Front. Ecol. Evol. Frontiers in Ecology and Evolution Front. Ecol. Evol. 2296-701X Frontiers Media S.A. 10.3389/fevo.2025.1533703 Ecology and Evolution Original Research A mammoth task: stable isotope analyses as a tool to prevent illegal trade of elephant ivory Santos Maria E. A. 1 2 * Toropov Pavel 3 Agarwal Pihu 1 2 Frichot Pierre Archimede Jonathan 1 2 Tilley Hannah Bethany 4 Wan Zhongyue Wilson 1 Chan Jovy 5 Baker David Michael 1 2 * 1 Coral Biogeochemistry Laboratory, University of Hong Kong, Hong Kong, Hong Kong SAR, China 2 Conservation Forensics Laboratory, University of Hong Kong, School of Biological Sciences, Hong Kong, Hong Kong SAR, China 3 Communications and Public Affairs Office, University of Hong Kong, Hong Kong, Hong Kong SAR, China 4 Applied Behavioral Ecology and Conservation Laboratory, University of Hong Kong, School of Biological Sciences, Hong Kong, Hong Kong SAR, China 5 World Wide Fund for Nature, Hong Kong, Hong Kong SAR, China

Edited by: Kyle Ewart, The University of Sydney, Australia

Reviewed by: Fraser John Combe, Independent Researcher, Minneapolis, United States

Arame Ndiaye, TRACE Wildlife Forensics Network, United Kingdom

*Correspondence: Maria E. A. Santos, santosmariaea@gmail.com; David Michael Baker, dmbaker@hku.hk

†Present address: Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI, United States

24 06 2025 2025 13 1533703 24 11 2024 30 04 2025 Copyright © 2025 Santos, Toropov, Agarwal, Frichot, Tilley, Wan Zhongyue, Chan and Baker 2025 Santos, Toropov, Agarwal, Frichot, Tilley, Wan Zhongyue, Chan and Baker

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Although mammoth ivory was claimed as a substitute to elephant ivory, there are several issues with the current methods to differentiate the two ivory, which provided a loophole to laundering and illegal trade. To contribute to developing efficient tools to distinguish ivory samples, we applied a relatively cheap and fast protocol using stable isotope ratios of carbon (δ 13C), hydrogen (δ 2H), nitrogen (δ 15N), oxygen (δ 18O), and sulfur (δ 34S). We compared the isotope ratios of the two ivory types and found statistically significant (p-value<0.01) differences in the Wilcoxon tests for δ 2H, δ 18O, δ 13C and δ 34S, but no significant difference for δ 15N. There was no overlap between δ 2H and a small overlap for δ 18O, while δ 13C, δ 15N, and δ 34S of most mammoth samples were within the larger isotopic range values of the elephant samples. The PCA also pointed to a higher contribution of δ 2H (96.9%) followed by δ 18O (2.7%) to differentiate the ivory types. Our results showed SIA as an efficient tool to distinguish elephant and mammoth ivory, and we recommend using a multi-elements SIA approach focusing on δ 2H and δ 18O. While it is essential to address the social issues related to the ivory trade, including reducing human-elephant conflict and increasing financial support to Siberian carver communities, alternatives for natural ivory should also be sought, combined with strict policy changes to combat illegal trade and protect the African and Asian elephant populations.

conservation forensics illegal trade laundering mammoth stable isotope analyses permafrost trafficking tusk section-in-acceptance Conservation and Restoration Ecology

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Illegal or unsustainable wildlife trade (IUWT) is a major threat to biodiversity conservation worldwide, making it crucial to find effective solutions to control trade activities (Cardoso et al., 2021). Wildlife-related crimes, consisting of poaching, smuggling, breeding, and trapping, are often linked to the trafficking of drugs, weapons and people (Doody et al., 2021). The combat of IUWT is hampered by several factors, including that the wildlife collection mostly happens in isolated locations, with insufficient amounts of biological or physical evidence for accurate sample identification. However, recent efforts to advance laboratory techniques used to identify and confirm the origin of the specimens, combined with the creation of collaboration networks between countries, have improved conservation strategies (Woodcock et al., 2023). Thus, it is essential to consolidate feasible tools to support law enforcement (Kanthaswamy, 2024).

      The poaching of elephants is a complex IUWT case, as the ivory trade occurs between multiple countries with different environmental and socio-economic impacts. The ivory tusks of species in the family Elephantidae are teeth-like structures that serve a variety of purposes including defense, digging, lifting objects, and gathering food (Steenkamp et al., 2007; Bielert et al., 2018). For millennia, ivory pieces have been used by human populations across the world as carving objects (Chaiklin, 2010; Lane, 2015; Steguweit, 2015) and a traditional art form (Gao and Clark, 2014), but in modern days become a main threat to the survival of elephant populations. All three extant elephant species are listed on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species as either ‘endangered’ (Loxodonta africana and Elephas maximus) or ‘critically endangered’ (L. cyclotis). Ivory poachers target mainly African elephants (L. africana and L. cyclotis), which had a population decline of over 80% in the past century. Elephants are often fatally shot by poachers so that ivory can be easily removed from carcasses, however, even if the elephants survive an instance of poaching, their tusks do not regrow (Raubenheimer, 2000; Gobush et al., 2021). Asian elephant ivory (E. maximus) is targeted on a smaller scale, as unlike their African cousins, usually only males possess tusks (Chelliah and Sukumar, 2013). Still, Asian elephants also face other challenges including poaching for their skin (Sampson et al., 2018; Menon and Tiwari, 2019), human-elephant conflict in their natural ranges (Doyle et al., 2010; Jarungrattanapong and Olewiler, 2024), and exploitation with a third of the global population residing in captivity (Sukumar, 2006; Hankinson and Nijman, 2020).

      Elephants were first added to the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) appendix list in 1989, but still allowing domestic trade (UNEP et al., 2013). In 2018, China, one of the central ivory markets (Sosnowski et al., 2019), imposed a comprehensive ban of elephant ivory for commercial trade (Chen et al., 2023). Hong Kong SAR, a main trade hub between China and other countries, banned the elephant ivory trade in 2021. One of the main ivory alternatives are from mammoths (Mammuthus spp.). Although these elephantids went extinct during the last Ice Age over 4,000 years ago (Haynes, 1991), the remains of millions of individuals, including their tusks, are preserved underground in high latitude regions and mostly exploited from the Siberian tundra in Russia. Harvesting of the woolly mammoth (M. primigenius) is a potential substitute to elephant ivory, though this activity is also associated with ecosystemic and economic issues (Potravny et al., 2024).

      The exploitation of mammoths could decrease the pressure suffered by elephant populations, still, there are several issues with the current methods available to distinguish the two ivory types. Therefore, instead of acting as a substitute for the demand for elephant ivory, mammoth ivory provided loopholes for elephant ivory dealers (Chen et al., 2023; Cox and Hauser, 2023). Illegal ivory can be sold under the guise of legal mammoth ivory (Shepherd et al., 2024), incentivizing poachers to continue the killing of elephants (Yu et al., 2017). For instance, although the angle of specific marks in the ivory is one straightforward morphological method (Trapani and Fisher, 2003), called Schreger lines, these marks are often not visible in pieces that have been polished or carved (Ngatia et al., 2019). It is also possible to discriminate mammoth and elephant ivory using spectrometry, but the intensity ratios are dependent upon the environmental condition to which the ivory specimens have been exposed (Parungao et al., 2024). The most effective methods in ivory identifications are radiocarbon dating (Cerling et al., 2018; Quarta et al., 2019) and genetic analyses (Ewart et al., 2020; Hale et al., 2021; Cox and Hauser, 2023). However, these tools are expensive and a long time is needed to receive results (weeks to months) with large amounts of ivory required (often more than 100 mg) for the testing process.

      A much cheaper and faster testing alternative to distinguishing between elephant and mammoth ivory is using stable isotope analyses (SIA). Species living in environments with different isotope ratios of elements will absorb those isotopes, resulting in distinctive isotope signatures. Thus, measuring the isotopes ratios in the tissue or bone of animals allows, for example, the identification of their geographic source location (Hobson, 1999; Sung et al., 2021), and status as captive or wild animals (Andersson et al., 2021). SIA has contributed to the combat of IUWT for several species (Meier-Augenstein, 2019; Prigge et al., 2024), including wood turtles (Glyptemys insculpta; Hopkins et al., 2022), African grey parrots (Psittacus erithacus; Alexander et al., 2019), and yellow-crested cockatoos (Cacatua sulphure; Andersson et al., 2021). Although SIA has been used to estimate the country of origin of elephant ivory (van der Merwe et al., 1990; Codron et al., 2012; 2016; Hale et al., 2021), comparisons between elephant and mammoth ivory are scarce. A recent World Wide Fund for Nature (WWF) report letter showed distinct hydrogen (δ 2H) and oxygen (δ 18O) isotopic signatures between these ivory (Ziegler, 2021). This is due to their very distinct habitats; elephants are found in tropical and subtropical areas, while woolly mammoths used to live in colder and drier high latitudes environments (Ziegler, 2021), indicating that SIA is a promising tool to ivory conservation forensics.

      In this study, we optimized and applied a multi-elements approach with isotope ratios of carbon (δ 13C), hydrogen (δ 2H), nitrogen (δ 15N), oxygen (δ 18O), and sulfur (δ 34S) to ivory samples. Our goal is to highlight the isotopic differences and provide a protocol to differentiate between elephant and mammoth ivory. As SIA is a powerful tool to prevent illegal trade in several species (Alexander et al., 2018; Meier-Augenstein, 2019), we here expand the reference database and provide an essential foundation to further developing a framework to certify the origin of ivory objects.

      Materials and methods Ivory samples

      In total, we analyzed 79 ivory objects ( Supplementary Table 1 ), identified as elephant (44) or mammoth (35) by seizure agencies and sellers. Elephant ivory objects were acquired in seizures between 2007 to 2023 by the Agriculture, Fisheries and Conservation Department of the Hong Kong government (AFCD) in illegal imports to Hong Kong from African countries (Ethiopia, Gabon, Ghana, Ivory Coast, Nigeria, South Africa, and Zimbabwe), China, Thailand, and the United States of America. We acquired unworked mammoth ivory fragments from Siberian carvers, and additional mammoth ivory objects purchased between 2022 to 2024 in markets in China (Shanghai) and Hong Kong ( Supplementary Table 1 ), mostly by donations of WWF-Hong Kong. Unfortunately, the exact geographical origin and species identification is unknown. Samples were drilled between January and August of 2024, and stored in a dry-cabinet before isotope measurements.

      Stable isotope analyses and statistics

      We developed a protocol adapted from the literature to analyze ivory powder (Ziegler et al., 2016) with four main steps described below: 1) drilling, 2) cleaning, 3) weighting, and 4) measuring δ 13C, δ 2H, δ 15N, δ 18O, and δ 34S. These steps were designed to optimize time and costs, with a minimum ivory powder amount required of 5 mg using the Continuous Flow-Isotope Isotope Ratio Mass Spectrometer (CF-IRMS) at the Stable Isotope Laboratory, University of Hong Kong (SIRMS-HKU).

      Drilling: For each sample, we drilled between 5–50 mg using a drilling Dremel® 4250. We held the objects with a plier or tweezer while drilling and to avoid losing ivory material, we molded a 20–50 cm piece of aluminum foil into a funnel shape, according to the size of the object. We used rounded drill shanks, as among the different shanks available, these produced more ivory powder more quickly. We then discarded the aluminum foil. Between samples, the shanks were cleaned by scrubbing with a metallic brush, followed by thoroughly washing it with a sponge and detergent under running water, and then dried. This step required ~ 5–15 min, depending on the size of the sample.

      Cleaning: We added 1–5 ml of dichloromethane to each of the falcon tubes to extract apolar substances from the samples for five hours followed by air-drying the samples within an oven at 50-60°C overnight. Samples were then stored in a desiccator to avoid humidification.

      Weighting: Using a highly sensitive precision microbalance, for each sample, a subsample of 1 mg (+-0.5 mg) was weighed and packed into silver capsules (3.3×5mm) to obtain measurements of δ 2H, δ 18O, %H, and %O, with another subsample of 4 mg (+-0.5 mg) weighted and packed into tin capsules (4×6mm) to obtain measurements of δ 13C, δ 15N, δ 34S, %C, %N, and %S. This step takes approximately 5 min/sample.

      Isotope measurements: We used certified international standards (Benzoic Acid and USGS40) to track precision and normalize data between analytical runs. The isotope ratios within their silver capsule and tin capsule samples were analyzed with the Elemental Analyzer (EA) CF-IRMS. Stable H, O, C, N, and S isotope compositions were expressed as isotope-delta (δ) values with the conventional unit per mil (‰) and relative to the international standards Vienna Pee Dee Belemnite and atmospheric N2. The precision of the standard was better than 0.2‰ and there were no high peaks for blanks for all isotopic values, with exception of O. The results of the EA-OH pyrolysis showed a high O peak for blank after running samples, and it is possible that the samples cannot be fully pyrolyzed. It could be that the high mineral content of the ivory occupies the reaction surfaces of the glassy carbon and graphite in the reactor. As such, we recommend smaller batches (<30 samples) in between maintenance of the reactor to improve this issue.

      Samples had a non-normal distribution and we tested for significant differences in the stable isotopic signatures with the Wilcoxon test and Principal Component Analyses (PCA) in RStudio 1.3.1093 (R Team, 2020).

      Results Ivory samples

      Among the carved ivory objects acquired in illegal seizures and observed in Chinese and Hong Kong markets, we found a variety of samples, including bracelets, combs, chopsticks, earrings, neckless, and seals ( Figure 1 ; Supplementary Table 1 ). Two main types of mammoth ivory carved artefacts were being sold (staff of the Chinese market, personal communication): “bai jian (摆件)”, which are large items that can be displayed standing up, such as plates or a single carved tusk, and “accessories (饰 品)”, such as bracelets, pendants, earrings. We also observed that the markets in China and Hong Kong further classified mammoth ivory objects in four subjective categories related to the color and aspect of the ivory: (1) highest quality with shiny illustrious white ivory, with an oily sheen and not visible or delicate lines with narrow spaces; (2) milky white, oily sheen, lines rather delicate with narrow spaces; (3) yellowish white, waxy sheen, lines quite coarse with wide spaces; and (4) “coffee”, when the color is dull/dark yellow with earthy sheen, lines are coarse, with wide spaces.

      Carved elephant [(A, B); in red] and mammoth [(C, D); in blue] and unworked (E, F) ivory samples.

      (A) Contains a circular object, possibly made of ivory or a similar material, alongside a metallic screw. (B) Features a slender wooden stick, labeled, and a small shiny item that resembles a clip. (C) Presents a string of beads, likely made from a similar material as in (A), packaged in plastic. (D) Displays a pair of chopsticks, labeled, sealed in a plastic bag. (E) Includes a red pen next to a labeled bag containing a small piece of an unidentified material. (F) Shows a rectangular slice of a textured material, possibly wood or bone.
      Isotopic signatures of ivory

      Stable isotope data revealed statistically significant differences in the Wilcoxon tests for δ 2H and δ 18O of the elephant and mammoth samples (p-values = 3x10–14 and 3.5x10-12, respectively). Although there was no overlap between the δ 2H values of the two ivory types, the δ 18O data of two elephant samples were within the value range of mammoth samples ( Supplementary Table 1 ; Figure 2 ). We also observed significant differences in the Wilcoxon tests between elephant and mammoth ivory samples for δ 13C and δ 34S, while no significant difference was reported for δ 15N (p-values = 8x10-2, 1.5x10-8, and 0.64, respectively). Nevertheless, these three isotopes had overlapping values between elephant and mammoth samples. The δ 13C and δ 15N data of all mammoth samples were within the range values of elephant samples, while δ 34S data of 67 mammoth samples were within the range of elephant samples ( Supplementary Table 1 ; Figure 3 ). The first two principal components of the PCA explained over 99% of the total variance ( Figure 4 ). The individual contributions to these eigenvalues were 96.9% for δ 2H, 2.7% for δ 18O, 0.23% for δ 34S, 0.07% δ 13C, and 0.003% for δ 15N.

      Biplot of isotope ratios of hydrogen (δ 2H) and oxygen (δ 18O) of the elephant and mammoth ivory samples (red and blue, respectively).

      A scatter plot depicts δ2H on the x-axis and δ¹⁸O on the y-axis, with clusters of data points differentiated by color: orange points represent one group, while blue points denote another. The blue cluster predominantly resides in the lower left quadrant, suggesting lower isotopic values, whereas the orange points mainly occupy the upper right quadrant with higher values. Panels (A) and (B) illustrate an elephant and a map indicating distribution regions, respectively, while panel (C) features a mammoth, providing contextual biological and geographical information relevant to the data analysis.

      Boxplots of the isotope ratios of carbon [δ 13C; (A)], nitrogen [δ 15N; (B)], and sulfur [δ 34S; (C)] of the elephant and mammoth ivory samples (left and right, respectively). The midpoints indicate the mean and whiskers show the 95% confidence intervals. Significance levels indicated as “*” for p<0.01 and “**” for p<0.001.

      Panel (A) displays δ¹³C values, comparing two groups with the orange box indicating lower values than the blue box, marked with an asterisk for statistical significance. In panel (B), the δ¹⁵N results show a higher median for the orange box compared to the blue, suggesting different nitrogen sources. Panel (C) illustrates δ³⁴S values, where the orange box reflects higher median values relative to the blue box, with asterisks indicating significant differences. Below each panel, illustrations of an elephant and a mammoth provide contextual representation of the sampled groups.

      Principal Component Analyses (PCA) of isotope ratios of carbon (δ 13C), hydrogen (δ 2H), nitrogen (δ 15N), oxygen (δ 18O), and sulfur (δ 34S) of the elephant and mammoth ivory samples (red and blue, respectively).

      A scatter plot illustrates a Principal Component Analysis (PCA), with PCA1 on the x-axis (97% variance) and PCA2 on the y-axis (2.3% variance). Two distinct clusters are evident, represented by orange points for one group and blue points for another. An orange outline of an elephant is positioned above the orange cluster, while a blue outline of a mammoth is located above the blue cluster. The distribution shows a clear separation between the two groups, suggesting significant differences in the underlying data. The clusters reflect variance captured in the PCA analysis.
      Discussion Potential of SIA to ivory conservation forensics

      Our results showed that δ 2H is the most efficient element to distinguish elephant and mammoth ivory, as there were no overlapping values between the two sample types. ( Supplementary Table 1 ; Figure 2 ). Additionally δ 18O values were distinct between most elephant/mammoth samples. Thus, we recommend using a multi-elements SIA approach focusing on δ 2H and δ 18O to distinguish the two ivory types. Although our analysis omitted the extraction of collagen to optimize the protocol time, the isotopic values are potentially still comparable with elephant reference databases (e.g., www.ivoryid.org) using offsets discussed in the literature (Ziegler et al., 2016), and stable isotope ranges were similar as previously reported in the literature for elephants (van der Merwe et al., 1990; Codron et al., 2012; Ziegler et al., 2016; Ziegler, 2021) and mammoths (Bocherens et al., 1996; Ziegler, 2021). Due to their natural range, elephants consume water from tropical regions, and therefore have heavier δ 2H and δ 18O isotopic signatures compared to mammoths that ingested water from temperate environments of higher latitudes (Ziegler, 2021). On the other hand, δ 13C, δ 15N, and δ 34S are associated with animals’ diet and trophic niche (Peterson and Fry, 1987; McCutchan et al., 2003; Boecklen et al., 2011; Jackson et al., 2011). The larger variation of these isotopes for elephant samples could be related to a more generalist feeding strategy (Codron et al., 2012) compared to mammoths, and/or a higher baseline variation of the food sources, as our sampling likely included elephant samples from across Africa and Asia. Thus, δ 13C, δ 15N, and δ 34S are less useful when the focus is simply distinguishing between mammoth and elephant ivory, compared to δ 2H and δ 18O. Further work targeting samples of specific elephantid populations, and including SIA of their food sources such as grass, woody material, and fruits (Tchamba and Seme, 1993), will shed light on comparisons on the trophic niche of these megaherbivore species.

      Social aspects of the ivory trade

      Although there are integrated approaches to understanding and mitigating human-elephant conflict (HEC) in Africa and Asia, HEC is a main issue for conservation strategies for all three elephant species (Dublin and Hoare, 2004; Gross et al., 2022; Saha and Soren, 2024). The most prominent human-elephant conflict usually arises over crop raiding incidents (Walpole and Linkie, 2007). There are many different approaches which are used to deter elephants, focusing on sensory deterrents, such as chili/beehive fences or loud noises (Chang’a et al., 2016; King et al., 2011; Enukwa, 2017). However, elephants are highly intelligent animals that often find ways around the obstacles, resulting in extensive HEC (Mumby and Plotnik, 2018). Therefore, farmers often support or are not opposed to poaching for ivory (Kiffner et al., 2021). To overcome this issue, recent popular programs targeting community attitudes and social change are currently in place to change the attitude paramount and alleviate the conflict (e.g.,Williams et al., 2024). Along with these initiatives, forensics tools, including SIA, could contribute to law enforcement and reducing poaching.

      The trade ban in China and Hong Kong lead to an increasing market demand for harvesting mammoth material. Russia is the main export country of mammoth ivory, with more than 140 tons legally exported in 2023, most of which were destined to China, but also to Hong Kong and Netherlands (Potravny et al., 2024). The volume of illegal, and semi-legal exported ivory is thought to be three times more than that of legal ivory (Toropov, 2021). Siberian miners collect mammoths’ tusks and other carving material during summer when the permafrost, the ice layer below the topsoil, starts to melt. Due to current difficult economic conditions in the region, some ivory miners engage in illegal practices of soil erosion using powerful water pumps (Vasileva, 2022). Although this activity has considerable environmental impacts, carvers argue that the damage is not comparable to that of gas and oil mining activities (Toropov, 2021). Carvers also reported that mammoth ivory has a low market value because it often has a yellowish color and a negative perception associated with the product as it is from extinct animals (Toropov, 2021). Nevertheless, harvesting it has become one of the few sources of income available to these communities.

      The trade of ivory flows across country borders, each of which have distinct social and economic environments. Conservation efforts for elephants are hampered by the current levels of governmental and localized corruption that makes it difficult to prevent the laundering of illegal ivory into legal markets (Bennett, 2015), including in the online trade (Venturini and Roberts, 2020). We suggest that the SIA approach described here is applied to distinguish between mammoth and elephant ivory, as the protocol is a relatively fast and economical tool (CF-IRMS measurements <USD25/sample). We highlight that although SIA will be facilitative in law enforcement, it is not suitable for presentation in court. In a potential framework to identify the ivory source, a batch of samples would be screened using SIA by an accredited laboratory. Fewer random objects, or any ivory samples with ambiguous results, could then be tested with more expensive and time consuming methods (e.g., genetics analyses and radiocarbon dating) to validate the results. In this way, governmental agencies would be able to analyze a higher volume of samples for a lower price and waiting time. We expect that a SIA database will be progressively constructed for this task, based on reports and publications. Besides individual government budgets, support to such a framework could be acquired from international multilateral foundations, United Nations programs, and non-governmental organizations, which have already financed ranger, customs and criminal justice functions to combat IUWT in several countries across Africa and Asia (UNODC, 2024).

      While it is imperative to address the social issues related with the ivory trade, including reducing HEC (Jarungrattanapong and Olewiler, 2024; von Hagen et al., 2024; Williams et al., 2024) and offering financial support to Siberian carver communities (Potravny et al., 2024), alternatives for natural ivory should be a prioritized option in the markets, such as utilizing polished cattle bones (Sims et al., 2011) or developing materials for 3D printing with optical imitation of natural ivory (Rath et al., 2021). It is key to combine the investment in law enforcement with measures that address corruption and poverty (Hauenstein et al., 2019) and public engagement, such as education on the importance of elephants as key species to ecosystem health (van de Water et al., 2022; Williams et al., 2024), and on the Siberian permafrost to the ecosystem carbon balance (Bouchard et al., 2018).

      Future steps of the SIA ivory research field

      Further studies will clarify how the isotopic signatures of elephant and mammoth ivory are influenced by biological factors, for instance, the animal’s age or the tusk portion analyzed (Codron et al., 2012) that could partly explain variations in some of the isotopes observed here. SIA applications in the field should also focus in estimating their isotopic niche (Jackson et al., 2011; Schwartz-Narbonne et al., 2019), a proxy of the trophic niche. Comparing the amount of isotopic niche overlap (Jackson et al., 2011) between different elephant populations, as well as mammoth populations, will contribute to revealing the resource partition and diet preferences of elephantids. Such analyses could also provide insights on the isotopic niche changes between wild and captive elephants. Compound specific isotopes analyses (CSIA), including amino acids and fatty acids, should also be used for a detailed comparison of their diets (McMahon and McCarthy, 2016). Although CSIA has a higher cost and is more time-consuming compared to SIA, such analyses could also be used to distinguish the two ivory types, when bulk isotope values are ambiguous. Lastly, it will be vital to facilitate networks between different countries’ institutes to combat illegal ivory trade.

      Data availability statement

      The original contributions presented in the study are included in the article/ Supplementary Material . Further inquiries can be directed to the corresponding authors.

      Ethics statement

      Ethical approval was not required for the studies on animals in accordance with the local legislation and institutional requirements because only commercially available established cell lines were used.

      Author contributions

      MEAS: Data curation, Formal Analysis, Investigation, Methodology, Writing – original draft, Writing – review & editing. PT: Funding acquisition, Writing – review & editing. PA: Investigation, Writing – review & editing. PAJF: Investigation, Writing – review & editing. HBT: Writing – review & editing. WWZ: Funding acquisition, Writing – review & editing. JC: Writing – review & editing. DMB: Funding acquisition, Supervision, Writing – review & editing.

      Funding

      The author(s) declare that financial support was received for the research and/or publication of this article. This project was funded by the Environment and Conservation Fund project 118/2022.

      Acknowledgments

      The comments of three reviewers and the editor greatly improved this manuscript. We thank Kit Sum Leung (SIRMS-HKU) for advice and assistance with SIA. We are also grateful for the suggestions and support from Baker Lab members (HKU), Tracey-Leigh Prigge (HKU), Chloe Hatten (HKU), Oscar So Wing Wa (HKU), Noor Azleen Mohd Kulaimi (Department of Wildlife and National Parks, Malaysia), Jessica Bell Rizzolo (Kerulos Center), and Renato Yudi. Chan Chi-Wai and his colleagues at the Agriculture, Fisheries and Conservation Department of Hong Kong, and the World Wide Fund for Nature - Hong Kong are thanked for their kind support with sample donations.

      Conflict of interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Generative AI statement

      The author(s) declare that no Generative AI was used in the creation of this manuscript.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fevo.2025.1533703/full#supplementary-material

      List and description of the ivory samples.

      References Alexander J. Downs C. T. Butler M. Woodborne S. Symes C. T. (2019). Stable isotope analyses as a forensic tool to monitor illegally traded African grey parrots. Anim. Conserv. 22, 134143. doi: 10.1111/acv.12445 Andersson A. A. Gibson L. Baker D. M. Cybulski J. D. Wang S. Leung B. . (2021). Stable isotope analysis as a tool to detect illegal trade in critically endangered cockatoos. Anim. Conserv. 24, 10211031. doi: 10.1111/acv.12705 Bennett E. L. (2015). Legal ivory trade in a corrupt world and its impact on African elephant populations. Conserv. Biol. 29, 5460. doi: 10.1111/cobi.12377 Bielert C. Costo N. Gallup A. (2018). Tuskedness in African elephants – an anatomical investigation of laterality. J. Zool. 304, 169174. doi: 10.1111/jzo.12511 Bocherens H. Pacaud G. Lazarev P. A. Mariotti A. (1996). “Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from Yakutia: Implications for the palaeobiology of the Mammoth Steppe,” in Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 126. . Boecklen W. J. Yarnes C. T. Cook B. A. James A. C. (2011). Use of stable isotopes in foraging ecology and food web analysis. Annu. Rev. Ecol. Evol. Syst. 42, 411440. doi: 10.1146/annurev-ecolsys-102209-144726 Bouchard F. Sansoulet J. Fritz M. Malenfant-Lepage J. Nieuwendam A. Paquette M. . (2018). Frozen-Ground Cartoons: Permafrost comics as an innovative tool for polar outreach, education, and engagement. Polar Record 54, 366372. doi: 10.1017/S0032247418000633 Cardoso P. Amponsah-Mensah K. Barreiros J. P. Bouhuys J. Cheung H. Davies A. . (2021). Scientists’ warning to humanity on illegal or unsustainable wildlife trade. Biol. Conserv. 263. doi: 10.1016/j.biocon.2021.109341 Cerling T. E. Andanje S. A. Gakuya F. Kariuki J. M. Kariuki L. Kingoo J. W. . (2018). Stable isotope ecology of black rhinos (Diceros bicornis) in Kenya. Oecologia 187, 10951105. doi: 10.1007/s00442-018-4185-4 Chaiklin M. (2010). Ivory in world history – Early modern trade in context. History Compass 8, 530542. doi: 10.1111/j.1478-0542.2010.00680.x Chang’a A. Souza de N. Muya J. Keyyu J. Mwakatobe A. Malugu L. . (2016). Scaling-up the use of chili fences for reducing human-elephant conflict across landscapes in Tanzania. Trop. Conserv. Sci. 9, 921930. doi: 10.1177/194008291600900220 Chelliah K. Sukumar R. (2013). The role of tusks, musth and body size in male–male competition among Asian elephants, Elephas maximus . Anim. Behav. 86, 12071214. doi: 10.1016/j.anbehav.2013.09.022 Chen Y. Wang Y. Mumby H. S. (2023). Five years of the ivory ban in China: Developments, limitations, and potential for improvement. Biol. Conserv. 284, 110177. doi: 10.1016/j.biocon.2023.110177 Codron J. Codron D. Sponheimer M. Kirkman K. Duffy K. J. Raubenheimer E. J. . (2012). Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc. R. Soc. B: Biol. Sci. 279, 24332441. doi: 10.1098/rspb.2011.2472 Cox C. Hauser L. (2023). Ice Ivory to White Gold: Links between the illegal ivory trade and the trade in geocultural artifacts. J. Int. Wildl. Law Policy 26, 2246. doi: 10.1080/13880292.2023.2217615 Doody J. S. Reid J. A. Bilali K. Diaz J. Mattheus N. (2021). In the post-COVID-19 era, is the illegal wildlife trade the most serious form of trafficking? Crime Sci. 10, 112. doi: 10.1186/s40163-021-00154-9 Doyle S. Groo M. Sampson C. Songer M. Jones M. Leimgruber P. (2010). Human-elephant conflict – What can we learn from the news. Gajah 32, 1420. Dublin H. T. Hoare R. E. (2004). Searching for solutions: the evolution of an integrated approach to understanding and mitigating human–elephant conflict in Africa. Hum. Dimens. Wildl. 9, 271278. doi: 10.1080/10871200490505701 Enukwa E. H. (2017). Human-Elephant conflict mitigation methods: A review of effectiveness and sustainability. J. Wildl. Biodivers. 1, 6978. Ewart K. M. Lightson A. L. Sitam F. T. Rovie-Ryan J. J. Mather N. McEwing R. (2020). Expediting the sampling, decalcification, and forensic DNA analysis of large elephant ivory seizures to aid investigations and prosecutions. Forensic Sci. International: Genet. 44. doi: 10.1016/j.fsigen.2019.102187 Gao Y. Clark S. G. (2014). Elephant ivory trade in China: Trends and drivers. Biol. Conserv. 180, 2330. doi: 10.1016/j.biocon.2014.09.020 Gobush K. S. Edwards C. T. T. Maisels F. Wittemyer G. Balfour D. Taylor R. D. (2021). “ Loxodonta cyclotis (errata version published in 2021),” in The IUCN Red List of Threatened Species 2021: e.T181007989A204404464. doi: 10.2305/IUCN.UK.2021-1.RLTS.T181007989A204404464.en Gross E. M. Pereira J. G. Shaba T. Bilério S. Kumchedwa B. Lienenlüke S. (2022). Exploring routes to coexistence: Developing and testing a Human–Elephant Conflict-management framework for African elephant-range countries. Diversity 14, 228. doi: 10.3390/d14070525 Hale C. Ogden R. Ciavaglia S. A. Cook G. T. Clarke G. Ogle S. . (2021). “Investigating the origins of ivory recovered in the United Kingdom,” in Forensic Science International: Animals and Environments, vol. 1. . doi: 10.1016/j.fsiae.2021.100027 Hankinson E. Nijman V. (2020). “Asian elephants: 15 years of research and conservation,” in Journal of Physics: Conference Series, vol. 1460. (IOP Publishing), 012055. Hauenstein S. Kshatriya M. Blanc J. Dormann C. F. Beale C. M. (2019). African elephant poaching rates correlate with local poverty, national corruption and global ivory price. Nat. Commun. 10, 19. doi: 10.1038/s41467-019-09993-2 Haynes G. (1991). Mammoths, mastodonts, and elephants: biology, behavior and the fossil record (Cambridge University Press), 37. Hobson K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia 120, 314326. doi: 10.1007/s004420050865 Hopkins J. B. Frederick C. A. Yorks D. Pollock E. Chatfield M. W. H. (2022). Forensic application of stable isotopes to distinguish between wild and captive turtles. Biology 11. doi: 10.3390/biology11121728 Jackson A. L. Inger R. Parnell A. C. Bearhop S. (2011). Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595602. doi: 10.1111/j.1365-2656.2011.01806.x Jarungrattanapong R. Olewiler N. (2024). Ecosystem management to reduce human–elephant conflict in Thailand. Environ. Dev. Sustainabil. doi: 10.1007/s10668-024-04485-w Kanthaswamy S. (2024). “Review: Wildlife forensic genetics—Biological evidence, DNA markers, analytical approaches, and challenges,” in Animal Genetics, vol. 55. (John Wiley and Sons Inc), 177192. doi: 10.1111/age.13390 Kiffner C. Schaal I. Cass L. Peirce K. Sussman O. Grueser A. . (2021). Perceptions and realities of elephant crop raiding and mitigation methods. Conserv. Sci. Pract. 3. doi: 10.1111/csp2.372 King L. E. Douglas-Hamilton I. Vollrath F. (2011). Beehive fences as effective deterrents for crop-raiding elephants: field trials in northern Kenya. Afr. J. Ecol. 49, 431439. doi: 10.1111/j.1365-2028.2011.01275.x Lane P. J. (2015). “Introduction: archaeological ivories in a global perspective,” in World Archaeology, vol. 47. (Routledge), 317332. doi: 10.1080/00438243.2015.1046252 McCutchan J. H. Lewis W. M. Kendall C. McGrath C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378390. doi: 10.1034/j.1600-0706.2003.12098.x McMahon K. W. McCarthy M. D. (2016). “Embracing variability in amino acid δ 15N fractionation: Mechanisms, implications, and applications for trophic ecology,” in Ecosphere, vol. 7. (Ecological Society of America). doi: 10.1002/ecs2.1511 Meier-Augenstein W. (2019). “From stable isotope ecology to forensic isotope ecology — Isotopes’ tales,” in Forensic Science International, vol. 300. (Elsevier Ireland Ltd), 8998. doi: 10.1016/j.forsciint.2019.04.023 Menon V. Tiwari S. K. R. (2019). Population status of Asian elephants Elephas maximus and key threats. International Zoo Yearbook 53 (1), 1730. doi: 10.1111/izy.12247 Mumby H. S. Plotnik J. M. (2018). Taking the elephants’ perspective: Remembering elephant behavior, cognition and ecology in human-elephant conflict mitigation. Front. Ecol. Evol. 6, 122. doi: 10.3389/fevo.2018.00122 Ngatia J. N. Lan T. M. Ma Y. Dinh T. D. Wang Z. Dahmer T. D. . (2019). Distinguishing extant elephants ivory from mammoth ivory using a short sequence of cytochrome b gene. Sci. Rep. 9. doi: 10.1038/s41598-019-55094-x Parungao D. Candeias A. Lopes J. A. Miguel C. (2024). On the use of in-situ spectroscopic techniques for the study of the provenance of historic ivories. J. Cultural Heritage 68, 205215. doi: 10.1016/j.culher.2024.05.018 Peterson B. Fry B. (1987). Stable Isotopes in ecosystems studies. Annu. Rev. 18, 293320. doi: 10.1146/annurev.es.18.110187.001453 Potravny I. Apulu O. G. Chindina A. (2024). Will mining mammoth tusks in the Russian arctic help preserve African elephants? Jpn. J. Res. 5, 048. Prigge T. L. Andersson A. A. Hatten C. E. R. Leung E. Y. M. Baker D. M. Bonebrake T. C. . (2024). Wildlife trade investigations benefit from multivariate stable isotope analyses. Biological Reviews. doi: 10.1111/brv.13175 Quarta G. D’Elia M. Braione E. Calcagnile L. (2019). Radiocarbon dating of ivory: Potentialities and limitations in forensics. Forensic Sci. Int. 299, 114118. doi: 10.1016/j.forsciint.2019.03.042 R Team . (2020). RStudio: Integrated development envi- ronment for R. RStudio, PBC. Rath T. Martl O. Steyrer B. Seidler K. Addison R. Holzhausen E. . (2021). Developing an ivory-like material for stereolithography-based additive manufacturing. Appl. Mater. Today 23. doi: 10.1016/j.apmt.2021.101016 Raubenheimer E. (2000). Development of the tush and tusk and tusklessness in African elephant (Loxodonta africana). Koedoe 43(2), 5764. doi: 10.4102/koedoe.v43i2.199 Saha S. Soren R. (2024). “Human-elephant conflict: Understanding multidimensional perspectives through a systematic review,” in Journal for Nature Conservation, vol. 79. (Elsevier GmbH). doi: 10.1016/j.jnc.2024.126586 Sampson C. McEvoy J. Oo Z. M. Chit A. M. Chan A. N. Tonkyn D. . (2018). New elephant crisis in Asia—Early warning signs from Myanmar. PloS One 13, e0194113. doi: 10.1371/journal.pone.0194113 Schwartz-Narbonne R. Longstaffe F. J. Kardynal K. J. Druckenmiller P. Hobson K. A. Jass C. N. . (2019). “Reframing the mammoth steppe: Insights from analysis of isotopic niches,” in Quaternary Science Reviews, vol. 215. (Elsevier Ltd), 121. doi: 10.1016/j.quascirev.2019.04.025 Shepherd R. F. Lister A. M. Roberts A. M. Taylor A. M. Kerns J. G. (2024). Discrimination of ivory from extant and extinct elephant species using Raman spectroscopy: A potential non-destructive technique for combating illegal wildlife trade. PloS One 19. doi: 10.1371/journal.pone.0299689 Sims M. E. Baker B. W. Hoesch R. M. (2011). Tusk or bone? An example of ivory substitute in the wildlife trade. Letters 2, 4044. doi: 10.14237/ebl.2.2011.27 Sosnowski M. C. Knowles T. G. Takahashi T. Rooney N. J. (2019). Global ivory market prices since the 1989 CITES ban. Biol. Conserv. 237, 392399. doi: 10.1016/j.biocon.2019.07.020 Steenkamp G. Ferreira S. M. Bester M. N. (2007). Tusklessness and tusk fractures in free-ranging African savanna elephants (Loxodonta africana). J. South Afr. Vet. Assoc. 78, 7580. doi: 10.4102/jsava.v78i2.294 Steguweit L. (2015). Rotten ivory as raw material source in european upper palaeolithic. Quaternary Int. 361, 313318. doi: 10.1016/j.quaint.2014.11.019 Sukumar R. (2006). A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus . International Zoo Yearbook. 40, 18. doi: 10.1111/j.1748-1090.2006.00001.x Sung Y. H. Liew J. H. Chan H. K. Lee W. H. Wong B. H.-F. Dingle C. . (2021). Assessing the diet of the endangered Beale's eyed turtle (Sacalia bealei) using faecal content and stable isotope analyses: implications for conservation. Aquat. Conserv.: Mar. Freshw. Ecosyst. 31 (10), 28042813. Tchamba M. N. Seme P. M. (1993). Diet and feeding behaviour of the forest elephant in the Santchou Reserve, Cameroon. Afr. J. Ecol. 31, 165171. doi: 10.1111/j.1365-2028.1993.tb00529.x Toropov P. (2021). China Mammoth ivory: curbs on the Siberian trade may be good news for elephants. China Dialogue. Available online at: https://Chinadialogue.net/en/nature/mammoth-ivory-curbs-on-the-siberian-trade-may-be-good-news-for-elephants/ (Accessed February 13, 2024). Trapani J. Fisher D. C. (2003). Discriminating proboscidean taxa using features of the Schreger pattern in tusk dentin. J. Archaeological Sci. 30, 429438. doi: 10.1006/jasc.2002.0852 United Nations Environment Programme (UNEP) Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) International Union for Conservation of Nature (IUCN) Trade Records Analysis of Flora and Fauna in Commerce (TRAFFIC) (2013). Elephants in the Dust – The African Elephant Crisis. A Rapid Response Assessment. Available online at: www.grida.no (Accessed July 19, 2024). United Nations Office on Drugs and Crime (UNODC) (2024). “What works to decrease wildlife crime?,” in World Wildlife Crime Report -Trafficking in Protected Species (United Nations), 135153. doi: 10.18356/9789211064582 van der Merwe N. Lee-Thorp J. Thackeray J. Hall-Martin A. Kruger F. Coetzee H. . (1990). Source-area determination of elephant ivory by isotopic analysis. Nature 346, 744746. doi: 10.1038/346744a0 van de Water A. Henley M. Bates L. Slotow R. (2022). “The value of elephants: A pluralist approach,” in Ecosystem Services, vol. 58. (Elsevier B.V). doi: 10.1016/j.ecoser.2022.101488 Vasileva O. V. (2022). Is the extraction of fossil mammoth bone a form of traditional Nature management? Arktika i Sever [Arctic North] 46, 169180. doi: 10.37482/issn2221-2698.2022.46.205 Venturini S. Roberts D. L. (2020). Disguising elephant ivory as other materials in the online trade. Trop. Conserv. Sci. 13, 18. doi: 10.1177/1940082920974604 von Hagen L. Schulte B. A. Steury T. D. Dunning K. Githiru M. Zohdy S. . (2024). Lack of crucial information exacerbates barriers to mitigating human–elephant conflicts in rural Kenya. Oryx, 19. doi: 10.1017/s0030605323001795 Walpole M. Linkie M. (2007). Mitigating Human-Elephant Conflict: Case studies from Africa and Asia (Fauna & Flora International). Williams H. F. Leneuiyia K. L. Mwalavu B. Serem G. Sempeyo V. Pope F. . (2024). The Elephant Queen: Can a nature documentary help to increase tolerance towards elephants? People Nat. 6, 762774. doi: 10.1002/pan3.10599 Woodcock L. Gooch J. Wolff K. Daniel B. Frascione N. (2023). “Fingermarks in wildlife forensics: A review,” in Forensic Science International, vol. 350. (Elsevier Ireland Ltd). doi: 10.1016/j.forsciint.2023.111781 Yu Y. Wetzler A. Yang X. Tang R. Zhang L. (2017). Significant and timely ivory trade restrictions in both China and the United States are critical to save elephants. Conserv. Lett. 10, 596601. doi: 10.1111/conl.12279 Ziegler S. (2021). Distinguish mammoth and elephant ivory with stable water isotopes. Academia Lett. doi: 10.20935/al4314 Ziegler S. Streit B. Jacob D. E. (2016). “Assigning elephant ivory with stable isotopes,” in Isotopic Landscapes in Bioarchaeology (Springer, Berlin Heidelberg), 213220. doi: 10.1007/978-3-662-48339-8_12
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.heylooo.com.cn
      jx618.com.cn
      www.jojojo.org.cn
      kqouzh.com.cn
      gzdjzx.com.cn
      www.qzchain.com.cn
      www.qsbk.org.cn
      www.ueelci.com.cn
      www.pyqdl.com.cn
      www.qjnftk.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p