Front. Endocrinol. Frontiers in Endocrinology Front. Endocrinol. 1664-2392 Frontiers Media S.A. 10.3389/fendo.2018.00097 Endocrinology Original Research Higher Prevalence of “Low T3 Syndrome” in Patients With Chronic Fatigue Syndrome: A Case–Control Study Ruiz-Núñez Begoña 1 2 * Tarasse Rabab 1 Vogelaar Emar F. 3 Janneke Dijck-Brouwer D. A. 1 Muskiet Frits A. J. 1 1Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands 2Healthy Institute, Madrid, Spain 3European Laboratory of Nutrients, Bunnik, Netherlands

Edited by: Frédéric Flamant, École normale supérieure de Lyon, France

Reviewed by: Johannes Wolfgang Dietrich, Ruhr University Bochum, Germany; Anthony Martin Gerdes, New York Institute of Technology, United States

*Correspondence: Begoña Ruiz-Núñez, bego@healthyinstitute.es

Specialty section: This article was submitted to Thyroid Endocrinology, a section of the journal Frontiers in Endocrinology

20 03 2018 2018 9 97 28 11 2017 27 02 2018 Copyright © 2018 Ruiz-Núñez, Tarasse, Vogelaar, Janneke Dijck-Brouwer and Muskiet. 2018 Ruiz-Núñez, Tarasse, Vogelaar, Janneke Dijck-Brouwer and Muskiet

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Chronic fatigue syndrome (CFS) is a heterogeneous disease with unknown cause(s). CFS symptoms resemble a hypothyroid state, possibly secondary to chronic (low-grade) (metabolic) inflammation. We studied 98 CFS patients (21–69 years, 21 males) and 99 age- and sex-matched controls (19–65 years, 23 males). We measured parameters of thyroid function, (metabolic) inflammation, gut wall integrity and nutrients influencing thyroid function and/or inflammation. Most remarkably, CFS patients exhibited similar thyrotropin, but lower free triiodothyronine (FT3) (difference of medians 0.1%), total thyroxine (TT4) (11.9%), total triiodothyronine (TT3) (12.5%), %TT3 (4.7%), sum activity of deiodinases (14.4%), secretory capacity of the thyroid gland (14.9%), 24-h urinary iodine (27.6%), and higher % reverse T3 (rT3) (13.3%). FT3 below the reference range, consistent with the “low T3 syndrome,” was found in 16/98 CFS patients vs. 7/99 controls (OR 2.56; 95% confidence interval = 1.00–6.54). Most observations persisted in two sensitivity analyses with more stringent cutoff values for body mass index, high-sensitive C-reactive protein (hsCRP), and WBC. We found possible evidence of (chronic) low-grade metabolic inflammation (ferritin and HDL-C). FT3, TT3, TT4, and rT3 correlated positively with hsCRP in CFS patients and all subjects. TT3 and TT4 were positively related to hsCRP in controls. Low circulating T3 and the apparent shift from T3 to rT3 may reflect more severely depressed tissue T3 levels. The present findings might be in line with recent metabolomic studies pointing at a hypometabolic state. They resemble a mild form of “non-thyroidal illness syndrome” and “low T3 syndrome” experienced by a subgroup of hypothyroid patients receiving T4 monotherapy. Our study needs confirmation and extension by others. If confirmed, trials with, e.g., T3 and iodide supplements might be indicated.

chronic fatigue syndrome thyroid “low T3 syndrome” triiodothyronine reverse triiodothyronine urinary iodine inflammation high-sensitive C-reactive protein

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Chronic fatigue syndrome (CFS), also referred to as myalgic encephalomyelitis, is a complex heterogeneous disease, most commonly characterized by disabling fatigue, cognitive impairment, disrupted sleep and concomitant skeletal and muscular pain, lasting for more than 6 months and not improving with rest (1, 2) [for a broader definition, see Ref. (3)]. Impaired physical and social functioning, vitality, emotional well-being and role limitations due to emotional problems (4) contribute to an impaired quality of life (5). Although most patients have mild or moderate symptoms, some suffer from severe CFS and are housebound or even unable to move from their beds (4). The diagnosis of CFS is based on the Fukuda criteria, i.e., symptoms, disability, and exclusion of explanatory illnesses, and not by means of physical signs or abnormalities in laboratory test results (13). About 75% or more are female. The mean age of onset is 29–35 years and the mean illness duration ranges from 3 to 9 years (6), which implies that the symptoms are reversible. A meta-analysis of clinically confirmed cases in several countries indicates a prevalence of 0.76% (7). In 2005, the prevalence of CFS in The Netherlands was slightly lower, 0.18–0.25% (30,000–40,000 patients among 16 million inhabitants) (8).

      The underlying cause of CFS remains unclear. Many pathophysiological cascades have been hypothesized but underlying organic conditions are rarely found. Disturbed hypothalamus–pituitary–adrenal (HPA) axis, presented as mild hypocortisolism, heightened negative feedback and blunted responses to challenge have been found in CFS (9). Computational analysis using endocrine and gene expression data suggest that CFS is associated with immune-mediated loss of thyroid function, exacerbated by a blunted HPA axis response (10). Autonomic dysfunction, including orthostatic intolerance and syncope, microglial activation and structural changes, indicate involvement of the brain (11). There is accumulating evidence that the cardiovascular system is compromised, with reports of autonomic dysfunction, attenuated heart rate and blood pressure (12) and increased death rate from heart failure (13). The latter finding was related to a blunted cortisol response (14). Taken together, dysfunctional central housekeeping involving interactions between both the HPA and hypothalamus–pituitary–thyroid (HPT) axes and the sympathetic/adrenal medulla, rather than single-hormone-axis disturbances, might play a key role in the development of CFS symptoms (10, 11, 14).

      Dysregulation of the immune system in CFS may include autoimmune reactions and low-grade inflammation. Some studies demonstrated autoantibodies directed at diverse nuclear and neuronal components (15, 16) and against some neurotransmitters and neurotransmitter receptors in the CNS (17, 18). Others associated infection and vaccination with later CFS onset (19, 20). Recently, pandemic influenza A (H1N1) infection was related with a more than two-fold increased CFS risk (21). A state of low-grade inflammation (22), as derived from elevated (hs)CRP (23), interleukin (IL)-6 (24), IL-1 and tumor necrosis factor (TNF)-α (22), and/or nuclear factor kappa B (NFκB) (25) has, however, not consistently been found (2628), possibly because of differences in experimental approaches and patient conditions (28). Increased translocation of lipopolysaccharides (LPS) from Gram-negative enterobacteria with subsequent gut-derived inflammation was also found (29). Giloteaux et al. demonstrated intestinal dysbiosis resulting from a more proinflammatory gut microbiome that may trigger the immune system (30). Recently, the relationship between the thyroid with gut microbiome and inflammation became apparent from the associations of both hypothyroidism and levothyroxine use with small intestinal bacterial overgrowth (31).

      Several symptoms resemble those of hypothyroidism. They are, however, not accompanied by the marked thyrotropin (TSH) increases of full-blown hypothyroidism (32). Fuite et al. (10) suggested immune-mediated loss of thyroid function in CFS patients. Low-grade inflammation and subclinical hypothyroidism are not mutually exclusive. Inflammation virtually affects all hormonal axes (33), including the HPT axis (34). Profound changes in this axis occur in the “non-thyroidal illness syndrome (NTIS),” also referred to as “euthyroid sick syndrome,” which has notably been investigated in critically ill patients (35). As part of the acute phase response, this condition may reflect an adaptation to counteract excessive catabolism during severe illness (34). The most important clinical chemical features of mild to moderate NTIS are normal/low-normal TSH, low total triiodothyronine (TT3) and free T3 (FT3) levels, normal/high-normal total thyroxine (TT4), decreased peripheral conversion of T4 to T3, and increased reverse T3 (rT3) levels (36). Chronic inflammation in rodents increases the expression of deiodinase 3 (D3), which inactivates both T3 and T4 with concomitant production of 3,3′-diiodothyronine (T2) and rT3, respectively (34). A recent study (37) also reported elevated concentrations of 3,5-T2 in humans affected by cardiac NTIS.

      Chronic fatigue syndrome has been described as an “allostatic overload condition” (38), where the physiological mechanisms employed to deal with stress (also named “allostatic states”) contribute to the perpetuation of the disorder. CFS patients are 1.9 times more likely to have a high allostatic load index than healthy controls (39) and this allostatic load also correlates positively with CFS symptoms (40). Thyroid allostasis-adaptive responses, presenting as NTIS, have been found in many conditions, ranging from critical illness, uremia and starvation to tumors (41). Taken together, it is possible that, despite TSH and T4 levels within reference ranges, CFS symptoms may be attributable in part to allostatic responses, i.e., lower thyroid hormone activity, secondary to chronic (low-grade) inflammation caused by, e.g., a compromised gut microbiome and gut wall integrity.

      In the present case–control study, we focused on signs of low-grade inflammation and subclinical hypothyroidism. We measured parameters of thyroid function, low-grade inflammation and gut wall integrity (42), together with secondary markers of inflammation, also named metabolic inflammation (43, 44), including insulin resistance-mediated de novo lipogenesis (DNL), HDL-cholesterol (HDL-C), and the status of nutrients influencing thyroid function (iodine and selenium) and inflammation [fish oil fatty acids (FA) and vitamin D].

      Materials and Methods Study Design and Study Group

      Patients were recruited in the Parkstad Clinic in Amsterdam, The Netherlands. They were diagnosed with CFS according to the CBO guideline (45). These are based on the Fukuda criteria (1), with the exclusion criteria of Reeves (3). In the Parkstad Clinic, 250 CFS patients are seen on a regular basis. From these, 150 were randomly selected to receive a letter requesting their voluntary participation. A total of 109 agreed to participate. Three of the participants were not patients of the Parkstad Clinic, making a total of 112 (see Figure 1 for flow scheme). The patients completed a questionnaire on their health, recent non-chronic medication use, smoking habits, supplement use, and pregnancy and lactation. Exclusion criteria were use of medication that may affect thyroid function (e.g., T4, antiarrhythmic drugs, such as amiodarone or corticosteroids), pregnancy, breastfeeding, and menstruation during urine collection. Other exclusion criteria were (biochemical) abnormalities that are excluded according to the CBO guideline and not demonstrated at the time of diagnosis, e.g., severe obesity [body mass index (BMI) > 35 kg/m2], infection [high-sensitive C-reactive protein (hsCRP) > 10 mg/L and white blood cells (WBC) > 10 × 109/L], anemia [hemoglobin (Hb) < 7.0 mmol/L in women and < 8.0 mmol/L in men], hyperthyroidism [TSH below reference range with FT3 and/or free thyroxine (FT4) above reference range (46)], thyroid hormone resistance [elevated FT4 with non-suppressed TSH (47)], hypothyroidism (TSH above upper limit of reference range with FT4 below reference range), and subclinical hypothyroidism [TSH above reference range with normal FT4 (46)]. Weights and lengths were measured on the spot. Data on age were obtained from interviews in the Dutch language.

      Flow-chart: inclusion of chronic fatigue syndrome patients (A) and controls (B) in the different groups and subgroups. Abbreviations: CFS, chronic fatigue syndrome; n, number of subjects; BMI, body mass index; hsCRP, high-sensitive C-reactive protein; WBC, white blood cells.

      A total of 119 age- and sex-matched apparently healthy controls were recruited by advertisement in the city of Groningen, The Netherlands. Health was self-reported with the aid of a health checklist filled out before inclusion. Primary exclusion criteria were the use of any chronic medication, menstruation during urine collection, severe obesity (BMI > 35 kg/m2), and both pregnancy and breastfeeding. Incidental use of analgesics and short-term medication (e.g., antibiotics, more than 4 weeks ago) were allowed. Secondary exclusion criteria were infection (hsCRP > 10 mg/L and WBC > 10 × 109/L), anemia (Hb < 7.0 mmol/L in women and < 8.0 mmol/L in men), hyperthyroidism [TSH below reference range with FT3 and/or FT4 above reference range (46)], thyroid hormone resistance [elevated FT4 with non-suppressed TSH (47)], hypothyroidism (TSH above upper limit of reference range with FT4 below reference range), and subclinical hypothyroidism [TSH above reference range with normal FT4 (46)]. Data on age were obtained from interviews in the Dutch language. Weight and height were self-reported.

      All patients and controls received a verbal and written explanation of the objectives and procedures and all provided us with written informed consent. The study was in agreement with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. The protocol was approved by the University Medical Center Groningen (UMCG) Medical Ethical Committee (NL44299.042.13, METc 2013/154, dated August 12, 2013).

      Sample Size and Final Study Groups

      The calculation of the sample size (i.e., 100 subjects per group) was based on the correlation coefficient of a comparable population using different steps [for more information, see Ref. (48)]. For this, we used the correlation coefficient found by Girvent et al. (49) for the association of both inflammatory markers CRP and IL-6 with rT3, choosing the highest (i.e., r = 0.75 for rT3 vs. CRP). In this study, subjects with NTIS were compared with patients without euthyroid sick syndrome, both undergoing surgery. Assuming a 95% confidence interval (CI) of (0.59, 0.79), we estimated the sample size using IBM SPSS Statistics (version 20), with the obtained formula, where the n (sample size) appeared inside the Euler number exponent (e). We anticipated 20% exclusion based on abnormal laboratory data, and therefore aimed at the initial inclusion of 120 patients and controls.

      We gathered information about supplement intake (vitamin D and fish oil) from 71/98 CFS patients. Users were defined as supplementing themselves either with multivitamins and/or other supplements containing that specific nutrient.

      Subsequently, we performed a sensitivity analysis applying stricter exclusion criteria for possible signs of (low-grade) inflammation (“selected groups 1 and 2,” see Results and Figure 1). In the first sensitivity analysis, both CFS patients and controls with BMI > 30 kg/m2 and/or hsCRP > 5 mg/L were excluded. In the second one, we also excluded subjects with hsCRP > 3 mg/L and/or with WBC > 10 × 109/L.

      Sample Collection and Analyses

      Approximately 50 mL of blood were collected by venipuncture in the non-fasting state in three types of tubes (EDTA anticoagulated, lithium–heparin anticoagulated, and serum separator). Samples were processed within 2 h after collection. Twenty-four-hour urine samples were collected and their volumes measured. Samples were stored at −20°C and sent to the participating laboratories [UMCG, laboratory of Special Chemistry and Radiochemistry, Academic Medical Center in Amsterdam (AMC), Medical Laboratories, Reinier de Graaf Groep Diagnostisch Centrum, Delft, and European Laboratory of Nutrients (ELN), Bunnik].

      EDTA-whole blood was used for the measurement of routine hematological parameters [Hb, hematocrit, WBC, red blood cells (RBC), and thrombocytes] with a Sysmex XN-9000 Hematology Analyzer (Sysmex Nederland BV, Etten Leur, The Netherlands). The remainder of the EDTA blood was separated into thrombocyte-rich plasma and an RBC pellet by centrifugation for 10 min at 1,800 g. RBC were washed three times with 0.9% NaCl and resuspended to an about 50% hematocrit. After washing, 200 µl of the RBC suspension was transferred to a teflon-sealable “Sovirel” tube containing 2 mL of methanol-6 mol/L HCl (5:1 v/v), 1 mg butylated hydroxytoluene (antioxidant), and 50 µg 17:0 (internal standard). In this ready-to-transmethylate mixture, FAs are stable at room temperature and in the dark for months (50). After centrifugation (10 min, 1,800 g) of the thrombocyte-rich EDTA-plasma, we aliquoted the isolated thrombocyte-poor EDTA plasma and stored it in 2 mL cryovials at −20°C. Lithium–heparin whole blood (1.5 mL) was aliquoted for measurement of elements. The remainders of the lithium–heparin anticoagulated blood and the coagulated blood sample were centrifuged for 10 min at 1,800 g. The resulting plasma and serum were isolated, transferred to 2 mL cryovials, and stored at −20°C until analysis.

      Red blood cell–FA compositions were determined by capillary gas chromatography/flame ionization detection in the UMCG, using previously described procedures (50). RBC-FA contents were expressed in g/100 g FA (g%). Tryptophan and kynurenine were measured in EDTA-plasma by LC–electrospray ionization–MS/MS as previously described (51). Serum 25(OH)D2 and 25(OH)D3 [together referred to as 25(OH)D] were determined by isotope dilution-online solid-phase extraction liquid chromatography–tandem mass spectrometry (ID-XLC-MS/MS) in the UMCG (52). Plasma MMA was measured by LC-MS/MS according to Nelson et al. (53). Serum iron, ferritin, hsCRP, total cholesterol (TC), and LDL- and HDL-C were measured using a Roche Modular P module (Roche, Almere, The Netherlands). Vitamin B12, folate, TSH, FT4, and FT3 were assayed by electrochemiluminescent immunoassay on the Roche Modular E170 Analyzer. Serum TT4 and TT3 were measured using an Architect i2000SR (Abbott Diagnostics, Hoofddorp, The Netherlands). Serum antithyroglobulin antibodies and antithyroid peroxidase antibodies were measured with an Immulite 2000 (Siemens, The Netherlands). Plasma rT3 was measured by in-house RIA (54) at the AMC, The Netherlands. Plasma homocysteine was analyzed in the UMCG by competitive protein binding assays with the use of an immunochemistry analyzer (IMX; Abbott Diagnostics, Hoofddorp, The Netherlands).

      Whole blood- and lithium–heparin plasma selenium, copper, magnesium and zinc and iodine in urine were measured using ICP-MS 7700x (Agilent, Amstelveen, The Netherlands) in the ELN. Selenium, copper, magnesium and zinc contents in RBC were calculated from their concentrations in plasma and whole blood, using hematocrit values for correction. Plasma zonulin (active form) concentrations were measured using the K5600 ELISA kit (Immundiagnostik AG, Bensheim, Germany). The quantification of 8-iso-prostaglandin F2-isoprostanes in urine was performed by GC-tandem-MS using a two-step derivatization and a selective solid-phase extraction protocol with HLB and Silica columns as described by Zhao et al. (55). The tryptophan/kynurenine ratio was calculated. This ratio may be decreased during inflammation (56, 57).

      For the investigation of the pathogenesis of the “low-T3 syndrome,” we measured FT3/FT4, TT3/TT4 and rT3/TT3 ratios. For the investigation of the underlying etiology of the “low-T3 syndrome,” we calculated the following variables of thyroid metabolism: standard TSH index (sTSHi), in order to quantify the thyrotropic function of the pituitary (58); the sum activity of deiodinases [structure parameter inference approach (SPINA)-GD] as a variable for deiodination function (59); the secretory capacity of the thyroid gland (SPINA-GT), as an evaluation of thyroid secretory status (59); and the ratios of TT3/FT3 and TT4/FT4 as evaluations of protein binding of thyroid hormones. The sTSHi was calculated as TSHi = (TSH − 2.70)/0.676 (58). SPINA-GD and -GT were calculated as SPINA-GD = [β31 × (KM1 + FT4) × TT3]/(α31 × FT4) and SPINA-GT = [βT × (DT + TSH) × TT4]/(αT × TSH). Constants in the equations were as follows: β31 = 8 × 10–6/s, KM1 = 5 × 10–7 mol/L, α31 = 0.026/L, βT = 1.1 × 10−6/s, DT = 2.75 mU/L, and αT = 0.1/L (59, 60). The rT3/TT3 ratio was also calculated as a proxy for a metabolic shift. For the latter, we also calculated the %TT4, %TT3, and %rT3 by dividing their concentrations by the sum of TT4 + TT3 + rT3 and adjusting to 100%. Zinc/copper, TC/HDL-C and eicosapentaenoic acid (EPA)/arachidonic acid (AA) ratios were also calculated. A proxy for hepatic DNL (DNL liver) was calculated according to Kuipers et al. (61) (sum of RBC 16:0, 16:1ω7, 18:1ω7, 20:1ω7, 18:1ω9, 20:1ω9, and 22:1ω9). The omega-3 index, RBC-EPA + docosahexaenoic acid (DHA) (RBC-EPA + DHA) was calculated.

      Statistics

      Statistical analyses were performed with IBM SPSS Statistics 23 SPSS Inc., Chicago, IL, USA. Mann–Whitney U-tests were used for the evaluation of between-group differences in the distribution. The Chi-square tests were used for the evaluation of between-group differences in nominal variables. Odds ratios were calculated to quantify the strength of the presence of low T3 in the different groups. Correlation analyses were performed using Spearman’s Rho for non-parametric variables.

      Results

      Of the 112 initially included CFS patients, six taking oral thyroid hormone and one with BMI > 35 kg/m2 were excluded, leaving 105 patients. Of these, one subject with thyroid hormone resistance [defined as elevated serum levels of FT4 with non-suppressed TSH (47)], one with hyperthyroidism [TSH below reference range with FT3 and/or FT4 above reference range (46)], four with subclinical hypothyroidism [TSH above reference range with normal FT4 (46)], and one suspected of active infection (both hsCRP > 10 mg/L and WBC > 10 × 109/L) were excluded; making a total of 98 finally included CFS patients (Figure 1).

      Of the 119 age- and sex-matched apparently healthy controls, 11 taking chronic medication were excluded, leaving 108 controls. Of these, one with hypothyroidism (TSH above reference range with FT4 below reference range), five with subclinical hypothyroidism [TSH above reference range with normal FT4 (46)], one suspected of active infection (both hsCRP > 10 mg/L and WBC > 10 × 109/L), and two with anemia were excluded; making a total of 99 finally included healthy controls (Figure 1).

      Whole Study Group

      Characteristics of the 98 CFS patients and the 99 controls are shown in Table 1. The CFS patients (21 males, 77 females) had a median age of 43 years (range 21–69), median height of 172 cm (149–198), median weight of 68 kg (48–118), and median BMI of 22 kg/m2 (18–34). The age- and-sex-matched healthy controls (23 males, 76 females) had a median age of 39 years (19–65), median height of 173 cm (156–193), median weight of 70 kg (47–100), and a median BMI of 23 kg/m2 (18–33). The above anthropometric characteristics exhibited no between-group differences.

      Anthropometrics and laboratory data of 98 CFS patients and 99 controls.

      CFS patients
      Controls
      CFS patients
      Controls
      Units Median (range) Median (range) p-Value Reference range/cutoff value % (n) below % (n) above % (n) below % (n) above
      Anthropometrics
      Number 98 99
      Gender Male/female 21/77 23/76
      Age Years 43 (21–69) 39 (19–65) 0.235
      Height cm 172 (149–198) 173 (156–193) 0.996
      Weight kg 68 (48–118) 70 (47–100) 0.618
      BMI kg/m2 22 (18–34) 23 (18–33) 0.384 <30 9(9) 4 (4)

      Thyroid function
      TSH mU/L 1.43 (0.49–4.40) 1.59 (0.53–3.32) 0.527 0.5–4 1 (1) 1 (1) 0 (0) 0 (0)
      FT4 pmol/L 15.9 (11.4–23.0) 15.6 (11.0–19.7) 0.562 11.0–19.5 0 (0) 5 (5) 0 (0) 1 (1)
      FT3 pmol/L 5.2 (3.9–6.9) 5.2 (3.2–12.8) 0.047* 4.4–6.7 16 (16) 2 (2) 7 (7) 17 (17)
      TT4 nmol/L 63.4 (17.8–121.3) 72.0 (45.4–134.8) <0.001**
      TT3 nmol/L 1.4 (0.4–2.5) 1.6 (1.2–2.3) <0.001**
      rT3 nmol/L 0.23 (0.08–0.40) 0.23 (0.12–0.41) 0.783 0.11–0.44 1 (1) 0 (0) 0 (0) 0 (0)
      % TT4 97.55 (96.69–98.44) 97.55 (96.61–98.47) 0.513
      % TT3 2.04 (1.21–2.94) 2.14 (1.24–3.12) 0.012*
      % rT3 0.34 (0.12–1.14) 0.30 (0.15–0.45) <0.001**
      TT3/TT4 ratio mmol/mol 21.0 (12.3–30.4) 21.93 (12.62–32.26) 0.013*
      FT3/FT4 ratio mol/mol 0.32 (0.20–0.49) 0.34 (0.24–0.74) 0.004**
      rT3/TT3 ratio mol/mol 0.18 (0.05–0.60) 0.15 (0.08–0.24) <0.001**
      TT3/FT3 ratio mol/mmol 0.28 (0.08–0.42) 0.31 (0.13–0.45) <0.001**
      TT4/FT4 ratio mol/mmol 4.08 (1.26–6.84) 4.62 (3.15–9.05) <0.001**
      SPINA-GT pmol/s 1.77 (0.37–4.36) 2.08 (1.07–6.43) 0.010*
      SPINA-GD nmol/s 13.42 (4.36–23.89) 15.67 (10.15–25.05) <0.001**
      sTSHi −1.89 (−3.27–2.51) −1.65 (−3.21–0.92) 0.527

      Inflammation
      WBC 109/L 6.1 (3.3–11.7) 6.3 (3.7–12.0) 0.182 4–10 5 (5) 5 (5) 3 (3) 5 (5)
      hsCRP mg/L 0.94 (0.09–8.28) 0.77 (0.11–21.62) 0.254 < 5.0 7 (7) 4 (4)
      Kynurenine μmol/L 1.63 (0.79–2.97) 1.81 (0.94–3.03) 0.001** 1.14–3.02 14 (14) 0 (0) 3 (3) 1 (1)
      Tryptophan μmol/L 54.0 (27.9–88.7) 56.4 (30.9–98.6) 0.003** 45–83 19 (19) 1 (1) 3 (3) 2 (2)
      Tryptophan/kynurenine mol/mol 32.57 (18.47–63.78) 32.42 (17.43–56.92) 0.443
      Ferritina μg/L 77 (8–600) 52 (5–386) 0.007* Men 30–400 1 (1) 1 (1) 0 (0) 0 (0)
      Urinary isoprostanes nmol/d 1,271 (164–6,830) 1,336 (170–9,978) 0.373 Women 15–130 1 (1) 10 (10) 12 (12) 13 (13)
      TC mmol/L 5.2 (2.8–7.6) 5.1 (3.0–9.1) 0.627
      HDL-Cb mmol/L 1.4 (0.6–3.9) 1.6 (0.7–3.2) <0.001**
      LDL-C mmol/L 3.1 (1.1–5.6) 3.1 (1.1–7.0) 0.792
      TC/HDL-Cb mol/mol 3.5 (1.7–10.7) 3.1 (1.7–9.0) 0.001**
      DNL liver g% 34.98 (32.37–43.29) 36.26 (33.58–43.85) <0.001**

      Intestinal permeability
      Zonulin ng/mL 1.24 (0.17–2.27) 1.39 (0.25–2.89) 0.002**

      Nutritional factors
      Urinary iodine (24 h) μg/d 113 (20–559) 156 (27–666) <0.001** >200 87 (85) 11 (11) 66 (65) 22 (22)
      Selenium (P) mg/L 0.08 (0.05–0.27) 0.09 (0.06–0.46) 0.103 0.08–0.30 42 (42) 0 (0) 32 (32) 1 (1)
      Selenium (IC) mg/L 0.17 (0.11–0.97) 0.15 (0.04–0.31) 0.001** 0.17–0.55 45 (44) 2 (2) 62 (61) 0 (0)
      25 (OH) vitamin D nmol/L 75.8 (16.0–217.2) 54.9 (5.4–133.4) <0.001** 80–250 59 (58) 0 (0) 83 (82) 0 (0)
      RBC-EPA + DHA g% 4.08 (1.95–7.81) 4.07 (1.91–8.54) 0.884 >8 100 (99) 0 (0) 98 (97) 2 (2)
      RBC EPA/AA g% 0.04 (0.01–1.00) 0.04 (0.01–0.18) 0.288

      Data are medians (ranges). Mann–Whitney U-tests were used for between-group differences in the distribution.

      aWhen analyzed according to gender, ferritin was higher in both male and female CFS patients as compared to controls (data not shown).

      bWhen the TC/HDL-C ratio and HDL-C were evaluated according to gender, we did not find differences in the TC/HDL-C ratio in the relatively small number of men, but those in the females persisted. HDL-C was lower in both male and female CFS patients compared to controls (data not shown).

      *Significant at p < 0.05.

      **Significant at p < 0.01.

      WBC, white blood cells; RBC, red blood cells; hsCRP, high-sensitive C-reactive protein; P, plasma; IC, intracellular; TSH, thyrotropin; FT4, free thyroxin; FT3, free triiodothyronine; TT4, total thyroxin; TT3, total triiodothyronine; rT3, reverse T3; GD, sum activity of deiodinases; GT, secretory capacity of the thyroid gland; sTSHi, standard TSH index; TC, total cholesterol; LDL-C, low-density lipoprotein-cholesterol; HDL-C, high-density lipoprotein-cholesterol; AA, arachidonic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; DNL, de novo lipogenesis, sum of RBC 16:0,16:1ω7, 18:1ω7, 20:1ω7, 18:1ω9, 20:1ω9 and 22:1ω9, according to Ref. (61).

      Thyroid Hormones

      Chronic fatigue syndrome patients exhibited lower FT3, TT4, TT3, %TT3, SPINA-GD, and SPINA-GT, lower ratios of TT3/TT4, FT3/FT4, TT3/FT3, and TT4/FT4; and higher %rT3 and rT3/TT3 ratio. There were no between-group differences in other thyroid hormone parameters, notably TSH, FT4, rT3, and %TT4 (Table 1). FT3 below the reference range was more frequently found in CFS patients (16/98) as compared to controls (7/99; p = 0.035) with an odds ratio of 2.56 (95% CI = 1.00–6.54).

      (Metabolic) Inflammation

      We did not find significant differences in WBC, hsCRP, tryptophan/kynurenine ratio and urinary isoprostanes. CFS patients displayed lower kynurenine and tryptophan, as compared to the healthy controls. Taking both genders together, we found that ferritin was higher in CFS patients as compared to controls. Analyzed according to gender, we found that ferritin was higher in both male and female CFS patients, as compared to their apparently healthy counterparts (females: 77 CFS vs. 76 controls; p = 0.003; males 21 CFS patients vs. 23 controls; p = 0.012) (data not shown in Table 1). Taking both genders together, we found that HDL-C was lower and the TC/HDL-C ratio higher in CFS patients as compared to controls. Analyzed according to gender, we found that HDL-C was lower in both male and female CFS patients, as compared to their apparently healthy counterparts (females: 77 CFS vs. 76 controls; p < 0.001; males 21 CFS patients vs. 23 controls; p = 0.04). The TC/HDL-C ratio was higher in female CFS patients compared to controls (p = 0.001) data not shown in Table 1. The RBC-FA composition showed a lower hepatic DNL in CFS patients.

      Zonulin, a parameter of intestinal permeability (42), was lower in CFS patients as compared to controls.

      Nutritional Factors Influencing Thyroid Function and Inflammation

      The 24-h urinary iodine output, as a proxy of iodine status, was lower in CFS patients. Plasma selenium was similar, but intracellular selenium was higher (Table 1).

      Vitamin D [25(OH)D] status of CFS patients was higher. Nevertheless, 58 patients (59%) and 82 (83%) controls presented 25(OH)D levels below the optimal cutoff of 80 nmol/L. None of the patients and 2% of the controls exhibited RBC-EPA + DHA contents above 8 g%, which is considered to confer optimal protection against cardiovascular (62) and neuropsychiatric (63) diseases. CFS patients and controls exhibited no differences in RBC-EPA/AA ratio, which is a risk factor for cardiovascular disease (64) and inflammation-induced depression (65). We gathered information about supplement intake from 71/98 CFS patients. Among these, the users did not exhibit higher status of vitamin D [plasma 25(OH)D; 30 vs. 41; p = 0.48] or EPA + DHA (RBC-EPA + DHA; 7 vs. 64; p = 0.44).

      Additional laboratory data, including hematological indices, nutrient status influencing anemia, and other RBC-FA can be found in Table S1 in Supplementary Material.

      Interim Conclusions Based on the Whole Group

      Figure 2 shows the case–control between-group differences in terms of percentages lower or higher of the medians of CFS patients compared to those of controls. Only significant between-group differences are depicted. Most remarkably, the results for the whole group indicated similar TSH in patients with CFS, but subtle changes in thyroid hormone concentrations, with an apparent shift in their metabolism. CFS patients notably exhibited relatively lower FT3, TT4, and TT3; lower deiodination function (SPINA-GD), lower thyroid secretory function (SPINA-GT), lower protein binding of thyroid hormones (TT3/FT3, TT4/FT4), and lower T3/T4 hormone ratios (TT3/TT4, FT3/FT4), lower %TT3, higher %rT3, and higher rT3/TT3 ratio. The lower 24-h urine iodine output of CFS patients was also remarkable.

      Between-group differences in parameters, depicted as percentages relative to control. Only parameters exhibiting significant between-group differences are depicted (see Table 1). Data are calculated from the medians (Table 1) according to [(median CFS − median controls)/median controls × 100] (in %). Se, serum; P, plasma; IC, intracellular; U, urinary; FT4, free thyroxin; FT3, free T3; TT4, total T4; TT3, total T3; rT3, reverse T3; TC, total cholesterol; HDL-C, high-density lipoprotein-cholesterol; DNL, de novo lipogenesis, sum of 16:0, 16:1ω7, 18:1ω7, 20:1ω7, 18:1ω9, 20:1ω9, and 22:1ω9, according to Ref. (61); SPINA-GD, sum activity of deiodinases; SPINA-GT, secretory capacity of the thyroid gland; sTSHi, standard TSH index.

      Sensitivity Analyses

      The strength of the above findings for the whole group was tested with “sensitivity analyses.” For this goal, we created “selected subgroups 1 and 2” by exclusion of subjects with the most prominent signs of (metabolic) inflammation, defined as relatively high hsCRP and BMI.

      Selected Subgroups 1

      Of the 98 CFS patients, seven with hsCRP > 5 mg/L (of whom three had BMI > 30 kg/m2) and six others with a BMI > 30 kg/m2 were excluded to create a subgroup of 85 patients (selected CFS subgroup 1) (Figure 1). Of the 99 healthy controls, four with hsCRP > 5 mg/L and four others with a BMI > 30 kg/m2 were excluded to create a subgroup of 91 controls (selected control subgroup 1) (Figure 1). All parameters of thyroid function and inflammation that were significantly different between CFS patients and controls in the whole group, remained significant after this sensitivity analysis.

      Selected Subgroups 2

      Of the 85 CFS patients in selected subgroup 1, five with hsCRP > 3 mg/L and three with WBC > 10 × 109/L (as more sensitive markers of inflammation) were excluded to create a subgroup of 77 patients (selected CFS subgroup 2) (Figure 1). Of the 91 controls in selected subgroup 1, 7 subjects with hsCRP > 3 mg/L and 2 with WBC > 10 × 109/L were excluded to create a subgroup of 82 controls (selected control subgroup 2) (Figure 1). Characteristics of these CFS patients and controls, together with their clinical chemical data are shown in Table S2 in Supplementary Material. FT3 below the reference range was more frequently found in CFS patients (16/77) as compared to controls (7/82; p = 0.024) with an odds ratio of 2.81 (95% CI = 1.09–7.27), although the FT3 was no longer significantly lower. The higher ferritin proved no longer significantly different (compared to sensitivity analysis 1). However, ferritin remained higher in male and female CFS patients as compared to their apparently healthy counterparts (females: 59 CFS vs. 60 controls; p = 0.015; males 18 CFS patients vs. 22 controls; p = 0.026) (data not shown in Table S2 in Supplementary Material). Analyzed according to gender, we found that HDL-C remained lower and the TC/HDL-C ratio remained higher in female CFS patients as compared to the healthy controls (females: 59 CFS vs. 60 controls; p = 0.010 and p = 0.007) (data not shown in Table S2 in Supplementary Material).

      Conclusions Based on the Sensitivity Analyses

      Most importantly, we found that most of the subtle between-group thyroid hormone differences persisted when CFS patients and controls with more signs of (metabolic) low-grade inflammation were excluded, except for the occurrence of lower FT3 in CFS patients. However, FT3 below the reference range remained more frequent in CFS patients after applying stricter exclusion criteria.

      Correlation Analysis

      We found that FT3, TT3, TT4 and rT3 were positively related to hsCRP in the CFS patients (n = 98) and the combined controls and CFS patients (n = 197) (Figure S1 in Supplementary Material). TT3 and TT4 were also positively related to hsCRP in the controls (n = 99) (Table S3 in Supplementary Material). TSH and FT4 did not correlate with hsCRP. When combined, controls and CFS patients with low FT3 (<4.4 pmol/L) were also found to more often exhibit low hsCRP (<1 mg/L) in the whole group (p = 0.001) (n = 197; OR 6.22; 95% CI = 1.78–21.70) and in selected group 2 (p = 0.011) (n = 159; OR 4.26; 95% CI = 1.20–15.03).

      Discussion

      The most remarkable observation in this case–control study was that, as a group, the present CFS patients exhibited lower FT3, TT4, TT3, %TT3, SPINA-GD, SPINA-GT, T3/T4 ratios, lower protein binding of thyroid hormones, and 24-h urinary iodine excretion, together with higher %rT3. Sixteen (16%) CFS patients exhibited the “low T3 syndrome” as compared to seven (7%) controls (Table 1). These observations were basically unaltered upon applying more stringent cutoff values for hCRP, BMI and WBC in our “sensitivity analyses” (Table S2 in Supplementary Material). CFS patients also showed some signs of (metabolic) low-grade inflammation, notably higher TC/HDL-C and ferritin, and lower HDL-C, tryptophan and kynurenine. When the TC/HDL-C ratio, HDL-C, and ferritin were evaluated according to gender, we did not find differences in the TC/HDL-C ratio in the relatively small number of men (n = 21), but those in the females (n = 77) persisted. HDL-C was lower and ferritin remained higher in both male and female CFS patients compared to controls. Therefore, we conclude that, in the present study, we found subtle evidence of low-grade (metabolic) inflammation in CFS patients. Plasma 25(OH)D below the optimal cutoff value of 80 nmol/L was found in 59% of the CFS patients and 83% of controls. Both CFS patients and controls exhibited low fish intakes, as reflected by their low omega-3 index of about 4.1 g%. An omega-3 index of 8 g% is considered to confer optimal protection against cardiovascular (62) and neuropsychiatric diseases (63).

      Comparison With NTIS

      The “low T3 syndrome” encountered in a subgroup of CFS patients bears clinical chemical similarity with NTIS features. Both syndromes are biochemically characterized by low TT3 and FT3 together with normal/high-normal FT4 and normal TSH, at least in the mild and moderate forms of NTIS (36). The clinical disparity relates to the underlying severity of the diseases that are usually linked to NTIS, as opposed to the chronicity and less life-threatening nature of CFS (66). NTIS is a typical feature of critically ill patients in intensive care units, although similar changes in the HPT-axis have been observed during calorie restriction and in patients with non-critical chronic diseases, such as heart failure, chronic obstructive pulmonary disease, and diabetes mellitus (67), also referred to as mild, or atypical forms of NTIS (36, 67). All of these conditions, especially calorie restriction, might find a common denominator in an adaptive response aiming at saving energy and body protein in order to outstay any potential acute stress stimulus (6870). Through coordinated changes in thyroid hormone metabolism, transport and receptors, NTIS might mechanistically reflect a cytokine-orchestrated allostatic condition that is remote from the well-known homeostatic negative feedback regulation of the HPT axis (71).

      Low T3 Syndrome Might Be in Line With Recent Data of the CFS Epigenome and Metabolome

      A recent study identified 12,608 differentially methylated sites in peripheral blood mononuclear cells of 49 female CFS patients vs. 25 healthy female controls. These sites were predominantly involved in metabolism and to a lesser extent in neuronal cell development. Among these sites, 1,600 were related to a score of self-reported quality of life, while 13 sites were associated with glucocorticoid sensitivity in a subgroup of CFS patients with glucocorticoid hypersensitivity (72). In line with downregulated energy expenditure, recent CFS case–control studies of the metabolome revealed abnormalities in several metabolic pathways, including those reflecting mitochondrial metabolism, consistent with a hypometabolic state (73, 74). The lower proxy for DNL encountered in the currently studied CFS patients might fit into this picture, since hypothyroidism in mice has been shown to downregulate the rate limiting enzymes involved in DNL (75). In addition, induced hypothyroidism in humans for two weeks causes profound changes in FA metabolism (76). Another recent case–control study using metabolic profiling showed an altered serum amino acid profile in CFS patients, suggesting impaired mitochondrial pyruvate oxidation (74), a condition likely to reflect energy deficiency and excessive lactate production, with utilization of amino acids from endogenous protein as alternative TCA cycle substrate. The “low T3 syndrome” in a subgroup of CFS patients found in this study might be cause and consequence of the above noted epigenetic changes (72) and a driving force of the metabolic differences noted by others (73, 74) and by us. Through both genomic and non-genomic actions, T3 has profound impacts on mitochondria and metabolism (77), including several pathways regulating the expression of target genes contributing to mitochondrial biogenesis (78).

      Correlation of Thyroid Hormones With hsCRP

      The association between low T3 and low hsCRP suggests that both CFS patients and controls with low FT3 are less responsive to inflammatory stimuli, which is in line with observations by others. In apparently healthy individuals, Hodkinson et al. (79) found, amongst others, that TT3 concentrations are positively related to monocyte phagocytic activity and expression of -6 (IL-6) by activated monocytes, while TT4 is positively related to CRP. Their data suggest that higher thyroid hormone concentrations within the normal range enhance innate and adaptive immunity by greater responsiveness to immune stimuli. Accordingly, Rozing et al. (80) showed that, although higher circulating levels of inflammatory markers were associated with lower levels of free serum FT3; higher serum FT3, but not higher TSH and FT4, are related to a higher production capacity of proinflammatory cytokines (IL-1β, IL-6, TNF-α) in whole blood of 85-year-old women and men, following ex vivo stimulation with LPS. They suggest a mutual association between T3 and proinflammatory cytokines, whereas T3 stimulates production of proinflammatory cytokines that subsequently diminish the conversion of T4 to T3. Finally, evidence of a diminished specific immune response has been found in patients with CFS. Investigating pokeweed mitogen-stimulated isolated peripheral blood mononuclear cells, Loebel et al. (81) found a deficient EBV-specific immune response in patients with CFS, possibly causing impaired EBV control. Taken together, it is possible that a subgroup of CFS patients with low FT3, but also controls with low T3, present a diminished responsiveness to immunologic stimuli.

      Comparison With Hypothyroid Patients Treated With T4 Monotherapy

      Hypothyroidism is, among others, associated with a decrease in both metabolic and heart rates, oxygen consumption, body temperature and oxidation of glucose, FA, and amino acids. It has been estimated that 4–8% of genes are regulated by T3 in human skeletal muscle, rodent liver and a pituitary cell line (78). The encountered “low T3 syndrome” in our study resembles the thyroid hormone profile of a subgroup of hypothyroid patients receiving T4 monotherapy. Substitution with T4 is the currently recommended treatment of hypothyroid patients, like those with Hashimoto thyroiditis. Nevertheless, it is becoming increasingly clear that a subgroup of these patients experiences residual hypothyroid symptoms, including psychological and metabolic traces. These symptoms occur despite reaching a chemical euthyroid state, i.e., normal TSH (82, 83). In thyroidectomized rats, no single dose of T4 was able to simultaneously restore TSH, T4, and T3 in plasma and organs to normal levels (84). In so-called “euthyroid, yet symptomatic” patients, the basal metabolic rate and serum cholesterol, among others, are not fully restored and they are also likely to have both low TT3 and FT3. These findings of low T3 may be explained by a disrupted TSH-T3 shunt (41). The question whether they would benefit more from a T4 and T3 combination therapy or sustained-release T3 (85) is debated and subject of further research (82, 83). Hormone replacement therapy, notably T3, has also been suggested for severe NTIS (71, 86, 87).

      In the NHANES cohort, 469 out of 9,981 participants with normal TSH were T4-treated. This subgroup of T4-treated subjects exhibited 10–15% higher TT4 and FT4, but 5–10% lower TT3 and FT3 and a 15–20% lower T3/T4 ratio, as compared to 469 carefully matched healthy controls (88). These apparently moderate differences suggest that the extra-thyroidal conversion of T4 to T3 during T4 monotherapy might be insufficient in some patients to restore serum T3 levels up to those normally maintained by an intact thyroid secreting 80% T4 and 20% T3 (82, 83, 88). A similar shift in the thyroid hormone profile was observed in the present study. However, the encountered deviations from thyroid hormone reference ranges and from controls are modest (Figure 2). It should in this context be noted that many biological effects of T3 depend on its cellular concentrations, which exhibit a complex relationship with the serum T3 concentration (89). A recent study with chemically induced hypothyroidism in rats showed a more severely reduced tissue T3 than serum FT3, averaging 1–6% of the baseline versus 30%, respectively. In addition, the extent of tissue T3 reduction, expressed as percentage of the baseline, was not homogeneous, with more serious reductions occurring in the order: liver = kidney > brain > heart > adipose tissue (90). In other words, the finding of slightly decreased circulating FT3 and perhaps also FT3 levels in the lower reference range may reflect the tip of the iceberg of the genuine T3 deficits in target tissues.

      Relation With Potential Cause(s) of CFS

      Some features of CFS resemble those of a persistent response to environmental stress known as dauer (hypometabolic state). The cell danger response (CDR) is an evolutionarily conserved metabolic response, activated when a cell encounters a chemical, physical, or microbial threat that could injure or kill the cell (91). When the CDR is abnormally maintained, whole body metabolism and the gut microbiome become disturbed, the functionality of systems and organs becomes impaired and behavior is changed, resulting in chronic disease (91). Accordingly, the intestinal microbiota and virome have recently been implicated in CFS (92), while gene expression data show prominent roles for genes involved in immunity and defense (93). Psychological trauma, particularly during childhood, can also activate the CDR and produce chronic inflammation (91, 94). It has recently been shown that CFS patients are endowed with different psychological vulnerability factors, notably perfectionism and high moral standards (95). These may render them more susceptible to the psychological stress of current society, with possible effects on the immune system and thyroid axis (56, 62, 79, 80). Finally, the aforementioned case–control study by Naviaux et al. (73) showed that CFS patients present cellular metabolic responses similar to the evolutionarily conserved persistent response to environmental stress. Thus, the features of hypometabolism that characterize CFS may be a consequence of a persisting CDR, either or not inflammatory driven.

      The current opinion on the causes of CFS may fit mechanistically into the presently encountered “low T3 syndrome.” We observed a shift from T3 toward rT3 in the investigated CFS patients, who exhibited lower T3/T4 ratios and higher rT3/TT3 ratios (Table 1) compared to controls. This shift toward rT3 in CFS patients was also apparent from their higher %rT3 and lower %TT3, when the sum of rT3, TT3 plus TT4 was adjusted to 100% (Table 1). These findings, as well as lower urinary iodine in CFS, may be in line with higher D3 activity. Low T3 levels in human organs have also been found in NTIS (87), but they are more likely to derive from deviant pathways of intracellular deiodination than from a seriously impaired entry of T3 into cells (87). Induction of D3 in muscle may occur in chronic inflammation (34), but D3 may also become induced by other factors, such as estradiol, progesterone, and growth hormone (96). Such mechanisms may be at the basis of CFS symptoms and may explain the lower urinary iodine excretion in CFS patients as compared with controls, although the latter also exhibited a relatively high prevalence of low iodine excretion (Table 1). Intracellular D3-catalyzed liberation of iodide from T4 and T3 may serve various antioxidant and defense functions that may potentially contribute to high intracellular “thyroid hormone consumption,” manifesting as the “low T3 syndrome” with negative iodine balance in the long term (67, 83, 97).

      The lower SPINA-GD (step-up deiodinase activity) and SPINA-GT (thyroid secretory capacity) are likely to reflect thyroid allostasis responses, and the lower protein binding of thyroid hormones, as shown by the lower TT3/FT3 and TT4/FT4 ratios, may potentially result in higher metabolism/degradation of thyroid hormones. Thyroid allostasis-altered responses have been found in NTIS associated with cardiac disease (37), radiation enteritis (60) and enterocutaneous fistulas (98). The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the more complex alterations associated with chronic illness frequently lead to type 1 thyroid allostasis (where energy demands exceed the sum of energy intake and energy mobilized from stores) (41).

      Strengths and Limitations

      Strength of the present case–control study is the performing of two sensitivity analyses to assess the robustness of the association of CFS with thyroid parameters and chronic (low-grade) metabolic inflammation. These analyses resulted in some differences, but the findings in thyroid parameters remained unchanged. We also calculated the %rT3, which may be a more sensitive marker for subtle metabolic shifts than concentrations and ratios per se.

      Our study also has limitations. There was a lack of information on the duration of illness and patient characteristics at diagnosis. For instance, dependent on illness duration, different cytokine profiles in CFS patients have been reported (99). CFS is likely a heterogeneous disease with a common final pathophysiological pathway. The present findings are possibly in line with a common final pathway, but do not get us closer to the cause(s).

      Conclusion

      The most remarkable finding in this CFS case–control study was a higher prevalence of the “low T3 syndrome,” attributable to a subgroup of CFS patients. Chronic low-grade metabolic inflammation was not convincingly noted. Low circulating T3 may reflect more severely depressed tissue T3 levels. The “low T3 syndrome” might be in line with recent metabolomic studies pointing at a hypometabolic state. It also resembles a mild form of NTIS and the low T3 syndrome experienced by a subgroup of hypothyroid patients with T4 monotherapy. Our study needs confirmation and extension by others. If confirmed, trials with, e.g., T3 and iodide supplements might be indicated.

      Ethics Statement

      All patients and controls received a verbal and written explanation of the objectives and procedures and all provided us with written informed consent. The study was in agreement with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. The protocol was approved by the University Medical Center Groningen (UMCG) Medical Ethical Committee (NL44299.042.13, METc 2013/154, dated August 12, 2013).

      Author Contributions

      BR-N, DD-B, and FM designed the research; BR-N and RT conducted the research; BR-N, RT, and EV analyzed the samples and data; BR-N, DD-B, and FM wrote the article; and FM had primary responsibility for final content. All authors read and approved the final manuscript.

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We thank Prof. Dr. F. C. Visser, M.D. and Mrs L. van Campen, M.D. (Parkstad Clinic) for their kind cooperation and the recruitment of the CFS patients and some of the controls. We gratefully acknowledge Mrs. Ingrid A. Martini and Mr. Herman J. Velvis for their technical and analytical assistance in the UMCG. We also gratefully acknowledge the laboratory of Special Chemistry and Radiochemistry from the Academic Medical Center in Amsterdam and Dr. Fey P. L. van der Dijs (Medical Laboratories Reinier de Graaf Groep Diagnostisch Centrum, Delft) for their help in the project.

      Supplementary Material

      The Supplementary Material for this article can be found online at http://www.frontiersin.org/articles/10.3389/fendo.2018.00097/full#supplementary-material.

      Abbreviations

      AA, arachidonic acid; AMC, Academic Medical Center; CDR, cell danger response; CFS, chronic fatigue syndrome; CI, confidence interval; D3, deiodinase 3; DHA, docosahexaenoic acid; DNL, de novo lipogenesis; ELN, European Laboratory of Nutrients; EPA, eicosapentaenoic acid; FA, fatty acids; FT3, free triiodothyronine; FT4, free thyroxine; GD, sum activity of deiodinases; GT, secretory capacity of the thyroid gland; Hb, hemoglobin; HDL-C, High Density Lipoprotein-cholesterol; HPA, hypothalamus–pituitary–adrenal; HPT, hypothalamus–pituitary–thyroid; hsCRP, high-sensitive C-reactive protein; IL-1, interleukin-1; IL-6, interleukin-6; LPS, lipopolysaccharides; TNF, tumor necrosis factor; NFκB, nuclear factor kappa B; NTIS, non-thyroidal illness syndrome; RBC, red blood cells; rT3, reverse T3; SPINA, structure parameter inference approach; sTSHi, standard TSH index; T2, 3,3′-diiodothyronine; TC, total cholesterol; TSH, thyrotropin; TT3, total triiodothyronine; TT4, total thyroxine; UMCG, University Medical Center Groningen; WBC, white blood cells.

      References Fukuda K Straus SE Hickie I Sharpe MC Dobbins JG Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med (1994) 121:9539.10.7326/0003-4819-121-12-199412150-000097978722 Holmes GP Kaplan JE Gantz NM Komaroff AL Schonberger LB Straus SE Chronic fatigue syndrome: a working case definition. Ann Intern Med (1988) 108:3879.10.7326/0003-4819-108-3-3872829679 Reeves W Lloyd A Vernon S Klimas N Jason L Bleijenberg G Identification of ambiguities in the 1994 chronic fatigue syndrome research case definition and recommendations for resolution. BMC Health Serv Res (2003) 3:25.10.1186/1472-6963-3-2514702202 Baker R Shaw EJ. Diagnosis and management of chronic fatigue syndrome or myalgic encephalomyelitis (or encephalopathy): summary of NICE guidance. BMJ (2007) 335:4468.10.1136/bmj.39302.509005.AE Anderson JS Ferrans CE. The quality of life of persons with chronic fatigue syndrome. J Nerv Ment Dis (1997) 185:35967.10.1097/00005053-199706000-000019205421 Cairns R Hotopf M. A systematic review describing the prognosis of chronic fatigue syndrome. Occup Med (2005) 55:2031.10.1093/occmed/kqi013 Johnston S Brenu EW Staines D Marshall-Gradisnik S. The prevalence of chronic fatigue syndrome/myalgic encephalomyelitis: a meta-analysis. Clin Epidemiol (2013) 5:10510.10.2147/CLEP.S3987623576883 Health Council of the Netherlands. Chronic Fatigue Syndrome. (2005). 2005/02E. The Hague: Health Council of The Netherlands Cleare A. The HPA axis and the genesis of chronic fatigue syndrome. Trends Endocrinol Metab (2004) 15:559.10.1016/j.tem.2003.12.00215036250 Fuite J Vernon S Broderick G. Neuroendocrine and immune network re-modeling in chronic fatigue syndrome: an exploratory analysis. Genomics (2008) 92:3939.10.1016/j.ygeno.2008.08.00818775774 Edwards JC McGrath S Baldwin A Livingstone M Kewley A. The biological challenge of myalgic encephalomyelitis/chronic fatigue syndrome: a solvable problem. Fatigue (2016) 4:639.10.1080/21641846.2016.1160598 Spence VA Kennedy G Belch JJ Hill A Khan F. Low-grade inflammation and arterial wave reflection in patients with chronic fatigue syndrome. Clin Sci (2008) 113:5616.10.1042/CS2007027418031285 Jason LA Corradi K Gress S Williams S Torres-Harding S. Causes of death among patients with chronic fatigue syndrome. Health Care Women Int (2006) 27:61526.10.1080/0739933060080376616844674 Wyller VB Evang JA Godang K Solhjell KK Bollerslev J. Hormonal alterations in adolescent chronic fatigue syndrome. Acta Paediatr (2010) 99:7703.10.1111/j.1651-2227.2010.01701.x20199497 Konstantinov K von Mikecz A Buchwald D Jones J Gerace L Tan EM. Autoantibodies to nuclear envelope antigens in chronic fatigue syndrome. J Clin Invest (1996) 98:188896.10.1172/JCI1189908878441 Vernon SD Reeves WC. Evaluation of autoantibodies to common and neuronal cell antigens in chronic fatigue syndrome. J Autoimmune Dis (2005) 2:5.10.1186/1740-2557-2-515916704 Klein R Berg PA. High incidence of antibodies to 5-hydroxytryptamine, gangliosides and phospholipids in patients with chronic fatigue and fibromyalgia syndrome and their relatives: evidence for a clinical entity of both disorders. Eur J Med Res (1995) 1:216.9392689 Tanaka S Kuratsune H Hidaka Y Hakariya Y Tatsumi K Takano T Autoantibodies against muscarinic cholinergic receptor in chronic fatigue syndrome. Int J Mol Med (2003) 12:22530.10.3892/ijmm.12.2.22512851722 Appel S Chapman J Shoenfeld Y. Infection and vaccination in chronic fatigue syndrome: myth or reality? Autoimmunity (2007) 40:4853.10.1080/0891693070119727317364497 Bellmann-Weiler R Schroecksnadel K Holzer C Larcher C Fuchs D Weiss G. IFN-gamma mediated pathways in patients with fatigue and chronic active Epstein Barr virus-infection. J Affect Disord (2008) 108:1716.10.1016/j.jad.2007.09.00517945348 Magnus P Gunnes N Tveito K Bakken IJ Ghaderi S Stoltenberg C Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with pandemic influenza infection, but not with an adjuvanted pandemic influenza vaccine. Vaccine (2015) 33:61737.10.1016/j.vaccine.2015.10.01826475444 Maes M Twisk FNM Kubera M Ringel K. Evidence for inflammation and activation of cell-mediated immunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin. J Affect Disord (2012) 136:9339.10.1016/j.jad.2011.09.004 Raison CL Lin JM Reeves WC. Association of peripheral inflammatory markers with chronic fatigue in a population-based sample. Brain Behav Immun (2009) 23:32737.10.1016/j.bbi.2008.11.00519111923 Fletcher M Zeng X Barnes Z Levis S Klimas N. Plasma cytokines in women with chronic fatigue syndrome. J Transl Med (2009) 7:9696.10.1186/1479-5876-7-9619909538 Morris G Maes M. Increased nuclear factor-κappa B and loss of p53 are key mechanisms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses (2012) 79:60713.10.1016/j.mehy.2012.07.034 Gupta S Aggarwal S See D Starr A. Cytokine production by adherent and non-adherent mononuclear cells in chronic fatigue syndrome. J Psychiatr Res (1997) 31:14956.10.1016/S0022-3956(96)00063-59201656 Swanink CM Vercoulen JH Galama JM Roos MT Meyaard L van der Ven-Jongekrijg J Lymphocyte subsets, apoptosis, and cytokines in patients with chronic fatigue syndrome. J Infect Dis (1996) 173:4603.10.1093/infdis/173.2.4608568312 Amel Kashipaz MR Swinden D Todd I Powell RJ. Normal production of inflammatory cytokines in chronic fatigue and fibromyalgia syndromes determined by intracellular cytokine staining in short-term cultured blood mononuclear cells. Clin Exp Immunol (2003) 132:3605.10.1046/j.1365-2249.2003.02149.x12699429 Maes M Leunis JC. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: effects of age, duration of illness and the translocation of LPS from Gram-negative bacteria. Neuro Endocrinol Lett (2008) 29:90210.19112401 Giloteaux L Goodrich JK Walters WA Levine SM Ley RE Hanson MR. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome (2016) 4:1.10.1186/s40168-016-0171-427338587 Brechmann T Sperlbaum A Schmiegel W. Levothyroxine therapy and impaired clearance are the strongest contributors to small intestinal bacterial overgrowth: results of a retrospective cohort study. World J Gastroenterol (2017) 23:842.10.3748/wjg.v23.i5.84228223728 Prins J van der Meer JW Bleijenberg G. Chronic fatigue syndrome. Lancet (2006) 367:34655.10.1016/S0140-6736(06)68073-216443043 Straub RH Cutolo M Buttgereit F Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med (2010) 267:54360.10.1111/j.1365-2796.2010.02218.x20210843 Boelen A Kwakkel J Fliers E. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev (2011) 32:67093.10.1210/er.2011-000721791567 Golombek S. Nonthyroidal illness syndrome and euthyroid sick syndrome in intensive care patients. Semin Perinatol (2008) 32:4138.10.1053/j.semperi.2008.09.01019007679 Warner MH Beckett GJ. Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol (2010) 205:113.10.1677/JOE-09-041220016054 Dietrich JW Muller P Schiedat F Schlomicher M Strauch J Chatzitomaris A Nonthyroidal illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. Eur Thyroid J (2015) 4:12937.10.1159/00038154326279999 Arroll MA. Allostatic overload in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses (2013) 81:5068.10.1016/j.mehy.2013.06.02323850395 Maloney EM Gurbaxani BM Jones JF de Souza Coelho L Pennachin C Goertzel BN. Chronic fatigue syndrome and high allostatic load. Pharmacogenomics (2006) 7(3):46773.10.2217/14622416.7.3.467 Goertzel BN Pennachin C de Souza Coelho L Maloney EM Jones JF Gurbaxani B. Allostatic load is associated with symptoms in chronic fatigue syndrome patients. Pharmacogenomics (2006) 7:48594.10.2217/14622416.7.3.48516610958 Chatzitomaris A Hoermann R Midgley JE Hering S Urban A Dietrich B Thyroid allostasis–adaptive responses of thyrotropic feedback control to conditions of strain, stress, and developmental programming. Front Endocrinol (2017) 8:163.10.3389/fendo.2017.00163 Sturgeon C Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers (2016) 4:e1251384.10.1080/21688370.2016.125138428123927 Egger G Dixon J. Obesity and chronic disease: always offender or often just accomplice? Br J Nutr (2009) 102:123842.10.1017/S000711450937167619445817 Calay ES Hotamisligil GS. Turning off the inflammatory, but not the metabolic, flames. Nat Med (2013) 19:265.10.1038/nm.3114 CBO Nederland. Richtlijn. Diagnose, behandeling, begeleiding en beoordeling van patiënten met het chronisch vermoeidheidssyndroom (CVS). Utrecht: CBO (2013). A59/9 p. Wiersinga WM. Guidance in subclinical hyperthyroidism and subclinical hypothyroidism: are we making progress? Eur Thyroid J (2015) 4:1438.10.1159/000438909 Garrison R Breeding P. A metabolic basis for fibromyalgia and its related disorders: the possible role of resistance to thyroid hormone. Med Hypotheses (2003) 61:1829.10.1016/S0306-9877(02)00294-312888300 Rosner B. Fundamentals of Biostatistics. 7th ed. Boston: Duxbury Press (2010). Girvent M Maestro S Hernández R Carajol I Monné J Sancho JJ Euthyroid sick syndrome, associated endocrine abnormalities, and outcome in elderly patients undergoing emergency operation. Surgery (1998) 123:5607.10.1067/msy.1998.872389591009 Muskiet FA van Doormaal JJ Martini IA Wolthers BG van der Slik W. Capillary gas chromatographic profiling of total long-chain fatty acids and cholesterol in biological materials. J Chromatogr (1983) 278:23144.10.1016/S0378-4347(00)84782-96668307 Zhu W Stevens AP Dettmer K Gottfried E Hoves S Kreutz M Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem (2011) 401:324961.10.1007/s00216-011-5436-y Luxwolda MF Kuipers RS Kema IP Dijck-Brouwer DA Muskiet FA. Traditionally living populations in East Africa have a mean serum 25-hydroxyvitamin D concentration of 115 nmol/l. Br J Nutr (2012) 108(9):155761.10.1017/S0007114511007161 Nelson D Xu N Carlson J. Semi-automated quantification of methylmalonic acid in human serum by LC-MS/MS. Scand J Clin Lab Invest (2012) 72:4416.10.3109/00365513.2012.67996322935047 Wiersinga W. The Peripheral Conversion of Thyroxine (T4) into Triiodothyronine (T3) and Reverse Triiodothyronine (rT3). Thesis, University of Amsterdam, Amsterdam, The Netherlands (1979) 3649. Zhao Z Hjelm NM Lam CW Ho CS. One-step solid-phase extraction procedure for F(2)-isoprostanes. Clin Chem (2001) 47(1):13068. Dantzer R O’Connor JC Lawson MA Kelley KW. Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology (2011) 36:42636.10.1016/j.psyneuen.2010.09.012 Coccaro EF Lee R Fanning JR Fuchs D Goiny M Erhardt S Tryptophan, kynurenine, and kynurenine metabolites: relationship to lifetime aggression and inflammatory markers in human subjects. Psychoneuroendocrinology (2016) 71:18996.10.1016/j.psyneuen.2016.04.02427318828 Jostel A Ryder WDJ Shalet SM. The use of thyroid function tests in the diagnosis of hypopituitarism: definition and evaluation of the TSH index. Clin Endocrinol (Oxf) (2009) 71:52934.10.1111/j.1365-2265.2009.03534.x19226261 Dietrich J Fischer M Jauch J Pantke E Gärtner R Pickardt C. SPINA-THYR: a novel systems theoretic approach to determine the secretion capacity of the thyroid gland. Eur J Intern Med (1999) 10:S34. Fan S Ni X Wang J Zhang Y Tao S Chen M Low triiodothyronine syndrome in patients with radiation enteritis: risk factors and clinical outcomes an observational study. Medicine (Baltimore) (2016) 95:e2640.10.1097/MD.000000000000264026871787 Kuipers R Luxwolda M Sango W Kwesigabo G Velzing Aarts F Dijck-Brouwer DAJ Postpartum changes in maternal and infant erythrocyte fatty acids are likely to be driven by restoring insulin sensitivity and DHA status. Med Hypotheses (2011) 76:794801.10.1016/j.mehy.2011.02.02021388747 von Schacky C Harris WS. Cardiovascular benefits of omega-3 fatty acids. Cardiovasc Res (2007) 73:3105.10.1016/j.cardiores.2006.08.01916979604 Tan ZS Harris WS Beiser AS Au R Himali JJ Debette S Red blood cell omega-3 fatty acid levels and markers of accelerated brain aging. Neurology (2012) 78:65864.10.1212/WNL.0b013e318249f6a9 Ohnishi H Saito Y. Eicosapentaenoic acid (EPA) reduces cardiovascular events: relationship with the EPA/arachidonic acid ratio. J Atheroscler Thromb (2013) 20:86177.10.5551/jat.1800224047614 Lotrich FE Sears B McNamara RK. Elevated ratio of arachidonic acid to long-chain omega-3 fatty acids predicts depression development following interferon-alpha treatment: relationship with interleukin-6. Brain Behav Immun (2013) 31:4853.10.1016/j.bbi.2012.08.00722926083 Karshikoff B Sundelin T Lasselin J. Role of inflammation in human fatigue: relevance of multidimensional assessments and potential neuronal mechanisms. Front Immunol (2017) 8:21.10.3389/fimmu.2017.0002128163706 Neto AM Parisi MCR Alegre SM Pavin EJ Tambascia MA Zantut-Wittmann DE. Relation of thyroid hormone abnormalities with subclinical inflammatory activity in patients with type 1 and type 2 diabetes mellitus. Endocrine (2016) 51:6371.10.1007/s12020-015-0651-526049370 Ahmed T Das SK Golden JK Saltzman E Roberts SB Meydani SN. Calorie restriction enhances T-cell-mediated immune response in adult overweight men and women. J Gerontol A Biol Sci Med Sci (2009) 64:110713.10.1093/gerona/glp10119638417 Moura Neto A Zantut-Wittmann DE. Abnormalities of thyroid hormone metabolism during systemic illness: the low T3 syndrome in different clinical settings. Int J Endocrinol (2016) 2016:2157583.10.1155/2016/215758327803712 Straub RH. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases. Arthritis Res Ther (2014) 16:S4.10.1186/ar468825608958 Fliers E Bianco AC Langouche L Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol (2015) 3:81625.10.1016/S2213-8587(15)00225-926071885 de Vega WC Herrera S Vernon SD McGowan PO. Epigenetic modifications and glucocorticoid sensitivity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). BMC Med Genomics (2017) 10:11.10.1186/s12920-017-0248-328231836 Naviaux RK Naviaux JC Li K Bright AT Alaynick WA Wang L Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci U S A (2016) 113:E547280.10.1073/pnas.160757111327573827 Fluge Ø Mella O Bruland O Risa K Dyrstad SE Alme K Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome. JCI Insight (2016) 1:e89376.10.1172/jci.insight.8937628018972 Yao X Hou S Zhang D Xia H Wang Y Jiang J Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver. Cell Biosci (2014) 4:38.10.1186/2045-3701-4-3825105012 van Doormaal JJ Muskiet FA Martini IA Doorenbos H. Changes in fatty acid profiles of plasma, erythrocytes and polymorphonuclear leukocytes in induced hypothyroidism in man: indirect evidence for altered Δ6 desaturase activity. Clin Chim Acta (1986) 156:299313.10.1016/0009-8981(86)90073-2 Lanni A Moreno M Goglia F. Mitochondrial actions of thyroid hormone. Compr Physiol (2016) 6:1591607.10.1002/cphy.c15001927783852 Weitzel JM Iwen KAH Seitz HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol (2003) 88:1218.10.1113/eph880250612552316 Hodkinson CF Simpson EE Beattie JH O’Connor JM Campbell DJ Strain JJ Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55–70 years. J Endocrinol (2009) 202:5563.10.1677/JOE-08-048819398496 Rozing MP Westendorp RG Maier AB Wijsman CA Frölich M de Craen AJ Serum triiodothyronine levels and inflammatory cytokine production capacity. Age (2012) 34:195201.10.1007/s11357-011-9220-x21350816 Loebel M Strohschein K Giannini C Koelsch U Bauer S Doebis C Deficient EBV-specific B-and T-cell response in patients with chronic fatigue syndrome. PLoS One (2014) 9:e85387.10.1371/journal.pone.008538724454857 Wiersinga WM. Paradigm shifts in thyroid hormone replacement therapies for hypothyroidism. Nat Rev Endocrinol (2014) 10:16474.10.1038/nrendo.2013.25824419358 McAninch EA Bianco AC. The history and future of treatment of hypothyroidism. Ann Intern Med (2016) 164:506.10.7326/M15-179926747302 Escobar-Morreale HF Obregon MJ Escobar del Rey F Morreale de Escobar G. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J Clin Invest (1995) 96:282838.10.1172/JCI118353 Friedman M Miranda-Massari JR Gonzalez MJ. Supraphysiological cyclic dosing of sustained release T3 in order to reset low basal body temperature. P R Health Sci J (2006) 25:239.16883675 DeGroot L. “Non-thyroidal illness syndrome” is functional central hypothyroidism, and if severe, hormone replacement is appropriate in light of present knowledge. J Endocrinol Invest (2003) 26:116370.10.1007/BF03349151 DeGroot LJ. The non-thyroidal illness syndrome In: De Groot LJ Chrousos G Dungan K Feingold KR Grossman A Hershman JM editors. Endotext [Internet]. South Dartmouth, MA: MDText.com, Inc. (2000). [Updated 2015 Feb 1]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK285570/ Peterson SJ McAninch EA Bianco AC. Is a normal TSH synonymous with “euthyroidism” in levothyroxine monotherapy? J Clin Endocrinol Metab (2016) 101:496473.10.1210/jc.2016-2660 Jansen J Friesema EC Milici C Visser TJ. Thyroid hormone transporters in health and disease. Thyroid (2005) 15:75768.10.1089/thy.2005.15.75716131319 Donzelli R Colligiani D Kusmic C Sabatini M Lorenzini L Accorroni A Effect of hypothyroidism and hyperthyroidism on tissue thyroid hormone concentrations in rat. Eur Thyroid J (2016) 5:2734.10.1159/00044352327099836 Naviaux RK. Metabolic features of the cell danger response. Mitochondrion (2014) 16:717.10.1016/j.mito.2013.08.00623981537 Navaneetharaja N Griffiths V Wileman T Carding SR. A role for the intestinal microbiota and virome in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)? J Clin Med (2016) 5:55.10.3390/jcm506005527275835 Zhang L Goudh J Christmas D Mattey DL Richards SC Main J Microbial infections in eight genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Clin Pathol (2010) 63(2):15664.10.1136/jcp.2009.072561 Dhabhar FS. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res (2014) 58:193210.10.1007/s12026-014-8517-024798553 Brooks SK Chalder T Rimes KA. Chronic fatigue syndrome: cognitive, behavioural and emotional processing vulnerability factors. Behav Cogn Psychother (2017) 45(2):15669.10.1017/S135246581600063128098051 Hernandez A. Structure and function of the type 3 deiodinase gene. Thyroid (2005) 15:86574.10.1089/thy.2005.15.86516131329 Juby A Hanly M Lukaczer D. Clinical challenges in thyroid disease: time for a new approach? Maturitas (2016) 87:728.10.1016/j.maturitas.2016.02.00127013291 Han G Ren J Liu S Gu G Ren H Yan D Nonthyroidal illness syndrome in enterocutaneous fistulas. The Am J Surg (2013) 206:38692.10.1016/j.amjsurg.2012.12.01123809674 Broderick G Fuite J Kreitz A Vernon SD Klimas N Fletcher MA. A formal analysis of cytokine networks in chronic fatigue syndrome. Brain Behav Immun (2010) 24:120917.10.1016/j.bbi.2010.06.00320447453
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.hbcxwm.org.cn
      fsdianbi.com.cn
      www.kmjytf.com.cn
      www.hi04.org.cn
      fecbgm.com.cn
      www.mkztpi.com.cn
      viviyp.org.cn
      nbapeilu.com.cn
      qm4.com.cn
      www.tuolian.net.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p