Edited by: Srikantan S. Nagarajan, University of California, San Francisco, United States
Reviewed by: Andreas Knoblauch, Hochschule Albstadt-Sigmaringen, Germany; Krzysztof Zagorski, Kozminski University, Poland
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
In the last decade advances in human neuroscience have identified the critical importance of time in creating long-term memories. Circadian neuroscience has established biological time functions via cellular clocks regulated by photosensitive retinal ganglion cells and the suprachiasmatic nuclei. Individuals have different circadian clocks depending on their chronotypes that vary with genetic, age, and sex. In contrast, social time is determined by time zones, daylight savings time, and education and employment hours. Social time and circadian time differences can lead to circadian desynchronization, sleep deprivation, health problems, and poor cognitive performance. Synchronizing social time to circadian biology leads to better health and learning, as demonstrated in adolescent education. In-day making memories of complex bodies of structured information in education is organized in social time and uses many different learning techniques. Research in the neuroscience of long-term memory (LTM) has demonstrated in-day time spaced learning patterns of three repetitions of information separated by two rest periods are effective in making memories in mammals and humans. This time pattern is based on the intracellular processes required in synaptic plasticity. Circadian desynchronization, sleep deprivation, and memory consolidation in sleep are less well-understood, though there has been considerable progress in neuroscience research in the last decade. The interplay of circadian, in-day and sleep neuroscience research are creating an understanding of making memories in the first 24-h that has already led to interventions that can improve health and learning.
香京julia种子在线播放
Circadian cycles create the patterns of wake and sleep in which short and long-term memories are created. Social factors leading to mistiming wake and disrupting sleep can have a negative impact on these memory functions. Memory processes in the initial 24-h cycle are critical in determining what is encoded into long-term memory (LTM) rather than left to fade in short term memory (STM). There are many stimuli that can trigger LTM but, in this review, we focus on spaced repetition leading to LTM of bodies of complex information, an essential process in learning.
The fundamental role of circadian timing processes has been emphasized by the award of the Nobel Prize in 2017 in physiology or medicine to Hall, Rosbash, and Young for their discoveries of the genetic mechanisms that create circadian 24-h timing in drosophila and humans alike (Bargiello et al.,
Circadian timing can also have a direct impact on human LTM and learning. Circadian clocks are driven by complex genetic and neuroscientific processes. In turn these clocks co-ordinate most 24-h activity including physiological, metabolic, organ and brain functions, including wake/sleep and cognition. When circadian timing is disrupted, then the biological clocks in different tissues can become uncoupled, resulting in a state of internal desynchrony that can have negative impacts on memory creation and health (Foster et al.,
There are many ways in which LTM can be created, though it is only recently that the neuron's intracellular synaptic plasticity mechanisms have been discovered in mice (Fields et al.,
The first section explores recent advances in our understanding of circadian neuroscience, chronotypes, and sleep deprivation. These advances identify research-based applications for improving learning (and health) in adolescent education through synchronizing education times to circadian time. The second section focuses on advances in LTM neuroscience, and an application for improving learning based on these advances leading to creating LTM in humans of complex bodies of structured information. Both circadian and LTM neuroscience are then considered in memory consolidation in sleep.
Like most life on earth, our physiology, health and behaviors have 24-h rhythms that follow the increasing and decreasing light levels throughout the day and night. These changes in light are the most significant environmental time system and have led to a variety of biological systems to attune animals to circadian timing. In mammals, circadian timing is in effect a two-stage process, with cells individually generating a 24-h rhythm and a master circadian pacemaker establishing more consistent timing throughout the body. In humans the 24-h pacemaker is the suprachiasmatic nuclei (SCN) in the hypothalamus, and the SCN itself is synchronized, or “entrained,” to the variations in light, specifically irradiance. The specific biological mechanism for sensing these changes are triggered when blue light of ~480 nm wavelength enters the eye and strikes photosensitive retinal ganglion cells (pRGC) (Foster and Hankins,
This pRGC/SCN timing mechanism was discovered in mammals only recently and has implications for human functions including making memories. As circadian time systems adjust physiology and behavior in preparation for expected requirements during the day-night cycle, synchronization to changes in light are critical. Even sensing a single photon of light can be important: the absorption of a ~480 nm wavelength photon by 11-cis-retinaldehyde and the photoisomerization of this molecule in a pRGC leads to a strong signal being sent from the eye directly to the SCN (Wald,
Socially created lighting environments can also negatively impact on making memories as light itself has an important role in securing optimal physical and cognitive performance (Cajochen,
Although modern social behaviors, artificial light, and many other factors may cause individuals to become desynchronized from their circadian timing system, our research team found the most significant chronic desynchronization arises from the introduction of socially determined time or universal time (UTC), and fixed times for education, work and other activities. In order to measure desynchronization caused by UTC, our research team developed a new method of measuring time. We reasoned that UTC uses socially determined time zones, daylight savings time, and discounts changes in illuminance within time zones. In contrast, changes in light depend only on geophysical location and the pRGC/SCN timing mechanism, leading us to measure biological time as Geophysical Biological Time (GBT). GBT uses only the environmental cues of changing light in a specific geophysical location to calculate biological time and determining optimal timings for human activities (Bass and Lazar,
Although the circadian pRGC/SCN timing system entrains individuals to the GBT 24-h day, there are wide variations between different chronotypes in their responses to light. Chronotypes are most often determined through surveys of wake and sleep times, adjusted for working and non-working days. In a long-running series of chronotype questionnaires building upon use of time survey-based research, Roenneberg and his colleagues established very large data sets that identify chronotype's different wake and sleep patterns (Roenneberg et al.,
An individual's timing system links to circadian rhythms and 24-h changes in behavior, most noticeably in sleep/wake patterns. Other changes are not often visible, yet circadian rhythmicity is found in almost every physiological, metabolic, and behavioral system, for example core body temperature (Lucas et al.,
Sleep deprivation influences many aspects of health in ways that impact directly and indirectly on memory and learning processes. Since 1964 sleeping <6.5 h each day has been known to be associated with a range of illnesses and higher death rates (Hammond,
Sleep deprivation is clearly associated with poorer cognitive processes (Pilcher and Huffcutt,
The differences between sleep patterns in adolescence and social times for education lead to chronic sleep deprivation. This can be illustrated by considering the school starting time controversy in U.S. middle and high schools. In the U.S. education start times average 08:03 in middle and high schools (Wheaton et al.,
The circadian biology of adolescence explains the problems of school timing. Starting with the pioneering of Carskadon (Carskadon et al.,
The medical and circadian research evidence for later school starts is overwhelming. The medical community's recommendation that middle and high schools in the U.S. should start no earlier than 08:30 is clearly justified. Schools in many states and other countries such as South Korea are changing to later starts and finding students sleep more, achieve better results and better health. However, moving starting times later than 08:30 does not clarify what wake time is optimal for adolescents of different ages. This issue was addressed by our research team, growing out of our work with Oxford University's Sleep and Circadian Neuroscience Institute. Synchronizing education to adolescent circadian neuroscience evidence led to projections that for adolescents at age 16 starting times within the range 10:00–10:30 were appropriate, whereas starting at age 18 starting times of 11:00–11:30 were appropriate (Kelley et al.,
When there is circadian synchrony, as when social time matches biological time, humans function well. When there is desynchrony it can lead to pathologies and dysfunction, including poorer cognitive function. An important factor in sleep loss is different chronotypes, and the failure to recognize the mismatch between starting times and sleep patterns, and the differing impact on chronotype groups, has limited our understating of the complexities of circadian timing and social time. For example, though the number of evening chronotypes increases with adolescence, there remain morning and in-between chronotypes within the adolescent population. Definitely morning and morning chronotypes suffer far less sleep deprivation with early starts in adolescence, or even have no sleep deprivation caused by school starting times. In contrast, the sleep deprivation for definitely evening chronotypes is far greater and can reach 3 h a day or more. Therefore, circadian chronotype analysis is necessary to more accurately assess the impact on groups and individuals.
These circadian time analyses may help explain the findings that evening chronotypes perform less well in schools, are more likely to have depressive symptoms, and have higher levels of obesity and is consistent across studies of older adolescents (Giannotti et al.,
The conflict between biological and social time is endemic in modern society because of the use of social time systems that are not synchronized to biological time leading to unintended consequences. This may prove difficult to change as social time itself has a historical legacy of industrialization, institutionalization and traditions such as a conventional 9-to-5 working day (Ford,
Our research team created a new sociological method to assess chronotype variations in undergraduates using a 24-h time scale of when subjects were at their best. Analysis of the data from 190 undergraduates aged 18–19 was similar to Roenneberg's data suggesting very wide circadian variations indeed (Roenneberg et al.,
Progress in genetic circadian research has also been rapid in the period 2013–2018. An elegant experiment demonstrated sleep loss and adequate sleep in the same subjects, and the genetic mechanisms of sleep loss (Möller-Levet et al.,
Circadian synchrony when social time matches biological time presents many challenges, but the alternative of continuing to allow desynchrony that causes poorer health, mental health and cognitive function is untenable. The surge in home working in many countries including the U.S. enables better, even optimal circadian synchrony, is the most positive example of society adjusting to neuroscientific realities, even if it is unintentional consequence of new technologies. Seemingly intractable issues such as night shifts are amenable to improvement by matching chronotypes to working hours (Vetter et al.,
New techniques such as scanning technologies have allowed a better understanding of the neuronal ensembles formed in memory processes. Experimental results suggest learning and memory occur in the context of continual structural synaptic plasticity such as formation and elimination of synapses (Chklovskii et al.,
The degree of synchronization of socially determined times to circadian time can impact on learning and memory processes within each 24-h cycle. On waking alertness and performance varies with sleep loss the night before. Wake alertness varies through the day by chronotype and other circadian and biological factors but environmental stimuli are not bound by these predictive biological in-day patterns. When alertness is low stimuli are more likely to trigger short-term memories (STM), and LTM is less frequent unless the stimuli are highly relevant, emotional, novel, repeated, or extreme (Fields,
LTM processes are the fundamental basis of learning and memory processes and, like the circadian processes, they are biologically determined through evolutionarily-conserved timing mechanisms. Here we focus on cAMP response element-binding protein (CREB) in intracellular LTM functions and timing and the associated CREB-based spaced learning (CBSL) to illustrate biological timing of human LTM processes. The molecular and systems biology of memory has been well-established in broad terms during the last century. Progress has often been slow, with hypotheses that have been proved only after decades of research. Learning is characterized as the biological processes in acquiring information from the environment and consolidation in sleep (Atkinson and Shiffrin,
In the early studies of memory, differences between Pavlovian memory encoding in dogs (Pavlov,
In this review we focus on the initial circadian cycle, and on purposeful memory encoding and consolidation. LTM formation is now understood to depend on Long-Term Potentiation (LTP) and late-long -term potentiation L-LTP. L-LTP depends on protein kinases such as MARK and PKA signaling to CREB and is dependent on gene transcription (Frey et al.,
Behavioral studies with different species showed that the timing of stimuli was a critical variable in LTM encoding. In a classic study, honeybees were trained to find food locations with 30 s, 3 min, and 10-min spaces with no training stimuli. The honeybees trained with 10 min spaces were the only group that achieved memory encoding and consolidating, reaching almost 100% accuracy on the third day, demonstrating long-term memories had been created (Menzel et al.,
Broadly speaking, LTP and LTM encoding processes occur in relatively short time scales. LTM can be created by extreme stress events (Pitman et al.,
Studies on living rats showed patterns of action potential activity have a critical role in long-term synaptic change, providing a direct link between
Although a single neuron can receive signals from thousands of other neurons, it only has one method of sending a message- firing an impulse through the axion or being silent. Fields argued that it follows that genes in neurons are also turned on and off by the patterns of impulse firing. Fields' lab had been investigating nervous system development and plasticity to find how the brain self-organized itself in nervous system development. They tested fetal mice neurons and were able to show that different time patterns controlled different genes (Itoh et al.,
Information reaches the nucleus by regulating the influx of calcium ions through voltage-sensitive channels in the cell membrane. Intracellular channels in the brain have high levels of calcium ions, CA+2 yet inside the neuron levels are 20,000 times lower. When the neurons fire calcium channels open briefly converting the electrical signaling to a chemical time code CREB relays to a neuron's nucleus. Fields' Lab was able to show different temporal patterns regulated different genes: it was not the quantity of calcium entering the neuron but the temporal code it established.
What was the temporal code that triggered LTP and LTM? After many trials, the lab found if the same high-frequency stimulus is applied repeatedly (three times in their experiments) spaced by 10 min without stimuli, the synapse becomes strengthened in LTP. This CREB-based spaced learning (CBSL) code could occur in the first half hour or up to 2 h later as indicated in the synaptic tagging and capture model. As humans need to acquire LTM of large bodies of complex information in education, CBSL attracted my attention. After years of development (Kelley,
Other researchers used CBSL successfully in different contexts (Vaz,
A very different application of CBSL suggests potential applications in medical training (Boettcher et al.,
Ironically the key research question in CBSL development and trials had been whether CBSL timing could create any LTM at all. Even the idea of using a specific time code drawn from mammal
During wake learning can be manipulated and easily tested, whereas this is not possible in sleep. This stark contrast between wake and sleep processes has meant that consolidation processes in sleep are less well-understood. New findings suggest while wake is a brain state that enables encoding, sleep is a brain state that enables memory consolidation, and models of memory consolidation processes are beginning to emerge in which the role of REM and slow-wave sleep (SWS) in memory is associated with relevant experience to be re-enforced (Rasch and Born,
Human and animal studies alike do not yet answer the fundamental question of consolidation: how do sleep processes identify which memories to consolidate? Logically, new memories that have been through the process of LTP to LTM during wake should trigger consolidation, but the biological processes are only just emerging. Following LTM memory consolidation processes appear to include both hippocampal and cortical sharp-wave ripples with sleep spindles, suggesting cortical ripples may form part of the hippocampal-cortical dialogue during NREM sleep and may be crucial to memory consolidation (Khodagholy et al.,
Yet how can these complex memory consolidation processes be co-ordinated on a cellular level? In an elegant study, it was possible to show that firing antidromic action potentials was probably a key mechanism (Bukalo et al.,
The first 24 h of a new memory occurs in a circadian temporal frame in which alertness can be different for individuals, dependent on whether the individual wakes sleep deprived or in synchrony with their circadian rhythms. Social time in UTC can be different than GBT, and start times for school and work tend to be early in most societies, and this will disadvantage evening chronotypes. Sleep deprivation can have a negative impact on learning and memory processes, decreasing the ability to encode new memories though LTP and LTM processes, and may disrupt consolidation in sleep. Individuals have distinctive circadian patterns by chronotype that determine the best times for cognitive functions, as shown in optimum times in their 24-h profiles that identify best times (Evans et al.,
Currently rigorous application of discoveries in learning and memory neuroscience to human learning and memory are rare. It may be that CBSL is the first such application using a specific time code of activity and rest and drawn from primary neuroscience research that is able to offer detailed account of learning in the first 24-h period. There is every reason to think that different timing protocols will be identified by human neuroscience research. Although sleep and LTM consolidation are less accessible to experiments, sleep has time patterns of activity and rest every 90 min that can be tracked (Carskadon and Dement,
Learning and memory is information that is encoded in the pattern of neuron firing after LTP and LTM processes, and during these processes the necessary biological mechanisms are attuned to temporal signals that are both internal and external. This review has considered the internal timing mechanisms in the first 24 h of a memory, yet this is only the starting point. The interactions between circadian, encoding and consolidating time codes in the first 24 h is perhaps the best-understood LTM research area and offers an opportunity to identify more optimal time patterns for learning in individuals and groups. This may, in turn, inform better social times for learning and work.
PK: neuroscience. ME and JK: social time and sociology.
PK is Chair of the Science Advisory Board of Download Learning, UK and on the Advisory Board of the charity Start School Later, U.S. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.