Front. Ecol. Evol. Frontiers in Ecology and Evolution Front. Ecol. Evol. 2296-701X Frontiers Media S.A. 10.3389/fevo.2022.813567 Ecology and Evolution Original Research In the Hot Seat: Behavioral Change and Old-Growth Trees Underpin an Australian Songbird’s Response to Extreme Heat Sharpe Lynda L. 1 * Prober Suzanne M. 2 Gardner Janet L. 1 1Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia 2CSIRO Land and Water, Wembley, WA, Australia

Edited by: Andrew McKechnie, University of Pretoria, South Africa

Reviewed by: Edward Narayan, The University of Queensland, Australia; Michael Fraser Clarke, La Trobe University, Australia

*Correspondence: Lynda L. Sharpe, sharpelynda@hotmail.com

Present address: Lynda L. Sharpe, Loch Sport, VIC, Australia

This article was submitted to Behavioral and Evolutionary Ecology, a section of the journal Frontiers in Ecology and Evolution

04 03 2022 2022 10 813567 12 11 2021 08 02 2022 Copyright © 2022 Sharpe, Prober and Gardner. 2022 Sharpe, Prober and Gardner

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Anthropogenic climate change is increasing the frequency and intensity of heat waves, thereby threatening biodiversity, particularly in hot, arid regions. Although free-ranging endotherms can use behavioral thermoregulation to contend with heat, it remains unclear to what degree behavior can buffer organisms from unprecedented temperatures. Thermoregulatory behaviors that facilitate dry heat loss during moderate heat become maladaptive once environmental temperatures exceed body temperature. Additionally, the costs associated with behavioral thermoregulation may become untenable with greater heat exposure, and effective cooling may be dependent upon the availability of specific microhabitats. Only by understanding the interplay of these three elements (responses, costs and habitat) can we hope to accurately predict how heat waves will impact wild endotherms. We quantified the thermoregulatory behaviors and microhabitat use of a small passerine, the Jacky Winter (Microeca fascinans), in the mallee woodland of SE Australia. At this location, the annual number of days ≥ 42°C has doubled over the last 25 years. The birds’ broad repertoire of behavioral responses to heat was nuanced and responsive to environmental conditions, but was associated with reduced foraging effort and increased foraging costs, accounting for the loss of body condition that occurs at high temperatures. By measuring microsite surface temperatures, which varied by up to 35°C at air temperatures > 44°C, we found that leaf-litter coverage and tree size were positively correlated with thermal buffering. Large mallee eucalypts were critical to the birds’ response to very high temperatures, providing high perches that facilitated convective cooling, the coolest tree-base temperatures and the greatest prevalence of tree-base crevices or hollows that were used as refuges at air temperatures > 38°C. Tree-base hollows, found only in large mallees, were cooler than all other microsites, averaging 2°C cooler than air temperature. Despite the plasticity of the birds’ response to heat, 29% of our habituated study population died when air temperatures reached a record-breaking 49°C, demonstrating the limits of behavioral thermoregulation and the potential vulnerability of organisms to climate change.

behavioral thermoregulation heat waves heat dissipation microhabitat thermal profile avian thermoregulation large mallee trees thermal refuge Australian Research Council10.13039/501100000923 Wettenhall Environment Trust10.13039/501100013972 Australian Research Council10.13039/501100000923 Centre for Australian National Biodiversity Research10.13039/501100001175

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Anthropogenic climate change has led to an increase in the frequency and intensity of extreme weather events, particularly heat waves (Stillman, 2019). Record-breaking temperatures are having severe consequences for biodiversity, with mass mortality events (Welbergen et al., 2008; McKechnie and Wolf, 2010; McKechnie et al., 2021), the loss of arid-zone communities (Riddell et al., 2019) and reduced population viability (Thomas et al., 2006; Ruthrof et al., 2018; Stillman, 2019).

      Physiologically informed models predict severe losses for birds in hot, arid environments due to acute heat stress (Conradie et al., 2020), but they do not take into account the positive effect of many thermoregulatory behaviors, which may be substantial based on the few studies that have evaluated the survival of wild individuals during heatwaves (Cooper et al., 2019; Sharpe et al., 2019). At high temperatures, behavioral thermoregulation serves two functions: the minimization of heat gain and the facilitation of heat dissipation. Given that solar radiation is the primary source of heat load (Mitchell et al., 2018), with 55% of the sun’s energy comprised of non-visible radiant heat (Stuart-Fox et al., 2017), avoiding sun exposure through shade use and altered activity time budgets is an almost universal behavioral response (Hetem et al., 2012; Hall and Chalfoun, 2019). However, this is only a partial solution because reflected solar radiation and radiant heat emanating from sun-warmed surfaces also contribute to heat load. Air temperatures that exceed body temperature also result in heat gain, which endotherms avoid by using cooler microhabitats (Williams et al., 1999; Walde et al., 2009; Carroll et al., 2015; Ruth et al., 2020) but this strategy relies upon thermal heterogeneity within the organism’s environment. Behaviors that curtail metabolic heat production, such as inactivity and fasting, also reduce heat gain (Beale et al., 2018) but may adversely impact energy balance (Youngentob et al., 2021).

      At high environmental temperatures, endotherms must dissipate heat. They can do this via sensible (dry) heat transfer or latent (evaporative) heat transfer. All forms of dry heat transfer (conduction, convection and radiation) depend upon the existence of a temperature gradient between the surface of the animal and its environment: the steeper the gradient, the more effective the heat transfer. Conductive cooling occurs when objects of differing temperature touch, and it is enhanced by maximizing bodily contact with cool, poorly insulated substrates, such as sprawling in newly excavated sand, hugging bare tree trunks or clasping cool perches (Dawson, 1973; Muiruri and Harrison, 1991; Briscoe et al., 2014). Convective heat transfer occurs via the currents within a fluid or gas (e.g., air) which are generated by temperature-related differences in the medium’s density. Losing heat via convection is impaired by an endotherm’s plumage or pelage and tends to be ineffectual unless the velocity of the air flow is artificially increased, by wind or rapid movement (i.e., “forced” convective cooling; Mitchell et al., 2018). Long, narrow objects and those with a large surface area to mass ratio, lose heat more rapidly (Mitchell et al., 2018), so animals can maximize convective cooling by altering their posture and orientation, reducing the insulative properties of their fur or feathers by ptilo- or piloretraction, and by exploiting windy microsites. In radiant heat transfer, animals lose heat by emitting infrared electromagnetic waves. Although mechanisms that maximize radiant heat loss are usually under autonomic control (e.g., the vasodilation of capillaries in uninsulated body parts such as beaks, ears, legs or facial skin; Tattersall et al., 2009; Weissenböck et al., 2010), the efficiency of these thermal windows can be enhanced behaviorally via movement (e.g., ear flapping), changes in posture and orientation, and by microsite choice.

      Once environmental temperatures equal or exceed body temperature, interactive strategies that facilitate sensible (dry) cooling will become detrimental, serving to expediate the acquisition of heat instead. Although endotherms can use regulated hyperthermia (allowing body temperature to rise above normal levels) to maximize and prolong the efficiency of dry cooling mechanisms (Tieleman and Williams, 1999), there is a limit to how high body temperature can safely rise (McKechnie and Wolf, 2019). When environmental temperature exceeds body temperature, organisms must resort to evaporative (or latent) cooling to prevent lethal heat stress. Behaviors that facilitate evaporative cooling include bathing, mud-wallowing, licking saliva on the body and urohidrosis (using excreta to wet parts of the body), while the primary physiological mechanisms are panting, sweating in some mammals, or gular fluttering in some birds (Ingram, 1965; Dawson, 1973; Arad et al., 1989; Mole et al., 2016; McKechnie and Wolf, 2019). Rates of evaporative cooling can be accelerated by behaviors that enhance convective heat loss, but, for animals with limited access to water, the loss of body water poses a serious dehydration risk (Conradie et al., 2020). During prolonged heat exposure, behavioral strategies that constrain evaporative water loss to levels required for thermal homeostasis will aid survival, and animals may thus seek out microsites with lower wind velocity and greater humidity (Walde et al., 2009; Luna et al., 2020).

      Although we know that endotherms can adopt a wide array of thermoregulatory behaviors, the breadth of individual species’ behavioral repertoires are largely unknown, especially in small species, and it is unclear to what degree responses to heat are flexible or fixed. The extent to which organisms can modify their thermoregulatory behavior under global warming is critical, given that behavioral adjustment can buffer organisms from lethal effects and provide time for genetic adaptations to evolve (Tuomainen and Candolin, 2011). There are, however, limitations. Firstly, an organism’s behavioral repertoire is the product of selection pressures generated by past environments, so its responses may be insufficient, or simply inappropriate, to meet novel conditions (Tuomainen and Candolin, 2011). Many thermoregulatory behaviors cannot simply be “scaled up” in response to increasing temperature because behaviors that facilitate dry heat loss in moderate heat are maladaptive (promoting heat gain) once environmental temperatures become extreme. Additionally, the costs associated with thermoregulatory behaviors, such as dehydration risk from panting or sweating, or loss of body condition from changed foraging patterns, may become untenable with greater heat exposure (Albright et al., 2017; Cunningham et al., 2021; Youngentob et al., 2021). Finally, many thermoregulatory behaviors are dependent upon the thermal heterogeneity of an organism’s environment, yet anthropogenic environmental change can alter the thermal profile of habitat, reducing the availability of critical thermally buffered microsites (Chen et al., 1999; Neel and McBrayer, 2018). Only by obtaining a clear understanding of how organisms respond behaviorally to heat, the costs associated with these behaviors and which elements of habitat are essential for these behaviors, will we be able to effectively predict the impact of heat waves and begin to develop appropriate mitigation strategies.

      This study focusses on a small passerine, the Jacky Winter (Microeca fascinans), living in a semi-arid region of southern Australia experiencing unprecedented heat wave events (Figure 1). Prior work at the study site found that wild individuals (with no access to water) can withstand > 10 h exposure to air temperatures ≥ 40°C, even though we would expect them to succumb to lethal dehydration based on the thermal tolerance of similar sized passerines in the laboratory (Sharpe et al., 2019). The aim of this study was to determine the behavioral strategies the birds use and identify factors that may limit their ability to cope with rising environmental temperatures in the future. We quantified the breadth of the birds’ repertoire of thermoregulatory behaviors, from mild to near-lethal temperatures, to assess whether their responses were nuanced, flexible and responsive to environmental conditions. We hypothesized that at high air temperatures the birds would adopt heat dissipation behaviors, such as wing-spreading and panting, reduce high intensity motor behaviors and alter their foraging time budget to avoid feeding. We predicted that increasing air temperature would lead to changes in microhabitat use, with potential shifts in perch height, shade use and the size of perch trees. We identified the potential costs of these temperature-related changes in behavior, in relation to foraging effort. We also examined to what degree the birds’ thermoregulatory behaviors were dependent on particular microhabitats and quantified the associated thermal benefits of these microsites. Without a detailed mechanistic understanding of how small endotherms are utilizing habitat during heat waves, the costs involved, and which components of the habitat serve as critical thermal buffers, it is impossible to accurately predict the impact of climate change on population persistence or devise conservation strategies that protect vulnerable biodiversity.

      (A) Mean annual number of days when maximum air temperature was ≥ 42°C, 1996 to 2020 (Renmark; BOM). (B) Weather at the study site during the data collection period (Jan–Feb 2020). Asterisks indicate days upon which behavioral data were collected.

      Materials and Methods Study Site

      The study was undertaken in semi-arid mallee woodland at Calperum Station, South Australia (34°03′S 140°38′E) during the austral summer (January–February) of 2020. The vegetation at the study site is comprised of low, multi-stemmed mallee eucalypts (Eucalyptus oleosa, E. dumosa, E. incrassata, E. socialis) and sugarwood (Myoporum platycarpum) above a sparse understorey of Senna and Acacia shrubs and porcupine grass (Triodia scariosa). All study groups lived in woodland that had not been burnt within the last 50 years. Mean annual rainfall is 251 mm, distributed irregularly across the year, and mean daily maximum temperatures in January and February are 33.8 and 32.7°C, respectively [data for Renmark, 1996–2020; Bureau of Meteorology, Australia (BOM)]. The frequency of extreme heat events at this location has been increasing, with the annual number of days ≥ 42°C more than doubling in the last 25 years (Figure 1A; Renmark, BOM).

      Study Species

      The study species—the Jacky Winter (Microeca fascinans)–is a small (14–20g) Australasian robin (Petroicidae) found in woodlands throughout Australia (Higgins and Peter, 2002). It is a “perch and pounce” predator, snatching tiny to small arthropods, either on the wing, from the ground surface or—less frequently—from vegetation (Recher and Davis, 1998). Although not a desert-adapted species, Jacky Winters rely entirely on dietary water, and surface water was unavailable to the study population during the data collection period. Pairs are territorial year-round (territory size is 1.7 hectares in southern Queensland; Wood et al., 2008) although they occasionally form cooperative groups of up to six birds (Higgins and Peter, 2002). Breeding occurs from September to January, with multiple clutches (comprised of two eggs) laid in open cup nests (Donaghey and Donaghey, 2017). At high temperatures, Jacky Winters use wing-spreading to facilitate convective heat loss and panting for evaporative cooling (Sharpe et al., 2019, 2021).

      Behavioral Data

      Our color banded population of 40 breeding groups of Jacky Winters has been studied since May 2018. A subset of 16 groups have been habituated to the presence of an observer accompanying the birds at 3–5 m to allow accurate and unimpaired behavioral observations.

      Behavioral data were collected from non-breeding birds between 8:00 and 16:00 during January and February 2020. Air temperatures during observation periods ranged from 15 to 43°C (Figure 1B; see “Weather and surface temperature data” for measurement details). We undertook 20-minute focal observation sessions, during which an observer and a scribe documented the following behaviors of the focal bird: all predator scares, social interactions (intra and intergroup squabbles and chases), non-foraging flights > 5 m and prey catching attempts (distance from perch to location of prey; location of prey: ground, air, leaves, trunk). Due to the very small size of the Jacky Winters’ prey, we were unable to ascertain whether prey catching attempts were successful. We also documented the start and stop times of all bouts of preening, panting and wing-spreading (bouts were considered ended if the behavior ceased for > 10 s or was replaced by a different behavior). We recognized three wing-spreading postures: wing-raising (wings held slightly away from the sides of body), wing-drooping (wings held further away from body and wing-tips lowered beneath the level of the tail) and wind-surfing (wings held out horizontally, similar to flying position). We also noted changes to body posture and ptiloerection but did not quantify these due to the difficulty of defining them objectively. Additionally, every 2 min throughout the 20-min observation period, we recorded details of the focal individual’s perch, estimating height above ground, degree of sun exposure (full sun, shade, dappled or overcast), direction faced (to nearest 45° compass point, using a Garmin Etrex 30x GPS), whether the bird was > 0.5 m from a living, naked (i.e., without dead fibrous bark) trunk/branch > 8 cm in diameter, and size of tree (diameter of the tree’s largest trunk at 1.5 m). Prior to data collection, all observers were trained to estimate distances and heights accurately using a Bosch digital laser distance measure. During observation periods, we paused all data collection if the focal individual ceased to be visible and resumed when the bird could be seen again. If the focal bird could not be relocated within 10 min-, we aborted the observation session. Sessions of < 5 min were discarded.

      We collected behavioral observations for 17 adult, non-breeding Jacky Winters (nine males, eight females) from 10 habituated groups. To ensure we obtained a balanced sample across all individuals, time of day and temperatures, we divided the 8-h data collection period into four 2-h blocks and classified days as either mild (<35°C), warm (35–38°C) or hot (>38°C) based on the maximum temperature for that day. To select which bird to sample, we chose individuals randomly from the pool of unsampled birds for that specific temperature/time of day category. Every individual was sampled during all four time periods and on cool, warm and hot days, with an average of 14.4 ± 0.8 observation sessions obtained for each bird (range 11–21). In total, we collected 79 h of behavioral data and 2,379 records of perch choice.

      Weather and Surface Temperature Data

      To assess how weather variables influenced the birds’ behavior we used weather data collected every 30 min within 6 km of our study site by the Calperum-Chowilla OzFlux land-atmosphere observatory, operated by the Terrestrial Ecosystem Research Network (TERN). Windspeed and wind direction were measured 2 m above ground by a RM-Young Wind Sentry. At a height of 20 m, vapor pressure was measured by a LI-COR LI-7500 infra-red gas analyzer, and incoming shortwave radiation, by a large Kipp and Zonen CNR4. Air temperature in the shade was measured at a height of 2 m by a Vaisala HMP-45C temperature probe. We used this OzFlux weather data for all analyses of the birds’ behavior. Because our behavioral observation sessions were shorter than the weather logging interval (20 versus 30 min), when allocating weather data to a session that occurred between weather readings, we selected the weather reading closest to the observation period (i.e., always within 10 min).

      To obtain an indication of the thermal profile of the bird’s habitat, we measured surface temperatures at 83 trees (all mallee eucalypts) within 10 Jacky Winter territories. All territories were within areas that had remained unburnt for at least 50 years. Temperatures were measured on clear afternoons during January 2020 (16:00 −19:30) when air temperature was ≥ 35°C (mean 39.5°C; range 35–47°C). We used a Digitech (model QM7221) infrared laser digital thermometer gun at a distance of 2cm, to measure all surface temperatures.

      When choosing which trees to sample, we randomly selected up to five GPS waypoints from within each group’s territory (waypoints represent a location where the territory-owners have been observed, and a pool of approximately 35 waypoints were available for each group). At the waypoint location, we measured air temperature at a height of 1.5 m using a Falcon Kestrel 2000 pocket wind and temperature meter (0.5°C accuracy) positioned within our own shade. We also took three ground surface temperature measurements (sun-exposed sand, shaded sand and shaded leaf litter), all sampled > 2 m from a tree trunk. We then selected two trees: the nearest to the waypoint and the largest (based on trunk circumference) within a 20 m radius of the waypoint. At each tree, we identified the thickest trunk (because mallee eucalypts are multi-stemmed) and measured the shaded surface temperature of this trunk at its base and at a height of 1.5 and 2.5 m. We also recorded its circumference at 1.5 m. We identified any potential refuges (crevices, spouts, hollows, etc.) at the tree’s base and measured the surface temperature within these refuges at the deepest/shadiest location. We estimated the extent of leaf litter cover beneath the tree (the percentage of ground covered by leaf litter within a circle, 1 m in diameter, centered on the largest trunk) and measured the shaded surface temperature of this leaf litter.

      Statistical Models

      We constructed a series of linear and zero-inflated mixed models to explore relationships between behavior, habitat characteristics and weather. Explanatory variables were chosen based on hypothesized drivers, including potential non-linear effects and interactions.

      Foraging behavior. To test the hypothesis that foraging behavior will decline with increasing heat load (Youngentob et al., 2021), we constructed two separate models, with rate of prey capture attempts and distance flown to obtain prey as response variables. In each model we included the following fixed effects: air temperature and solar radiation (contributors to heat load; Mitchell et al., 2018), wind speed (because wind reduces heat load due to enhanced cooling; Wolf and Walsberg, 1996) and two-way interactions between these weather variables. Because microhabitat choice may impact foraging behavior (Cunningham et al., 2015), we also included perch height, perch height × air temperature and proportion of perches in shade as fixed effects. We included individual and group identity as random terms, to account for multiple sampling of the same birds and groups. We controlled for the following variables by including them as fixed effects: time of day (as the number of minutes after sunrise), the bird’s sex (male or female) and observer identity (to account for any differences among observers). Although observers were trained in length estimation prior to data collection, we found that one observer slightly, but consistently, over-estimated while another slightly, but consistently, under-estimated. This resulted in a significant difference between observers in the quantification of parameters that involved estimating distance or trunk width. By including “observer” as a fixed effect, the model takes into account this source of variation so that it does not impact upon our findings relating to weather variables. In one model (Table 1B), we included observer as a random effect, rather than a fixed effect, because the model otherwise failed to converge. In this case, it was preferable to include observer as a random term to account for differences in the number of behavioral watches undertaken by each observer. In the model assessing distance flown to prey, we also included the location of the potential prey item (four categories) as a fixed effect. In a third model, we tested the hypothesis that birds will pre-emptively increase their foraging effort on the mornings of very hot days, using rate of prey catching attempts between 08.00 and 10.00 h as the response variable. We included the day’s maximum air temperature as a categorical variable (>38 or <38°C) and the same random terms as above.

      Results of REML mixed effects models testing for factors associated with foraging behavior.

      Variables Estimate SE t p
      A. Frequency of prey capture attempts
      Intercept 31.370 2.965 10.578 <0.001
      Minutes after sunrise −5.123 1.678 −3.054 0.003
      Air temperature −1.760 1.713 −1.028 0.305
      Solar radiation −1.842 1.823 −1.011 0.313
      Perch height −3.461 1.500 −2.307 0.022
      Proportion of perches in shade −2.669 1.602 −1.666 0.097
      Air temperature × solar radiation −4.806 1.561 −3.078 0.002
      B. Frequency of prey capture attempts in morning (8–10 am).
      Intercept 35.11 3.61 9.727 0.000
      Day’s maximum temperature > 38°C 12.06 5.11 2.360 0.022
      C. Distance flown to obtain prey
      Intercept 1.386 0.035 39.983 <0.001
      Sex (male) 0.103 0.334 3.097 0.007
      Air temperature 0.014 0.013 1.126 0.260
      Windspeed 0.019 0.013 1.456 0.146
      Solar radiation 0017 0.014 1.240 0.215
      Perch height 0.032 0.012 2.577 0.010
      Location of prey (leaves)* −0.421 0.039 −10.703 <0.001
      Location of prey (trunk)* −0.404 0.027 −14.697 <0.001
      Location of prey (ground)* −0.043 0.292 −1.492 0.136
      Air temperature × solar radiation 0.026 0.013 1.936 0.053
      Air temperature × windspeed 0.047 0.012 3.876 <0.001
      Observer (1) 0.088 0.033 2.632 0.009
      Observer (2) −0.080 0.029 −2.735 0.006

      *Relative to Location of prey (air). Final models are shown, following sequential removal of non-significant variables; significant variables in bold.

      Non-foraging behavior. To test the hypothesis that non-foraging motor activities will decline with increasing heat load (Cunningham et al., 2021), we constructed three separate models with the response variables: rate of non-foraging flights (>5 m), rate of social interactions and proportion of time spent preening. We included the three weather variables and their two-way interactions as fixed effects, controlled for sex and time of day, and used the same random terms as (1).

      Heat dissipation behaviors. To assess the influence of weather variables on heat dissipation behaviors we ran two models with the following response variables: the proportion of time spent panting and the proportion of time spent wing-spreading (combining wing-raising, wing-drooping and wind-surfing into a single variable). In both models we included the same terms as in (2) plus a quadratic term for air temperature because we expected a non-linear response due to threshold-related responses. In the panting model we fitted vapor pressure, and its interaction with temperature, as additional fixed effects because humidity is known to affect panting behavior at high temperatures (Mitchell et al., 2018).

      Perch choice. We hypothesized that the birds’ choice of microsite will alter with increasing heat load, so we tested how the three weather variables were related to the following response variables: likelihood of perching in the sun, perch height, size of the perch tree, whether perched within 0.5 m of a naked branch/trunk (Briscoe et al., 2014) and whether facing the wind (the last two variables were categorical: yes/no). We tested each of these response variables in a separate model. We fitted the same fixed effects, including interactions and random effects, as in (2) and included air temperature as a quadratic term because we expected responses to be non-linear due to threshold effects.

      Surface temperatures of mallee eucalypts. To test the hypothesis that the relative surface temperature of a tree’s microsites is negatively related to tree size and leaf-litter ground cover, we ran five separate models with the following five response variables: surface temperature of leaf-litter at tree-base, tree-base refuges (crevices and hollows), tree trunk at its base, tree trunk at 1.5 m and tree trunk at 2.5 m. We fitted air temperature, tree size (trunk circumference at 1.5 m) and percentage leaf-litter cover as fixed effects. Models were fitted using the lm function because there were no repeat measures.

      Model Fitting

      For each model we fitted all potential explanatory variables (as described above), then removed non-significant terms sequentially, starting with interactions, to arrive at a final model with only significant or near-significant terms. The model with the lowest AIC score was chosen, which always only included significant or near-significant variables. To avoid multicollinearity among explanatory variables we first estimated pair-wise Pearson’s correlation coefficients and confirmed that correlations were not high (|r| < 0.7). Model fit was checked using diagnostic plots to confirm model residuals were distributed around zero. For linear models we used residual plots and normality plots to check for deviations from normality among residuals, and for zero-inflated models we used DHARMa package (Hartig, 2020) to check for overdispersion.

      Linear mixed models were fitted with REML (Restricted maximum likelihood) using the lmer function in the lme4 package (Bates et al., 2015) and generalized linear mixed models (GLMM) were fitted using the glmer function in the lme4 package (Venables and Ripley, 2002). Zero-inflated models (used for heat dissipation models) were fitted using the glmmTMB package with beta-binomial distribution. All models were fitted in R 3.3.2 (R Development Core Team).

      Other Statistical Analyses

      To compare the surface temperatures of different microsites within mallee eucalypt trees (except for potential refuges), we used the full data set and conducted a Repeated One-way ANOVA and Tukey tests for all pairwise comparisons, using R 3.3.2. We also undertook a second Repeated ANOVA to compare the surface temperatures of potential refuges with other microsites, restricting the analysis to trees that contained refuges. To test whether the difference between surface temperatures and air temperature changed with air temperature, we used Pearson correlation coefficients to compare the variable “surface temperature minus air temperature” with air temperature. These tests, and all other non-modeling statistical tests were conducted in Microsoft Excel 2016 v2111. Means are presented ± 1 SE.

      Results Foraging Behavior

      Although there was no overall effect of either air temperature or solar radiation on foraging effort, when both these variables were simultaneously high, Jacky Winters substantially reduced their foraging effort, after controlling for time of day (Table 1A: air temperature × solar radiation interaction; Figure 2A). At >35°C, the birds averaged only 12 (±2) prey capture attempts per hour compared with 35 (±2) at < 28°C. Hourly rate of attempts was also negatively related to perch height and showed a negative trend with the proportion of a bird’s perches that were in the shade (Table 1A).

      The relationship between air temperature and (A) hourly rate of prey catching attempts and (B) non-foraging flights > 5 m, and percentage of time devoted to (C) any form of wing-spreading, (D) wing-raising, wing-drooping and wind surfing, and (E) panting, and (F) proportion of perches located in direct sun. Showing raw data with polynomial trend lines generated by Microsoft Excel v2111.

      To compensate for reduced foraging effort at high temperatures, individuals modified their time budget. On days > 38°C, they increased their rate of foraging attempts in the mornings (8–10 am) by 30% and reduced afternoon foraging rates by 70%, (as compared with days < 35°C) (Table 1B and Figure 3). To test if this increase in foraging effort was genuinely pre-emptive and that the birds were not simply compensating for a deficit of foraging on the previous afternoon, we focused on the hourly rate of foraging attempts at 8–10 am on days with a maximum temperature > 38°C, comparing days that were preceded by a warm day (35–38°C), when the birds foraged normally, and days preceded by a > 38°C day, when they abstained from afternoon foraging. There was no significant difference between the two (t-test: t11 = 0.77, p = 0.46; hourly attempts: warm: 50 ± 5; hot: 42 ± 9).

      Hourly rate of prey catching attempts by time of day, on days with a maximum temperature that was mild (< 35°C, n = 91 observation sessions), warm (35–38°C; n = 83) or hot (> 38°C; n = 71). Error bars show SE.

      Jacky Winters did not modify the distance they flew to catch prey in response to air temperature, windspeed or level of solar radiation, although they flew further at high temperatures when the wind was strong (Table 1C). The distance the birds flew to obtain prey was, however, positively correlated with perch height, but unrelated to whether the bird was perched in the shade. Males flew further than females. Flight distance also varied with the prey’s location, with birds flying furthest for aerial or ground prey but shorter distances for prey on leaves or tree trunks (Table 1C).

      Other Activities

      The hourly rate of non-foraging flights (>5 m) was negatively related to air temperature, after controlling for time of day (Figure 2B). This negative effect of increasing temperature on non-foraging flights tended to be exacerbated as solar radiation and windspeed increased (Table 2A: air temperature × solar radiation interaction, air temperature × windspeed interaction, respectively). Males moved more frequently than females (Table 2A). Hourly rates of social interactions were also negatively related to air temperature and to windspeed (Table 2B). However, the proportion of time spent preening showed a non-linear relationship with air temperature, increasing with temperature until the mid 30°Cs, then decreasing. Preening was also positively related to solar radiation, and this relationship was stronger as temperature increased (Table 2C: air temperature × solar radiation interaction).

      Results of REML mixed effects models testing for factors associated with non-foraging activities.

      Variables Estimate SE t p
      A. Frequency of non-foraging flights
      Intercept −6.131 0.136 −45.21 <0.001
      Minutes after sunrise −0.240 0.072 −3.34 0.001
      Sex (male) 0.226 0.110 2.06 0.039
      Air temperature −0.210 0.064 −3.28 0.001
      Solar radiation 0.020 0.078 0.260 0.795
      Windspeed −0.130 0.070 −1.86 0.063
      Air temperature × solar radiation −0.139 0.075 −1.85 0.064
      Air temperature × windspeed −0.114 0.067 −1.71 0.088
      Observer (1) −0.516 0.168 −3.07 0.002
      Observer (2) 0.267 0.135 1.97 0.048
      B. Frequency of social interactions
      Intercept −8.294 0.255 −32.58 <0.001
      Air temperature −0.414 0.137 −3.02 0.003
      Windspeed −0.435 0.161 −2.70 0.007
      C. Proportion of time spent preening
      Intercept −2.451 0.164 −14.911 <0.001
      Minutes after sunrise 0.463 0.086 5.367 <0.001
      Air temperature 5.299 1.080 4.905 <0.001
      Air temperature2 −5.968 1.102 −5.414 <0.001
      Solar radiation 0.309 0.117 2.646 0.008
      Air temperature × solar radiation 0.364 0.121 3.009 0.003

      Final models are shown, following sequential removal of non-significant variables; significant variables in bold.

      Heat Dissipation Behaviors

      The proportion of time spent wing-spreading (i.e., wing-raising, wing-drooping or wind-surfing) was positively associated with air temperature, although the relationship had a non-linear component (Table 3A and Figure 2C). The birds began wing-raising at air temperatures as low as 26°C and wing-drooping at about 32°C. Wing-raising was the most prevalent form of wing-spreading until around 35°C, when wing-drooping became more prevalent (Figure 2D). Proportion of time spent wing-spreading declined as windspeed increased, but the declining effect of windspeed on wing-spreading was reduced as air temperatures increased (Table 3A: air temperature × windspeed interaction).

      Results of zero-inflated models with beta-binomial distribution (glmmTMB) testing for factors associated with the proportion of time spent undertaking heat dissipation behaviors.

      Variables Estimate SE Z p
      A. All wing-spreading behaviors
      Intercept −6.503 0.509 −12.771 <0.001
      Air temperature 26.129 3.062 8.535 <0.001
      Air temperature2 −20.360 2.562 −7.947 <0.001
      Windspeed −0.890 0.251 −3.542 <0.001
      Air temperature × windspeed 0.548 0.218 2.509 0.012
      B. Panting
      Intercept −8.317 0.748 −11.116 <0.001
      Air temperature 3.225 0.435 7.414 <0.001
      Solar radiation −0.630 0.289 −2.181 0.029
      Windspeed −1.004 0.329 −3.055 0.002
      Vapor pressure 1.465 0.551 2.659 0.008
      Air temperature × vapor pressure −0.919 0.302 −3.040 0.002

      Final models are shown, following sequential removal of non-significant variables; significant variables in bold.

      Birds began panting at air temperatures in the 30°Cs, and proportion of time spent panting increased with air temperature (Figure 2E). Vapor pressure was also positively associated with time panting, but its effect on panting was less pronounced as air temperature increased (Table 3B: air temperature × windspeed interaction). Conversely, windspeed was negatively related to time spent panting: birds panted less when the wind was strong (Table 3B and Figure 4). Solar radiation was also negatively related to time panting.

      Mean percentage of time birds spent panting at air temperatures > 35°C, by windspeed (m/s). Error bars show SE.

      Microsite Choice

      The likelihood of a bird choosing to perch in direct sunlight was negatively correlated with both air temperature and level of solar radiation (Table 4A). In sunny conditions, birds began using shaded perches at air temperatures > 28°C. Only 1% of perches were in sun at temperatures > 35°C (compared with 47% at < 28°C; Figure 2F). Birds also shifted to shaded perches in windy conditions (Table 4A).

      Results of REML or GLMM mixed effects models testing for factors associated with perch choice.

      Variables Estimate SE T p
      A. Likelihood of perching in sun
      Intercept 0.229 0.017 13.518 <0.001
      Minutes after sunrise −0.068 0.017 −3.985 <0.001
      Air temperature −0.123 0.015 −8.156 <0.001
      Solar radiation −0.049 0.019 −2.533 0.012
      Windspeed −0.066 0.015 −4.510 <0.001
      B. Perch height
      Intercept 1.293 0.0454 28.484 <0.001
      Air temperature −0.415 0.1830 −2.270 0.024
      Air temperature2 0.545 0.1836 2.970 0.003
      Windspeed −0.072 0.0191 −3.769 <0.001
      C. Size of perch tree
      Intercept 2.488 0.1167 21.317 <0.001
      Minutes after sunrise 0.056 0.0292 1.924 0.056
      Air temperature −1.809 0.2921 −6.193 <0.001
      Air temperature2 2.003 0.2960 6.768 <0.001
      Observer (1) 0.143 0.0841 1.702 0.090
      Observer (2) −0.3089 0.0772 −6.193 <0.001
      D. Within 50cm of bare limb/trunk
      Intercept −3.733 0.5319 −7.017 <0.001
      Minutes after sunrise 0.581 0.2480 2.343 0.019
      Air temperature 0.989 0.2624 3.768 <0.001
      Observer (1) 1.617 0.5998 2.696 0.007
      Observer (2) −1.617 0.6126 −2.640 0.008
      E. Facing into wind
      Intercept −0.392 0.1160 −3.375 0.001
      Minutes after sunrise −0.249 0.1319 −1.891 0.059
      Air temperature 0.524 0.1301 4.026 <0.001
      Windspeed 0.523 0.1318 3.970 <0.001
      Solar radiation −0.418 0.1352 −3.088 0.002
      Air temperature × solar radiation −0.251 0.1247 −2.014 0.044

      Final models are shown, following sequential removal of non-significant variables; significant variables in bold.

      There was a non-linear relationship between the height of a bird’s perch and air temperature, with the birds switching to elevated perches at temperatures > 35°C, when mean perch height almost doubled (from 2.7 to 5.1 m; Figure 5A and Table 4B). Perch height was negatively related to windspeed, with birds perching lower in high winds (Table 4B). Birds choosing high perches favored larger trees, with a positive correlation between perch height and perch tree size (Pearson’s correlation: r1978 = 0.34, p < 0.001). The size of the perch tree was also related to air temperature, with birds favoring large trees at the highest temperatures (Figure 5B and Table 4C). Air temperature was also positively related to the likelihood of the birds perching within 0.5 m of a naked trunk or large branch (Table 4D).

      Relationship between air temperature and (A) the mean height of perches and (B) the mean size of the perch tree (diameter of largest trunk at 1.5 m). Error bars show SE.

      Birds perched facing into the wind more often than expected by chance (44 versus 25%; Chi2 goodness of fit: X2 = 434.38, n = 2,322, p < 0.001) and this became more pronounced at high temperatures (67% at > 40°C; Table 4E). Facing into the wind was also positively related to windspeed, but negatively associated with level of solar radiation (Table 4E). Birds were also twice as likely to face into the wind if it was coming from the North (i.e., from the hot central Australian desert) as compared with other directions (78 versus 38%; Figure 6).

      Wind direction: mean air temperature recorded for observations made when the wind was coming from a particular direction, and proportion of those observations in which the bird was facing into the wind (25% expected by chance). Error bars show SE for air temperature.

      Once air temperature reached 39–40°C, Jacky Winters usually moved to the ground, sheltering in shaded crevices and depressions at the base of large trees. They did not perch on the ground under any other circumstances. At ≥ 39°C, 39% of our focal individuals retreated to a tree-base refuge, but this is a recognized underestimate because, once birds were within a refuge, we were unable to locate them to begin focal observations, so our sample was entirely biased to individuals that remained out of refuges. In total, we observed nine instances of Jacky Winters moving into tree-base refuges (eight individuals from four groups) but, at air temperatures ≥ 41°C, we observed only two individuals (from one group) remaining aloft.

      Thermal Profile of Habitat

      There was considerable thermal heterogeneity in the birds’ habitat at air temperatures > 35°C (Figure 7). Sun exposure greatly increased surface temperatures, with sun-exposed sand 15.9 (±1.2)°C hotter than air temperature and 7.3 (±0.9)°C hotter than shaded sand, at an average air temperature of 39.5°C (Repeated one-way ANOVA for surface temperatures, excluding refuges: F6,81 = 189.1, p < 0.001; Tukey: p < 0.001). The temperature difference between sun-exposed sand and air temperature increased as air temperature increased (Pearson’s correlations: r42 = 0.442, p = 0.003).

      Mean surface temperature of habitat substrates at a mean air temperature of 39.5°C on sunny afternoons. Error bars show SE. (Repeated ANOVA: F6,81 = 189.1, p < 0.001; Tukey: all pairwise comparisons between substrate categories: p < 0.05, except for shaded litter under tree versus trunk base and trunk at 2.5 m, and trunk base versus trunk at 2.5 m).

      Trees reduced ground surface temperatures, with shaded leaf-litter at the base of a tree 3.6 (± 0.4)°C cooler than shaded leaf-litter > 2 m from a tree (Tukey: p < 0.001). The average temperature of shaded, tree-base litter was the same as air temperature at air temperatures ≤ 38°C but rose to 6°C above air temperature at air temperatures ≥ 45°C (Pearson’s: r76 = 0.481, p < 0.0001). The size of the tree (circumference of the tree’s largest trunk) was negatively related to surface temperatures beneath the tree, with larger trees being cooler at all measured locations, except for the trunk at 2.5 m (Tables 5A–D and Figure 8).

      Results from linear models (lm) testing for factors associated with surface temperatures of mallee eucalypt trees, at air temperatures > 35°C.

      Variables Estimate SE t p
      A. Leaf litter at tree base
      Intercept 42.256 0.362 116.588 <0.001
      Air temperature 5.057 0.374 13.536 <0.001
      Tree size (trunk circumference) −1.331 0.427 −3.116 0.003
      Leaf litter coverage −0.952 0.364 −2.616 0.011
      B. Base of tree trunk
      Intercept 42.184 0.326 129.617 <0.001
      Air temperature 4.460 0.331 13.483 <0.001
      Tree size (trunk circumference) −1.144 0.328 −3.488 <0.001
      Leaf litter coverage −0.790 0.329 −2.402 0.019
      C. Potential tree base refuge (crevices)
      Intercept 39.192 0.862 45.448 <0.001
      Air temperature 2.737 1.035 2.645 0.014
      Tree size (trunk circumference) −1.306 0.611 −2.138 0.042
      Leaf litter coverage −1.289 0.698 −1.847 0.762
      D. Tree trunk at 1.5 m
      Intercept 44.558 0.277 160.607 <0.001
      Air temperature 4.534 0.282 16.078 <0.001
      Tree size (trunk circumference) −0.761 0.280 −2.719 0.008
      Leaf litter coverage −0.373 0.280 −1.329 0.188
      E. Tree trunk at 2.5 m
      Intercept 42.556 0.402 105.753 <0.001
      Air temperature 5.130 0.407 12.619 <0.001
      Tree size (trunk circumference) −0.760 0.405 −1.876 0.065
      Leaf litter coverage −0.280 0.406 −0.689 0.493

      Full models are presented; significant variables in bold.

      The thermal benefit of trees: the difference between the surface temperature of shaded leaf-litter beneath a tree as compared with shaded leaf-litter > 2 m from a tree (°C), by tree size (circumference of largest trunk at 1.5 m) at mean air temperature of 39.5°C. Error bars show SE.

      Leaf-litter also moderated ground surface temperatures with shaded leaf-litter 1.4 (±0.3)°C cooler than shaded sand (both measured > 2 m from a tree, at an air temperature of 39.5°C; Tukey: p = 0.047). The greater the proportion of ground covered by leaf-litter (within 1 m of the tree base), the cooler were the surface temperatures at the base of the tree (Tables 5A,B).

      Tree-Base Refuges

      We documented two types of potential thermal refuge at the base of mallee eucalypts: tree hollows and spouts (holes within a dead or living trunk < 50 cm from ground; n = 20; Figure 9a) and small crevices that provided partial shelter (nooks among the tree-base roots or depressions on the basal lignotuber; n = 11; Figure 9b). We included crevices in our sample because Jacky Winters used this refuge type most often.

      Tree-base refuges: (a) a tree hollow and (b) a Jacky Winter sheltering in a crevice/depression. (c) Mean difference between the surface temperature in a tree-base refuge and air temperature (at a mean air temperature of 39.5°C) and (d) the percentage of mallee eucalypts with potential tree-base refuges, by tree size. Error bars show SE.

      The surface temperature within potential tree-base refuges (crevices and hollows) was significantly cooler than all other locations (Repeated one-way ANOVA: F7,31 = 189.1, p < 0.001; Figure 7). Tree-base hollows were 2.0 (± 0.8)°C cooler than air temperature, but tree-base crevices did not differ significantly from air temperature (Paired t-tests: hollows: t19 = 2.368, p = 0.029; crevices: t10 = −1.595, p = 0.142). Tree size affected the thermal benefit of tree-base crevices and hollows, with bigger trees providing cooler refuges (Table 5D and Figure 9c).

      Large trees were also more likely to contain tree-base refuges (Figure 9d): refuge-bearing trees were significantly larger (trunk circumference) than those without (t-test: t25 = 3.016, p = 0.006). Tree-base hollows did not occur in mallees with a trunk circumference < 30 cm (at a height of 1.5 m). Overall, refuges were rare: 63% of trees offered no potential refuges, even though we biased the sample toward large trees (by sampling the largest tree within 20 m at each sampling location).

      Discussion Behavioral Responses to Heat

      Jacky Winters exhibited a broad repertoire of thermoregulatory behaviors, which was nuanced, flexible and highly responsive to both air temperature and other abiotic factors, such as wind velocity and solar radiation. The sequence of their behavioral responses to heat is shown in Figure 10. At air temperatures > 28°C, the birds withdrew to shade and reduced physically demanding activities such as non-foraging flights and social interactions. Air temperature per se did not reduce foraging activity (except at temperatures ≥ 38°C), suggesting that energy and water gains from feeding outweighed the costs of increased thermogenesis (Wolf and Walsberg, 1996). However, this balance shifted when air temperature and solar radiation were high simultaneously, and the birds curtailed foraging in response to this greater heat load. This reduction in foraging may have been influenced by heat-related changes to prey availability (Holm and Edney, 1973), but experimental studies show that birds given unlimited food still do not forage at high temperatures (digestion generates metabolic heat; Beale et al., 2018), suggesting that heat, not food availability, is responsible (Ricklefs and Hainsworth, 1968; Olinger, 2017).

      The effect of increasing air temperature on the cooling behaviors and microhabitat use of Jacky Winters in mallee woodland.

      The Jacky Winters also began adopting behaviors that facilitated convective heat loss at air temperatures in the high 20°Cs. In addition to wing-raising, to increase surface area to mass ratio, the birds flattened their plumage to reduce its insulative properties, and adopted a tall, upright posture to elongate body shape (Figure 10). As air temperature rose, wing-spreading became more exaggerated (becoming wing-drooping; Figure 10) and, when > 35°C, the birds moved to elevated perches in the largest trees. This preference for high perches appeared to be related to wind velocity, which increases with elevation (Mcilveen, 1992). Average windspeed at our site doubled between the heights of 2 and 10 m. Choosing the windiest microsites allowed the birds to maximize “forced” convective cooling, and it is notable that they did not use elevated perches if the wind was already strong. The thermal benefit of higher wind velocity is evidenced by our finding that birds devoted less time to heat-dissipation behaviors (e.g., wing-spreading and panting) with increasing windspeed, which is consistent with laboratory findings (Wolf and Walsberg, 1996; Wolf et al., 2000). Jacky Winters were also three times more likely to perch facing into the wind at high air temperatures (>40 versus <20°C), probably to enhance convective heat loss, because narrow objects, pointing into the wind, lose heat more rapidly (Mitchell et al., 2018). Facing into the wind also facilitated wind-surfing (i.e., allowing the wind to lift the wings into flying position; Figure 10), enabling air flow over a greater surface area. By seeking out windy microsites and maximizing convective cooling, birds can reduce their heat load without relying on more costly evaporative cooling.

      At air temperatures in the high 30°Cs, the birds also favored perches close to naked, living branches or trunks, and some individuals were seen lying with their bellies against the wood (a posture only adopted during extreme heat or incubation; Sharpe et al., 2021). This presumably facilitated conductive cooling because the surface temperature of living timber has been shown to be significantly cooler than air temperature, due to water flow in the tree’s phloem tissue and thermal inertia (Briscoe et al., 2014). The birds may also have favored perches close to large branches to capitalize on the dense shade cast by large limbs, because unbroken shade is rare in this habitat.

      As air temperature approached body temperature (approximately 40°C; Boyles et al., 2011), the birds began panting intermittently to facilitate evaporative cooling. Time spent panting increased with air temperature but was relatively low (averaging 13 min per hour at air temperatures ≥ 40°C) presumably reflecting the costs associated with this behavior. Panting uses body water, with rates of water loss increasing linearly with temperature (McKechnie et al., 2017). At air temperatures of 40°C, a small bird loses about 3% of its body mass per hour (e.g. the Lesser Goldfinch, Spinus psaltria; Albright et al., 2017), so the risk of lethal dehydration during prolonged heat exposure is extreme for birds without access to water. Evaporative cooling is also less efficient in humid conditions (Mitchell et al., 2018) and Jacky Winters spent more time panting (an autonomic response to body temperature) when vapor pressure was high.

      Once temperatures rose into the 40°Cs, and dry (sensible) cooling was impossible, most of the birds retreated to the ground, taking refuge in shaded crevices or depressions at the base of large trees. These crevices were significantly cooler than any other location we measured (Figure 7). Inside refuges, the birds huddled together and lay with their bellies contacting the sand to facilitate conductive cooling. Jacky Winters do not normally perch within 5cm of conspecifics (Sharpe LL, pers. obs.), yet we observed one pair huddling with a territorial intruder they had been chasing earlier in the day. A similar breakdown of territoriality occurs in Arizona Grasshopper Sparrows (Ammodramus savannarum ammolegus) at high temperatures when the birds congregate in dense shrubs (Ruth et al., 2020). Huddling reduces the amount of surface area an animal exposes to the environment (Gilbert et al., 2010), which lessens heat gain when environmental temperature exceeds body temperature. Huddling inside a refuge also reduces evaporative water loss, due to increased humidity within the refuge (Luna et al., 2020), which is potentially critical for survival during prolonged heat exposure. The thermal and water-saving benefits of huddling may explain why, on the hottest days, we repeatedly observed large, mixed-species aggregations of small passerines sheltering together within single tree-base refuges.

      Most Jacky Winters modified their behavior and microsite use to minimize convective heat transfer once air temperatures rose above body temperature. This behavioral transition, when heat gradients reverse, may prove to be critical for endotherms now experiencing unprecedented heat. Although we expect organisms to adopt behaviors that maximize their fitness, this is not always the case when individuals encounter novel conditions (e.g., responses to novel predators, artificial light, anthropogenic food; Tuomainen and Candolin, 2011). Although some species may have sufficient cognitive and behavioral flexibility to cope with this transition point (Ghalambor et al., 2007; Mills and McGraw, 2021), for others, air temperatures above body temperature may act as an insurmountable barrier to effective behavioral thermal regulation. Australian flying foxes (Pteropus spp.), for example, exhibit a suite of thermoregulatory behaviors (e.g., wing-fanning to maximize convective and radiant cooling, shade-use, panting and saliva-spreading; Welbergen et al., 2008) but in extreme heat they do not seek cooler microsites or adopt behaviors that minimize dry heat exchange. As a consequence, they succumb to lethal heat stress at air temperatures > 42°C, and 45,500 (in 600 colonies in SE Queensland) died on a single day in 2014 (Welbergen et al., 2014). This vulnerability to extreme heat may be much more widespread than we recognize, particularly among small endotherms (McKechnie et al., 2021) because few species are as readily observable as flying foxes, which roost in large, noisy colonies, and attempts to quantify individual responses to extreme heat are rare (Buchholz et al., 2019).

      Potential Costs of Behavioral Thermoregulation

      Even when lethal stress is avoided, thermoregulatory behaviors carry opportunity costs, with organisms known to reduce sociality, territorial defense, food intake or offspring care (Cunningham et al., 2021). Panting, for example, reduces foraging success in birds that excavate subterranean prey with their beak (du Plessis et al., 2012; van de Ven et al., 2019) and the utilization of cooler microhabitats is often associated with a reduction in forage quality or foraging success (Mason et al., 2017; van de Ven et al., 2019). With greater heat exposure, these costs may become unsustainable. For example, in Mexico’s Sceloporus lizards, the growing need for extended periods of inactivity during the breeding season, to avoid lethal heat stress, has resulted in the extinction of 12% of monitored populations (Sinervo et al., 2010). We found that the Jacky Winters’ use of elevated perches carried foraging costs, (after taking into account the effect of temperature), with birds making fewer prey catching attempts and flying further to capture prey. Perching in shade may also impair the birds’ ability to detect prey because they tended to make fewer foraging attempts from shaded perches. Southern Fiscals (Lanius collaris)—an African “perch and pounce” avian predator—consume 50% less prey when hunting from shaded perches (Cunningham et al., 2015), although this could be due to decreased foraging effort associated with temperature or time of day.

      Reduced food intake—due to the necessity for inactivity and voluntary fasting at high temperatures—is a major cost of thermoregulatory behaviors in endotherms (Youngentob et al., 2021). By mounting video cameras at refuges, we found that Jacky Winters remained within refuges for up to 8 h and only emerged just before sunset (when air temperature dropped to about 38°C), precluding any afternoon foraging. Under these conditions, the birds lose > 2% of body mass per day (Sharpe et al., 2019), and similar losses occur in other wild avian species (du Plessis et al., 2012; Gardner et al., 2016; van de Ven et al., 2019). Such loss of body condition is likely to have long-term consequences for individual health, fitness and survival (Cunningham et al., 2021; Youngentob et al., 2021). Although Jacky Winters can partially recoup lost body condition during the interval between heat waves (Sharpe et al., 2019), the predicted increase in the frequency and duration of heat wave events is likely to have a detrimental impact.

      In an effort to compensate for lost foraging time on very hot days, the Jacky Winters appeared to pre-emptively increase their foraging effort on the mornings of extremely hot days (Figure 3). Given that this species is reliant solely on dietary water, obtaining sufficient food prior to prolonged heat exposure will be critical for avoiding lethal dehydration. Pre-emptive foraging has also been observed in other avian species (Carroll et al., 2015; Cooper et al., 2019) but is reliant upon the birds’ ability to anticipate forthcoming conditions. Overnight temperature seems to be the most likely cue, as evidenced by an avian mass mortality event that occurred on a single, isolated hot day in Western Australia in 2010, when early morning temperatures were indistinguishable from those of previous, much cooler days (Cooper et al., 2019). The short-term predictability of heat waves may be critical to the survival of arid zone birds.

      Thermally Buffered Microhabitats

      The Jacky Winters’ use of different microhabitats altered markedly as temperatures increased and at high temperatures the birds used the largest trees available to them. Surface temperatures at different microsites varied by up to a 35°C on the hottest days (air: > 44°C; sun-exposed sand: 77°C; tree-base refuge: 42°C) but thermally buffered microsites were rare. Tree-base refuges, the coolest sites, were only, on average, 2°C cooler than air temperature. The presence of trees and leaf-litter ground cover reduced surface temperatures, but tree size had the greatest influence: the larger the mallee eucalypt, the cooler the surface temperatures at its base, including within refuges (Figures 8, 9), presumably due to their larger, multitiered canopies (Lindenmayer et al., 2014). This greater leaf area not only increases shade below the tree but amplifies levels of evapotranspiration (Sanusi et al., 2017). Transpiration from leaves directly reduces air temperature below a trees’ canopy by 1 to 8°C, depending on species and environmental conditions (Rahman et al., 2020).

      Large, fully mature mallee eucalypts also provided the birds with the opportunity to perch higher (giving them access to higher wind velocities) and were significantly more likely to contain potential tree-base refuges. In fact, tree-base hollows, the best quality refuges, were found only in the largest mallees (trunk circumference > 30 cm). The importance of large trees to the survival of Jacky Winters became apparent when air temperatures rose into the high 40°Cs. Although only one individual succumbed to acute heat stress/dehydration during the data collection period, 29% of our habituated adults died during a severe heat wave 3 weeks prior to data collection, when air temperature attained a record-breaking 48.8°C. These deaths appeared to be concentrated in parts of our study area that did not contain large trees, and although we did not verify this quantitatively, it underscores the importance of thermally buffered refuges for organisms facing unprecedented heat exposure.

      Large, old trees act as keystone structures in many ecosystems, providing cavity nest-sites and unique microhabitats, facilitating habitat regeneration, storing large quantities of carbon and modifying ecosystem hydrology and water table level (Lindenmayer et al., 2014). However, the potential thermal benefits provided by old, large trees have yet to be quantified and we could find only one published study: in Canada’s boreal forests, stands of mature conifers were significantly cooler than stands of younger trees or shrubland when ambient temperatures were highest, and grizzly bears (Ursus arctos horribilis) favored these old stands at high temperatures (Pigeon et al., 2017). Interspecific comparisons of urban trees reveal that size per se is not a determinant of a species’ thermal buffering properties because small tree species often have denser canopies, and it is leaf area—and rate of evapotranspiration—that dictate cooling effect (Sanusi et al., 2017; Rahman et al., 2020). Arid adapted species provide less thermal benefit because they have lower transpiration rates. Although the thermal buffering provided by mallee eucalypts at our semi-arid site would be constrained by their restricted evapotranspiration rates and limited shade generation (the leaves of arid-adapted eucalypts are vertically aligned to minimize sun exposure at the hottest time of day; King, 1997), the largest trees at our site may have accessed ground water unavailable to smaller conspecifics (Lindenmayer et al., 2014), potentially augmenting their value as thermal refuges.

      Climate Change and Adaptation Management

      Our finding that the availability and value of thermal refuges increases with the size of mallee eucalypts has important management implications. Mallee stems are usually killed by wildfire and high intensity planned burns, hence trunk size and tree height increase with time since fire (Yates et al., 2017; Clarke et al., 2021). Indeed, it takes 60 years for mallees to attain full canopy height, and 40–60 years to develop hollows in living timber (Haslem et al., 2011; Clarke et al., 2021), likely reflecting their value as thermal refuges. Climate change is expected to influence the incidence of wildfires in mallee habitat; in mallee regions of Victoria, for example, the number of days of extreme fire danger and the occurrence of dry lightning are predicted to increase (Clarke et al., 2021). Whether this leads to increased fire incidence depends on their interaction with reductions in fuel biomass and continuity, associated with increasing aridity (Bradstock, 2010). Nevertheless, any increase in fire frequency would prevent mallee eucalypts from attaining the large size required for thermal buffering.

      The world’s dryland areas are predicted to become increasingly arid, with worsening droughts (IPCC, 2021), which reduce vegetation cover and can permanently alter habitat structure (Pritzkow et al., 2021). At our study site, densely leaved, green shrubs—identified as critical thermal refuges in other terrestrial habitats (Carroll et al., 2015; Anthony et al., 2020; Ruth et al., 2020)—were simply not present during the data collection period due to 2 years of severe drought. In previous summers, we had observed many small passerines (although not Jacky Winters) sheltering within such shrubs at high temperatures. The loss of this microhabitat, combined with the reduction in leaf area that eucalypts suffer during drought (Pritzkow et al., 2021), is likely to seriously impair the ability of avian species to survive heat wave events.

      Options to help biodiversity adapt to climate change are limited, but the relationship between fire interval, tree size and thermal refuges offers an opportunity for “low regrets” intervention (Prober et al., 2019) in mallee ecosystems. Managing fire to maintain and increase the area of mallee in older age classes is likely to maximize the availability of thermal refuges, thereby reducing mortality during heat waves. Later seral stages in mallee also provide significant habitat structural elements that support a diversity of reptiles, birds and mammals (Yates et al., 2017; Clarke et al., 2021). Another option worth considering relates to habitat structures known to act as critical refuges in other hot, arid ecosystems. Underground burrows are exploited by a huge array of species during extreme heat: four lark species use lizard burrows in the Arabian Desert (Williams et al., 1999) and more than 50 vertebrate species shelter in gopher tortoise (Gopherus polyphemus) burrows in south-eastern United States (Walde et al., 2009). However, burrows are no longer present in SE Australia’s mallee woodlands due to the extirpation of at least three species of medium-sized, burrowing marsupial (Fleming et al., 2014). The reintroduction of burrowing species could greatly enhance the availability of thermally buffered microsites within this habitat.

      Conclusion

      Jacky Winters exhibited a broad and nuanced repertoire of thermoregulatory behaviors, which appeared “appropriate” to environmental conditions, based on principles of heat transfer. However, the effectiveness of their behavioral strategies was dependent on the quality and availability of specific microhabitats. There is an urgent need for studies that quantify how wild individuals respond behaviorally to heat waves and identify which fine-scale components of their habitat serve as thermal refuges (Buchholz et al., 2019). Only once we have this information can we hope to develop effective conservation strategies to help to mitigate the adverse impact of rising global temperatures on biodiversity.

      Data Availability Statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Ethics Statement

      Ethics approval for this research was granted by the Australian National University Animal Experimentation Ethics Committee (A2018/29), and the work was approved by the South Australian Department of Environment and Water (E26755-1) and the Australian Bird and Bat Banding Scheme (153506).

      Author Contributions

      JG conceived the study and performed the statistical analyses. LS designed the methodology and wrote the manuscript. LS and JG collected the data. JG and SP reviewed the manuscript. All authors secured funding and approved the final manuscript.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Funding

      This work was supported by the Australian Research Council (DP1810101235), the Wettenhall Environment Trust and the Centre for Biodiversity Analysis (Ignition Project grant). JG was supported by an Australian Research Council Future Fellowship (FT150100139).

      We would like to thank the Australian Landscape Trust for permission to work at Calperum Station and Belinda Cale for assistance in the field. We would also like to thank Victoria Sohm, Thalia Williamson, Kevin Yang and Kalya Subasinghe for help with data collection, and Peter Marsack for feedback on the manuscript.

      References Albright T. P. Mutiibwaa D. Gersond A. R. Smithe E. K. Talbote W. A. O’Neille J. J. (2017). Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. PNAS 114 22832288. 10.1073/pnas.1613625114 28193891 Anthony C. R. Hagen C. A. Dugger K. M. Elmore R. D. (2020). The effects of fire on the thermal environment of sagebrush communities. J. Thermal Biol. 89:102488. 10.1016/j.jtherbio.2019.102488 32364967 Arad Z. Midtgård U. Bernstein M. H. (1989). Thermoregulation in turkey vultures. vascular anatomy, arteriovenous heat exchange, and behavior. Condor 91 505514. 10.2307/1368103 Bates D. Mächler M. Bolker B. Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Statistical Software 67 148. Beale P. K. Marsh K. J. Foley W. J. Moore B. D. (2018). A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology. Biol. Rev. 93 674692. 10.1111/brv.12364 28881466 BOM Bureau of Meteorology, Australia (BOM). Available online at: https://bom.gov.au Boyles J. G. Seebacher F. Smit B. McKechnie A. E. (2011). Adaptive thermoregulation in endotherms may alter responses to climate change. Integrative Comp. Biol. 51 676690. 10.1093/icb/icr053 21690108 Bradstock R. A. (2010). A biogeographic model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeog. 19 145158. 10.1111/j.1466-8238.2009.00512.x Briscoe N. J. Handasyde K. A. Griffiths S. R. Porter W. P. Krockenberger A. Kearney M. R. (2014). Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biol. Lett. 10:20140235. 10.1098/rsbl.2014.0235 24899683 Buchholz R. Banusiewicz J. D. Burgess S. Crocker-Buta S. Eveland L. Fuller L. (2019). Behavioural research priorities for the study of animal response to climate change. Animal Behav. 150 127137. Carroll J. M. Davis C. A. Elmore R. D. Fuhlendorf S. D. Thacker E. T. (2015). Thermal patterns constrain diurnal behavior of a ground-dwelling bird. Ecosphere 6 222237. 10.1890/ES15-00163.1 Chen J. Q. Saunders S. C. Crow T. R. Naiman R. J. Brosofske K. D. Franklin J. F. (1999). Microclimate in forest ecosystem and landscape ecology – variations in local climate can be used to monitor and compare the effects of different management regimes. BioScience 49 288297. 10.2307/1313612 Clarke M. F. Kelly L. T. Avitabile S. C. Benshemesh J. Callister K. E. Driscoll D. A. (2021). Fire and its interactions with other drivers shape a distinctive, semi-arid ‘Mallee’. Ecosystem. Front. Ecol. Evol. 9:647557. 10.3389/fevo.2021.647557 Conradie S. R. Woodborne S. M. Wolf B. O. Pessato A. Mariette M. M. McKechnie A. E. (2020). Avian mortality risk during heat waves will increase greatly in arid Australia during the 21st century. Conserv. Physiol. 8:coaa048. 10.1093/conphys/coaa048 32523698 Cooper C. E. Withers P. C. Hurley L. L. Griffith S. C. (2019). The field metabolic rate, water turnover, and feeding and drinking behavior of a small avian desert granivore during a summer heatwave. Front. Physiol. 10:1405. 10.3389/fphys.2019.01405 31824330 Cunningham S. J. Gardner J. L. Martin R. O. (2021). Opportunity costs and the response of birds and mammals to climate warming. Front. Ecol. Environ. 19:300307. 10.1002/fee.2324 Cunningham S. J. Martin R. O. Hockey P. A. R. (2015). Can behaviour buffer the impacts of climate change on an arid-zone bird? Ostrich 86 119126. 10.2989/00306525.2015.1016469 33685377 Dawson T. J. (1973). Thermoregulatory responses of the arid zone kangaroos, Megaleia rufa and Macropus robustus. Comp. Biochem. Physiol. A Comp. Physiol. 46 153169. 10.1016/0300-9629(73)90568-90569 Donaghey R. Donaghey C. (2017). Parental care and breeding strategies of the Jacky Winter and its life-history traits compared with other Australasian robins, and northern temperate and tropical songbirds. Australian Field Ornithol. 34 98110. du Plessis K. L. Martin R. O. Hockey P. A. R. Cunningham S. J. Ridley A. R. (2012). The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Global Change Biol. 18 30633070. 10.1111/j.1365-2486.2012.02778.x 28741828 Fleming P. A. Anderson H. Prendergast A. S. Bretz M. R. Valentine L. E. Hardy G. E. S. (2014). Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function? Mammal Rev. 44 94108. 10.1111/mam.12014 Gardner J. L. Amano T. Sutherland W. J. Clayton M. Peters A. (2016). Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology 97 786795. 10.1890/15-0642.1 27197404 Ghalambor C. K. McKay J. K. Carroll S. P. Reznick D. N. (2007). Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21 394407. Gilbert C. McCafferty D. Le Maho Y. Martrette J. Giroud S. Blanc S. (2010). One for all and all for one: the energetic benefits of huddling in endotherms. Biol. Rev. 85 545569. 10.1111/j.1469-185X.2009.00115.x 20039866 Hall L. E. Chalfoun A. D. (2019). Behavioural plasticity modulates temperature-related constraints on foraging time for a montane mammal. J. Anim. Ecol. 88 363375. 10.1111/1365-2656.12925 30449046 Hartig F. (2020). DHARMa: Residual Diagnostics for Hierarchical Multi-level/mixed) Regression Model. cran.R-project.org. Haslem A. Kelly L. T. Nimmo D. G. Watson S. J. Kenny S. A. Bennett A. F. (2011). Habitat or fuel? Implications of long-term, post-fire dynamics for the development of key resources for fauna and fire. J. Appl. Ecol. 48 247256. 10.1111/j.1365-2664.2010.01906.x Hetem R. S. Strauss W. M. Fick L. G. Maloney S. K. Meyer L. C. R. Shobrak M. (2012). Activity re-assignment and microclimate selection of free-living Arabian oryx: responses that could minimise the effects of climate change on homeostasis? Zoology 115 411416. 10.1016/j.zool.2012.04.005 23036437 Higgins P. J. Peter J. M. (eds) (2002). Handbook of Australian, New Zealand & Antarctic Birds: Pardalotes to Shrike-Thrushes. Oxford: Oxford University Press. Holm E. Edney E. B. (1973). Daily activity of namib desert arthropods in relation to climate. Ecology 54 4556. Ingram D. L. (1965). Evaporative cooling in pig. Nature 207 415416. IPCC (2021). “Climate change 2021: the physical science basis,” in Proceedings of the Contribution of Working Group I to the 6th Assessment Report of the Intergovernmental Panel on Climate Change, (Cambridge: Cambridge University Press). 10.1007/s10584-021-03233-7 34866716 King D. A. (1997). The functional significance of leaf angle in Eucalypts. Australian J. Botany 45 619639. 10.1071/bt96063 Lindenmayer D. B. Laurance W. F. Franklin J. F. Likens G. E. Banks S. C. Stein J. A. R. (2014). New policies for old trees: averting a global crisis in a keystone ecological structure. Conservation Lett. 7 6169. 10.1111/conl.12013 Luna F. Sumbera R. Okrouhlík J. Mladenkova N. Antenucci C. D. (2020). Evaporative water loss in seven species of fossorial rodents: does effect of degree of fossoriality and sociality exist? J. Thermal Biol. 89:102564. 10.1016/j.jtherbio.2020.102564 32364971 Mason T. H. E. Brivio F. Stephens P. A. Apollonio M. Grignolio S. (2017). The behavioral trade off between thermoregulation and foraging in a heat-sensitive species. Behav. Ecol. 28 908918. 10.1093/beheco/arx057 Mcilveen J. (1992). Fundamentals of Weather and Climate. London: Chapman & Hall. McKechnie A. E. Wolf B. O. (2010). Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6 253256. 10.1098/rsbl.2009.0702 19793742 McKechnie A. E. Wolf B. O. (2019). The physiology of heat tolerance in small endotherms. Physiology 34 302313. 10.1152/physiol.00011.2019 31389778 McKechnie A. E. Gerson A. R. McWhorter T. J. Smith E. K. Talbot W. A. Wolf B. O. (2017). Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance. J. Exp. Biol. 220 24362444. 10.1242/jeb.155507 28455441 McKechnie A. E. Rushworth I. A. Myburgh F. Cunningham S. J. (2021). Mortality among birds and bats during an extreme heat event in eastern South Africa. Austral Ecol. 46 687691. 10.1111/aec.13025 Mills R. McGraw K. J. (2021). Cool birds: facultative use by an introduced species of mechanical air conditioning systems during extremely hot outdoor conditions. Biol. Lett. 17:20200813. 10.1098/rsbl.2020.0813 33757295 Mitchell D. Snelling E. P. Hetem R. S. Maloney S. K. Strauss W. M. Fuller A. (2018). Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. J. Animal Ecol. 87 956973. 10.1111/1365-2656.12818 29479693 Mole M. A. DÁraujo S. R. van Aarde R. J. Mitchell D. Fuller A. (2016). Coping with heat: behavioural and physiological responses of savanna elephants in their natural habitat. Conserv. Physiol. 4:cow044. 10.1093/conphys/cow044 27757237 Muiruri H. K. Harrison P. C. (1991). Effect of peripheral foot cooling on metabolic-rate and thermoregulation of fed and fasted chicken hens in a hot environment. Poult. Sci. 70 7479. 10.3382/ps.0700074 2017420 Neel L. K. McBrayer L. D. (2018). Habitat management alters thermal opportunity. Funct. Ecol. 32 20292039. 10.1111/1365-2435.13123 Olinger R. (2017). How does Temperature Affect Fork-tailed Drongo, Dicrurus adsimilis, Foraging Effort, Nestling Provisioning and Growth Rates?. MSc thesis, South Africa: Univ. of Cape Town.MScthesis Pigeon K. E. Cardinal E. Stenhouse G. B. Côté S. D. (2017). Staying cool in a changing landscape: the influence of maximum daily ambient temperature on grizzly bear habitat selection. Oecologia 181 11011116. 10.1007/s00442-016-3630-5 27085998 Pritzkow C. Szota C. Williamson V. Arndt S. K. (2021). Previous drought exposure leads to greater drought resistance in eucalypts through changes in morphology rather than physiology. Tree Physiol. 41:taa176. 10.1093/treephys/tpaa176 33530102 Prober S. M. Doerr V. Broadhurst L. Williams K. J. Dickson F. (2019). Shifting the conservation paradigm - a synthesis of options for renovating nature under climate change. Ecol. Monographs 89:e01333. 10.1002/ecm.1333 Rahman M. A. Stratopoulos L. M. F. Moser-Reischl A. Zolch T. Haberle K. Rotzer T. (2020). Traits of trees for cooling urban heat islands: a meta-analysis. Building Environ. 170:106606. 10.1016/j.buildenv.2019.106606 Recher H. Davis W. (1998). The foraging profile of a wandoo woodland avifauna in early spring. Austral Ecol. 23 514527. Ricklefs R. E. Hainsworth F. R. (1968). Temperature dependent behavior of the cactus wren. Ecology 49 227233. 10.2307/1934451 Riddell E. A. Iknayan K. J. Wolf B. O. Sinervo B. Beissinger S. R. (2019). Cooling requirements fuelled the collapse of a desert bird community from climate change. PNAS 116 2160921615. 10.1073/pnas.1908791116 31570585 Ruth J. M. Talbot W. A. Smith E. K. (2020). Behavioral response to high temperatures in a desert grassland bird: use of shrubs as thermal refugia. Western North Am. Natural. 80 265275. Ruthrof K. X. Breshears D. D. Fontaine J. B. Froend R. H. Matusick G. (2018). Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8:13094. 10.1038/s41598-018-31236-5 30166559 Sanusi R. Johnstone D. Maya P. Livesley S. J. (2017). Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landscape Urban Plann. 157 502511. Sharpe L. L. Bayter C. Gardner J. L. (2021). Too hot to handle? Behavioural plasticity during incubation in a small, Australian passerine. J. Thermal Biol. 98:102921. 10.1016/j.jtherbio.2021.102921 34016345 Sharpe L. L. Cale B. Gardner J. L. (2019). Weighing the cost: the impact of serial heatwaves on body mass in a small Australian passerine. J. Avian Biol. 50:e02355. 10.1111/jav.02355 Sinervo B. Méndez-de-la-Cruz F. Miles D. B. Heulin B. Bastiaans E. Sites J. W. (2010). Erosion of lizard diversity by climate change and altered thermal niches. Science 328 894899. 10.1126/science.1184695 20466932 Stillman J. H. (2019). Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34 86100. 10.1152/physiol.00040.2018 30724132 Stuart-Fox D. Newton E. Clusella-Trullas S. (2017). Thermal consequences of colour and near-infrared reflectance. Phil. Trans. R. Soc. B 372:20160345. 10.1098/rstb.2016.0345 28533462 Tattersall G. J. Andrade D. V. Abe A. S. (2009). Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325 468470. 10.1126/science.1175553 19628866 Thomas C. D. Franco A. M. A. Hill J. K. (2006). Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21 415416. 10.1016/j.tree.2006.05.012 16757062 Tieleman B. I. Williams J. B. (1999). The role of hyperthermia in the water economy of desert birds. Physiol. Biochem. Zool. 72 87100. 10.1086/316640 9882607 Tuomainen U. Candolin U. (2011). Behavioural responses to human-induced environmental change. Biol. Rev. Camb. Philos. Soc. 86 640657. 10.1111/j.1469-185X.2010.00164.x 20977599 van de Ven T. M. F. N. McKechnie A. E. Cunningham S. J. (2019). The costs of keeping cool: behavioural trade-offs between foraging and thermoregulation are associated with significant mass losses in an arid-zone bird. Oecologia 18 30633070. 10.1007/s00442-019-04486-x 31420741 Venables W. Ripley B. (2002). Modern Applied Statistics with S, 2nd Edn. New York, NY: Springer. Walde A. D. Walde A. M. Delaney D. K. Pater L. L. (2009). Burrows of desert tortoises (Gopherus agassizii) as thermal refugia for horned larks (Eremophila apestris) in the Mojave desert. Southwestern Natural. 54 375381. Weissenböck N. M. Weiss C. M. Schwammer H. M. Kratochvil H. (2010). Thermal windows on the body surface of African elephants (Loxodonta africana) studied by infrared thermography. J. Therm. Biol. 35 182188. Welbergen J. A. Booth C. Martin J. (2014). Killer Climate: Tens of Thousands of Flying Foxes Dead in a Day. Available online at: https://theconversation.com/killer-climate-tens-of-thousands-of-flying-foxes-dead-in-a-day-23227. Welbergen J. A. Klose S. M. Markus N. Eby P. (2008). Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B 275 419425. 10.1098/rspb.2007.1385 18048286 Williams J. B. Tieleman B. I. Shobrak M. (1999). Lizard burrows provide thermal refugia for larks in the Arabian desert. Condor 101 714717. 10.2307/1370208 Wolf B. O. Walsberg G. E. (1996). Thermal effects of radiation and wind on a small bird and implications for microsite selection. Ecology 77 22282236. 10.2307/2265716 Wolf B. O. Wooden K. M. Walsberg G. E. (2000). Effects of complex radiative and convective environments on the thermal biology of the white-crowned sparrow (Zonotrichia leucophrys gambelii). J. Exp. Biol. 203 803811. 10.1242/jeb.203.4.803 10648222 Wood K. Thompson N. Ley A. (2008). Breeding territories and breeding success of the jacky winter Microeca fascinans in South-eastern Queensland. Australian Field Ornithol. 25 121131. Yates C. J. Gosper C. R. Hopper S. D. Keith D. A. Prober S. M. Tozer M. (2017). “Mallee woodlands and shrublands – the mallee, muruk/muert and maalok vegetation of Southern Australia,” in Australian Vegetation, 3rd Edn, ed. Keith D. (Cambridge: Cambridge University Press), 570598. Youngentob K. N. Lindenmayer D. B. Marsh K. J. Krockenberger A. K. Foley W. J. (2021). Food intake: an overlooked driver of climate change casualties? Trends Ecol. Evol. 36 676678. 10.1016/j.tree.2021.04.003 33972120
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016kzrwcx.com.cn
      gfuboi.com.cn
      jx618.com.cn
      www.gcchain.com.cn
      lu-han.com.cn
      shqsxg.com.cn
      www.q-ballet.com.cn
      www.tmhalp.org.cn
      www.osmxjy.org.cn
      usgwty.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p