Front. Genet. Frontiers in Genetics Front. Genet. 1664-8021 Frontiers Media S.A. 10.3389/fgene.2020.01027 Genetics Review Diversity of Insect Sesquiterpenoid Regulation Tsang Stacey S. K. 1 Law Sean T. S. 1 Li Chade 1 Qu Zhe 1 Bendena William G. 2 Tobe Stephen S. 3 Hui Jerome H. L. 1 * 1Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China 2Department of Biology, Queen’s University, Kingston, ON, Canada 3Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada

Edited by: Zhongxia Wu, Henan University, China

Reviewed by: Wen Liu, Huazhong Agricultural University, China; Deng Huimin, South China Normal University, China

*Correspondence: Jerome H. L. Hui, jeromehui@cuhk.edu.hk

These authors have contributed equally to this work

This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics

10 09 2020 2020 11 1027 29 05 2020 11 08 2020 Copyright © 2020 Tsang, Law, Li, Qu, Bendena, Tobe and Hui. 2020 Tsang, Law, Li, Qu, Bendena, Tobe and Hui

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Insects are arguably the most successful group of animals in the world in terms of both species numbers and diverse habitats. The sesquiterpenoids juvenile hormone, methyl farnesoate, and farnesoic acid are well known to regulate metamorphosis, reproduction, sexual dimorphism, eusociality, and defense in insects. Nevertheless, different insects have evolved with different sesquiterpenoid biosynthetic pathway as well as products. On the other hand, non-coding RNAs such as microRNAs have been implicated in regulation of many important biological processes, and have recently been explored in the regulation of sesquiterpenoid production. In this review, we summarize the latest findings on the diversity of sesquiterpenoids reported in different groups of insects, as well as the recent advancements in the understanding of regulation of sesquiterpenoid production by microRNAs.

insect sesquiterpenoid juvenile hormone microRNA evolution

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Diverse Biosynthetic Pathways and Types of Insect Sesquiterpenoids

      In insects and crustaceans, sesquiterpenoid hormones including farnesoic acid (FA), methyl farnesoate (MF) and juvenile hormone (JH) regulate the development, metamorphosis and reproduction (Cheong et al., 2015). The beginning step in the biosynthesis of the sesquiterpenoids starts from acetyl-CoA which goes through the universal eukaryotic mevalonate (MVA) pathway to synthesize farnesyl pyrophosphate (FPP) (Tobe and Bendena, 1999; Belles et al., 2005; Hui et al., 2010, 2013). In the presence of FPP pyrophosphatase, FPP is then converted to farnesol and can further generate farnesal with the catalyzation by farnesol dehydrogenase. Farnesoic acid (FA) will then be generated via further dehydrogenation with farnesal dehydrogenase in different insects. A summary of the sesquiterpenoid biosynthetic pathway is shown in Figure 1.

      Diverse biosynthetic pathways of juvenile hormones in insects.

      Despite all insects utilizing a common biosynthetic pathway in the production of FA, diverse pathways have evolved in the downstream process of sesquiterpenoids production. For insects in the order blattodea, coleoptera, diptera, and orthoptera, esterification of FA occurs in the corpora allata (CA), which will form MF catalyzed by a SAM-dependent juvenile hormone acid O-methyltransferase (JHAMT) (Shinoda and Itoyama, 2003). In insects such as cockroaches (Huang et al., 2015), honeybees (Bomtorin et al., 2014), locusts (Marchal et al., 2011), and pea aphids (Daimon and Shinoda, 2013), MF is oxidized by epoxidase CYP15A1 in formation of JH-III (Figure 1). Direct applications of FA on fruit flies increased the biosynthesis of MF and JH-III in both larval and adult stages, while JHB3 biosynthesis is inhibited in larvae (Bendena et al., 2011). Moreover, diverse biosynthetic pathways for production of JH-III have also been identified in other insects (Figure 1). For instance, in the coleopterans such as beetles, CYP15A1 can first oxidize FA to form JH-III acid, followed by methylation with JHAMT resulting in the formation of JH-III (Minakuchi et al., 2015; Jiang et al., 2017); while in lepidopterans, the conversion of FA to JH-III acid is performed with another epoxidase CYP15C1 followed by subsequent methylation by JHAMT (Daimon et al., 2012; Figure 1). Furthermore, different sesquiterpenoid products have also been identified in various types of insects (Figure 1 and Table 1). In the dipterans including flies, JH-III bisepoxide (JHB3) has been identified (Richard et al., 1989). In the hemipterans like the stinkbugs, JH-III skipped bisepoxide (JHSB3) is formed (Kotaki et al., 2009); and in the lepidopterans such as moths, specific JH homologs including JH-I, JH-II, JH-0, and 4-methyl JH-I are produced (Belles et al., 2005; Figure 1 and Table 1). It is worth mentioning that JH-I is found in the male accessory glands of the cecropia moth, and whether it performs the suspected hormonal function remains unknown (Paroulek and Sláma, 2014; De Loof and Schoofs, 2019).

      Different types of juvenile hormones isolated from hexapods.

      CA, corpora allata; EG, egg; LE, lipid extract.
      Diverse Roles of Sesquiterpenoids in Insects Regulation of Metamorphosis

      A special feature of insects is that they have evolved with distinct modes of metamorphosis, including hemimetaboly (incomplete) and holometaboly (complete) (Sehnal et al., 1996). These biological events are collectively controlled by sesquiterpenoids that inhibit metamorphosis, and ecdysteroids such as 20-hydroxyecysone (20E) that trigger metamorphosis (Konopova et al., 2011; Liu et al., 2018; Niwa and Niwa, 2014a,b). In general, sesquiterpenoid inhibits ecdysteroids action, and when their biosynthesis in the CA is suppressed via the inhibition of JHAMT and 3-hydroxy-3-methylglutaryl Coenzyme-A reductase (HMGR), metamorphosis can then occur (Cheong et al., 2015; Liu et al., 2018; Qu et al., 2018). An overview is shown in Figure 2.

      Interaction of sesquiterpenoid juvenile hormone (JH) and ecdysteroid during metamorphosis in holometabolans (A–C) and hemimetabolans (D,E). (A) In early larval stages of holometabolous insects, JH-Met/Tai receptor complex activates the transcription of primary JH-early responsive gene Kr-h1 which prevents immature larvae from precocious larval development by inhibiting Br-C, E93, and Spok expression. (B) When JH levels drastically drop in the last larval stage, 20E acts through EcR/USP to activate the transcription of 20E-early responsive genes such as Br-C, E93, E74, E75, Ftz-f1 and initiate larval-pupal transition. (C) At the end of the pupal stage, the Br-C levels decline again which upregulates the expression of E93 that drives the pupa-adult transition. In hemimetabolous insect, JH titer remains high from hatching until the last nymphal stage. (D) During the early nymphal, high Kr-h1 expression level is maintained by JH which inhibits metamorphosis by repressing E93 expression. (E) In the last nymphal stage, the JH titers fall followed by the Kr-h1 expression level. For details, please refer to main text and Truman, 2019.

      In the best studied holometabolous insect, the fly Drosophila melanogaster, sesquiterpenoids exert status quo function to prevent metamorphosis in the early larval stage (Cheong et al., 2015; Qu et al., 2018). Sesquiterpenoids JH-III, JHB3, and their immediate precursor MF can all bind to the C-terminal of the intracellular receptor Methoprene-tolerant (Met) or its paralog named Germ-cell expressed (Gce) in Drosophila, which encodes a transcription factor of the bHLH-PAS family (Ashok et al., 1988; Jindra et al., 2015; Wen et al., 2015). The binding affinities of sesquiterpenoids to Gce are differ with a rank order of JH-III > JHB3 > MF which is in line with their developmental potency (Bittova et al., 2019). After the binding of JH with Met or Gce in formation of a functional complex, another bHLH-PAS protein that acts as the steroid receptor co-activator [Taiman (Tai)] in D. melanogaster or SRC in other insect species is recruited, which together binds to the specific JH response element (JHRE) on the promoter region of Krüppel homolog 1 (Kr-h1) to activate transcription (Kayukawa et al., 2012; Qu et al., 2018). Previous studies have demonstrated that Kr-h1 can transduce the JH signal to repress 20E primary responsive genes, including ecdysone receptor (EcR), Broad-complex (Br-C), ecdysone-inducible proteins E75 and E93, which subsequently inhibit 20E biosynthesis in the prothoracic gland (Kayukawa et al., 2016; Liu et al., 2018); and can also inhibit the expression of steroidogenic enzyme gene Spok by binding to the Kr-h1 binding site (KBS) and turn on the methylation which in turns also leads to the suppression of ecdysone biosynthesis (Song and Zhou, 2019; Zhang T. et al., 2018; Figures 2, 3).

      Schematic diagram showing the mechanism of sesquiterpenoids in metamorphosis regulation in Drosophila and other insects. In fly Drosophila, JH-III, JHB3, and MF will bind to the JH receptor Met or Gce, while in other insects, JH-III will bind to Met in other insects (for details, please refer to text). The complex will then further dimerize with Tai and bind to specific JHRE to initiate the expression of Kr-h1. Kr-h1 protein will then bind to the KBS to inhibit expressions of 20E response genes (Br-C and E93), and will also bind to KBS and initiates DNA methylation of a steroidogenic enzyme gene Spok, which will all result in the lower titer of 20E and inhibition of metamorphosis.

      In other holometabolous insects including beetle Tribolium castaneum, moths Bombyx mori and Helicoverpa armigera, as well as hemimetabolous insects including cockroach Blattella germanica, planthopper Nilaparvata lugens, and stinkbug Pyrrhocoris apterus and Rhodnius prolixus, Kr-h1 has also exhibited anti-metamorphic effects (Minakuchi et al., 2009; Konopova et al., 2011; Lozano and Belles, 2011; Kayukawa et al., 2017; Li et al., 2018; Zhang W. N. et al., 2018).

      During the larval-pupal transition in Drosophila, 20E binds to EcR proteins and Ultraspiracle (Usp) to form a heterodimer (Riddiford et al., 2000), and this complex will further trigger the transcription of 20E primary-response genes including Br-C, E74, E75, and E93. These downstream genes have been identified with essential functions in molting. For instances, E93 enables the larval tissues to execute apoptosis and promotes the formation of adult tissues (Ureña et al., 2016); and the Gce/Tai (but not Met/Tai) complex activates E75A functions in preimaginal molts (Dubrovsky et al., 2011). In beetle T. castaneum, Met has also proven to bind JH with high affinity via the highly conserved hydrophobic pocket within its PAS-B domain (Charles et al., 2011). In lepidopteran, USP can also bind JH (Dubrovsky, 2005). In moth Manduca, JP29 isolated from epidermis has also been suggested as another potential JH receptor, which has found to be highly specific to JH binding but with low affinity (Truman and Riddiford, 2002).

      Regulation of Reproduction

      Apart from repressing metamorphosis in insects, sesquiterpenoids also play an important role in stimulating reproduction in adult insects, including processes such as vitellogenesis, oogenesis and polyploidization (Wyatt and Davey, 1996). In female Drosophila, sesquiterpenoids have long been known to regulate the oogenesis and vitellogenesis (Postlethwait and Weiser, 1973; Swevers et al., 2005; Riddiford, 2012). The titer of JH is promoted with expression of ecdysis triggering hormone (ETH) binding to its receptor (ETHR) whose synthesis is governed by 20E (Meiselman et al., 2017; Roy et al., 2018).

      Similar but diverse mechanisms have also been discovered in other insects. In the beetle T. castaneum, JH-mediated Met and Kr-h1 promote vitellogenin (Vg) synthesis in the fat body (Parthasarathy et al., 2010; Figure 4Ai), and Met can also trigger insulin-like peptides (ILPs) ILP2 and ILP3 by AKT pathway to phosphorylate the fork head transcription factor (FOXO) and induce Vg expression (Sheng et al., 2011; Figure 4Aii). In mosquito Aedes aegypti, expression of Kr-h1 triggered by Met together with Cycle and steroid receptor coactivator SRC/FISC after adult emergence supported that sesquiterpenoid is essential for previtellogenic development (Zhu et al., 2010; Shin et al., 2012). In migratory locust Locusta migratoria, JH together with Met/SRC complex are found to be pivotal in maintaining Vg expression and oocyte development (Song et al., 2014), and can promote cell polyploidization by regulating the expression of cyclin-dependent kinase 6 (Cdk6) and adenovirus E2 factor-1 (E2f1) (Wu et al., 2016; Wu Z. et al., 2018; Figure 4Aiii). JH activates Na+/K+-ATPase for the induction of patency in vitellogenic follicular epithelium, where Vg can then reach the surface of maturing oocyte (Jing et al., 2018). In the stinkbug P. apterus, nevertheless, Vg synthesis is mainly regulated by JH signaling genes Met and Tai independent of Kr-h1 (Smykal et al., 2014).

      Schematic diagram showing the mechanisms of sesquiterpenoids in regulation of insect reproduction. (Ai) The JH-Met-Tai/SRC complex upregulates Kr-h1 to increase Vg synthesis level, as observed in T. castaneum, A. aegypti (with an additional complex FISC), L. migratoria but not in P. apterus. (Aii) The JH-Met-Tai complex initiates transcriptions of ILP2 and ILP3, which phosphorylates the fork head transcription factor (FOXO) through ILP signaling pathway and induces Vg expression in T. castaneum. (Aiii) The JH-Met-Tai/SRC complex promotes expression of core mediators in cell cycle progression, Cdk6 and E2f1, to facilitate vitellogenesis in L. migratoria. (B) Reproductive polyphenism in aphid A. pisum occurs during the short-day condition given the increased JHE activity, and the lowering of JH result in the switch from parthenogenesis to sexual reproduction. (C) Repression of reproduction diapause in beetles C. bowringi initiates in short-day condition where the upregulation of the JH-Met-Kr-h1 pathway genes expression increases Vg synthesis.

      In addition, sesquiterpenoids can mediate insect reproduction under different light conditions. In aphids, reproductive polyphenism alternates their reproductive modes from parthenogenesis to sexual reproduction given different photoperiodic duration. In Acyrthosiphon pisum, enhanced sesquiterpenoid degradation by juvenile hormone esterase (JHE) accounts for the lower JH titer during short-day conditions that produces sexual morphs, in contrast to the higher JH titer in parthenogenetic morphs during long-day conditions (Ishikawa et al., 2012; Figure 4B). In beetle Colaphellus bowringi, high sesquiterpenoid titer upregulates expression of vitellogenin receptor (VgR) via JH-Met-Kr-h1 signaling and promotes Vg synthesis and ovary development during short-day period, while low JH titer initiates reproductive diapause and promotes lipid storage in the fat body instead of Vg synthesis during the long-day period (Liu et al., 2016, 2019; Figure 4C).

      Sexual Dimorphism and Dimorphic Behavior

      Sexual dimorphism is commonly observed in insects. Nevertheless, the extreme sexually dimorphic traits of juvenile-like females without pupation and ephemeral winged males after a pupal stage in scale insects have raised questions as to how these features could arise. By transcriptomic and qRT-PCR analyses of post-embryonic stages of Ericerus pela, lower Met, Tai, and Kr-h1 expression levels are found in pupal and adult males as compared to females. Together with a surge in Br-C expression in male prepupal stage, the sex-specific regulation lead to the complete metamorphosis in males but not in females (Yang et al., 2015; Figure 5A). In another scale insect Planococcus kraunhiae, qRT-PCR analysis on a daily sampling of different development stages reveal that expression levels of Kr-h1 are higher in male-biased embryos and early nymphs, and lower during prepupal and after pupal stages (Vea et al., 2016). However, elevation of JH or Met, Tai, and Kr-h1 gene expressions as observed in E. pela is not found in the adult P. kraunhiae females.

      Schematic diagram showing the mechanisms of sesquiterpenoids in regulation of insect sexual dimorphism and dimorphic behavior. (A) In scale insects, sexual dimorphism of winged male adults is linked to the signaling of JH, Met, Tai/SRC, and Kr-h1, whereas they are increased in early developmental stages but decreased during the pupal and adult stages. (B) The sexual dimorphic sleeping behavior in Drosophila is maintained by the JH-Gce signal on the fru and sxl genes in male and female, respectively. fru then encodes Fru for inducing long-sleep pattern in male while sxl induces Tra for short-sleep phenotype in female.

      In Drosophila, JH can also control sexual dimorphic behaviors including locomotory and sleeping activities (Belgacem and Martin, 2007; Wu B. et al., 2018; Figure 5B). In the presence of JH by overexpression of JHAMT, longer sleep in males and shorter sleep in females are observed (Wu B. et al., 2018). Interestingly, gce mutant male flies sleep less while female sleep more but mutation in the Met dose not exhibit a similar result (Wu B. et al., 2018). The binary switch gene sex-lethal (Sxl) can impose female development via promoting expression of fruitless (fru), doublesex (dsx), and transformer (tra). Male development occurs when sxl is turned off (Kappes et al., 2011). In the jhamt and gce mutant, Fru, sxl, and tra transcript level were almost halved. Decreasing sleep time occurred when fru in male flies and when female tra was expressed in Fru neurons of males, suggesting JH-Gce signaling can potentially act as a regulatory pathway in sexually dimorphic sleep pattern (Wu B. et al., 2018).

      Eusociality

      Some insects such as ants, bees, termites and wasps are well known for their eusociality in which they live cooperatively in a colony and only some individuals are reproductive. Such processes have also been linked to JH.

      Across ant species, the effects of JH act with different eusocial complexity (Figure 6A). For ants with simple, queenless societies, e.g., Streblognathus and Diacamma, low JH titer is recorded in the gamergates with high individual ranks within the hierarchy, and elevated JH level result in a loss of the reproductive status of the alpha workers (Sommer et al., 1993; Cuvillier-Hot et al., 2004; Brent et al., 2006). For species that have secondarily revert to queenless, simple societies, e.g., Dinoponera quadriceps, JH application can increase the regressed ovaries in queenless ants (Norman et al., 2019). For ants with complex society such as Pogonomyrmex rugosus, JH analogs (methoprene) stimulate the production of queens and upregulate Vg gene expression. The effect of JH in ants is interpreted as mimicking the effect of hibernation (Libbrecht et al., 2013), where low temperature or the associated photoperiod changes up-regulate the insulin/insulin-like growth factor signaling pathway (IIS) genes in queens. No direct result has proven the relationship of IIS and JH in ants to date, and yet, the production of JH in the CA is affected by the release of neuropeptides regulated by IIS in Drosophila (Tu et al., 2005). JH may also directly or indirectly regulate of caste polyethism via changing the division of labor and maternal effects. Elevated JH titer can alter the behavior of workers of Acromyrmex octospinosus leaf-cutting ants by making them more active, threat responsive, and less interested in intranida works such as taking care of larva and fungal cultivation (Norman and Hughes, 2016). During the maternal stage of Pogonomyrmex harvest ants, additional JH also resulted in a 50% increase in worker body size and significantly reduced in total number of progeny reared (Cahan et al., 2011).

      Schematic diagram showing the mechanisms of sesquiterpenoids in regulation of insect eusociality. (A) The effect of JH on reproduction and polyethism in ants. The elevation of JH represses ovary development in simple, queenless societies but promotes queen production and vitellogenin expression in complex societies. JH also induces threat responsiveness and reduces interest in intraida works in ants, and may also increase their body size. (B) The effect of JH on reproduction and polyethism in wasps. JH generally stimulates the production of queens and ovary development, and mediates cuticular hydrocarbon blend resembling reproductive status in young workers of swarm-founding wasps. Besides, JH triggers the guarding and foraging behavior. (C) The queen releases QMP which downregulates JH and Kr-h1 and thus inhibits ovary development of workers and the transition from in-hive worker to forager in bees. (D) The increase of JH in JH-Met signaling pathway induces TGFβ and 20E signals that promote the modification molts from worker to soldier in the sterile caste of termite Z. nevadensis.

      Similarly, JH also appears to have different effects on wasp species with various eusociality (Figure 6B). Previous studies indicated JH could modulate age polyethism and promote the production of foragers in highly eusocial species such as Polybiine wasps (O’Donnell and Jeanne, 1993; O’Donnell, 1998), and could mediate both age polyethism (Shorter and Tibbetts, 2009) and reproductive division of labor in primitively eusocial species such as Polistes. Application of JH analog methoprene promotes the onset of guarding behavior, the number of foraging females, and stimulates the production of queens (Barth et al., 1975; Röseler et al., 1980, 1984, 1985; Lozano et al., 2015; Giray et al., 2005). Nevertheless, in other primitive eusocial species such as Ropalidia marginata that has both post-imaginal regulation of reproductive division of labor and age polyethism, JH could only accelerate ovarian development but not age polyethism (Agrahari and Gadagkar, 2003). For caste-flexible swarm-founding wasp Synoeca surinama, JH functions as gonadotropin and directly modifies the cuticular hydrocarbon blend of young workers to resemble that of a reproductive one but does not necessarily link to dominance behavior (Kelstrup et al., 2014).

      It is worth also noting that the response to JH could be different among members of the same colony. In Polistes canadensis, the effect of JH on ovaries are different between queens and workers as a potential trophic advantage of the queens over the workers (Giray et al., 2005), while in Polistes dominulus where queens nest cooperatively with other queens, JH has a stronger effect on the dominance, fertility, and aggressiveness of large queens (Tibbetts and Izzo, 2009; Tibbetts et al., 2011, 2018). In species Polistes metricus with non-cooperative nest-founding queen pattern, JH leads to an increase of fertility for all individuals, but among the cooperative workers, large workers increase their fertility in response to JH more while small workers do not (Tibbetts and Sheehan, 2012).

      In honeybees Apis mellifera, repression of ovary development, of in-hive workers, were induced by the downregulation of Kr-h1 expression controlled by the queen’s release of mandibular pheromone (QMP) (Grozinger and Robinson, 2007; Figure 6C). In methoprene (JH analog)-treated workers, Kr-h1 expression is no longer repressed by QMP suggesting an antagonistic relationship between sesquiterpenoids and QMP. In addition, the transition of working to foraging behavior were also found to link to a higher JH titer and Kr-h1 level (Grozinger and Robinson, 2007). On the other hand, in the bumblebee Bombus terrestris, similar to the honeybee mentioned above, QMP reduces Kr-h1 level but the difference in Kr-h1 expression between the working and foraging bees are not significant (Shpigler et al., 2010). However, among a group of queenless workers, the dominant individuals have a higher Kr-h1 expression with active ovaries whereas subordinate individuals have a downregulated Kr-h1 expression level with undeveloped ovaries (Shpigler et al., 2010). These studies highlighted the possible roles of sesquiterpenoids in the eusociality in bees.

      In termites, eusociality is maintained through differentiation into reproductive caste and sterile soldier caste, in which a higher JH titer induces differentiation of workers via an intermediate presoldier stage to become sterile soldiers (Roisin, 1996). Transcriptomic and RNA interference (RNAi) analyses in three molting stages (worker, presoldier and soldier) of termite Zootermopsis nevadensis show that the JH-Met and transforming growth factor beta (TGFβ) pathways are involved in the ecdysteroid synthesis for molting in soldier formation (Masuoka et al., 2018; Figure 6D). However, suppression on Kr-h1 via RNAi has no effect on JH analog induced molting, demonstrating that the molting effect mainly depends on JH-Met induced pathways (Masuoka et al., 2018). This in turn also suggested that JH may alternatively promotes molting instead of solely inhibiting metamorphosis.

      Defense

      Terpenes in plants have been the major focus on the understanding the plant defense against the insects, and the role of sesquiterpenoids in insect defense has also been documented in a much lesser extent when comparing to the aforementioned roles. In blister beetles, sesquiterpenoid cantharidin is produced and released as a defensive toxin during disturbance (Carrel et al., 1993). Transcriptomic analyses on Mylabris cichorii identified that the mevalonate pathway in synthesis of JH is correlated with the cantharidin biosynthesis (Huang et al., 2016). In another blister beetle Epicauta chinensis, RNAi knockdown of CYP15A1 and JH epoxide hydrolase (JHEH) result in inhibition of cantharidin biosynthesis, suggesting degradation of JH-III is essential in producing potential precursors of cantharidin (Jiang et al., 2017; Figure 7).

      Schematic diagram showing the potential involvement of juvenile hormone in regulation of insect defensive toxin production. The metabolism of JH-III through its degradation pathway by JHE and JHEH is essential for the biosynthesis of the defensive toxin cantharidin in blister beetles.

      MicroRNA Regulations on Sesquiterpenoids

      Non-coding RNAs such as microRNAs (miRNAs) have been implicated in regulation of many important biological processes (Lucas and Raikhel, 2013; Wang et al., 2014; Yang et al., 2014; Cao et al., 2017; Qu et al., 2018). In canonical miRNA biogenesis pathway in insects (Figure 8), primary miRNA transcript (pri-miRNA) is first transcribed from miRNA gene by RNA polymerase II, followed by processing by Drosha with the help of partner Pasha to generate the precursor miRNA (pre-miRNA) (Denli et al., 2004; Kim et al., 2009). Transported from nucleus to cytoplasm with the help of Exportin-5 and RAN-GTP, pre-miRNA is further processed by Dicer and Loquacious to produce miRNA/miRNA duplex, which will be loaded into the Argonaute (Ago) by HSP70/HSP90 chaperone machinery to form mature RNA-induced silencing complex (RISC) after strand selection (Bartel, 2004; Kim et al., 2009; Iwasaki et al., 2010). Recently, miRNAs have been explored in the regulation of sesquiterpenoids. In Blattella germanica, silencing the expression of Dicer-1 shows that miRNAs regulation is related to metamorphosis (Gomez-Orte and Belles, 2009), and treatment of methoprene on Drosophila S2 cells also reveal the differential expression of miR-34, miR-100, miR-125, and let-7 (Sempere et al., 2003).

      Canonical microRNA biogenesis pathway in Drosophila (the figure is summarized from Bartel, 2004; Denli et al., 2004; Kim et al., 2009; Iwasaki et al., 2010; Cao et al., 2017; Qu et al., 2018).

      In many insects, miRNAs have also been found to potentially regulate different sesquiterpenoid pathway genes (Table 2). For instances, in mosquito A. aegypti, four JH biosynthetic enzyme genes including 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR), diphosphomevalonate decarboxylase (PP-MevD), aldehyde dehydrogenase (ALDH), and farnesyl-pyrophosphate synthase (FPPS) were in silico predicted to be potentially regulated by miRNAs (Nouzova et al., 2018). In addition, in the adult female mosquito, mosquito specific miR-1890 targets JH-controlled chymotrypsin-like SP, JHA15 that involve in the regulation of blood digestion, ovary development and egg deposition (Lucas et al., 2015).

      Published studies of potential microRNA regulators on insect sesquiterpenoid pathway genes.

      Species Target miRNA Validation methods References
      Ae. aegypti HMGR miR-31–5p In silico prediction Nouzova et al., 2018
      PP-MevD Bantam-3p, miR-34-5p In silico prediction
      ALDH miR-34–5p In silico prediction
      FPPS miR-9a-5p, miR-317-3p In silico prediction
      An. gambiae JHAMT miR-278 In vitro Qu et al., 2017
      Met miR-8, miR-14, miR-34, miR-278 In vitro
      Dr. melanogaster JHAMT Bantam In vivo
      JHAMT miR-252, miR-304 In vitro
      Gce Let-7, miR-8, miR-14, miR-34, miR-278, miR-304 In vitro
      Tr. castaneum JHAMT bantam, miR-252a, miR-304, let-7, miR-92b In vitro
      Met miR-92b In vitro
      Met miR-6-3p, miR-9a-3p, miR-9d-3p, miR-11-3p, miR-13-3p, miR-13a-3p, miR-2944a-3p, miR-2944b-3p, miR-2944c-3p, miR-3804a-5p, miR-3893-3p In silico prediction Wu et al., 2017
      Kr-h1 miR-6-3p, miR-9a-3p, miR-11-3p, miR-13-3p, miR-13a-3p, miR-2548-3p, miR-2944a-3p, miR-2944b-3p, miR-2944c-3p, miR-31a, miR-31b-5p, miR-31c-5p, miR-3893-3p, miR-6531-5p In silico prediction
      Lo. migratoria Kr-h1 Let-7, miR-278 In vivo Song et al., 2018
      Bl. germanica Kr-h1 miR-2 family (miR-2, miR-13a, and miR-13b) In vivo Lozano et al., 2015
      Da. pulex JHAMT Bantam, miR-92, miR-252b In vitro Qu et al., 2017
      Met Bantam, miR-278 In vitro
      N. denticulata JHAMT Bantam, miR-92, miR-252 In vitro
      Met miR-8, miR-34, miR-278 In vitro
      S. maritima JHAMT Let-7, miR-34, miR-252, miR-278 In vitro
      Ta. tridentatus JHAMT Bantam, let-7, miR-34, miR-92, miR-278 In vitro
      Met Bantam, let-7, miR-8, miR-34, miR-252 In vitro
      For details, please refer to the text.

      In T. castaneum, developmental defects and lethality are observed after knocking down Dcr-1 and Ago-1, and in silico prediction showed that putative JH receptor Met and JH-inducible transcription factor Kr-h1 were targeted by 11 miRNAs and 14 miRNAs respectively (Wu et al., 2017).

      In L. migratoria, Ago-1-dependent miRNAs are involved in oogenesis (Song et al., 2013), with let-7 and miR-278 caused decrease of yolk protein precursors results in defects of ovarian development and oocyte maturation through Kr-h1 (Song et al., 2018), and application of miR-2/13/71 agomiR leads to inhibition of oocyte maturation and ovarian growth whilst the expression level of this miRNA cluster could be decreased to achieve vitellogenesis and oogenesis (Song et al., 2019).

      In B. germanica, expression of Dicer-1 whose depletion causes sterile females, is negatively related to JH levels, indicating the important roles of miRNAs and interaction between miRNAs and JH in oogenesis (Tanaka and Piulachs, 2012). Specifically, treatment with miR-2-inhibitor on last instar resulted metamorphic defects, and treatment with miR-2 mimic on the Dicer-1-depleted juvenile can complete metamorphosis from nymph to adults (Lozano et al., 2015).

      In order to strengthen ability of adaptation, brown planthoppers, Nilaparvata lugens, shows polyphenism with two phenotypes, long-winged and short-winged morphs. miR-34, whose expression level can be upregulated or downregulated by JH and 20E, respectively, can target insulin receptor-1 to be involved in the modulation of wing polyphenism (Ye et al., 2019).

      In H. armigera, 20E and JH are involved in the control of climbing behaviors of single nucleopolyhedrovirus (HaSNPV) infected larvae. Methoprene treatment decreases expression of Br-C Z2 and increases expression of these miRNAs miR-8 and miR-429 which could target Br-C Z2 (Zhang S. et al., 2018), implying the miRNA-mediated crosstalk between 20E and JH.

      In Drosophila, miRNA bantam has been found to interact with JHAMT both in silico, in vitro, and in vivo (Qu et al., 2017). The overexpression of microRNA bantam in the brain decreases expression levels of JHAMT.; The knockdown of bantam increases the expression level of JHAMT (Qu et al., 2017; Figure 9). Hormonal measurement in bantam mutants demonstrates decreased sesquiterpenoid levels and male genital defects. bantam mutant phenotypes can be rescued by exogenous sesquiterpenoid application (Qu et al., 2017). In other arthropods including other insects, crustaceans, myriapod and chelicerate, the roles of bantam and other miRNAs on JHAMT and Met have also been tested both in silico and in vitro, revealing a conserved system of miRNAs in regulation of sesquiterpenoids established in the arthropod ancestor (Qu et al., 2017; Table 2). A list summarizing the latest knowledge on miRNA regulation of sesquiterpenoid pathway genes are shown in Table 2.

      MicroRNA bantam regulates JH titer via targeting JHAMT in D. melanogaster. Up-regulation of bantam repressed expression of JHAMT and reduced the titer of JH III and JHB3, which resulted in dead pupa and male genital defects.

      Author Contributions

      SSKT, SL, CL, and JH wrote the first draft of the manuscript. All authors proofread the final version of the manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Funding. This work was supported by the Hong Kong Research Grant Council (RGC) General Research Fund (GRF) (14100919, 14100420). SSKT, SL, and CL were supported by studentships by the Chinese University of Hong Kong.

      References Agrahari M. Gadagkar R. (2003). Juvenile hormone accelerates ovarian development and does not affect age polyethism in the primitively eusocial wasp, Ropalidia marginata. J. Insect Physiol. 49 217222. 10.1016/s0022-1910(02)00268-8 Ashok M. Turner C. Wilson T. G. (1988). Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proc. Natl. Acad. Sci. U.S.A. 95 27612766. 10.1073/pnas.95.6.2761 9501163 Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 281297. 10.1016/s0092-8674(04)00045-5 Barth R. H. Lester L. J. Sroka P. Kessler T. Hearn R. (1975). Juvenile HORMONE PROMOTES DOMINANCE BEHAVIOR AND OVARIAN DEVELOPMENT IN SOCIAL WASPs (Polistes annularis). Experientia 31 691692. Belgacem Y. H. Martin J. R. (2007). Hmgcr in the corpus allatum controls sexual dimorphism of locomotor activity and body size via the insulin pathway in Drosophila. PLoS One 2:e187. 10.1371/journal.pone.0000187 17264888 Belles X. Martin D. Piulachs M. D. (2005). The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu. Rev. Entomol. 50 181199. 10.1146/annurev.ento.50.071803.130356 15355237 Bendena W. G. Zhang J. Burtenshaw S. M. Tobe S. S. (2011). Evidence for differential biosynthesis of juvenile hormone (and related) sesquiterpenoids in Drosophila melanogaster. Gen. Comp. Endocrinol. 172 5661. 10.1016/j.ygcen.2011.02.014 21354154 Bergot B. J. Baker F. C. Cerf D. C. Jamieson G. Schooley D. A. (1981). Juvenile Hormone Biochemistry, eds Pratt G. E. Brooks G. T. (Amsterdam: Elsevier), 3345. Bergot B. J. Jamieson G. C. Ratcliff M. A. Schooley D. A. (1980). JH zero: new naturally occurring insect juvenile hormone from developing embryos of the tobacco hornworm. Science 210 336338. 10.1126/science.210.4467.336 17796052 Bittova L. Jedlicka P. Dracinsky M. Kirubakaran P. Vondrasek J. Hanus R. (2019). Exquisite ligand stereoselectivity of a Drosophila juvenile hormone receptor contrasts with its broad agonist repertoire. J. Biol. Chem. 294 410423. 10.1074/jbc.RA118.005992 30455350 Bomtorin A. D. Mackert A. Rosa G. C. Moda L. M. Martins J. R. Bitondi M. M. G. (2014). Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes. PLoS One 9:e86923. 10.1371/journal.pone.0086923 Brent C. Peeters C. Dietemann V. Crewe R. Vargo E. (2006). Hormonal correlates of reproductive status in the queenless ponerine ant, Streblognathus peetersi. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192 315320. Cahan S. H. Graves C. J. Brent C. S. (2011). Intergenerational effect of juvenile hormone on offspring in Pogonomyrmex harvester ants. J. Comp. Physiol. B 181 991999. 10.1007/s00360-011-0587-x 21618034 Cao J. Q. Tong W. S. Yu H. Y. Tobe S. S. Bendena W. G. Hui J. H. L. (2017). The role of microRNAs in Drosophila regulation of insulin-like peptides and ecdysteroid signaling: Where are we now? Adv. Insect Physiol. 53, 5585. 10.1016/bs.aiip.2017.02.002 Carrel J. E. McCairel M. H. Slagle A. J. Doom J. P. Brill J. McCormick J. P. (1993). Cantharidin production in a blister beetle. Experientia 49 171174. 10.1007/BF01989424 8440353 Charles J. P. Iwema T. Epa V. C. Takaki K. Rynes J. Jindra M. (2011). Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant. Proc. Natl. Acad. Sci. U.S.A. 108 2112821133. 10.1073/pnas.1116123109 22167806 Cheong S. P. Huang J. Bendena W. G. Tobe S. S. Hui J. H. (2015). Evolution of Ecdysis and metamorphosis in arthropods: the rise of regulation of juvenile hormone. Integr. Comp. Biol. 55 878890. 10.1093/icb/icv066 26105594 Cuvillier-Hot V. Lenoir A. Peeters C. (2004). Reproductive monopoly enforced by sterile police workers in a queenless ant. Behav. Ecol. 15 970975. Daimon T. Shinoda T. (2013). Function, diversity, and application of insect juvenile hormone epoxidases (CYP15). Biotechnol. Appl. Biochem. 60, 8291. 10.1002/bab.1058 Daimon T. Kozaki T. Niwa R. Kobayashi I. Furuta K. Namiki T. (2012). Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori. PLoS Genet. 8:e1002486. 10.1371/journal.pgen.1002486 22412378 De Loof A. Schoofs L. (2019). Mode of action of Farnesol, the “Noble Unknown” in particular in Ca2+ homeostasis, and its juvenile hormone-esters in evolutionary retrospect. Front. Neurosci. 13:141. 10.3389/fnins.2019.00141 30858798 Denli A. M. Tops B. B. Plasterk R. H. Ketting R. F. Hannon G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432 231235. 10.1038/nature03049 15531879 Dubrovsky E. B. (2005). Hormonal cross talk in insect development. Trends Endocrinol. Metab. 16 611. 10.1016/j.tem.2004.11.003 15620543 Dubrovsky E. B. Dubrovskaya V. A. Bernardo T. Otte V. DiFilippo R. Bryan H. (2011). The Drosophila FTZ-F1 nuclear receptor mediates juvenile hormone activation of E75A gene expression through an intracellular pathway. J. Biol. Chem. 286 3368933700. 10.1074/jbc.M111.273458 21832074 Giray T. Giovanetti M. West-Eberhard M. J. (2005). Juvenile hormone, reproduction, and worker behavior in the neotropical social wasp Polistes Canadensis. Proc. Natl. Acad. Sci. U.S.A. 102 33303335. 10.1073/pnas.0409560102 15728373 Gomez-Orte E. Belles X. (2009). MicroRNA-dependent metamorphosis in hemimetabolan insects. Proc. Natl. Acad. Sci. U.S.A. 106 2167821682. 10.1073/pnas.0907391106 19966227 Grozinger C. M. Robinson G. E. (2007). Endocrine modulation of a pheromone-responsive gene in the honey bee brain. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193, 461470. 10.1007/s00359-006-0202-x Huang J. Marchal E. Hult E. R. Tobe S. S. (2015). Characterization of the juvenile hormone pathway in the viviparous cockroach, Diploptera punctate. PLoS One 10:e0117291. 10.1371/journal.pone.0117291 25706877 Huang Y. Wang Z. Zha S. Wang Y. Jiang W. Liao Y. (2016). De novo transcriptome and expression profile analysis to reveal genes and pathways potentially involved in cantharidin biosynthesis in the blister beetle Mylabris cichorii. PLoS One 11:e0146953. 10.1371/journal.pone.0146953 26752526 Hui J. H. Benena W. G. Tobe S. S. (2013). “Future perspectives for research on the biosynthesis of juvenile hormones and related sesquiterpenoids in Arthropod endocrinology and ecotoxicology,” in Juvenile Hormone and Juvenoids: Moldeling Biological Effects and Environmental, ed. Devillers J. (New York, NY: CRC Press), 1530. Hui J. H. L. Hayward A. Bendena W. G. Takahashi T. Tobe S. S. (2010). Evolution and functional divergence of enzymes involved in sesquiterpenoid hormone biosynthesis in crustaceans and insects. Peptides 31 451455. 10.1016/j.peptides.2009.10.003 19836428 Ishikawa A. Ogawa K. Gotoh H. Walsh T. K. Tagu D. Brisson J. A. (2012). Juvenile hormone titre and related gene expression during the change of reproductive modes in the pea aphid. Insect Mol. Biol. 21 4960. 10.1111/j.1365-2583.2011.01111.x 21988597 Iwasaki S. Kobayashi M. Yoda M. Sakaguchi Y. Katsuma S. Suzuki T. (2010). Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell 39 292299. 10.1016/j.molcel.2010.05.015 20605501 Jiang M. Lu S. Zhang Y. (2017). Characterization of juvenile hormone related genes regulating cantharidin biosynthesis in Epicauta chinensis. Sci. Rep. 7:2308. 10.1038/s41598-017-02393-w 28536442 Jindra M. Uhlirova M. Charles J. P. Smykal V. Hill R. J. (2015). Genetic evidence for function of the bHLH-PAS Protein Gce/Met as a juvenile hormone receptor. PLoS Genet. 11:e1005394. 10.1371/journal.pgen.1005394 26161662 Jing Y.-P. An H. Zhang S. Wang N. Zhou S. (2018). Protein kinase C mediates juvenile hormone-dependent phosphorylation of Na+/K+-ATPase to induce ovarian follicular patency for yolk protein uptake. J. Biol. Chem. 293 2011220122. 10.1074/jbc.RA118.005692 30385509 Judy K. J. Schooley D. A. Dunham L. L. Hall M. S. Bergot B. J. Siddall J. B. (1973). Isolation, structure, and absolute configuration of a new natural insect juvenile hormone from Manduca sexta. Proc. Natl. Acad. Sci. U.S.A. 70 15091513. 10.1073/pnas.70.5.1509 16592086 Kappes G. Deshpande G. Mulvey B. B. Horabin J. I. Schedl P. (2011). The Drosophila Myc gene, diminutive, is a positive regulator of the Sex-lethal establishment promoter, Sxl-Pe. Proc. Natl. Acad. Sci. U.S.A. 108 15431548. 10.1073/pnas.1017006108 21220321 Kayukawa T. Jouraku A. Ito Y. Shinoda T. (2017). Molecular mechanism underlying juvenile hormone-mediated repression of precocious larval–adult metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 114 10571062. 10.1073/pnas.1615423114 28096379 Kayukawa T. Minakuchi C. Namiki T. Togawa T. Yoshiyama M. Kamimura M. (2012). Transcriptional regulation of juvenile hormone-mediated induction of Krüppel homolog 1, a repressor of insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 109 1172911734. 10.1073/pnas.1204951109 22753472 Kayukawa T. Nagamine K. Ito Y. Nishita Y. Ishikawa Y. Shinoda T. (2016). Krüppel homolog 1 inhibits insect metamorphosis via direct transcriptional repression of broad-complex, a Pupal Specifier Gene. J. Biol. Chem. 291 17511762. 10.1074/jbc.M115.686121 26518872 Kelstrup H. C. Hartfelder K. Nascimento F. S. Riddiford L. M. (2014). The role of juvenile hormone in dominance behavior, reproduction and cuticular pheromone signaling in the caste-flexible epiponine wasp, Synoeca surinama Front. Zool. 11:78. 10.1186/s12983-014-0078-5 25371699 Kim V. N. Han J. Siomi M. C. (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10 126139. 10.1038/nrm2632 19165215 Konopova B. Smykal V. Jindra M. (2011). Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 6:e28728. 10.1371/journal.pone.0028728 22174880 Kotaki T. Shinada T. Kaihara K. Ohfune Y. Numata H. (2009). Structure determination of a new juvenile hormone from a Heteropteran insect. Org. Lett. 11 52345237. 10.1021/ol902161x 19863071 Li K. L. Yuan S. Y. Nanda S. Wang W. X. Lai F. X. Fu Q. (2018). The Roles of E93 and Kr-h1 in Metamorphosis of Nilaparvata lugens. Front. Physiol. 9:1677. 10.3389/fphys.2018.01677 30524315 Libbrecht R. Corona M. Wende F. Azevedo D. O. Serrao J. E. Keller L. (2013). Interplay between insulin signaling, juvenile hormone, and vitellogenin regulates maternal effects on polyphenism in ants. Proc. Natl. Acad. Sci. U.S.A. 110 1105011055. 10.1073/pnas.1221781110 23754378 Liu S. Li K. Gao Y. Chen W. Ge W. Feng Q. (2018). Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 115 139144. 10.1073/pnas.1716897115 29255055 Liu W. Guo S. Sun D. Zhu L. Zhu F. Lei C. L. (2019). Molecular characterization and juvenile hormone-regulated transcription of the vitellogenin receptor in the cabbage beetle Colaphellus bowringi. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 229 6975. 10.1016/j.cbpa.2018.12.004 30553881 Liu W. Li Y. Zhu L. Zhu F. Lei C. L. Wang X. P. (2016). Juvenile hormone facilitates the antagonism between adult reproduction and diapause through the methoprene-tolerant gene in the female Colaphellus bowringi. Insect Biochem. Mol. Biol. 74 5060. 10.1016/j.ibmb.2016.05.004 27180724 Lozano J. Belles X. (2011). Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Sci. Rep. 1:163. 10.1038/srep00163 Lozano J. Montañez R. Belles X. (2015). MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway. Proc. Natl. Acad. Sci. U.S.A. 112 37403745. 10.1073/pnas.1418522112 25775510 Lucas K. Raikhel A. S. (2013). Insect microRNAs: biogenesis, expression profiling and biological functions. Insect Biochem. Mol. Biol. 43 2438. 10.1016/j.ibmb.2012.10.009 23165178 Lucas K. J. Zhao B. Roy S. Gervaise A. L. Raikhel A. S. (2015). Mosquito-specific microRNA-1890 targets the juvenile hormone-regulated serine protease JHA15 in the female mosquito gut. RNA Biol. 12 13831390. 10.1080/15476286.2015.1101525 26488481 Marchal E. Zhang J. Badisco L. Verlinden H. Hult E. F. Van Wielendaele P. (2011). Final steps in juvenile hormone biosynthesis in the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 41 219227. 10.1016/j.ibmb.2010.12.007 21195178 Masuoka Y. Yaguchi H. Toga K. Shigenobu S. Maekawa K. (2018). TGFβ signaling related genes are involved in hormonal mediation during termite soldier differentiation. PLoS Genet. 14:e1007338. 10.1371/journal.pgen.1007338 29641521 Meiselman M. Lee S. S. Tran R. Dai H. Ding Y. Rivera-Perez C. (2017). Endocrine network essential for reproductive success in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 114 E3849E3858. 10.1073/pnas.1620760114 28439025 Meyer A. S. Schneiderman H. A. Hanzmann E. Ko J. H. (1968). The two juvenile hormones from the cecropia silk moth. Proc. Natl. Acad. Sci. U.S.A. 60 853860. 10.1073/pnas.60.3.853 16591663 Minakuchi C. Ishii F. Washidu Y. Ichikawa A. Tanaka T. Miura K. (2015). Expressional and functional analysis of CYP15A1, a juvenile hormone epoxidase, in the red flour beetle Tribolium castaneum. J. Insect Physiol. 80 6170. 10.1016/j.jinsphys.2015.04.008 25921675 Minakuchi C. Namiki T. Shinoda T. (2009). Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev. Biol. 325 341350. 10.1016/j.ydbio.2008.10.016 19013451 Niwa R. Niwa Y. S. (2014a). Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci. Biotechnol. Biochem. 78 12831292. 10.1080/09168451.2014.942250 25130728 Niwa Y. S. Niwa R. (2014b). Neural control of steroid hormone biosynthesis during development in the fruit fly Drosophila melanogaster. Genes Genet. Syst. 89 2734. 10.1266/ggs.89.27 24817759 Norman V. C. Hughes W. (2016). Behavioural effects of juvenile hormone and their influence on division of labour in leaf-cutting ant societies. J. Exp. Biol. 219 811. 10.1242/jeb.132803 26739685 Norman V. C. Pamminger T. Nascimento F. Hughes W. (2019). The role of juvenile hormone in regulating reproductive physiology and dominance in Dinoponera quadriceps ants. PeerJ 7:e6512. 10.7717/peerj.6512 30842903 Nouzova M. Etebari K. Noriega F. G. Asgari S. (2018). A comparative analysis of corpora allata-corpora cardiaca microRNA repertoires revealed significant changes during mosquito metamorphosis. Insect Biochem. Mol. Biol. 96 1018. 10.1016/j.ibmb.2018.03.007 29605533 O’Donnell S. (1998). Reproductive caste determination in eusocial wasps (Hymenoptera : Vespidae). Annu. Rev. Entomol. 43 323346. 10.1146/annurev.ento.43.1.323 15012393 O’Donnell S. Jeanne R. L. (1993). Methoprene accelerates age polyethism in workers of a social wasp Polybia occidentalis. Physiol. Entomol. 18 189194. Paroulek M. Sláma K. (2014). Production of the sesquiterpenoid, juvenile hormone-1 (JH-I), and of vitamin E in the accessory sexual (colleterial) glands of adult male moths, Hyalophora cecropia (Linnaeus, 1758), (Lepidoptera: Saturniidae). Life Exc. Biol. 2 102124. 10.9784/LEB2(2)Paroulek.01 Parthasarathy R. Sun Z. Bai H. Palli S. R. (2010). Juvenile hormone regulation of vitellogenin synthesis in the red flour beetle, Tribolium castaneum. Insect Biochem. Mol. Biol. 40 405414. 10.1016/j.ibmb.2010.03.006 20381616 Postlethwait J. H. Weiser K. (1973). Vitellogenesis induced by Juvenile Hormone in the Female Sterile Mutant apterous-four in Drosophila melanogaster. Nat. New Biol. 244 284285. 10.1038/newbio244284a0 4199571 Qu Z. Bendena W. G. Nong W. Siggens K. W. Noriega F. G. Kai Z. P. (2017). MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc. Biol. Sci. 284:20171827. 10.1098/rspb.2017.1827 29237851 Qu Z. Bendena W. G. Tobe S. S. Hui J. H. L. (2018). Juvenile hormone and sesquiterpenoids in arthropods: biosynthesis, signaling, and role of MicroRNA. J. Steroid Biochem. 184 6976. 10.1016/j.jsbmb.2018.01.013 29355708 Richard D. S. Applebaum S. W. Sliter T. J. Baker F. C. Schooley D. A. Reuter C. C. (1989). Juvenile hormone bisepoxide biosynthesis in vitro by the ring gland of Drosophila melanogaster: a putative juvenile hormone in the higher Diptera. Proc. Natl. Acad. Sci. U.S.A. 86 14211425. Riddiford L. M. (2012). How does juvenile hormone control insect metamorphosis and reproduction? Gen. Comp. Endocrinol. 179 477484. 10.1016/j.ygcen.2012.06.001 22728566 Riddiford L. M. Cherbas P. Truman J. W. (2000). Ecdysone receptors and their biological actions. Vitam. Horm. 60 173. Roisin Y. (1996). Castes in humivorous and litter-dwelling neotropical nasute termites (Isoptera, Termitidae). Ins. Soc. 43, 375389. 10.1007/BF01258410 Röller H. Dahm K. H. Sweely C. C. Trost B. M. (1967). The structure of the juvenile hormone. Angew. Chem. Int. Ed. 6 179180. Röseler P. F. Röseler I. Strambi A. (1980). The activity of corpora allata in dominant and subordinated females of the wasp Polistes gallicus. Insectes Soc. 27 97107. Röseler P. F. Röseler I. Strambi A. (1985). Role of ovaries and ecdysteroids in dominance hierarchy establishment among foundresses of the primitively social wasp, Polistes gallicus. Behav. Ecol. Sociobiol. 18 913. Röseler P. F. Röseler I. Strambi A. Augier R. (1984). Influence of insect hormones on the establishment of dominance hierarchies among foundresses of the paper wasp, Polistes gallicus. Behav. Ecol. Sociobiol. 15 133142. 10.1007/BF00299381 Roy S. Saha T. T. Zou Z. Raikhel A. S. (2018). Regulatory pathways controlling female insect reproduction. Annu. Rev. Entomol. 63 489511. 10.1146/annurev-ento-020117-043258 29058980 Sehnal F. Svacha P. Zrzavy J. (1996). “Evolution of insect metamorphosis,” in Metamorphosis. Postembryonic reprogramming of gene expression in amphibian and insect cells, eds Gilbert L. I. Tata J. R. Atkinson B. G. (San Diego, CA: Academic Press.), 358. Sempere L. F. Sokol N. S. Dubrovsky E. B. Berger E. M. Ambros V. (2003). Temporal regulation of microRNA expression in Drosophila melanogaster mediated by hormonal signals and broad-Complex gene activity. Dev. Biol. 259 918. Sheng Z. Xu J. Bai H. Zhu F. Palli S. R. (2011). Juvenile hormone regulates vitellogenin gene expression through insulin-like peptide signaling pathway in the red flour beetle, Tribolium castaneum. J. Biol. Chem. 286 4192441936. 10.1074/jbc.M111.269845 22002054 Shin S. W. Zou Z. Shah T. T. Raikhel A. S. (2012). bHLH-PAS heterodimer of methoprene-tolerant and cycle mediates circadian expression of juvenile hormone-induced mosquito genes. Proc. Natl. Acad. Sci. U.S.A. 109 1657616581. 10.1073/pnas.1214209109 23012454 Shinoda T. Itoyama K. (2003). Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 100 1198611991. 10.1073/pnas.2134232100 14530389 Shorter J. R. Tibbetts E. A. (2009). The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. Insect. Soc. 56 713. 10.1007/s00040-008-1026-1 Shpigler H. Patch H. M. Cohen M. Fan Y. Grozinger C. M. Bloch G. (2010). The transcription factor Krüppel homolog 1 is linked to hormone mediated social organization in bees. BMC Evol. Biol. 10:120. 10.1186/1471-2148-10-120 Smykal V. Bajgar A. Provaznik J. Fexova S. Buricova M. Takaki K. (2014). Juvenile hormone signaling during reproduction and development of the linden bug, Pyrrhocoris apterus. Insect Biochem. Mol. Biol. 45 6976. 10.1016/j.ibmb.2013.12.003 24361539 Sommer K. Hölldobler B. Rembold H. (1993). Behavioral and physiological aspects of reproductive control in a Diacamma species from Malaysia (Formicidae, Ponerinae). Ethology 94 162170. 10.1111/j.1439-0310.1993.tb00556.x Song J. Guo W. Jiang F. Kang L. Zhou S. (2013). Argonaute 1 is indispensable for juvenile hormone mediated oogenesis in the migratory locust, Locusta migratoria. Insect Biochem. Mol. Biol. 43 879887. 10.1016/j.ibmb.2013.06.004 23792802 Song J. Li W. Zhao H. Gao L. Fan Y. Zhou S. (2018). The microRNAs let-7 and miR-278 regulate insect metamorphosis and oogenesis by targeting the juvenile hormone early-response gene Krüppel-homolog 1. Development 145:dev170670. 10.1242/dev.170670 30470705 Song J. Li W. Zhao H. Zhou S. (2019). Clustered miR-2, miR-13a, miR-13b and miR-71 coordinately target Notch gene to regulate oogenesis of the migratory locust Locusta migratoria. Insect Biochem. Mol. Biol. 106 3946. 10.1016/j.ibmb.2018.11.004 30453026 Song J. Wu Z. Wang Z. Deng S. Zhou S. (2014). Krüppel-homolog 1 mediates juvenile hormone action to promote vitellogenesis and oocyte maturation in the migratory locust. Insect Biochem. Mol. Biol. 52 94101. 10.1016/j.ibmb.2014.07.001 25017142 Song J. Zhou S. (2019). Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell. Mol. Life Sci. 77 18931909. 10.1007/s00018-019-03361-5 31724082 Swevers L. Raikhel A. Sappington T. Shirk P. Iatrou K. (2005). “Vitellogenesis and post-vitellogenic maturation of the insect ovarian follicle,” in Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology, Vol. 3 eds Gilbert L. Gill S. Iatrou K. (Amsterdam: Elsevier), 87155. 10.1016/B0-44-451924-6/00093-4 Tanaka E. D. Piulachs M. D. (2012). Dicer-1 is a key enzyme in the regulation of oogenesis in panoistic ovaries. Biol. Cell 104 452461. 10.1111/boc.201100044 22462497 Tibbetts E. A. Izzo A. S. (2009). Endocrine mediated phenotypic plasticity- Condition-dependent effects of JH on dominance and fertility of wasp queens. Horm. Behav. 56 527531. 10.1016/j.yhbeh.2009.09.003 19751736 Tibbetts E. A. Sheehan M. J. (2012). The effect of juvenile hormone on Polistes wasp fertility varies with cooperative behavior. Horm. Behav. 61 559564. 10.1016/j.yhbeh.2012.02.002 22349082 Tibbetts E. A. Levy S. Donajkowski K. (2011). Reproductive plasticity in Polistes paper wasp workers and the evolutionary origins of sociality. J. Insect Physiol. 57, 995999. 10.1016/j.jinsphys.2011.04.016 Tibbetts E. A. Fearon M. L. Wong E. Huang Z. Y. Tinghitella R. M. (2018). Rapid juvenile hormone downregulation in subordinate wasp queens facilitates stable cooperation. Proc. Biol. Sci. 285:20172645. 10.1098/rspb.2017.2645 Tobe S. S. Bendena W. G. (1999). The regulation of juvenile hormone production in arthropods: functional and evolutionary perspectives. Ann. N.Y. Acad. Sci. 300310. 10.1111/j.1749-6632.1999.tb07901.x 10676458 Truman J. W. (2019). The evolution of insect metamorphosis. Curr. Biol. 29 R1252R1268. 10.1016/j.cub.2019.10.009 31794762 Truman J. W. Riddiford L. M. (2002). Endocrine insights into the evolution of metamorphosis in insects. Annu. Rev. Entomol. 47 467500. 10.1146/annurev.ento.47.091201.145230 11729082 Tu M. P. Yin C. M. Tatar M. (2005). Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen. Comp. Endocrinol. 142 347356. 10.1016/j.ygcen.2005.02.009 15935161 Ureña E. Chafino S. Manjón C. Franch-Marro X. Martín D. (2016). The Occurrence of the Holometabolous Pupal Stage Requires the Interaction between E93, Krüppel-Homolog 1 and Broad-Complex. PLoS Genet. 12:e1006020. 10.1371/journal.pgen.1006020 27135810 Vea I. M. Tanaka S. Shiotsuki T. Jouraku A. Tanaka T. Minakuchi C. (2016). Differential juvenile hormone variations in scale insect extreme sexual dimorphism. PLoS One 11:e0149459. 10.1371/journal.pone.0149459 26894583 Wang C. Feng T. Wan Q. Kong Y. Yuan L. (2014). miR-124 controls Drosophila behavior and is required for neural development. Int. J. Dev. Neurosci. 38 105112. 10.1016/j.ijdevneu.2014.08.006 25169673 Wen D. Rivera-Perez C. Abdou M. Jia Q. He Q. Liu X. (2015). Methyl farnesoate plays a dual role in regulating drosophila metamorphosis. PLoS Genet. 13:e1005038. 10.1371/journal.pgen.1005038 25774983 Wu B. Ma L. Zhang E. Du J. Liu S. Price J. (2018). Sexual dimorphism of sleep regulated by juvenile hormone signaling in Drosophila. PLoS Genet. 14:e1007318. 10.1371/journal.pgen.1007318 29617359 Wu W. Xiong W. Li C. Zhai M. Li Y. Ma F. (2017). MicroRNA-dependent regulation of metamorphosis and identification of microRNAs in the red flour beetle, Tribolium castaneum. Genomics 109 362373. 10.1016/j.ygeno.2017.06.001 28624536 Wu Z. Guo W. Xie Y. Zhou S. (2016). Juvenile hormone activates the transcription of cell-division-cycle 6 (Cdc6) for Polyploidy-dependent Insect Vitellogenesis and Oogenesis. J. Biol. Chem. 291 54185427. 10.1074/jbc.M115.698936 26728459 Wu Z. Guo W. Yang L. He Q. Zhou S. (2018). Juvenile hormone promotes locust fat body cell polyploidization and vitellogenesis by activating the transcription of Cdk6 and E2f1. Insect Biochem. Mol. Biol. 102 110. Wyatt G. R. Davey K. G. (1996). Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Adv. Insect Physiol. 26 1155. Yang M. Wei Y. Jiang F. Wang Y. Guo X. He J. (2014). MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLoS Genet. 10:e1004206. 10.1371/journal.pgen.1004206 24586212 Yang P. Chen X. M. Liu W. W. Feng Y. Sun T. (2015). Transcriptome analysis of sexually dimorphic Chinese white wax scale insects reveals key differences in developmental programs and transcription factor expression. Sci. Rep. 5:8141. 10.1038/srep08141 25634031 Ye X. Xu L. Li X. He K. Hua H. Cao Z. (2019). miR-34 modulates wing polyphenism in planthopper. PLoS Genet. 15:e1008235. 10.1371/journal.pgen.1008235 31242182 Zhang S. An S. Hoover K. Li Z. Li X. Liu X. (2018). Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Mol. Ecol. 27 459475. 10.1111/mec.14457 29219212 Zhang T. Song W. Zheng L. Qian W. Wei L. Yang Y. (2018). Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. Proc. Natl. Acad. Sci. U.S.A. 115 39603965. 10.1073/pnas.1800435115 29567866 Zhang W. N. Ma L. Liu C. Chen L. Xiao H. J. Liang G. M. (2018). Dissecting the role of Krüppel homolog 1 in the metamorphosis and female reproduction of the cotton bollworm, Helicoverpa armigera. Insect Mol. Biol. 27 492504. 10.1111/imb.12389 29719076 Zhu J. Busche J. M. Zhang X. (2010). Identification of juvenile hormone target genes in the adult female mosquitoes. Insect Biochem. Mol. Biol. 40 2329. 10.1016/j.ibmb.2009.12.004 20018242
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016hcyxgs.org.cn
      www.hmdeyiju.com.cn
      gamala.com.cn
      hosegroup.com.cn
      www.szicif.org.cn
      www.qmesub.com.cn
      myjrfk.com.cn
      www.xfhypy.com.cn
      www.wqliyj.com.cn
      www.pinjiuba.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p