Edited by: Lin Zhang, Central South University Forestry and Technology, China
Reviewed by: Jianghua Chen, Xishuangbanna Tropical Botanical Garden (CAS), China; Himanshu Sharma, National Agri-Food Biotechnology Institute, India; Fangcheng Bi, Guangdong Academy of Agricultural Sciences, China
This article was submitted to Plant Genomics, a section of the journal Frontiers in Genetics
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Cytoplasmic male sterility (CMS) is an important plant characteristic for exploiting heterosis to enhance crop traits during breeding. However, the CMS regulatory network remains unclear in plants, even though researchers have attempted to isolate genes associated with CMS. In this study, we performed high-throughput sequencing and degradome analyses to identify microRNAs (miRNAs) and their targets in a soybean CMS line (JLCMS9A) and its maintainer line (JLCMS9B). Additionally, the differentially expressed genes during reproductive development were identified using RNA-seq data. A total of 280 miRNAs matched soybean miRNA sequences in miRBase, including mature miRNAs and pre-miRNAs. Of the 280 miRNAs, 30, 23, and 21 belonged to the miR166, miR156, and miR171 families, respectively. Moreover, 410 novel low-abundant miRNAs were identified in the JLCMS9A and JLCMS9B flower buds. Furthermore, 303 and 462 target genes unique to JLCMS9A and JLCMS9B, respectively, as well as 782 common targets were predicted based on the degradome analysis. Target genes differentially expressed between the CMS line and the maintainer line were revealed by an RNA-seq analysis. Moreover, all target genes were annotated with diverse functions related to biological processes, cellular components, and molecular functions, including transcriptional regulation, the nucleus, meristem maintenance, meristem initiation, cell differentiation, auxin-activated signaling, plant ovule development, and anther development. Finally, a network was built based on the interactions. Analyses of the miRNA, degradome, and transcriptome datasets generated in this study provided a comprehensive overview of the reproductive development of a CMS soybean line. The data presented herein represent useful information for soybean hybrid breeding. Furthermore, the study results indicate that miRNAs might contribute to the soybean CMS regulatory network by modulating the expression of CMS-related genes. These findings lay the foundation for future studies on the molecular mechanisms underlying soybean CMS.
香京julia种子在线播放
Soybean is an important crop that is cultivated for its protein and oil content. In some countries, especially China, soybean production is less profitable for farmers than the production of corn, rice, or other crops, resulting in yearly decreases in the arable land area used for cultivating soybean. Crop yields may be increased by exploiting heterosis (
The small RNAs (sRNAs) are short [approximately 18–30 nucleotides (nt)] non-coding RNA molecules that can regulate gene expression in the cytoplasm and nucleus via post-transcriptional gene silencing, chromatin-dependent gene silencing, or RNA activation. The three classes of sRNAs are microRNAs (miRNAs), small interfering RNAs, and Piwi-interacting RNAs. The miRNAs are a class of short (20–24 nt) non-coding RNAs that regulate gene expression at the post-transcriptional level by degrading their target mRNAs and/or inhibiting translation (
Previous research confirmed that sRNAs, including miRNAs, can modulate anther and pollen development, leading to male sterility (
The high-throughput sequencing of two independent sRNA libraries for the flower buds of the CMS line JLCMS9A and its maintainer line JLCMS9B generated 28,736,898 and 32,977,823 raw reads, respectively (
The developmental bioinformatics pipeline of small RNA sequencing analysis in this study.
The length distribution of small RNAs in JLCMS9A and JLCMS9B flower buds.
All sRNA sequences were mapped to known soybean miRNAs in the miRBase 21.0 database
To assess the accuracy of the miRNA predications, the miRNAs were divided into six groups. A total of 828 conserved miRNAs (820 and eight in gp1a and gp1b, respectively) and 491 non-conserved miRNAs (71, 238, 20, and 162 in gp2a, gp2b, gp3, and gp4, respectively) were identified (
Known newly conserved miRNAs usually match confirmed miRNA sequences in miRBase, but we detected some sequence diversity in this study. For example, the gma-miR156b_L + 1R-1 sequence (TTGACAGAAGAGAGAGAGCAC) was confirmed using the miRBase database, but it differed from the gma-miR156b sequence (TGACAGAAGAGAGAGAGCACA;
Novel miRNAs, especially new 5p and 3p sequences, are not included in miRBase. In this study, 410 novel miRNAs were identified, including gma-miR156m-p3, which was a new 3p sequence (
Independent degradome libraries for the JLCMS9A and JLCMS9B flower buds were constructed and sequenced, resulting in 13,604,916 and 15,876,060 raw reads, respectively (
The sliced-target genes were divided into five categories (0, 1, 2, 3, and 4) on the basis of the relative abundance of tags at the target sites as previously described (
The profiles of small RNAs (sRNAs) and target genes in JLCMS9A and JLCMS9B.
The target gene analysis revealed that a single miRNA can simultaneously regulate the expression of several target genes, usually from a large gene family. The predicted highly conserved miRNAs, such as miR169, miR156, miR396, miR166, miR172, and miR171 family members, regulated multiple target genes. For example, the miR167 family members were detected as regulators of the expression of 206 target genes, including those encoding mitochondrial carrier proteins, small nuclear ribonucleoprotein component-like proteins, MYB domain proteins, transcription initiation factors, and squamosa promoter-binding-like (SPL) proteins (
The identified miRNA target genes were subjected to a Gene Ontology (GO) analysis (
The GO and KEGG pathway analyses of the differentially expressed genes between JLCMS9A and JLCMS9B.
A total of 103,976,346 and 90,354,809 high-quality RNA-seq reads were generated for JLCMS9A and JLCMS9B, respectively, using a Life Technologies Ion Proton sequencer (
The DEGs were detected following the pair-wise comparisons of the two lines using the DEGseq algorithm, with a false discovery rate ≤ 0.05 and [log2(fold-change)] ≥ 1 applied as the threshold (
On the basis of the annotated GO terms, 440 DEGs were assigned to 25 categories (
The enriched metabolic pathways among the DEGs were identified with the KEGG pathway database. Specifically, 37 DEGs were assigned to 15 KEGG pathways (
To investigate the functions of differentially expressed miRNAs and miRNA target genes, a regulatory network was built for the miRNAs and target genes on the basis of the enriched GO terms and KEGG pathways.
The regulatory network comprising GO terms, microRNAs (miRNAs), and target genes in JLCMS9A and JLCMS9B. Diamonds, ellipses, and arrowheads represent the GO terms, target genes, and miRNAs, respectively.
The regulatory network comprising KEGG pathways, microRNAs (miRNAs), and target genes in JLCMS9A and JLCMS9B. Diamonds, ellipses, and arrowheads represent the KEGG pathways, target genes, and miRNAs, respectively.
In plants, sRNAs are pivotal regulators of male fertility during anther and pollen development (
Several researchers identified miRNAs in diverse male sterile crops, including maize (
In plants, miRNAs mediate gene expression at the post-transcriptional level by cleaving mRNAs at specific sites (
Pollen cell wall development is a crucial part of pollen production, and an abnormal pollen cell wall may be associated with male sterility in plants (
Earlier research confirmed that miR156, miR167, and miR399 contribute to pollen development in
In this study, we performed high-throughput sequencing and degradome analyses to identify miRNAs and their targets in a soybean CMS line (JLCMS9A) and its maintainer line (JLCMS9B). Additionally, DEGs during reproductive development were identified using RNA-seq data. The target genes that were revealed as differentially expressed between the CMS line and the maintainer line by an RNA-seq analysis were annotated with diverse functions related to biological processes, cellular components, and molecular functions, including transcriptional regulation, the nucleus, meristem maintenance, meristem initiation, cell differentiation, auxin-activated signaling, plant ovule development, and anther development. Finally, a network was built based on the interactions. Analyses of the miRNA, degradome, and transcriptome datasets generated in this study provided a comprehensive overview of the reproductive development of a CMS soybean line. The data presented herein represent useful information for soybean hybrid breeding. Furthermore, the study results indicate that miRNAs contribute to the soybean CMS regulatory network by modulating the expression of CMS-related genes.
The RN–CMS soybean line JLCMS9A and its maintainer line JLCMS9B were used in this study. All plants were grown using a randomized block design (three replicates) at the Jilin Academy of Agricultural Sciences, China. More specifically, plants were cultivated in rows (5 m long and 65 cm wide), with 15 cm between plants. Mature flower buds were collected from 12 plants per genotype and stored at -80°C prior to the RNA-seq and sRNA-seq analyses, which were completed using three biological replicates per genotype.
Total RNA was extracted using TRK-1001 (LC Sciences, Houston, TX, United States) following the manufacturer’s instructions. The RNA quantity and purity were determined using the 2100 Bioanalyzer system and the RNA 6000 Nano LabChip Kit (Agilent Technologies, Santa Clara, CA, United States). High-quality RNA samples were those with an RNA integrity number greater than 7.0. Total RNA was ligated to the RNA 30 and RNA 50 adapters, then reverse transcribed and amplified by PCR to produce cDNA constructs of the sRNAs. The small cDNA fractions (22–30 nt long) were then isolated via 6% denaturing polyacrylamide gel electrophoresis. Finally, the cDNA constructs were purified, and the library was validated. We then performed single-end sequencing (50 bp) on an Illumina HiSeq 2500 system at LC-BIO (Hangzhou, China) following the vendor’s recommended protocol.
Raw reads were analyzed using ACGT101-miR (LC Sciences, Houston, TX, United States) to remove adapter dimers, junk reads, reads with low complexity, reads for common RNA families (rRNA, tRNA, snRNA, and snoRNA), and repeats. Unique sequences (18--25 nt long) were mapped to precursors in specific species in miRBase 21.0 on the basis of a BLAST search to identify known miRNAs and novel 3p- and 5p-derived miRNAs. Length variations at the 3’ and 5’ ends and one mismatch within the sequence were allowed during the alignment. The unique sequences mapped to the hairpin arm corresponding to a mature miRNA were identified as known miRNAs. The unique sequences mapped to the other hairpin arm were considered to be novel 5p- or 3p-derived miRNA candidates. The remaining sequences were mapped to precursors in other selected species in miRBase 21.0 on the basis of a BLAST search. The mapped pre-miRNAs were used as queries for a BLAST search of genomes from specific species to determine their genomic locations. The above two were designated as known miRNAs. The unmapped sequences served as queries for a BLAST search of specific genomes, and the hairpin RNA structures containing these sequences were predicted according to the 120-nt flanking sequences using the RNAfold program
Differentially expressed miRNAs revealed by the normalized deep-sequencing read counts were analyzed by Student’s
The expression of six selected miRNAs was assayed in JLCMS9A and JLCMS9B using Platinum SYBR Green-based q-RT-PCR (Invitrogen, United States) with analytikjena-qTOWER2.2 (Analytik Jena, Germany). The primers of six selected miRNAs and internal control gene (U6 snRNA) are available in
To predict the genes targeted by the most abundant miRNAs, computational target prediction algorithms (Target Finder) were used to identify miRNA binding sites. The predicted miRNA target genes were annotated with GO terms and assigned to KEGG pathways.
Two degradome libraries were constructed as previously described (
Total RNA was extracted from each sample using TRIzol Reagent (Life Technologies, United States) according to the manufacturer’s protocol. The concentration of each sample was determined using the NanoDrop 2000 spectrophotometer (Thermo Scientific, United States), whereas the quality was assessed using the Agilent 2200 TapeStation system (Agilent). A sequencing library for each RNA sample was prepared using the Ion Total RNA-Seq Kit (version 2) according to the manufacturer’s protocol (Life Technologies). Briefly, polyadenylated mRNA was purified from 5 μg of total RNA using Dynabeads (Life Technologies). The mRNA was fragmented using RNase III and purified; after which, it was hybridized and ligated with an ion adapter. The RNA fragments were reverse transcribed and amplified to produce double-stranded cDNA, which was then purified using magnetic beads. After determining the molar concentration of each cDNA library, an emulsion PCR amplification was performed using the cDNA library as a template. Template-positive Ion PITM Ion SphereTM Particles were enriched and loaded onto the ion PITM chip for sequencing.
Raw data (raw reads) in the FASTQ format were first processed using in-house Perl scripts. During this step, clean data (clean reads) were obtained by removing reads containing adapters or poly-N sequences as well as low-quality reads. Additionally, Q20 and Q30 values and the GC content of the clean data were calculated. All downstream analyses were completed using the high-quality clean data. The reference genome and gene model annotation files available online were downloaded
The differential expression between two conditions was analyzed using the DEGSeq R package (version 1.20.0;
The KEGG database comprises molecular information, including large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies. It is useful for elucidating high-level functions and biological system activities (
The sequencing data has been deposited into the National Genomics Data Center (accession:
CZ, FF, and LZ conceived and designed the study. CZ and FF performed the experiments and wrote the manuscript. JZ and BP collected the plant materials. FF and XD analyzed and modified the data. CL, HY, PW, and WZ provided advice and assistance. All authors have read and agreed to the published version of the manuscript.
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The Supplementary Material for this article can be found online at:
Distribution of known microRNAs (miRNAs) in JLCMS9A and JLCMS9B.
Number of identified microRNAs (miRNAs) in each family.
Number of identified conserved microRNAs (miRNAs).
Detection of selected miRNAs expression in JLCMS9A and JLCMS9B using q-RT-PCR. U6 was chosen as an endogenous control. The reulsts were obtained from three biological replicates with three technical replicates and the error bars indicated the standard error of the mean.
Overview of small RNA sequencing reads from raw data to clean reads.
Summary of known and predicted microRNAs (miRNAs) in this study.
Distribution of microRNA family members.
Summary of the identified microRNAs (miRNAs) and their families in JLCMS9A and JLCMS9B flower buds.
Overview of the degradome sequences from JLCMS9A and JLCMS9B.
microRNA (miRNA) target genes in JLCMS9A and JLCMS9B.
The primers sequence of in this study.
cytoplasmic male sterility
microRNA
small RNA
differentially expressed gene
false discovery rate.