Front. Hum. Neurosci. Frontiers in Human Neuroscience Front. Hum. Neurosci. 1662-5161 Frontiers Media S.A. 10.3389/fnhum.2018.00105 Neuroscience Original Research Eye Movements During Everyday Behavior Predict Personality Traits Hoppe Sabrina 1 Loetscher Tobias 2 Morey Stephanie A. 3 Bulling Andreas 4 * 1Machine Learning and Robotics Lab, University of Stuttgart, Stuttgart, Germany 2School of Psychology, University of South Australia, Adelaide, SA, Australia 3School of Psychology, Flinders University, Adelaide, SA, Australia 4Perceptual User Interfaces Group, Max Planck Institute for Informatics, Saarbrücken, Germany

Edited by: Antonio Fernández-Caballero, Universidad de Castilla-La Mancha, Spain

Reviewed by: Mazyar Fallah, York University, Canada; Bennett I. Berthenthal, Indiana University Bloomington, United States

*Correspondence: Andreas Bulling bulling@mpi-inf.mpg.de
13 04 2018 2018 12 105 06 11 2017 05 03 2018 Copyright © 2018 Hoppe, Loetscher, Morey and Bulling. 2018 Hoppe, Loetscher, Morey and Bulling

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Besides allowing us to perceive our surroundings, eye movements are also a window into our mind and a rich source of information on who we are, how we feel, and what we do. Here we show that eye movements during an everyday task predict aspects of our personality. We tracked eye movements of 42 participants while they ran an errand on a university campus and subsequently assessed their personality traits using well-established questionnaires. Using a state-of-the-art machine learning method and a rich set of features encoding different eye movement characteristics, we were able to reliably predict four of the Big Five personality traits (neuroticism, extraversion, agreeableness, conscientiousness) as well as perceptual curiosity only from eye movements. Further analysis revealed new relations between previously neglected eye movement characteristics and personality. Our findings demonstrate a considerable influence of personality on everyday eye movement control, thereby complementing earlier studies in laboratory settings. Improving automatic recognition and interpretation of human social signals is an important endeavor, enabling innovative design of human–computer systems capable of sensing spontaneous natural user behavior to facilitate efficient interaction and personalization.

eye tracking real world personality machine learning gaze behavior eye-based user modeling

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Eye movements facilitate efficient sampling of visual information from the world around us. For example, in everyday social interactions, we often understand, predict, and explain the behavior and emotional states of others by how their eyes move (Emery, 2000). The exact mechanisms by which eye movement is controlled, and the range of factors that can influence it, are subject to intense research (Wolfe, 1994; Martinez-Conde et al., 2004; Foulsham et al., 2011; Rucci and Victor, 2015). Understanding the types of information eye movements convey is of current interest to a range of fields, from psychology and the social sciences to computer science (Henderson et al., 2013; Bulling et al., 2011; Bulling and Zander, 2014; Bixler and D'Mello, 2015; Steil and Bulling, 2015). One emerging body of research suggests that the way in which we move our eyes is modulated by who we are—by our personality (Isaacowitz, 2005; Rauthmann et al., 2012; Risko et al., 2012; Baranes et al., 2015; Hoppe et al., 2015).

      Personality traits characterize an individual's patterns of behavior, thinking, and feeling (Kazdin, 2000). Studies reporting relationships between personality traits and eye movements suggest that people with similar traits tend to move their eyes in similar ways. Optimists, for example, spend less time inspecting negative emotional stimuli (e.g., skin cancer images) than pessimists (Isaacowitz, 2005). Individuals high in openness spend a longer time fixating and dwelling on locations when watching abstract animations (Rauthmann et al., 2012), and perceptually curious individuals inspect more of the regions in a naturalistic scene (Risko et al., 2012). But pioneering studies on the association between personality and eye movements share two methodological limitations.

      First, these early studies typically either investigated the link between gaze and personality descriptively (e.g., using correlation, Risko et al., 2012; Rauthmann et al., 2012) or predicted single gaze characteristics, such as the number of fixations (Isaacowitz, 2005; Risko et al., 2012; Rauthmann et al., 2012), from personality scores. For practical applications, however, the more relevant question is whether, in turn, eye movements can be used to predict personality traits. Intriguingly, machine learning techniques provide a way of answering this question without the need to make a-priori hypotheses about the importance of individual gaze characteristics. Instead, the most informative characteristics can be automatically determined from a potentially large and diverse set of eye movement characteristics and patterns; thereby also uncovering previously unknown links between personality and gaze. The potential of machine learning for predicting behavior, cognitive states and personality has been highlighted in a few studies (Henderson et al., 2013; Bulling and Zander, 2014; Bixler and D'Mello, 2015; Hoppe et al., 2015). A recent laboratory study, for example, successfully predicted people's epistemic curiosity about answers to trivia questions from oculomotor behavior (Baranes et al., 2015).

      The second limitation of earlier studies is their restriction to laboratory conditions – an approach that has been criticized because it may not lead to valid theories of human behavior in natural settings (Kingstone et al., 2003, 2008). In most studies, carefully selected stimuli – such as images, animations, or trivia questions – were presented to participants for defined durations on a computer screen, and participants' eye movements were then related to the personality traits under investigation (Isaacowitz, 2005; Rauthmann et al., 2012; Risko et al., 2012; Baranes et al., 2015). However, principles guiding the eyes when looking at computer screens and when engaging in dynamic real-world behavior differ significantly (Foulsham et al., 2011; Tatler et al., 2011; Tatler, 2014). Compelling evidence for such differences is provided in a study which tracked eye movements of participants when they were exploring different real world environments and when watching videos of these environments (Marius't Hart et al., 2009). The distribution of eye movements obtained in the laboratory only predicted the gaze distribution in the laboratory with around 60% accuracy—indicating significant differences in eye movements between laboratory and real world situations (Foulsham et al., 2011). It therefore remains unclear whether these personality traits found to be related to eye movements in the laboratory (Isaacowitz, 2005; Rauthmann et al., 2012; Risko et al., 2012; Baranes et al., 2015) generalize to real-world behaviors. If so, then links between eye movements and personality have important ramifications for the emerging fields of social signal processing, social robotics, and eye-based user modeling. These interdisciplinary fields—at the intersection of computer science, social science, and psychology—focus on the development of systems that can sense, model, and understand everyday human social signals (Vinciarelli et al., 2009; Wagner et al., 2011; Vinciarelli and Pentland, 2015) and that exhibit human-like behavior, including personality (Fong et al., 2003). Ultimately, such socially-aware computers have the potential to offer interactive capabilities that closely resemble natural human-human interactions.

      In the present work we demonstrate, for the first time, that the visual behavior of individuals engaged in an everyday task can predict four of the Big Five personality traits (McCrae and Costa, 2010), along with perceptual curiosity (Collins et al., 2004). To this end, we develop and study a large set of features that describe various characteristics of everyday visual behavior. This approach goes beyond existing analyses of individual features and provides a principled demonstration of the link between eye movement and personality. Our findings not only validate the role of personality in explaining eye movement behavior in daily life, they also reveal new eye movement characteristics as predictors of personality traits.

      1. Methods

      Fifty students and staff of Flinders University participated in the study: 42 females and eight males, with a mean age of 21.9 years (SD 5.5). The convenience sample was recruited through an advertisement on the School of Psychology's online participation management system and the sample size was based on Risko et al. (2012). Written informed consent was obtained from all participants and participant received AUD15 for taking part in the study. Ethic approval was obtained from the Human Research Ethics Committee at Flinders University and the study was conducted in accordance with the Declaration of Helsinki.

      1.1. Apparatus

      Binocular gaze data were tracked using a state-of-the-art head-mounted video-based eye tracker from SensorMotoric Instruments (SMI) at 60Hz. The tracker has a reported gaze estimation accuracy of 0.5° and precision of 0.1°. The tracker recorded gaze data, along with a high-resolution scene video on a mobile phone that was carried in a cross-body bag.

      1.2. Questionnaires

      Personality traits were assessed using three established self-report questionnaires: 1) The NEO Five-Factor Inventory (NEO-FFI-3) comprising 60 questions assessing neuroticism, extraversion, openness, agreeableness, and conscientiousness (McCrae and Costa, 2010); 2) Perceptual Curiosity, a 16-item questionnaire assessing a person's interest in novel perceptual stimulation and visual-sensory inspection (Collins et al., 2004); and 3) the Curiosity and Exploration Inventory (CEI-II), a 10-item questionnaire assessing trait curiosity (Kashdan et al., 2009).

      1.3. Procedure

      Upon arrival in the laboratory, participants were introduced to the study and fitted with the eye tracker. The tracker was first calibrated using a standard 3-point calibration routine. Participants were then given AUD5 and instructed to walk around campus for approximately 10 min and to purchase any items of their choice (such as a drink or confectionary) from a campus shop of their choice. Upon return, the tracking was stopped and the glasses were removed. Participants were then asked to fill in the personality and curiosity questionnaires.

      2. Data processing

      The data from one participant were lost due to technical problems with the eye tracking equipment. Any sample where the pupil could not be detected, or the gaze direction was estimated to be beyond 150% of its range, was marked as erroneous. Six participants with more than 50% erroneous samples in their recording were excluded from further analysis; one other participant was excluded because gaze direction was estimated to be constant for 38% of samples. For the remaining 42 participants an average of 12.51 minutes (SD = 2.71) of eye tracking data were collected, with an average track loss of 19.58% (SD = 0.12). The recording included an average 2.36 minutes inside the shop (SD = 1.70).

      We independently binned personality scores for each trait into three score ranges (low, medium, and high). The binning was performed in a data-driven fashion so that approximately one third of the participants were assigned to each score range. The middle bin's boundaries were defined as the score percentile at 1/3 and 2/3 respectively. Because personality scores approximately follow a Gaussian distribution, the range of medium scores was smaller than the range for the two extreme classes. Table 2 in the appendix lists all resulting boundaries between score ranges.

      Both data and source code are publicly available on GitHub1.

      2.1. Feature extraction

      Following best practices in eye-based user modeling (Bulling et al., 2011), the time series of gaze data was processed using a sliding window approach to make the data independent of the individual duration of the recording while not blurring out gaze characteristics due to averaging effects. That is, only data from a time window of a certain length were considered at one time. Different window sizes were evaluated during our training routine (see below for details). The window was slid over the entire recording such that all subsequent windows had an overlap of 50%. Time windows that had more than 50% erroneous samples (i.e., where the pupil could not be detected or the gaze direction was estimated to be beyond 150% of its range), less than 2 non-erroneous samples, or not a single detected fixation or saccade, were discarded. For each resulting time window, a vector of 207 features was extracted (see the Appendix for a list of all features). These features include:

      Statistics over raw gaze data: These were introduced in Baranes et al. (2015) for the detection of epistemic curiosity under laboratory conditions. Many of the features were specific to the user interface used, for instance the distance of the participant's gaze from a box in the interface but others such as minimum, mean and maximum of gaze x or y coordinates were adopted to our setting.

      Heatmaps of raw gaze data have been linked to curiosity in a study on a static scene viewing task (Risko et al., 2012). Analogously, an 8 by 8 heatmap of gaze points has been extracted here. Over time a heatmap cell corresponds to different places in the world due to head and body motion. Since some gaze points were extrapolated to positions quite far from the actual scene video, gaze points were only used if they fell within the intervals spanning 95% of the data in both horizontal and vertical direction. The heatmap cells were enumerated from 0 in the top left corner, through 7 in the top right corner, to 63 in the bottom right corner.

      Statistics over fixations, saccades and blinks have frequently been used in eye tracking studies (Bulling et al., 2011; Rauthmann et al., 2012; Risko et al., 2012). Fixations were detected using a dispersion-threshold algorithm with a threshold of 2.5% of the tracking range width (5) with an additional threshold on the minimum duration of 100ms. All movements between two fixations were inspected as candidate saccades and were accepted if they did not exceed a maximum duration of 500ms and had a peak velocity of at least 200% of the tracking range per second. Both fixations and saccades with more than 50% erroneous samples were discarded. Additionally, the eye tracking software provided information on blinks and pupil diameter. From all events (i.e., fixations, saccades, and blinks), a number of statistics was computed such as the mean duration of fixations and the direction of saccades. A full list of these features can be found in the Appendix.

      Note that “fixations” of up to 500ms are likely to include smooth pursuits that we did not consider separately since robust pursuit detection is still an open research question even for controlled laboratory settings (Hoppe and Bulling, 2016).

      Information on the temporal course of saccades and fixations has previously been encoded in so-called n-gram features for eye-based user modeling (Bulling et al., 2011). n-grams describe a series of gaze events, e.g., saccades with different amplitudes (large or small) and directions binned into 8 possible directions (e.g., [“long saccade up,” “short fixation,” “short saccade up”] for n = 3). Finally, a histogram of n-grams was computed by counting how often each n-gram, i.e., each possible combination of saccades and fixations, occurred. For each n between 1 and 4, the following features were extracted from the histogram: number of different n-grams (i.e., number of non-zero entries in the histogram), maximum/minimum/mean/variance of the histogram entries and the most/least frequent n-gram.

      For each personality trait, a separate random forest classifier (Breiman, 2001) consisting of 100 decision trees was trained on these features to predict one of the three personality score ranges (low, medium, high) using scikit-learn (Pedregosa et al., 2011). Each decision tree resembles a tree-shaped flow-chart of decisions, where we set the maximum depth of each tree to 5 and allowed up to 15 features to be considered per decision. Before each training procedure, a standard scaler was fit to the training data and applied to both training and test samples to ensure a mean of zero and a standard deviation of one for each feature.

      We had no a priori hypothesis concerning which window size for the sliding-window approach would be most effective, or which particular features would be useful. We therefore chose an automatic approach named nested cross validation to optimize the open parameters during training, i.e., window size and feature selection. In a nutshell, a nested cross validation cycles through sets of participants: one training set, one validation set, and one test set. For instance, in the first iteration, participants 1-32 might be used for training, participants 33–37 for validation, and participants 38–42 for testing. In the second iteration, participants 5–37 might be used for training, then participants 10–42 and so on. In all iterations, several classifiers based on different window sizes and subsets of features were trained on the training set and evaluated on the validation set. The best performing window size and subset of features was chosen based on the performance on the validation set. A classifier was then trained on the union of training and validation set and tested on the test set to generate the final performance scores reported here. It is important to select parameters based on performance on the validation set and then re-train and evaluate on another test set, because with this scheme, the parameters were never directly optimized for the final evaluation. Therefore, cross validation effectively mitigates the risk of overfitting—the algorithm is forced to generalize to unseen data.

      2.2. Classifier evaluation

      Classifier performance was evaluated in terms of average F1 score across the three score ranges. The F1 score for a particular range R is defined as the harmonic mean of precision (the probability that the true personality score range for a random person out of those for which R was predicted is indeed R) and recall (the probability that R will be predicted for a randomly chosen participant whose true personality score is within R). Since the training procedure for random forest classifiers is inherently non-deterministic, we went through the whole nested cross-validation scheme 100 times with different initial random states.

      We compared our classifier against several random baselines to determine how likely our classification success was according to simpler or trivial classifiers:

      Theoretical chance level: if all predictions were made uniformly at random and all score ranges are equally likely, the resulting F1 score for three balanced classes should be 0.33. Slight deviations from these assumptions, e.g., unbalanced classes, could in practice lead to different results. Thus, we implemented a simple classifier that randomly sampled one of the three score ranges for each person from a uniform distribution.

      Predicting the most frequent score range: For this evaluation, the training and test set were built in an identical manner to the actual training process, but instead of fitting a classifier, the most frequent score range on the training set was determined and then predicted for every person in the test set. Note that this might be slightly different from the theoretical 33% because the splits into training and test set might distort the label frequencies.

      The label permutation test (Ojala and Garriga, 2010) was proposed to determine the level of performance after any relation between features and score ranges was obfuscated, i.e., the training data was artificially shuffled such that the relation between gaze and personality was lost. If this classifier is able to perform above a theoretical chance level it might for instance have picked up class frequencies. Thus, it can serve as a test of how much actual information from the gaze features was learned by our original classifier (Bode et al., 2012).

      Each of these baselines was computed 100 times, so a set of 100 F1 scores per baseline was obtained and compared to those of our classifier.

      3. Results

      Figure 1 shows the mean F1 score for our classifier as well as for all baselines for each trait. As can be seen from the figure, our classifier performs well above chance (that is, confidence intervals do not overlap with any of the baseline performances) for neuroticism (40.3%), extraversion (48.6%), agreeableness (45.9%), conscientiousness (43.1%), and perceptual curiosity (PCS, 37.1%). For openness (30.8%) and the Curiosity and Exploration Inventory (CEI, 27.2%) our classifier performs below chance level.

      Mean F1 scores of 100 instances of our classifier and three baselines per trait. The whiskers indicate the 95% confidence interval around the mean, computed by bootstrapping with 1,000 iterations on the set of 100 F1 scores for each trait. All results were obtained using a cross-validation scheme such that only predictions for unseen participants were used for evaluation. The dashed line shows the theoretical chance level for a classifier that randomly picks one personality score range for each participant, independent of gaze.

      In the above evaluation, all recorded data were used irrespective of participants' context: that is, regardless of whether they were on their way to the shop, or inside the shop. To evaluate the reliability of classifiers within and across different parts of the recording, times at which people entered and left the shop were manually annotated based on the recorded scene video. We then compared their predictions across different subsets of the data: (1) independent of the participant's activity (two halves of the recording: split halves); (2) within one activity (the way to the shop vs. the way back to the laboratory: way I vs. II); and (3) across activities (navigation on the way vs. shopping inside: shop vs. way). For each comparison, we used the 100 classifiers trained for the first part of the paper and reconstructed the predictions for single time windows (i.e., the predictions before majority voting). Majority voting was performed over time windows from the context in question only, such as from time windows when the participant was inside the shop. As each classifier had been trained and evaluated 100 times, this led to 100 pairs of predictions for each comparison. Reliability was then evaluated by the average correlation between these pairs of predictions after correction for the skewness of the sampling distribution of correlation coefficients, using the Fisher transformation (Fisher, 1915). The resulting Pearson product-moment correlation coefficients are shown in Table 1. The coefficients ranged from 0.39 to 0.83, indicating a moderate to strong correlation between these different real-world contexts.

      Pearson product-moment correlation coefficients of predictions obtained from different parts of the recording: in the first half vs. the second half (split halves), on the way to the shop vs. on the way back to the laboratory (way I vs. II) and inside the shop vs. outside the shop (shop vs. way).

      half I vs. half II way I vs. way II shop vs. ways
      Neuroticism 0.77 0.75 0.63
      Extraversion 0.83 0.75 0.61
      Openness 0.64 0.60 0.39
      Agreeableness 0.63 0.56 0.44
      Conscientiousness 0.69 0.72 0.43
      Perceptual Curiosity 0.68 0.65 0.46
      Curiosity and Exploration 0.68 0.65 0.44

      To investigate in more detail how eye movement characteristics are linked to individual personality traits, we further calculated the relative importance of all features from the random forest classifier as suggested in Breiman (2001). A random forest classifier comprises several decision trees. The importance of a feature in the random forest is defined as its average importance across all the component decision trees. Within a single decision tree, a feature's importance is defined via all decisions that are made based on that feature: the greater the number of decisions made, the smaller the mean classification error and the more data is passed through these decisions in the tree structure, the more important the feature that the decision was based on Breiman (2001).

      Figure 2 shows the most important features for our trait-specific classifiers sorted in ascending order by their median importance across all traits. The features were chosen as the smallest set containing the individual ten most important features for each trait according to our method, as well as those features previously linked to personality in Rauthmann et al. (2012), Risko et al. (2012), and Baranes et al. (2015).

      The top half of the figure shows the importance of the top-10 features for each trait, sorted by their median importance across all traits. The bottom half shows the importance of further features that were related to personality or curiosity in prior work. The boxes represent the distribution over feature importance obtained from the 100 models we trained. Each of the boxes spans the inter-quartile range (IQR); the whiskers extend to the minimum and maximum. The dark bar inside each box represents the median. For each classifier, many features remained unused and therefore had an importance of zero. Where most importance values were zero, the box is often invisible.

      As can be seen from Figure 2, five of the 19 most important features are linked to n-grams (Bulling et al., 2011), which describe a series of n saccades. In contrast to the saccade-based n-grams, n-grams encoding fixation–saccade sequences are less important. Heatmap features similar to those in Risko et al. (2012), which capture how often a participant looked into certain areas of their visual field, were the second most important class of features. Moreover, the average variance in pupil diameter during fixations and blink rate turned out to be informative. Complementing the F1 scores that are commonly reported when evaluating machine learning methods with respect to performance, we also provide correlation coefficients between personality scores and the different eye movement features extracted from a sliding window with a length of 15 s (see Table 3 in the Appendix).

      4. Discussion

      One key contribution of our work is to demonstrate, for the first time, that an individual's level of neuroticism, extraversion, agreeableness, conscientiousness, and perceptual curiosity can be predicted only from eye movements recorded during an everyday task. This finding is important for bridging between tightly controlled laboratory studies and the study of natural eye movements in unconstrained real-world environments.

      While predictions are not yet accurate enough for practical applications, they are clearly above chance level and outperform several baselines (see Figure 1). The proposed machine learning approach was particularly successful in predicting levels of agreeableness, conscientiousness, extraversion, and perceptual curiosity. It therefore corroborates previous laboratory-based studies that have shown a link between personality traits and eye movement characteristics (Isaacowitz, 2005; Risko et al., 2012; Rauthmann et al., 2012; Baranes et al., 2015).

      The trait-specific eye movement characteristics are reliable: Comparing predictions after splitting the recordings into two halves yielded reliability values ranging between 0.63 and 0.83, indicating moderate to strong correlations between predictions derived from the different halves of the recording. The reliability values were lower (0.39–0.63) when the predictions were based on the comparison between two task activities (walking and shopping). These findings suggest that trait-specific eye movements vary substantially across activities. Future work could therefore establish which activities are best suited to elicit trait-specific eye movements, as this could significantly improve both prediction accuracy and reliability for practical applications.

      A second contribution of our work is to shed additional light on the close link between personality traits and an individual's eye movements. Thanks to the machine learning approach, we could automatically analyze a large set of eye movement characteristics and rank them by their importance for personality trait prediction. Going beyond characteristics investigated in earlier works, this approach also allowed us to identify new links between previously under-investigated eye movement characteristics and personality traits. This was possible because, unlike classical analysis approaches, the proposed machine learning method does not rely on a priori hypotheses regarding the importance of individual eye movement characteristics. Specifically, characteristics that capture rich temporal information on visual behavior seem to convey fundamental information related to all personality traits, and consistently outperform classic characteristics that have been isolated for investigation in laboratory situations, such as fixation duration (Isaacowitz, 2005; Rauthmann et al., 2012; Risko et al., 2012). By extracting the most important eye movement characteristics for each personality trait (see Figure 2) we also found that the importance of characteristics varies for different personality traits. For example, pupil diameter was important for predicting neuroticism but was less useful for predicting other traits. It is important to note that the goal of the current study was not to shed light on the underlying reasons for why certain eye movement characteristics are more common in particular personality types. Instead, it was specifically designed to explore whether machine learning can be used to classify personality from eye movements in an everyday task.

      The prediction accuracy and reliability scores obtained from 42 participants are very promising. However, in computer vision, state-of-the-art machine learning methods are commonly trained on millions of samples (Russakovsky et al., 2015). These large-scale datasets have facilitated data-driven development and automatic learning of features, often outperforming previous manually designed characteristics (Le, 2013). For the field of personality research, obtaining larger datasets with a more representative sample of the general population than the convenience sample of the current study will be an important next step. Consequently, large-scale real-world gaze datasets are likely to improve automatic inference of personality and stimulate research on the automatic representation of gaze characteristics, with the potential to further improve performance as well as deepen our understanding of the interplay between gaze and personality. Importantly, whether the poor performance of our algorithm in predicting openness and CEI is due to the experimental design (relatively small sample and the specific task of running an errand) or due the possibility that there is no link between openness and the way eyes are moved cannot be answered at this stage.

      Four important questions arise from our findings: (1) How well do our findings generalize to non-university populations, different personality traits, different settings and other real-world activities? (2) How is the prediction of personality traits affected by temporary user states, such as mood, fatigue or even the person's awareness of the eye tracker (Risko and Kingstone, 2011)? (3) How do gaze-based signals interact with further social cues that are linked to personality, such as body posture (Ball and Breese, 2000) or digital footprints (Youyou et al., 2015)? and (4) how can a system exploit several cues to derive a more holistic view on the user's personality?

      Answering these questions will guide research to improve our understanding of how human eye movements are modulated in the real world (Kingstone et al., 2003; Risko and Kingstone, 2011), and how they fit into the broad spectrum of human non-verbal behavior. In turn, improved theoretical understanding will assist the emerging interdisciplinary research field of social signal processing, toward development of systems that can recognize and interpret human social signals (Vinciarelli et al., 2009; Wagner et al., 2011; Vinciarelli and Pentland, 2015).

      Such knowledge of human non-verbal behavior might also be transferred to socially interactive robots, designed to exhibit human-like behavior (Fong et al., 2003). These systems might ultimately interact with humans in a more natural and socially acceptable way, thereby becoming more efficient and flexible.

      Author contributions

      TL designed and oversaw the study; SM collected the data; SH implemented and evaluated the machine learning method and generated all results and figures; AB advised these analyses; SH, TL, and AB wrote the paper.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      TL wishes to thank Jason McCarley, Mike Nicholls, and the Brain and Cognition Laboratory (Flinders University) for valuable discussions when setting up the experiment.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fnhum.2018.00105/full#supplementary-material

      References Ball G. Breese J. (2000). Relating Personality and Behavior: Posture and Gestures. Berlin; Heidelberg: Springer. Baranes A. Oudeyer P. Y. Gottlieb J. (2015). Eye movements reveal epistemic curiosity in human observers. Vis. Res. 117, 8190. 10.1016/j.visres.2015.10.00926518743 Bixler R. D'Mello S. K. (2015). Automatic gaze-based user-independent detection of mind wandering during computerized reading. User Model. User Adapt. Inter. 26, 3368. 10.1007/s11257-015-9167-1 Bode S. Sewell D. K. Lilburn S. Forte J. D. Smith P. L. Stahl J. (2012). Predicting perceptual decision biases from early brain activity. J. Neurosci. 32, 1248812498. 10.1523/JNEUROSCI.1708-12.201222956839 Breiman L. (2001). Random forests. Mach. Learn. 45, 532. 10.1023/A:1010933404324 Bulling A. Ward J. A. Gellersen H. Tröster G. (2011). Eye movement analysis for activity recognition using electrooculography. IEEE Trans. Patt. Anal. Mach. Intell. 33, 741753. 10.1109/TPAMI.2010.8620421675 Bulling A. Zander T. O. (2014). Cognition-aware computing. IEEE Perv. Comput. 13, 8083. 10.1109/MPRV.2014.42 Collins R. P. Litman J. A. Spielberger C. D. (2004). The measurement of perceptual curiosity. Pers. Individ. Dif. 36, 11271141. 10.1016/S0191-8869(03)00205-8 Emery N. J. (2000). The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci. Biobehav. Rev. 24, 581604. 10.1016/S0149-7634(00)00025-710940436 Fisher R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10, 507521. 10.2307/2331838 Fong T. Nourbakhsh I. Dautenhahn K. (2003). A survey of socially interactive robots. Rob. Auton. Syst. 42, 143166. 10.1016/S0921-8890(02)00372-X Foulsham T. Walker E. Kingstone A. (2011). The where, what and when of gaze allocation in the lab and the natural environment. Vis. Res. 51, 19201931. 10.1016/j.visres.2011.07.00221784095 Henderson J. M. Shinkareva S. V. Wang J. Luke S. G. Olejarczyk J. (2013). Predicting cognitive state from eye movements. PLoS ONE 8:e64937. 10.1371/journal.pone.006493723734228 Hoppe S. Bulling A. (2016). End-to-end eye movement detection using convolutional neural networks. arXiv preprint arXiv:1609.02452. Hoppe S. Loetscher T. Morey S. Bulling A. (2015). Recognition of curiosity using eye movement analysis, in Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2015) (Osaka), 185188. Isaacowitz D. M. (2005). The gaze of the optimist. Pers. Soc. Psychol. Bull. 31, 407415. 10.1177/014616720427159915657455 Kashdan T. B. Gallagher M. W. Silvia P. J. Winterstein B. P. Breen W. E. Terhar D. . (2009). The curiosity and exploration inventory-II: Development, factor structure, and psychometrics. J. Res. Pers. 43, 987998. 10.1016/j.jrp.2009.04.01120160913 Kazdin A. E. (ed.). (2000). Encyclopedia of Psychology, Vol. 1–8. Washington, DC: American Psychological Association. Kingstone A. Smilek D. Eastwood J. D. (2008). Cognitive ethology: a new approach for studying human cognition. Br. J. Psychol. 99, 317340. 10.1348/000712607X25124317977481 Kingstone A. Smilek D. Ristic J. Friesen C. K. Eastwood J. D. (2003). Attention, researchers! it is time to take a look at the real world. Curr. Dir. Psychol. Sci. 12, 176180. 10.1111/1467-8721.01255 Le Q. V. (2013). Building high-level features using large scale unsupervised learning, in IEEE International Conference on Acoustics, Speech and Signal Processing (Vancouver, BC: IEEE), 85958598. Marius't Hart B. Vockeroth J. Schumann F. Bartl K. Schneider E. Koenig P. . (2009). Gaze allocation in natural stimuli: comparing free exploration to head-fixed viewing conditions. Vis. Cogn. 17, 11321158. 10.1080/13506280902812304 Martinez-Conde S. Macknik S. L. Hubel D. H. (2004). The role of fixational eye movements in visual perception. Nat. Rev. Neurosci. 5, 229240. 10.1038/nrn134814976522 McCrae R. R. Costa P. (2010). Neo nventories Professional Manual. Odessa, FL: Psychological Assessment Resources. Ojala M. Garriga G. C. (2010). Permutation tests for studying classifier performance. J. Mach. Learn. Res. 11, 18331863. 10.1109/ICDM.2009.108 Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. . (2011). Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 28252830. Rauthmann J. F. Seubert C. T. Sachse P. Furtner M. R. (2012). Eyes as windows to the soul: Gazing behavior is related to personality. J. Res. Pers. 46, 147156. 10.1016/j.jrp.2011.12.010 Risko E. F. Anderson N. C. Lanthier S. Kingstone A. (2012). Curious eyes: Individual differences in personality predict eye movement behavior in scene-viewing. Cognition 122, 8690. 10.1016/j.cognition.2011.08.01421983424 Risko E. F. Kingstone A. (2011). Eyes wide shut: implied social presence, eye tracking and attention. Attent. Percept. Psychophys. 73, 291296. 10.3758/s13414-010-0042-121264723 Rucci M. Victor J. D. (2015). The unsteady eye: an information-processing stage, not a bug. Trends Neurosci. 38, 195206. 10.1016/j.tins.2015.01.005 Russakovsky O. Deng J. Su H. Krause J. Satheesh S. Ma S. . (2015). Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211252. 10.1007/s11263-015-0816-y Steil J. Bulling A. (2015). Discovery of everyday human activities from long-term visual behaviour using topic models, in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2015) (Osaka), 7585. Tatler B. (2014). Eye movements from laboratory to life, in Current Trends in Eye Tracking Research, eds Horsley M. Eliot M. Knight B. Reilly R. (Cham: Springer). 10.1007/978-3-319-02868-2_2 Tatler B. W. Hayhoe M. M. Land M. F. Ballard D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. J. Vis. 11:5. 10.1167/11.5.521622729 Vinciarelli A. Pantic M. Bourlard H. (2009). Social signal processing: survey of an emerging domain. Image Vis. Comput. 27, 17431759. 10.1016/j.imavis.2008.11.007 Vinciarelli A. Pentland A. S. (2015). New social signals in a new interaction world: the next frontier for social signal processing. IEEE Sys. Man Cybern. Magazine 1, 1017. 10.1109/MSMC.2015.2441992 Wagner J. Lingenfelser F. Bee N. André E. (2011). Social signal interpretation (ssi). Künstl Intell. 25, 251256. 10.1007/s13218-011-0115-x Wolfe J. M. (1994). Guided search 2.0 a revised model of visual search. Psychon. Bull. Rev. 1, 202238. 10.3758/BF0320077424203471 Youyou W. Kosinski M. Stillwell D. (2015). Computer-based personality judgments are more accurate than those made by humans. Proc. Natl. Acad. Sci. U.S.A. 112, 10361040. 10.1073/pnas.141868011225583507

      1https://github.molgen.mpg.de/sabrina-hoppe/everyday-eye-movements-predict-personality

      Funding. This work was funded, in part, by the Australian Research Council, the Cluster of Excellence on Multimodal Computing and Interaction (MMCI) at Saarland University, Germany, as well as a Ph.D. scholarship by the German National Academic Foundation.

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016jjhgome.com.cn
      jollymama.com.cn
      www.kzchain.com.cn
      fixiapac.com.cn
      www.lwsegb.com.cn
      pfpohj.com.cn
      www.rhlucz.com.cn
      www.ntsfus.com.cn
      wzhdyj.com.cn
      xetyey.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p