Front. ICT Frontiers in ICT Front. ICT 2297-198X Frontiers Media S.A. 10.3389/fict.2019.00011 ICT Original Research Technology Use and Attitudes in Music Learning Waddell George 1 2 Williamon Aaron 1 2 * 1Centre for Performance Science, Royal College of Music, London, United Kingdom 2Faculty of Medicine, Imperial College London, London, United Kingdom

Edited by: Robin Lee Bargar, Columbia College Chicago, United States

Reviewed by: Carlos Vaz De Carvalho, Polytechnic Institute of Porto, Portugal; Anton Nijholt, University of Twente, Netherlands

*Correspondence: Aaron Williamon aaron.williamon@rcm.ac.uk

This article was submitted to Human-Media Interaction, a section of the journal Frontiers in ICT

31 05 2019 2019 6 11 14 03 2018 29 04 2019 Copyright © 2019 Waddell and Williamon. 2019 Waddell and Williamon

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

While the expansion of technologies into the music education classroom has been studied in great depth, there is a lack of published literature regarding the use of digital technologies by students learning in individual settings. Do musicians take their technology use into the practice room and teaching studio, or does the traditional nature of the master-apprentice teaching model promote different attitudes among musicians toward their use of technology in learning to perform? To investigate these issues, we developed the Technology Use and Attitudes in Music Learning Survey, which included adaptations of Davis's 1989 scales for Perceived Usefulness and Perceived Ease of Use of Technology. Data were collected from an international cohort of 338 amateur, student, and professional musicians ranging widely in age, specialism, and musical experience. Results showed a generally positive attitude toward current and future technology use among musicians and supported the Technology Acceptance Model (TAM), wherein technology use in music learning was predicted by perceived ease of use via perceived usefulness. Musicians' self-rated skills with smartphones, laptops, and desktop computers were found to extend beyond traditional audio and video recording devices, and the majority of musicians reported using classic music technologies (e.g., metronomes and tuners) on smartphones and tablets rather than bespoke devices. Despite this comfort with and access to new technology, availability reported within one-to-one lessons was half of that within practice sessions, and while a large percentage of musicians actively recorded their playing, these recordings were not frequently reviewed. Our results highlight opportunities for technology to take a greater role in improving music learning through enhanced student-teacher interaction and by facilitating self-regulated learning.

technology learning musicians performance technology acceptance model 688269 Horizon 202010.13039/501100007601

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      The expansion of technology within society is a defining feature of the twenty-first century, revolutionizing how people work, learn, communicate, and spend their leisure time. This is particularly true in the domain of music, where technology has become a presence, if not a requirement, in musical creation, production, expression, dissemination, promotion, and consumption (Hugill, 2012). Music education is no exception, seeing significant study and growth and building upon general trends of technology use in the modern classroom (Purves, 2012; Sweeney et al., 2017). However, the attention given to understanding how and where technology is being used in music classroom settings has not been applied to the same extent in one-to-one teaching environments. The master-apprentice model of instrumental teaching can give the impression of an environment resistant to technological innovation (Creech and Gaunt, 2012; Gaunt, 2017). The present study sought to address this gap by examining the use of and attitudes toward technology in the one-to-one learning and teaching of music performance.

      The role of technology in the music classroom has benefited from two decades of close attention. Early work examined the emerging use of and access to technological resources in the music classroom (Bray, 1997; Naughton, 1997; Rogers, 1997; Salaman, 1997), implications for teacher training (Hunt and Kirk, 1997) and potential applications for students with profound learning disabilities (Ellis, 1997). By 2000, inspections of 106 music classrooms found a high degree of technology use, emphasizing that good practice stemmed from a knowledge of how the technology functioned, ability to model use of the technology, and minimized time loss from setup (Mills and Murray, 2000). In the United Kingdom, a 2003 government report found that 24% of secondary teachers were making substantial use of technology in their classrooms, and 30% reported a positive effect on their teaching (DfES, 2005) The demonstrated benefits of these tools in the classroom led to calls for technology-based professional development workshops (Bauer et al., 2003), and teachers continued to develop strategies to incorporate the available tools at the time—recording, editing, playback, early web-based resources and videos—into their practices (Ho, 2004; Anderson and Ellis, 2005). An independent review by the Department for Education on music education recommended that further work was needed to develop a national plan to embrace technological innovation and ensure that teachers are kept up-to-date with new developments (Henley, 2011). This supports data from the European Commission (2013) which showed a substantial increase in numbers of computers and quality of broadband access in European schools from 2006 to 2012 and marginal growth in use, although fewer than half of teachers were making use of ICT in more than 25% of their classes. While updated statistics on technology use in the music classroom have not been provided, more recent studies have found that technology use is on the rise and in a growing set of contexts (Purves, 2012; Webster, 2012). Himonides and Purves (2010) surveyed the field, finding ten distinct roles technology took in the classroom, ranging from improving performance skills to facilitating communication to increasing teachers' abilities to assess the success of their students and their own teaching strategies. While technology may remain underused in the classroom, with the barriers including a lack of availability, technical competence, and institutional support (Kenny and McDaniel, 2011; Fautley, 2013; Gall, 2013), its influence is growing.

      The explosion of online music resources has also shaped the sphere of music learning, both in the classroom and beyond. Millions of instructional music videos can be found via online portals such as YouTube, used not only by individuals in informal learning practices but being actively incorporated into educational frameworks (Waldron, 2012; Smart and Green, 2017). This accessibility may belie their utility, however. Thorgersen and Zandén (2014) asked nine beginner students aged 20–30 to learn to play new instruments solely through the instruction of online resources. The students focussed primarily on instructional videos and charts, generally avoiding tools allowing for commutation and expert feedback such as forums or assessment tools. While students have ever-greater access to information, there is a risk of them being overwhelmed by choice and distraction and lacking the framework that teacher-led training and tailored support can provide.

      Less has been published regarding the role of technology in one-to-one teaching settings and instrumental learning. Existing evidence tends to be anecdotal or out-of-date relative to the quickly changing world of technology, such as one question in a survey of 100 instrumental teachers by Barry and Mcarthur (1994) who found that the majority of instrumental music teachers did not use or encourage their students to use software-based music learning tools, although the technologies available would have been limited at the time. The use of distance learning via videoconferenced lessons is growing, with research finding that skills such as sight-reading can be taught effectively over the medium (Pike and Shoemaker, 2013) and that students and teachers are able to operate the equipment and make the most of the technical and physical limitations (Kruse et al., 2013). The use of audio and video recordings, both in creating and viewing them, is also common, although the degree to which each of these activities is done remains unclear. Experimental studies have demonstrated their potential as tools to improve self-assessment (Johnston, 1993; Robinson, 1993; Daniel, 2001; Hewitt, 2002; Silveira and Gavin, 2016). Volioti and Williamon (2017) examined the use of audio recordings among instrumental learners, finding that students reported greater use of them than professionals, particularly for elements including goal setting and developing an interpretive style. This supported earlier research that found only a small proportion of professional musicians listened to the recordings of others as part of their practice (Hallam, 1995). Lindström et al. (2003), in a survey of attitudes toward the learning and teaching of musical expression, asked music students whether they felt modern techniques (such as computer programs) could be used to learn to play expressively and whether they would use them, as well as reactions on a scale from 0 (very negative) to 10 (very positive) to a hypothetical technology that could record and analyze audio features related to their performance and suggest possible changes to enhance their expressivity. Responses were generally negative, with 83% responding that modern techniques could not be used, with a mean positivity rating of only 3.6 (out of 10). Free comments showed that many students questioned technology's utility for contributing clarity and understanding to a topic as complex as musical expressivity.

      Considering the lack of published literature on musicians' use of and attitudes toward music technology in instrumental learning, and the explosion of new technologies now available to them, this study examined (1) musicians' skills with and attitudes toward technologies in their day-to-day lives, (2) how they engage with technology in the learning of musical instruments, (3) how attitudes as music learners differ from music teachers, and (4) musicians' attitudes toward potential new technologies and what factors predict adoption of new tools. To investigate this, an exploratory survey study was designed and disseminated to an international cohort of musicians varying in age, experience, and instrument specialism.

      Materials and Methods Respondents

      The respondents were 338 musicians (57% female) with a mean age of 29.7 years (SD = 11.9, range = 16–82). They had a mean experience of 16.8 years (SD = 10.7, range = 1–68 years), with representation from professional (29%), student (44%), and amateur (27%) groups and 94% having taken formal lessons on their primary instrument for a mean 11.5 years (SD = 7.1, range = 1–50). The cohort was international, representing 43 countries across six continents, with a significant proportion being British (43%) and the next highest representation from the USA, Lithuania, Singapore, and Canada (5–6% each). The range of primary instruments included keyboard (36%), strings (including guitar and electric bass; 35%), and woodwind and brass (23%), with the remaining 6% comprising a mix of percussion, vocal, and other instruments. Three quarters (76%) of the cohort reported classical as their primary genre, with the remaining quarter comprising jazz, folk, pop, and other. The survey opened with an information sheet outlining the topic and purpose of the study and instructing respondents that, by beginning the survey, they were providing informed consent. Ethical approval for the study, including consenting procedures, was granted by the Conservatoires UK Research Ethics Committee following the guidelines of the British Psychological Society.

      Survey

      The Technology Use and Attitudes in Music Learning Survey was developed for this study. The complete survey is available as Supplementary Material. The first section focused on standard demographic descriptors including age, sex, primary instrument, nationality, and musical experience. The second section elicited information on technology use in day-to-day life, including self-perceived skill in using a range of standard technologies (smartphones, laptops, desktop computers, tablets, smartwatches, televisions, audio and video recording equipment, audio playback equipment, and motion capture technologies), as well as the degree to which they seek out, enjoy using, and enjoy learning to use new technologies on 7-point scales from 1 (not at all) to 7 (very much). Respondents were also asked the degree to which they find day-to-day technologies easy to use and useful in an adaptation of Davis's (1989) scales for Perceived Usefulness and Perceived Ease of Use of Technology, which together predict actual use of technology. These factors form the foundation of the Technology Acceptance Model (TAM; see Figure 1; Davis et al., 1989), which serves to predict attitudes toward, intention to use, and actual use of technology. The TAM has been replicated, adapted, and applied in numerous domains, including that of technology use in educational contexts (Adams et al., 1992; Venkatesh et al., 2003; Edmunds et al., 2012; Martí-Parreño et al., 2016; Wu and Chen, 2017).

      The Technology Acceptance Model (TAM). Figure adapted from Davis (1989, p. 985). In the model, perceived ease of use and usefulness of technologies predict attitudes toward and intention to use technology, which in turn predicts actual system use.

      The third section asked about technology access, use, and attitudes in learning one's primary instrument, including whether the standard technologies listed above are available in their practice room and lesson space, whether the “classic” music technologies of metronomes, tuners, and audio/video recording devices are accessed via smartphone or on bespoke devices. They were then asked about drivers toward and barriers from incorporating technology into their music learning based on 7-point scales adapted from Gilbert (2015), how likely they are to use new technologies should they become available, and another adaption of the Davis (1989) scale of usefulness and ease of use in the context of music learning. The next questions investigated the degree to which musicians use technology to develop seven skill categories (technical, musical, ensemble, practice, presentation, career, and life) adapted from existing work to profile musicians' skills (Williamon et al., 2017) and including specific subskills (e.g., dynamics, rhythmic accuracy, tracking progress) for several of the categories. Closing this section, musicians were asked the degree to which they engaged in technology-driven musical activates including documenting how practice is spent, having videoconferenced lessons, and recording and viewing recordings of their own and others' playing.

      The final section examined attitudes toward future technologies, including the perceived potential utility of new technology to help with the same skill categories and subskills listed above, and responses to three hypothetical technologies proposed by the authors involving the use of audio, video, and motion capture technologies to be used alone in the practice room or in conjunction with a teacher. A final section was presented for active music teachers only, briefly comparing their attitudes toward and use of technology in their roles as teachers to their roles as music learners and the degree to which they engaged in various technology-driven teaching activities including advertising, scheduling lessons, and tracking student progress. The survey also contained a section shown to violinists as part of a sister project, the results of which are not reported here and details of which are not included in the Supplementary Material.

      Procedure and Analyses

      The survey was distributed online via SurveyMonkey using social media channels and email lists, with assistance from a number of professional music organizations and educational institutions. The survey was designed to place general technology use early in the form, thus allowing for examination of the first area of focus (musicians' general skill with music technology in their day-to-day lives) with a data set prior to dropouts. Of the 338 respondents, complete data sets were recorded for 207. For all analyses, missing data were excluded casewise and N values and degrees of freedom are reported accordingly throughout.

      To examine differences within participants' use of and attitudes toward technology, repeated-measures ANOVAs were employed with relevant items included as independent variables and the responses to those items (via commensurable 7-point scales) as the dependant variables. In cases where a rank-ordering of responses within survey item (e.g., skill at using devices) was of interest, items were ordered from highest to lowest mean descriptive value before entry into a repeated-measures ANOVA with a planned repeated contrast comparing each item with the one following. Thus, the contrast could determine where significant differences in skill existed within the ordering, and where groups of items emerged within which no significant difference could be found and serving as a “tie” in the rank ordering. For example, if a five-item scale were ordered A-E, items A and B may form a tied group in which A was not significantly higher than B. However, B may be significantly higher than C, after which no significant differences remain, leaving group A-B significantly higher than group C-E. Where Mauchly's W indicated a violation of sphericity (p < 0.05) when running analyses of variance (ANOVAs), Greenhouse-Geisser corrections are reported.

      An adapted form of the Technology Acceptance Model (Davis, 1989; see Figure 1) was constructed and tested using partial least squares structural equation modeling (PLS-SEM; adapted model structure described below and in Figure 7) to examine predictors of perceived future technology use. The model was estimated using the software package SmartPLS (v. 3.2.7; Ringle et al., 2015), with a 500-sample bootstrapping procedure (bias-corrected and accelerated [BCa]) used to estimate significance levels.

      Results Musicians' General Technology Use

      Musicians were asked the degree to which they were skilled at using a variety of technologies on 7-point scales. A repeated-measures ANOVA (with item as the independent variable and response as the dependent variable) with a repeated contrast was conducted to determine where significantly different groupings of skills occurred (as described above in “Procedure and Analyses”). The ANOVA revealed a significant main effect [F(6.02, 2028.68) = 429.10, p < 0.001, η2 = 0.56], with the contrast demonstrating five distinct groupings (see Table 1 and Figure 2). The highest skill confidence was found for laptops, smartphones, and desktop computers with no significant differences between them. This grouping was significantly higher than the television and tablet grouping, which was significantly higher than audio recording devices, itself significantly higher than the pairing of video recording devices and audio playback equipment. The lowest skills were reported for motion capture technologies and smartwatches with no significant differences between them but significantly lower than the video recording/audio playback grouping. Correlations between each of the skill categories and age were examined using Kendall's Tau. After applying a Bonferroni correction for multiple comparisons, the only significant relationships found were positive correlations between age and skill with audio recording devices and audio playback devices (τ = 0.11, p < 0.005; τ = 0.13, p < 0.001, respectively) and a negative correlation between age and skill with smartwatches (τ = −0.13, p < 0.005), although all correlations were weak (< 0.2). To examine sex differences, a series of between-groups t-tests was conducted. With the Bonferroni correction applied, significant small-effect differences were found for audio recording devices [women M = 4.00, SD = 1.97; men M = 4.76, SD = 1.95; t(336) = −3.51, p < 0.001, d = 0.38], video recording devices [women M = 3.70, SD = 1.96; men M = 4.41, SD = 1.94; t(336) = −3.32, p < 0.001, d = 0.36], and motion capture technologies [women M = 1.81, SD = 1.40; men M = 2.33, SD = 1.87; t(336) = −2.96, p < 0.005, d = 0.32], and a medium-effect difference found for audio playback devices [women M = 3.31, SD = 2.00; men M = 4.72, SD = 2.08; t(336) = −6.31, p < 0.001, d = 0.69], with men reporting higher figures in each case.

      Mean self-reported skills in using technological devices.

      Skill with device M (SD) F(1, 337) p η2
      Laptop 6.08 (1.19) 1.34 NS 0.00
      Smartphone 6.02 (1.35) 3.72 NS 0.00
      Desktop 5.88 (1.41) 49.28 <0.001 0.13
      TV 5.24 (1.81) 0.01 NS 0.00
      Tablet 5.23 (1.80) 50.69 <0.001 0.13
      Audio recording 4.33 (1.99) 12.14 <0.001 0.03
      Video recording 4.01 (1.98) 0.59 NS 0.00
      Audio playback 3.92 (2.15) 257.56 <0.001 0.43
      MoCap 2.04 (1.64) 0.31 NS 0.00
      Smartwatch 1.98 (1.72)

      Descending rank-ordered mean 7-point responses (and standard deviations) regarding skills with devices, with results from repeated contrasts highlighting significant differences between each item and the following in the ranking.

      Mean self-reported skills for using technological devices. Musicians reported the highest skills in using laptop and desktop computers and smartphones, and the lowest for smart watches, and motion capture technologies. Skills with audio and video recording devices, as well as audio playback, were close to the midpoint. Age and sex had a relatively small effect on these ratings. Error bars show 95% CI. 1 = not at all, 7 = very; ***p < 0.001, as determined using a repeated measures ANOVA and a repeated contrast.

      On the same 7-point scale, musicians were asked the degree to which they sought out new technologies (M = 4.41, SD = 1.72), enjoyed learning to use new technologies (M = 4.98, SD = 1.71), and enjoyed using new technologies (M = 5.08, SD = 1.61) in their day-to-day lives. Analyses using Kendall's Tau found no significant correlations with age, although Bonferroni-corrected t-tests showed men reporting a significantly higher tendency to seek out technology [women M = 4.01, SD = 1.63; men M = 4.93, SD = 1.71; t(336) = −5.04, p < 0.001, d = 0.55], to enjoy learning it [women M = 4.64, SD = 1.75; men M = 5.41, SD = 1.57; t(336) = −4.19, p < 0.001, d = 0.46], and to enjoy using it [women M = 4.75, SD = 1.63; men M = 5.50, SD = 1.48; t(336) = −4.32, p < 0.001, d = 0.47], with descriptive differences of approximately one point on the 7-point scale. Finally, musicians were asked the degree to which they found technology easy to use and useful in their day-to-day lives, using an adaption of Davis's (1989) scales. The six scales showed very high internal reliability (α > 0.90), with moderately high mean scores for the perceived usefulness (M = 5.72, SD = 0.97) and ease of use (M = 5.74, SD = 0.88) of their day-to-day technologies. No effects of age or sex were found.

      Use of Technology in Music Learning

      Musicians were asked whether they had access to a series of technologies in the spaces where they normally practice and receive lessons (see Table 2). Smartphones showed the highest prevalence (75%), followed by laptops (54%), tablets (38%), and audio recorders (36%). Across all technologies, approximately half of the musicians had regular access to technologies in the lesson space vs. practice space.

      Regular technology access in the practice and lesson space.

      Technology Access in Practice Room Access in Lesson Space
      Smartphone 225 (75%) 128 (40%)
      Laptop 183 (54%) 56 (17%)
      Tablet 128 (38%) 64 (19%)
      Audio recorder 120 (36%) 62 (18%)
      Audio playback 80 (24%) 41 (12%)
      Desktop computer 74 (22%) 26 (8%)
      Video recorder 59 (18%) 21 (6%)
      Television (large screen) 59 (18%) 18 (5%)
      Smartwatch 23 (7%) 8 (2%)
      Motion capture 16 (5%) 2 (<1%)

      Frequencies and percentages of the 338 musicians who have regular access to the technologies in their practice and lesson spaces.

      For four specific music technologies (metronomes, tuners, audio recorders, and video recorders) musicians were asked whether they primarily use these functionalities on a separate device, on their phone, or not at all (see Table 3). For all four devices, the majority of technology use was on a smartphone as opposed to a stand-alone device.

      Use of standard music technologies.

      Technology n Smartphone Separate device Neither
      Metronome 285 170 (60%) 98 (34%) 17 (6%)
      Tuner 278 126 (45%) 91 (33%) 61 (22%)
      Audio recorder 277 172 (62%) 84 (30%) 21 (8%)
      Video recorder 269 167 (62%) 51 (19%) 51 (19%)

      Frequencies and percentages of the reporting musicians who primarily use metronomes, tuners, and audio/video recording functionalities on separate devices or on their smartphones.

      The next two questions examined drivers of and barriers preventing adoption of technology use in learning musical instruments, adapting scales by Gilbert (2015). For each set, a repeated measures ANOVA was conducted (with item as the independent variable and response as the dependent variable) with the questions rank-ordered and followed by a repeated contrast. A significant main effect was found among drivers to technology [F(6.23, 4136.25) = 89.83, p < 0.001, η2 = 0.24] where the strongest drivers of technology use were that it is useful, available, helps accomplish goals, and is easy to use, while the weakest included whether it was inexpensive and if its use is required. For barriers to technology use, a significant main effect was again found [F(5.60, 1560.48) = 38.88, p < 0.001, η2 = 0.12], with the strongest barriers being the lack of requirement and too high a cost (see Table 4). Results also demonstrated that, when compared as combined means, overall responses to positive uses of technology (M = 4.55, SD = 1.26) were significantly higher than negative uses [M = 3.16, SD = 1.27; t(285) = 12.55, p < 0.001, d = 0.82] and these two values were not significantly correlated.

      Drivers toward and barriers to using technology in music learning.

      Question M (SD) F(1, 285) p η2
      I use tech because…
      …it is useful 5.53 (1.47) 10.31 <0.001 0.04
      …it is available 5.27 (1.77) 7.86 <0.005 0.03
      …it helps reach goals 4.99 (1.73) 0.53 NS 0.00
      …it is easy to use 4.91 (1.60) 12.26 <0.001 0.04
      …I have knowledge 4.67 (1.76) 8.50 <0.005 0.03
      …I have support 4.37 (1.82) 0.35 NS 0.00
      …it saves me time 4.30 (2.03) 14.12 <0.001 0.05
      …it is inexpensive 3.81 (1.93) 29.06 <0.001 0.10
      …it is required 3.10 (1.96)
      I don't use technology because…
      …it is not required 4.22 (2.22) 19.93 <0.001 0.07
      …it is too expensive 3.55 (2.09) 0.01 NS 0.00
      …it is not available 3.53 (2.13) 7.55 <0.01 0.03
      …it is not useful 3.13 (1.96) 1.03 NS 0.00
      …there isn't enough time 2.98 (1.96) 0.63 NS 0.00
      …I don't know enough 2.88 (1.92) 28.23 <0.001 0.09
      …it is too difficult 2.50 (1.61) 0.01 NS 0.00
      …I don't have support 2.49 (1.69)

      Descending rank-ordered mean 7-point responses (and standard deviations) regarding reasons to adopt and not to adopt music technologies, with results from repeated contrasts highlighting significant differences between each item and the following in the ranking.

      As employed for general technology use, Davis's (1989) scales were adapted for use of technology in learning musical instruments. The six-item scales again showed very high internal reliability (α > 0.90), with moderately high mean scores for the perceived usefulness (M = 5.35, SD = 1.20) and ease of use (M = 5.62, SD = 1.12) of their day-to-day technologies, comparable to the scores for general use reported above (usefulness M = 5.72, SD = 0.97; ease of use M = 5.74, SD = 0.88). To examine differences between attitudes toward general and music-learning-specific technology use, a 2-way repeated measures ANOVA was conducted with construct (usefulness vs. ease of use) and application (general use vs. music-learning-specific) as independent factors. A small significant main effect of construct was found [F(1, 249) = 6.95, p < 0.01, η2 = 0.03], in which ease of use received slightly higher ratings than usefulness across applications. A small significant main effect of application was also found [F(1, 249) = 15.43, p < 0.001, η2 = 0.06], in which ease of use and usefulness received slightly higher ratings in general technology use than in music-specific cases. Finally, a significant interaction was found [F(1, 249) = 11.17, p < 0.001, η2 = 0.04] in which the construct difference was larger, although still relatively minimal, in the music-learning application vs. general use: a mean difference of 0.27 points vs. 0.02, respectively. Thus, attitudes toward technology were relatively stable across general and music-learning-specific applications, with the perceived usefulness of technology falling slightly when learning musical instruments.

      Musicians were then asked where they use technology in music learning on a 7-point scale from always to never across seven skill development categories: technical, musical, ensemble, practice, presentation, career, and life. A repeated measures ANOVA (with item as the independent variable and response as the dependent variable) showed a significant effect of skill [F(4.85, 1120.67) = 10.71, p < 0.001, η2 = 0.04], and a repeated contrast (with the items in reverse rank order) showed four significantly different groupings (see Table 5 and Figure 3). Career skills (e.g., networking, budgeting, advertising) showed the highest score, and was significantly higher than the pairing of musical and technical skills, which had no significant difference between them. This was significantly higher than the grouping of practice, ensemble, and life (e.g., mental and physical health, nutrition) skills. Presentation skills (i.e., stage presentation) scored the lowest, significantly lower than life skills.

      Self-reported use of technology to develop performance skills.

      Performance skill M (SD) F(1, 231) p η2
      Career 4.16 (2.35) 6.78 <0.01 0.03
      Musical 3.70 (2.00) 0.03 NS 0.00
      Technical 3.68 (2.16) 3.95 <0.05 0.02
      Practice 3.43 (2.04) 0.07 NS 0.00
      Ensemble 3.39 (2.16) 0.21 NS 0.13
      Life 3.32 (2.16) 4.56 <0.05 0.03
      Presentation 3.02 (2.14)

      Descending rank-ordered mean 7-point responses (and standard deviations) the use of technology to develop performance-related skills, with results from repeated contrasts highlighting significant differences between each item and the following in the ranking.

      Self-reported use of technology to develop performance skills. Musicians reported the highest skills in career development, followed by developing musical and technical skills, then by practice, ensemble, and life skills, with presentation the lowest. Error bars show 95% CI. 1 = never, 7 = always; *p < 0.05, **p < 0.01, as determined by a repeated measures ANOVA using a repeated contrast.

      The categories of musical, technical, and practice skills comprised a series of sub-skills. A repeated measures ANOVA was employed (with item as the independent variable and response as the dependent variable) with sub-skills included among the overall rankings followed a deviation contrast in which every skill subset was compared with the grand mean of all skills combined. As a deviation contrast does not compare the first- (or last-) entered variable, the overall practice skill score was placed in first position as it was the category closest to the mean score of the seven skill categories (i.e., 3.53). A significant main effect was found [F(13.51, 3121.44) = 26.73, p < 0.001, η2 = 0.10] and contrast results were sorted by descending effect size to determine the skills with the largest significant deviations (see Figure 4). The largest difference was the practice skill of avoiding injury, which had the overall lowest score [M = 1.89, SD = 1.74; F(1, 231) = 216.55, p < 0.001, η2 = 0.48]. This was followed by the musical skill of rhythmic accuracy, which showed the highest overall score [M = 4.42, SD = 1.99; F(1, 231) = 106.63, p < 0.001, η2 = 0.32]. Next were low scores among the technical skills for handling the instrument [M = 2.22, SD = 2.04; F(1, 231) = 78.01, p < 0.001, η2 = 0.25] and posture [M = 2.37, SD = 1.91; F(1, 231) = 62.97, p < 0.001, η2 = 0.21]. The practice skill of reviewing feedback followed with a score below the midpoint [M = 2.56, SD = 2.17; F(1, 231) = 34.20, p < 0.001, η2 = 0.13], and the low score for the technical skill of timbre (M = 2.84, SD = 2.14) showed the smallest deviation effect to still reach statistical significance among the subskills [F(1, 231) = 8.14, p < 0.005, η2 = 0.03].

      Self-reported use of technology to develop performance skills, including subskills. The highest technology use was for the musical skill (blue) of rhythmic accuracy, and the lowest use was for the technical skills of handling the instrument, posture, and developing timbre, and the practice skills of avoiding injury and reviewing feedback. Error bars show 95% CI. 1 = never, 7 = always; **p < 0.01, ***p < 0.001, representing deviation from the overall midpoint as determined by a repeated measures ANOVA using a deviation contrast.

      The next section examined the frequency with which the musicians engage in technology-driven activities, namely keeping records of time spent practicing, having distance lessons over video, and various forms of performance recording and viewing (see Table 6). For documenting practice time, a Wilcoxon signed-rank test showed that significantly more documentation occurred without technology than with (i.e., handwritten notes; T = 3459.50, p < 0.05, r = 0.13; effect size r calculated following Rosenthal, 1991, showing a small effect), where 64% of musicians did not ever engage with technology-driven notes and 6% did so on at least a daily basis, while for traditional means 60% never used them and 14% engaged at least daily. While there was of course some overlap between the two paradigms (i.e., many that reported never using one method did engage with the other), further examination of the data showed that 46% of musicians reported never for documentation both with and without technology, and no more than 20% of musicians reported keeping a daily record with either means. The technological activity with the least engagement was lessons over video, with only one fifth of musicians engaging with the practice at least once per year and only 7% having such lessons at least weekly. Four types of audio/video recording activities were documented; recording and viewing recordings of both one's own and others' performances. Friedman's ANOVA, followed by pairwise comparisons (with effect sizes calculated via Wilcoxon signed-rank tests) was used to examine frequency differences. A significant main effect was found [χ(232)2 = 165.07, p < 0.001], and pairwise tests showed that the musicians recorded their own playing with relatively similar frequency (i.e., not significantly different) than the degree to which they viewed the recordings of others. However, they recorded themselves significantly more often than they viewed those same recordings (T = 612.50, p < 0.001, r = 0.30), the latter of which was done with more frequency than the degree to which they recorded others' playing (T = 3014.50, p < 0.001, r = 0.22).

      Frequency of technology-driven musical activities.

      Activity Never Yearly Monthly Weekly (Once) Weekly (>1) Daily (Once) Daily (>1)
      Document time (with tech) 64%* 2% 10% 10% 9% 3% 3%
      Document time (no tech) 60%* 3% 7% 10% 7% 12% 2%
      Lessons over video 79% 7% 7% 4% 2% 1% 0%
      Record own playing 7% 13% 34% 17% 20% 5% 3%
      Review own recordings 20% 17% 28% 18% 10% 4% 3%
      Record others' playing 26% 18% 20% 12% 10% 1% 1%
      Review others' recordings 10% 8% 21% 22% 21% 11% 7%

      Percentage of respondents (n = 232) who engaged with each activity.

      When the data were examined in the aggregate, 46% of musicians never kept documentation of their practice time with or without the use of technology. Musicians recorded themselves with significantly greater frequency than reviewing those recordings.

      Use of Technology in Music Teaching

      A short section was completed by musicians who reported themselves as active music teachers (n = 82), teaching a mean 20.88 students (SD = 27.53; Mdn = 11.50, IQR = 26) at the time of completing the survey. The first set of questions investigated how teachers' general attitudes toward and use of technology in their roles as teachers compared with their feelings as music learners (see Table 7). Teachers were generally more receptive to technology in their roles as teachers, being more likely to report increased use, willingness to try, usefulness of, and potential future usefulness of technology than to report decreased attitudes. The only reversal was that of time to try new technologies, where there was a tendency to report the same or less time as a teacher than as a musician.

      Comparison of technology attitudes as learner vs. teacher.

      Activity Less as a teacher Same More as a teacher
      The amount of technology I use 27% 34% 39%
      How willing I am to try new technologies 12% 57% 31%
      The amount of time I have to try new technologies 34% 39% 26%
      How useful technology is 12% 55% 33%
      How useful I think technology could be 9% 56% 35%

      Use and attitudes of music teachers (n = 82) toward technology in practice as a teacher vs. as a music learner.

      Music teachers were then asked the degree to which they used technology in a series of teaching-specific activities. A repeated measures ANOVA showed a significant effect of skill [F(3.74, 303.21) = 34.35, p < 0.001, η2 = 0.30], and a repeated contrast (with the items in reverse rank order) showed four significantly different groupings (see Table 8 and Figure 5). Scheduling lessons showed the highest score, which was significantly higher than advertising for new students. Advertising was in turn significantly higher than giving students feedback, which was grouped with organizing students' practice time and tracking students' progress without significant differences between them. The lowest, reported significantly less often than tracking progress, was tracking students' practice time.

      Self-reported use of technology for music teaching activities.

      Teaching activity M (SD) F(1, 81) p η2
      Schedule 5.07 (2.34) 12.41 <0.001 0.13
      Advertise 4.01 (2.49) 10.34 <0.005 0.11
      Give feedback 3.15 (2.29) 1.07 NS 0.00
      Organize practice time 2.93 (2.18) 0.17 NS 0.00
      Track progress 2.84 (2.16) 18.05 <0.001 0.18
      Track time spent 2.10 (1.79)

      Descending rank-ordered mean 7-point responses (and standard deviations) regarding use of technology to facilitate teaching tasks, with results from repeated contrasts highlighting significant differences between each item and the following in the ranking.

      Self-reported use of technology for music teaching activities. The highest technology use was for scheduling lessons and advertising, while the lowest were giving feedback, tracking progress, and organizing and tracking students' time spent practicing. Error bars show 95% CI. 1 = never, 7 = always; **p < 0.01, ***p < 0.001, as determined by a repeated measures ANOVA using a repeated contrast.

      Attitudes Toward and Predictors of Future Technology Use

      The questions on skills developed using current technologies were repeated with reference to the potential usefulness of future technologies in addressing the same seven categories (see Figure 6). A repeated measures ANOVA (with item as the independent variable and response as the dependent variable) showed a significant effect of skill [F(4.64, 974.60) = 10.30, p < 0.001, η2 = 0.05], and a repeated contrast (with the items in reverse rank order) showed a relatively even ranking of categories with career skills receiving the highest score (M = 5.36, SD = 2.05) as it did in current technology use, and showing the only significant difference between the next highest rank [F(1, 210) = 25.55, p < 0.001, η2 = 0.11] with no significant differences between the remaining six skill categories. In comparing future technology usefulness with current use, a 2-way repeated measures ANOVA with skill category and paradigm (current use vs. future usefulness) as factors was conducted. The main effect of skill category was repeated [F(4.49, 943.15) = 12.78, p < 0.001, η2 = 0.06], and a significant main effect was found for paradigm in which musicians rated the potential usefulness of technology for each of the skill categories (combined M = 4.70, SD = 1.48) approximately one point higher than their current use [combined M = 3.53, SD = 1.48; F(1.00, 210.00) = 168.66, p < 0.001, η2 = 0.45]. The interaction was also significant [F(5.23, 1097.78) = 6.43, p < 0.001, η2 = 0.03], unsurprising due to the changing rank orders between the two paradigms.

      Perceived usefulness of future technologies for developing performers' skills. As with current technology use, musicians gave the highest scoring for career development skills. The remaining categories did not show significant differences between them. Error bars show 95% CI. 1 = not at all, 7 = very; ***p < 0.001 as measured by a repeated measures ANOVA using a repeated contrast.

      An adapted form of the Technology Acceptance Model (Davis, 1989; see Figure 1) was constructed and tested using PLS-SEM to examine predictors of perceived future technology use (see Figure 7). Five latent variables were included. The first two—(1) perceived ease of use and (2) usefulness of technologies for music learning—were used directly from the TAM using the six-component scales described above. To this was added two latent variables—(3) musicians' current use of music technology and (4) perceived usefulness of potential future technologies to develop music-performance related skills—each aggregated from the seven skill categories as reported above. These were hypothesized to be predictive of the final item, (5) the degree to which musicians intend to use future technologies, comprising a 7-point scale in which musicians were asked whether they would use more technology for music learning were it available (see question 19 in the Supplementary Table) and three questions where musicians were asked how likely they would be to use three hypothetical technologies devised by the authors to capture respondent's reactions to specific potential technologies in addition to the general hypothetical (see questions 25–27 in the Supplementary Table). Responses to these questions of hypothetical future use were moderately high (M = 4.70, SD = 1.93; M = 4.81, SD = 1.86; M = 4.36, SD = 2.01; M = 4.48, SD = 2.08, respectively), and a mixed repeated measures ANOVA with the four questions as a repeated factor and sex as a between groups factor (added to the model due to the finding, described above, of men reporting a higher tendency to seek out new technologies) showed no significant main effects of or interaction between the two factors. Figure 7 shows the construction of the model, to which musicians' age and musical experience were added as direct predictors of the future use of technologies for music learning. Missing data were excluded casewise, leaving n = 207 for this analysis. While partial least squares structural equation modeling, unlike covariance-based SEM approaches, do not have available a global goodness of fit measure (Garson, 2016), the standardized root mean square residual (SRMR) was below the 0.08 cutoff considered to be a conservative indicator that the average magnitude of differences between the observed and model-implied correlation matrices was lower and indicative of good fit (Hu and Bentler, 1998). R2 values for each dependent variable were significant (p < 0.001), and significant path relationships (β) were demonstrated (see Figure 7). Perceived ease of use had a significant effect on perceived usefulness (β = 0.62, p < 0.001), accounting for 38% of variance (p < 0.001). As predictors of current use of technology, only usefulness showed a significant effect (β = 0.46, p < 0.001) with 21% of variance accounted for. The perceived usefulness of future technologies was significantly predicted with a small effect by usefulness of current technologies (β = 0.15, p < 0.05), although current technology use was a much stronger predictor (β = 0.56, p < 0.001) with a combined 41% of variance explained. Finally, intention to use future hypothetical technologies was tested with five predictors for a combined 35% of variance accounted for. The strongest significant predictor was the perceived potential usefulness of future music technologies (β = 0.32, p < 0.001), followed closely by perceived usefulness of current technologies (β = 0.31, p < 0.001). Musicians' current technology use, age, and musical experience did not significantly predict their intention to use future technologies.

      Adapted Technology Acceptance Model for current and potential future use of technologies for music learning. The model was tested using partial least squares structural equation modeling (missing data excluded casewise, n = 207). Blue circles show latent variables and contain R2 values; green squares show directly measured variables and, when forming composite latent variables, are accompanied by alpha values (Cronbach's) in green. Path arrow thickness indicates relative weight and is accompanied by β values that represent standardized regression coefficients resulting from the Partial Least Squares analysis, demonstrating the relative weighting of each path on a scale from −1 to 1. Significance values of R2 and β were calculated using 500-sample bootstrapping (bias-corrected and accelerated; [BCa]). Current use of technology was predicted by perceived technology usefulness but not ease of use, which itself predicted usefulness. Future use of technology was predicted by perceived current and future music technology usefulness, but not by current technology use, age, or musical experience. TNCL, Technical; MUS, Musical; ENS, Ensemble; PRCT, Practice; PRES, Presentation; CAR, Career. *p < 0.05, ***p < 0.001.

      Discussion

      This research examined the use of and attitudes toward technology in musicians' individual learning and teaching, investigating their current use of technology in day-to-day life and in their learning, as well as opinions toward future hypothetical technologies. Across the survey, musicians were shown to be generally positive in their attitudes toward technology, active in their use, and optimistic regarding future possibilities, although notable deficits remain.

      In their day-to-day lives, musicians were most skilled at using smartphones, laptops, and desktop computers to a significantly greater degree than audio and video recording devices, and playback equipment. While this is perhaps not surprising due to the relatively recent surge of such technologies in the personal sphere, it signifies that musicians are less confident with the audio and video recording devices that might be considered central to the practice of musical learning and training. Such a shift toward mobile devices and computers was also seen in the increased accessibility of these devices in the practice and lesson space compared with audio/video recording and playback equipment, as well as the fact that the majority of musicians were found to be engaging with the “classic” music technologies of metronomes, tuners, and audio/video recording functions on their smartphones as opposed to bespoke equipment. It is notable that significant differences in sex and age were not found for mobile devices and computers, suggesting the new universality of these devices that transcend stereotypical barriers. While the means reported suggested slightly higher increases in confidence with some of the lower-rated technologies (i.e., audio/video recording playback and motion capture), as well as a greater tendency to seek out and enjoy the search for new technologies, it may indicate that the established trend of men (and boys) showing greater confidence with music technologies (e.g., Colley et al., 1997) is waning with the explosion of personal computing and smartphones and the emergence of a new generation of digital learners (Sánchez et al., 2011). The sex differences may also have resulted from an effect of stereotype threat, in which women may have been more likely to self-report lower engagement with technology resulting from cultural assumptions of women's relationship with STEM-related subjects (Stout et al., 2011). The musician's toolkit is evolving; pedagogues, teachers, institutions, and technology creators must work to keep up. That the accessibility of every technology here investigated halved when moving from the practice to the teaching space suggests that these tools have not yet found their place in one-to-one learning settings, mirroring the continued (but shrinking) underuse of technology in classrooms, particularly for formative assessment (Fautley, 2013) and distance learning (Kruse et al., 2013). It was promising that music teachers in this study tended to report higher use of technology as teachers than as learners, although the majority of this activity was used outside of the lesson space, such as lesson scheduling and advertising.

      Regarding use of technology for music learning, musicians were found to rate the drivers to new technology significantly higher than barriers preventing them from using it. The highest rated drivers included usefulness, availability, ability to accomplish goals, and ease of use. The lowest included whether the technologies were time saving, inexpensive, and required for use. The strongest barriers were whether it was not required, its expense, and its availability, with the lowest being knowledge of use, difficulty of use, and whether support was available. This somewhat contradicts findings within the general music education classroom, where Gall (2013) found lack of availability, technical competence, and staff support to be the largest barriers to technology adoption, and Gilbert (2015) found it to be a lack of time, especially in difficulty to set-up. Further research should examine explicitly differences in attitudes between individual and classroom-based music learning paradigms. In examining which music-related skills are developing using these technologies, the highest skill category was for career development, including networking, budgeting, and advertising. The pronounced role of social media may in part account for this, as well as a wealth of online resources aimed at managing and maintaining a freelance career. The skill groups that followed—musical, technical, and practice-based—were marked by notable deviations of certain subskills. That the musical skill of rhythmic accuracy scored the highest in technology use is perhaps unsurprising due to the prevalence of metronomes. The low scores for the skills of instrument handling, maintaining good posture, and avoiding injury all speak to the physical aspects of technology, an area that could see further growth soon due to the increasing development of optical and wearable sensors for music performance and corresponding experimental pedagogical applications (e.g., Ng et al., 2007; Van der Linden et al., 2009; Johnson et al., 2010; Volpe et al., 2017). The low score for the skill of good tone or timbre may also speak to the complexity of the construct and a lack of market-ready technologies to analyze and develop this skill, although new strides are being made in this area (Himonides, 2009; Giraldo et al., 2017, 2019).

      The lower score for the subskill of reviewing feedback highlights a gap in the use of technology to aid in self-directed learning and practice. As it provides tools that can be used to help plan, monitor, and review one's performance, technology has great potential to improve the efficacy of learning by harnessing the principles of deliberate practice through self-regulated learning, which calls for a cycle of explicit planning, deliberate execution, and thoughtful evaluation of one's practice that cycles back into preparing for the next practice session (Zimmerman, 1990; Jørgensen, 2004; Ritchie and Williamon, 2013; Hatfield et al., 2016; Williamon et al., 2017). Unfortunately, these results suggest that significant gaps remain in this learning cycle among musicians. Nearly half of musicians reported not keeping any kind of record of their activities in the practice room, with or without technology-enhanced means, with fewer than a fifth of musicians undertaking this daily. While approximately half of the sampled musicians reported recording their own playing at least once weekly, these recordings were reviewed with significantly lower frequency. They also engaged with the recordings of others more than they did with their own, supporting previous research highlighting the important and varied role such activity can play in developing an interpretative style, particularly in the early stages of practice (Volioti and Williamon, 2017). While the act of making the recording alone may to some degree simulate the pressure of a performance situation, and thus trigger the physiological and psychological arousal that can accompany mock performances (Williamon et al., 2014), without reviewing the recordings musicians do not experience the positive effects this can have on the act of self-assessment (Silveira and Gavin, 2016).

      The results from the structural equation modeling support Davis (1989); Davis et al. (1989) Technology Acceptance Model, where we found that current use of technology for music learning was predicted by perceived usefulness and ease of use. In this case, however, ease of use was not found to be a direct predictor of active technology use; instead, it was shown to predict the perceived usefulness of technology which then predicted use. This result replicates previous findings in educational video games (Martí-Parreño et al., 2016) and suggests that ease of use on its own is not enough to drive use in music learning situations. The technology must be perceived as being useful, although by being easier to use these tools may be giving users a greater chance to recognize and appreciate their utility. The TAM was not initially designed for speculation on hypothetical future use of technology, thus no hypotheses were drawn on the predictors of future intentions. In this case, current technology use, age, and musical experience had no predictive power on attitudes toward using future technologies, with the significant predictors being perceived current usefulness and hypothetical future usefulness. On the one hand, this is promising; there appear to be few barriers to technology uptake beyond making sure they fulfill a need for musicians. On the other, behavioral intention often falls short of actual behavior, functioning more as a moderator than a direct predictor (Armitage and Christian, 2003; Sniehotta et al., 2014). The true test of attitudes toward future technologies will be how they are perceived and used when ultimately presented.

      While the study was able to reach an international cohort varying in age, experience, and nationality, generalizability of this study is limited by the nature of the convenience sampling used. In particular, participants had to engage with technology (i.e., emails, social media, internet browsers, etc.) in order to complete a survey on the use of technology. However, the near ubiquitous access to the internet and use of email in the target population minimizes the risk that major subgroups were excluded. Future research should expand on these findings by exploring deeper the reasons for and processes by which musicians choose the technology they use and the innovative ways by which they are incorporating them into their pedagogy. This work could also examine the degree to which musicians continue to use technology once it has been adapted, as continued satisfaction with technology and the potential negative effects of overhyped and under-delivered features have been shown to be powerful drivers of and barriers to continued technology engagement (Bhattacherjee and Premkumar, 2004).

      Conclusions

      The traditional models of learning music can give the impression of a rarefied culture resistant to change. The present study suggests that this is not the case. We found that technology use is being actively pursued and demanded by a population of musicians with a high degree of technological aptitude, one that particularly favors mobile devices over bespoke equipment to record audio and video or to set metronomic time. Technology, in addition to its role as a tool to network and communicate, is being used to enhance the development of technical and musical skills. However, gaps remain in technology use, particularly for aspects relating to kinematics such as posture and the avoidance of injury. Music teachers are making use of technologies to communicate with and organize time with their students, though more research is required to reveal how technology is being employed within the teaching studio and what innovations may be possible therein. New technologies, through advanced and interactive systems of behavioral analysis and feedback, have the potential to enhance communication, efficiency, efficacy, and healthy practice in music learning. By understanding the challenges faced and attitudes held by musicians that may be impeding the take-up of such systems, researchers and designers will be able to develop genuinely useful technologies for the next generation of performers, teachers will be able to enhance the feedback they can give in their classrooms and studios, and musicians will be able to expand their toolkit to build the full range of skills required for their art and their careers.

      Ethics Statement

      Ethical approval for the study, including approval of the study protocol, was granted by the Conservatoires UK Research Ethics Committee following the guidelines of the British Psychological Society. The survey opened with an information sheet outlining the topic and purpose of the study and informing respondents that, by beginning the survey, they were providing informed consent. Written consent was not explicity requested following the guidelines of the British Psychological Society for questionnaire-based research examining non-vulnerable populations (aged 16+).

      Author Contributions

      Both authors contributed significantly to the study design, data collection and analysis, and preparation of this manuscript.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to thank Rafael Ramirez, Alfonso Pérez, Gualtiero Volpe, Manuel Oliveira, Maria Margoudi, Madeleine Mitchell, and the TELMI team for their contributions to the survey design and dissemination, as well as the Associated Board of the Royal Schools of Music, British Association for Performing Arts Medicine, Brent Music Service, European String Teacher's Association, Musician's Union, and the Royal College of Music for their aid in distributing the survey.

      Supplementary Material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fict.2019.00011/full#supplementary-material

      References Adams D. A. Nelson R. R. Todd P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: a replication. MIS Quart. 16, 227247. 10.2307/249577 Anderson A. J. Ellis A. (2005). Desktop video assisted music teaching and learning: new opportunities for design and delivery. Br. J. Educ. Technol. 36, 915917. 10.1111/j.1467-8535.2005.00496.x Armitage C. J. Christian J. (2003). From attitudes to behaviour: basic and applied research on the theory of planned behaviour. J. Curr. Psychol. 22, 187195. 10.1007/s12144-003-1015-5 Barry N. H. Mcarthur V. (1994). Teaching practice strategies in the music studio: a survey of applied music teachers. Psychol. Music 22, 4455. 10.1177/0305735694221004 Bauer W. I. Reese S. McAllister P. A. (2003). Transforming music teaching via technology: the role of professional development. J. Res. Music Educ. 51, 289301. 10.2307/3345656 Bhattacherjee A. Premkumar G. (2004). Understanding changes in belief and attitude toward information technology usage: a theoretical model and longitudinal test. MIS Quart. 34, 229254. 10.2307/25148634 Bray D. (1997). CD ROM in music education. Brit. J. Mus. Ed. 14:137. 10.1017/S0265051700003582 Colley A. Comber C. Hargreaves D. (1997). IT and music education: what happens to boys and girls in coeducational and single sex schools. Brit. J. Mus. Ed. 14:119. 10.1017/S0265051700003569 Creech A. Gaunt H. (2012). The changing face of individual instrumental tuition: value, purpose and potential, in The Oxford Handbook of Music Education, Vol. 1, eds McPherson G. E. Welch G. F. (Oxford: Oxford University Press), 694711. 10.1093/oxfordhb/9780199730810.013.0042 Daniel R. (2001). Self assessment in performance. Br. J. Music Educ. 18, 215226. 10.1017/S0265051701000316 Davis F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quart. 1989, 319340. 10.2307/249008 Davis F. D. Bagozzi R. P. Warshaw P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Manag. Sci. 35, 9821003. 10.1287/mnsc.35.8.982 DfES Department for Education and Skills. (2005). Support for Parents: The Best Start for Children. London: Stationery Office. Edmunds R. Thorpe M. Conole G. (2012). Student attitudes towards and use of ICT in course study, work and social activity: a technology acceptance model approach: exploring student perceptions of ICT in three contexts. Br. J. Educ. Technol. 43, 7184. 10.1111/j.1467-8535.2010.01142.x Ellis P. (1997). The Music of Sound: a new approach for children with severe and profound and multiple learning difficulties. Brit. J. Mus. Ed. 14:173. 10.1017/S0265051700003624 European Commission (2013). Survey of Schools: ICT in Education. Luxembourg: Publications Office of the European Union. Fautley M. (2013). The potential of audio and video for formative assessment purposes in music education in the lower secondary school in England: issues arising from a small-scale study of trainee music teachers. J. Music Technol. Educ. 6, 2942. 10.1386/jmte.6.1.29_1 Gall M. (2013). Trainee teachers' perceptions: factors that constrain the use of music technology in teaching placements. J. Music Technol. Educ. 6, 527. 10.1386/jmte.6.1.5_1 Garson G. D. (2016). Partial Least Squares: Regression and Structural Equation Models. Statistical Associates Blue Book Series. Asheboro, NC: Statistical Associates Publishing. Gaunt H. (2017). Apprenticeship and empowerment: the role of one-to-one lessons, in Musicians in the Making: Pathways to Creative Performance, eds Rink J. Gaunt H. Williamon A. (Oxford: Oxford University Press), 2856. Gilbert A. D. (2015). An Exploration of the Use of and the Attitudes Toward Technology in First-Year Instrumental Music. (Unpublished PhD thesis), University of Nebraska. Giraldo S. Ramirez R. Waddell G. Williamon A. (2017). A real-time feedback learning tool to visualize sound quality in violin performances, in Proceedings of the 10th International Workshop on Machine Learning and Music, eds. Ramirez R. Conklin D. Iñesta J. M. (Barcelona), 1924. Giraldo S. Waddell G. Nou I. Ortega A. Mayor O. Perez A. . (2019). Automatic assessment of tone quality in violin music performance. Front. Psychol. 10:334. 10.3389/fpsyg.2019.0033430930804 Hallam S. (1995). Professional musicians' orientations to practice: implications for teaching. Br. J. Music Educ. 12, 319. 10.1017/S0265051700002357 Hatfield J. L. Halvari H. Lemyre P.-N. (2016). Instrumental practice in the contemporary music academy: a three-phase cycle of Self-Regulated Learning in music students. Music. Sci. 2016, 316337. 10.1177/1029864916658342 Henley D. (2011). Music Education in England: A Review by Darren Henley for the Department for Education and the Department for Culture, Media and Sport. Available online at: https://www.gov.uk/government/publications/music-education-in-england-a-review-by-darren-henley-for-the-department-for-education-and-the-department-for-culture-media-and-sport Hewitt M. P. (2002). Self-evaluation tendencies of junior high instrumentalists. J. Res. Music Educ. 50, 215226. 10.2307/3345799 Himonides E. (2009). Mapping a beautiful voice: theoretical considerations. J. Music Technol. Educ. 2, 2554. 10.1386/jmte.2.1.25/1 Himonides E. Purves R. (2010). The role of technology, in Music Education in the 21st Century in the United Kingdom: Achievements, Analysis and Aspirations, eds Hallam S. Creech A. (London, Institute of Education), 123140. Ho W. C. (2004). Use of information technology and music learning in the search for quality education. Br. J. Educ. Technol. 35, 5767. 10.1111/j.1467-8535.2004.00368.x Hu L.- T. Bentler P. M. (1998). Fit indices in covariance structure modeling: sensitivity to underparameterized model misspecification. Psychol. Methods 3:424. 10.1037/1082-989X.3.4.424 Hugill A. (2012). The Digital Musician, 2nd Ed. New York, NY: Routledge. 10.4324/9780203111796 Hunt A. Kirk R. (1997). Technology and music: incompatible subjects. Brit. J. Mus. Ed. 14:151. 10.1017/S0265051700003600 Johnson R. M. van der Linden J. Rogers Y. (2010). MusicJacket: the efficacy of real-time vibrotactile feedback for learning to play the violin, in CHI'10 Extended Abstracts on Human Factors in Computing Systems (Atlanta: ACM), 34753480. 10.1145/1753846.1754004 Johnston H. (1993). The use of video self-assessment, peer-assessment, and instructor feedback in evaluating conducting skills in music student teachers. Br. J. Music Educ. 10:57. 10.1017/S0265051700001431 Jørgensen H. (2004). Strategies for individual, in Musical Excellence: Strategies and Techniques to Enhance Performance, ed Williamon A. (Oxford: Oxford University Press), 85104. 10.1093/acprof:oso/9780198525356.003.0005 Kenny R. F. McDaniel R. (2011). The role teachers' expectations and value assessments of video games play in their adopting and integrating them into their classrooms: expectancy-value. Br. J. Educ. Technol. 42, 197213. 10.1111/j.1467-8535.2009.01007.x Kruse N. B. Harlos S. C. Callahan R. M. Herring M. L. (2013). Skype music lessons in the academy: intersections of music education, applied music and technology. J. Music Technol. Educ. 6, 4360. 10.1386/jmte.6.1.43_1 Lindström E. Juslin P. N. Bresin R. Williamon A. (2003). Expressivity comes from within your soul”: a questionnaire study of music students' perspectives on expressivity. Res. Stud. Music Educ. 20, 2347. 10.1177/1321103X030200010201 Martí-Parreño J. Sánchez-Mena A. Aldás-Manzano J. (2016). Teachers' intention to use educational video games: a technology acceptance model approach, in Proceedings of the 10th European Conference on Games Based Learning (Reading, UK), 434441. Mills J. Murray A. (2000). Music technology inspected: good teaching in key stage 3. Br. J. Music Educ. 17, 129156. 10.1017/S026505170000022X Naughton C. (1997). Music technology tools and the implications of socio-cognitive research. Brit. J. Mus. Ed. 14:111. 10.1017/S0265051700003557 Ng K. C. Weyde T. Larkin O. Neubarth K. Koerselman T. Ong B. (2007). The 3D augmented mirror: a multimodal interface for learning and teaching string instruments, in ICMI '07 Proceedings of the 9th International Conference on Multimodal Interfaces (New York, NY), 339345. 10.1145/1322192.1322252 Pike P. D. Shoemaker K. (2013). The effect of distance learning on acquisition of piano sight-reading skills. J. Music Technol. Educ. 6, 147162. 10.1386/jmte.6.2.147_1 Purves R. (2012). Technology and the educator, in The Oxford Handbook of Music Education, Vol. 2, eds McPherson G.E. Welch G. F. (Oxford: Oxford University Press), 457475. 10.1093/oxfordhb/9780199928019.013.0030 Ringle C. M. Wende S. Becker J.-M. (2015). SmartPLS 3. Boenningstedt: SmartPLS GmbH. Available online at: http://www.smartpls.com. Ritchie L. Williamon A. (2013). Measuring musical self-regulation: linking processes, skills, and beliefs. J. Educ. Training Stud. 1, 106117. 10.11114/jets.v1i1.81 Robinson C. R. (1993). Singers' self-assessment of choral performance: next-day recollections versus concert tape evaluation. Southeastern J. Music Educ. 4, 224233. Rogers K. (1997). Resourcing music technology in secondary schools. Br. J. Music Educ. 14:129. 10.1017/S0265051700003570 Rosenthal R. (1991). Meta-Analytic Procedures for Social Research 2nd Ed. Newbury Park, CA: Sage. 10.4135/9781412984997 Salaman W. (1997). Keyboards in schools. Br. J. Music Educ. 14, 143149. 10.1017/S0265051700003594 Sánchez J. Salinas A. Contreras D. Meyer E. (2011). Does the new digital generation of learners exist? A qualitative study. Br. J. Educ. Technol. 42, 543556. 10.1111/j.1467-8535.2010.01069.x Silveira J. M. Gavin R. (2016). The effect of audio recording and playback on self-assessment among middle school instrumental music students. Psychol. Music 44, 880892. 10.1177/0305735615596375 Smart T. Green L. (2017). Informal learning and musical performance, in Musicians in the Making: Pathways to Creative Performance, eds Rink J. Gaunt H. Williamon A. (Oxford: Oxford University Press), 108125. Sniehotta F. F. Presseau J. Araújo-Soares V. (2014). Time to retire the theory of planned behaviour. Health Psychol. Rev. 8, 17. 10.1080/17437199.2013.86971025053004 Stout J. G. Dasgupta N. Hunsinger M. McManus M. A. (2011). STEMing the tide: using ingroup experts to inoculate women's self-concept in science, technology, engineering, and mathematics (STEM). J. Pers. Soc. Psychol. 100, 255270. 10.1037/a002138521142376 Sweeney T. West D. Groessler A. Haynie A. Higgs B. M. Macaulay J. . (2017). Where's the transformation? Unlocking the potential of technology-enhanced assessment. TLI 5, 113. 10.20343/5.1.5 Thorgersen K. Zandén O. (2014). The internet as teacher. J. Music Technol. Educ. 7, 233244. 10.1386/jmte.7.2.233_1 Van der Linden J. Schoonderwaldt E. Bird J. (2009). Towards a real-time system for teaching novices correct violin bowing technique, in Proceedings of HAVE, the IEEE International Workshop on Haptic Audio Visual Environments and Games (Lecco). 10.1109/HAVE.2009.5356123 Venkatesh V. Morris M. G. Davis G. B. Davis F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quart. 27, 425478. 10.2307/30036540 Volioti G. Williamon A. (2017). Recordings as learning and practising resources for performance: exploring attitudes and behaviours of music students and professionals. Music. Sci. 21, 499523. 10.1177/1029864916674048 Volpe G. Kolykhalova K. Volta E. Ghisio S. Waddell G. Alborno P. . (2017). A multimodal corpus for technology enhanced learning of violin playing, in Proceedings of the 12th Biannual Conference of the Italian SIGCHI Chapter, eds Paternò F. Spano L. D. (New York, NY: ACM Publications). 10.1145/3125571.3125588 Waldron J. (2012). Conceptual frameworks, theoretical models and the role of YouTube: Investigating informal music learning and teaching in online music community. J. Music Technol. Educ. 4, 189200. 10.1386/jmte.4.2-3.189_1 Webster P. R. (2012). Key research in music technology and music teaching and learning. J. Music Technol. Educ. 4, 115130. 10.1386/jmte.4.2-3.115_1 Williamon A. Aufegger L. Eiholzer H. (2014). Simulating and stimulating performance: introducing distributed simulation to enhance musical learning and performance. Front. Psychol. 5:25. 10.3389/fpsyg.2014.0002524550856 Williamon A. Clark T. Küssner M. (2017). Learning in the spotlight: approaches to self-regulating and profiling performance, in Musicians in the Making: Pathways to Creative Performance, eds Rink J. Gaunt H. Williamon A. (Oxford University Press), 206221. Wu B. Chen X. (2017). Continuance intention to use MOOCs: integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Comput. Hum. Behav. 67, 221232. 10.1016/j.chb.2016.10.028 Zimmerman B. J. (1990), Self-regulated learning and academic achievement: an overview, Educ. Psychol. 25, 317. 10.1207/s15326985ep2501_2.

      Funding. The research reported in this article was supported by TELMI (Technology Enhanced Learning of Musical Instrument Performance), a project funded by the European Commission's Horizon 2020 research and innovation program (grant no. 688269).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016haonongmin.com.cn
      www.kesilai.com.cn
      hmchain.com.cn
      lykxgm.org.cn
      sttlfn.com.cn
      shuzibi.net.cn
      nmgshys.com.cn
      muchone.com.cn
      mydiy21.org.cn
      whmkfk.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p