus gigas. In Vitro. Cell. Dev. Biol. Anim. 38, 255257. 10.1290/1071-2690(2002)038<0255:LTIVGO>2.0.CO;212418920 Keinath J. (2003). Predation of horseshoe crabs by loggerhead sea turtles, in The American Horseshoe Crab, eds Shuster C. N. Brockman H. Barlow R. B. (Cambridge, MA: Harvard Press), 152153. Kin A. Blazejowski B. (2014). The horseshoe crab of the genus Limulus: living fossil or stabilomorph? PLoS ONE 9:9. 10.1371/journal.pone.010803625275563 Leschen A. S. Correia S. J. (2010). Mortality in female horseshoe crabs (Limulus polyphemus) from biomedical bleeding and handling: implications for fisheries management. Mar. Freshwater Behav. Physiol. 43 135147. 10.1080/10236241003786873 Loveland R. E. Botton M. L. Shuster C. N. (1996). Life history of the American horseshoe crab (Limulus polyphemus) in Delaware Bay and its importance as a commercial resource, in Presented at the Proceedings of the Horseshoe Crab Forum: Status of the Resource (Lewes, DE: University of Delaware Sea Grant College Program). McGowan C. P. Smith D. R. Sweka J. A. Martin J. Nichols J. D. Wong R. . (2011). Multispecies modeling for adaptive management of horseshoe crabs and red knots in the Delaware Bay. Nat. Resour. Model. 24, 117156. 10.1111/j.1939-7445.2010.00085.x Medzhitov R. Janeway C. Jr. (2000). Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 8997. 10.1034/j.1600-065X.2000.917309.x10719670 Mikkelsen T. (1988). The Secret in the Blue Blood. Beijing: Science Press. Mishra J. (2009). Larval culture of Tachypleus gigas and its molting behavior under laboratory conditions, in Biology and Conservation of Horseshoe Crabs, eds Tanacredi J. T. Botton M. L. Smith D. R. (New York, NY: Springer Science), 513520. Mizrahi D. S. Peters K. A. (2009). Relationships between sandpipers and horseshoe crab in Delaware Bay: a synthesis, in Biology and Conservation of Horseshoe Crabs, eds Tanacredi J. T. Botton M. L. Smith D. R. (New York, NY: Springer Science), 6587. Morrison R. Ross R. Nile L. (2004). Declines in wintering populations of red knots in Southern South America. Condor 106, 6070. 10.1650/7372 Moore K. (2008). N.J. horseshoe crabbers pursue a males-only harvest. Natl. Fish. 89:16. Mowles S. L. Cotton P. A. Briffa M. (2009). Aerobic capacity influences giving-up decisions in fighting hermit crabs: does stamina constrain contests? Anim. Behav. 78, 735740. 10.1016/j.anbehav.2009.07.003 Nordstrom K. F. Jackson N. L. Smith D. R. Weber R. G. (2006). Transport of horseshoe crab eggs by waves and swash on an estuarine beach: implications for foraging shorebirds. Estuar. Coast. Shelf Sci. 70, 438448. 10.1016/j.ecss.2006.06.027 Novitsky T. J. (2009). Biomedical applications of Limulus amebocyte lysate, in Biology and Conservation of Horseshoe Crabs, eds Tanacredi J. T. Botton M. L. Smith D. R. (New York, NY: Springer Science), 315329. Novitsky T. J. (2015). Biomedical implications for managing the Limulus polyphemus harvest along the Northeast Coast of the United States, in Changing Global Perspectives on Horseshoe Crab Biology, Conservation, and Management, eds Botton M. L. Carmichael R. H. Shin P. K. S. Cheung S. G. (Cham: Springer), 489495. Patten W. (1912). The Evolution of the Vertebrates and Their Kin. Philadelphia, PA: P. Blakiston's Son & Co. Perry L. M. (1931). Catfish feeding on the eggs of the horseshoe crab, Limulus polyphemus. Science 74:312. 10.1126/science.74.1917.31217840393 Pharmacopeial Forum (1983). Characterization of rabbit colonies for the pyrogen test, in Paper Presented at the Pharmacopeial Forum (Rockville, MD). Price K. S. (1962). Biology of the sand shrimp, Crangon septemspinosa, in the shore zone of the Delaware Bay region. Chesapeake Sci. 3, 244255. 10.2307/1350631 Reid J. Bonde R. (1990). Alligator mississippiensis (American alligator) diet. Herpetol. Rev. 21:59 Salonen J. T. Tuomainen T. P. Salonen R. Lakkta T. A. Nyyssonen K. (1998). Donation of blood is associated with reduced risk of myocardial infarction. The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Epidemiol. 148, 445451. 10.1093/oxfordjournals.aje.a0096699737556 Schreibman M. Zarnoch C. (2009). Aquaculture methods and early growth of juvenile horseshoe crabs (Limulus polyphemus), in Biology and Conservation of Horseshoe Crabs, eds Tanacredi J. T. Botton M. L. Smith D. R. (New York: Springer Science), 501512. Sekiguchi K. Shuster C. N. (2009). Limits on the global distribution of horseshoe crabs (Limulacea): lessons learned from two lifetimes of observations: asia and America, in Biology and Conservation of Horseshoe Crabs, eds Tanacredi J. T. Botton M. L. Smith D. R. (New York: Springer Science), 524. Seney E. E. Musick J. A. (2007). Historical diet analysis of loggerhead sea turtles (Caretta caretta) in Virginia. Copeia 2007, 478489. 10.1643/0045-8511(2007)7[478:HDAOLS]2.0.CO;2 Servis J. A. Lovewell G. Tucker A. D. (2015). Diet analysis of subadult kemp's ridley (Lepidochelys kempii) turtles from West-Central Florida. Chelonian Conserv. Biol. 14, 173181. 10.2744/CCB-1177.1 Shuster C. N. (1978). The Circulatory System and Blood of the Horseshoe Crab (Limulus Polyphemus): A Review. Washington DC: U.S. Department of Federal Energy Regulatory Commission. Smith D. R. (2007). Effect of horseshoe crab spawning density on nest disturbance and exhumation of eggs: a simulation study. Estuar. Coast. 30, 287295. 10.1007/BF02700171 Smith D. R. Beekey M. A. Brockmann H. J. King T. L. Millard M. J. Zaldívar-Rae J. A. (2016). Limulus Polyphemus. The International Union for Conservation of Nature and Natural Resources Red List of Threatened Species. Cambridge: IUCN Global Species Programme - Red List Unit. Smith D. R. Brockmann J. H. Beekey M. King T. L. Millard M. J. (2017). Conservation status of the American horseshoe crab, (Limulus polyphemus): a regional assessment. Rev. Fish Biol. Fish. 27, 135175. 10.1007/s11160-016-9461-y Smith D. R. McGowan C. P. Daily J. P. Nichols J. D. Sweka J. A. Lyons J. E. (2013). Evaluating a multispecies adaptive management framework: must uncertainty impede effective decision making? J. Appl. Ecol. 50, 14311440. 10.1111/1365-2664.12145 Smith D. R. Michels S. F. (2006). Seeing the elephant: importance of spatial and temporal coverage in a large-scale volunteer-based program to monitor horseshoe crabs. Fisheries 31, 485491. 10.1577/1548-8446(2006)31[485:STE]2.0.CO;2 Smith D. R. Millard M. J. Carmichael R. H. (2009). Comparative status and assessment of Limulus polyphemus with emphasis on the New England and Delaware Bay populations, in Biology and Conservation of Horseshoe Crabs, eds Tanacredi J. T. Botton M. L. Smith D. R. (New York, NY: Springer Science), 361386. Spotila J. Plotkin P. Keinath J. (2007). Delaware Bay is an important foraging habitat for loggerhead tumrtles, in Paper Presented at the 2007 Delaware Estuary Science Conference and Environmental Summit (Cape May, NJ). Spraker H. Austin H. M. (1997). Diel feeding periodicity of Atlantic Silverside, Menidia menidia, in the York River, Chesapeake Bay, Virginia. J. Elisha Mitchell Sci. Soc. 113, 171182. Stang K. Fennrich S. Krajewski S. Stoppelkamp S. Burgener I. A. Wendel H. P. . (2014). Highly sensitive pyrogen detection on medical devices by the monocyte activation test. J. Mater. Sci. Mater. Med. 25, 10651075. 10.1007/s10856-013-5136-6 Størmer L. (1952). Phylogeny and taxonomy of fossil horseshoe crabs. J. Paleontol. 26, 630640. Sweka J. A. Smith D. R. Millard M. J. (2007). An age-structured population model for horseshoe crabs in the Delaware Bay area to assess harvest and egg availability for shorebirds. Estuar. Coast. 30, 277286. 10.1007/BF02700170 Tanacredi J. T. Portilla S. (2015). Habitat inventory trend analysis of Limulus polyphemus populations on Long Island, USA: From the tip of Brooklyn to the tip of Montauk, 2003–2014, in Changing Global Perspectives on Horseshoe Crab Biology, Conservation, and Management, eds Botton M. L. Carmichael R. H. Shin P. K. S. Cheung S. G. (Cham: Springer), 229236. Thorne P. S. Perry S. S. Saito R. O'Shaughnessy P. T. Mehaffy J. Metwali N. . (2010). Evaluation of the Limulus amebocyte lysate and recombinant factor C assays for assessment of airborne endotoxin. Appl. Environ. Microbiol. 76, 49884995. 10.1128/AEM.00527-1020525858 Towle D. W. Henry R. P. (2003). Coping with environmental changes: physiological challenges in The American Horseshoe Crab, eds Shuster C. N. Barlow R. B. Brockmann H. J. (Cambridge, MA: Harvard University Press), 224244. Tsipoura N. Burger J. (1999). Shorebird diet during spring migration stopover on Delaware Bay. Condor 101, 635644. 10.2307/1370193 Ultsch G. (1989). Ecology and physiology of hibernation and overwintering among freshwater fishes, turtles, and snakes. Biol. Rev. 64, 435515. 10.1111/j.1469-185X.1989.tb00683.x U.S. Fish and Wildlife Service Shorebird Technical Committee (2003). Delaware Bay Shorebird-Horseshoe Crab Assessment Report and Peer Review. Arlington, VA: U.S. Fish and Wildlife Service Shorebird Technical Committee. U. S. Department of Health and Human Services (2012). Guidance for Industry Pyrogen and Endotoxins Testing: Questions and Answers. Washington, DC: U.S. Food and Drug Administration. U.S. Fish and Wildlife Service (2014). Service Protects Red Knot as Threatened Under the Endangered Species Act. Falls Church, VA: Division of Public Affairs. U.S. Fish and Wildlife Service (2015). Status of the Species-Red Knot (Calidris canutus rufa). Washington, DC: Department of Interior. van Holde K. E. Miller K. I. (1995). Hemocyanins. Adv. Protein Chem. 47, 181. 10.1016/S0065-3233(08)60545-88561049 Vaquer-Sunyer R. Duarte C. (2011). Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Global Change Biol. 17, 17881797. 10.1111/j.1365-2486.2010.02343.x Wainwright N. (2013). Ever Had an Injection? Thank a Horseshoe Crab. Available online at: http://eureka.criver.com/ever-had-an-injection-thank-a-horseshoe-crab/ Walls E. Berkson J. (2003). Effects of blood extraction on horseshoe crabs (Limulus polyphemus). Fish. Bull. 101, 457459. Walls E. Berkson J. Smith S. (2002). The horseshoe crab, Limulus polyphemus: 200 million years of existence, 100 years of study. Rev. Fish. Sci. 10, 3973. 10.1080/20026491051677 Warwell H. (1897). Eels feeding on the eggs of Limulus. Zoology 31, 347348. Watson W. H. III. Groome J. R. (1989). Modulation of the Limulus heart. Am. Zool. 29, 12871303. 10.1093/icb/29.4.1287 Weber R. Carter D. (2009). Distribution and development of Limulus egg clusters on intertidal beaches in Delaware Bay, in Biology and Conservation of Horseshoe Crabs, eds Tanacredi J. T. Botton M. L. Smith D. R. (New York, NY: Springer Science), 249266. Widener J. W. Barlow R. B. (1999). Decline of a horseshoe crab population on Cape Cod. Biol. Bull. 197, 300302. 10.2307/154266410573854 Woodward H. (1866). A Monograph of the British Fossil Crustacea Belonging to the Order Merostomata. London: Printed for the Palæontographical Society. World Health Organization (2011). Test for Bacterial Endotoxins, Vol. 25. WHO Drug Information. Abbreviations 15N

      Nitrogen-15

      ARM

      Adaptive Resource Management

      ASMFC

      Atlantic States Marine Fisheries Council

      BET

      Bacterial Endotoxin Test

      BMP

      Best Management Practices

      FMP

      Fishery Management Plan

      LAL

      Limulus Amebocyte Lysate

      LPS

      Lipopolysaccharide

      MAT

      Monocyte Activation Test

      PCO2

      Partial Pressure of Carbon Dioxide

      PO2

      Partial Pressure of Oxygen

      rFC

      Recombinant Factor C

      TAL

      Tachypleus Amebocyte Lysate

      USP

      United States Pharmacopeia

      WHO

      World Health Organization.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.fjgths.com.cn
      www.haoqian.net.cn
      www.fqgrsn.com.cn
      www.gzssgt.com.cn
      skytimes.net.cn
      www.mka518.com.cn
      www.tsfhc.org.cn
      www.suidaolu.com.cn
      www.nvjiao.com.cn
      tgchain.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p