Front. Ecol. Evol. Frontiers in Ecology and Evolution Front. Ecol. Evol. 2296-701X Frontiers Media S.A. 10.3389/fevo.2017.00106 Ecology and Evolution Original Research The Influence of Urban Environments on Oxidative Stress Balance: A Case Study on the House Sparrow in the Iberian Peninsula Herrera-Dueñas Amparo 1 * Pineda-Pampliega Javier 1 Antonio-García María T. 2 Aguirre José I. 1 1Evolution and Conservation Biology, Department of Zoology and Physical Anthropology, Faculty of Biology, Complutense University of Madrid Madrid, Spain 2Department of Animal Physiology II, Faculty of Biology, Complutense University of Madrid Madrid, Spain

Edited by: Diego Gil, Museo Nacional de Ciencias Naturales (CSIC), Spain

Reviewed by: Lorenzo Perez-Rodriguez, Consejo Superior de Investigaciones Científicas (CSIC), Spain; Jenny Qianni Ouyang, University of Nevada, Reno, United States

*Correspondence: Amparo Herrera-Dueñas bio.ahd@gmail.com

This article was submitted to Urban Ecology, a section of the journal Frontiers in Ecology and Evolution

12 09 2017 2017 5 106 20 02 2017 25 08 2017 Copyright © 2017 Herrera-Dueñas, Pineda-Pampliega, Antonio-García and Aguirre. 2017 Herrera-Dueñas, Pineda-Pampliega, Antonio-García and Aguirre

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The House Sparrow is a globally distributed species and is closely associated with anthropised environments. They are well-adapted to urban life; therefore the decline of their populations in Europe represents an unexpected event that demands an investigation into its causes. Causes that have promoted this decline are not well-known, but one of the highlighted hypotheses is an increase of oxidative stress linked to the toxicity of pollution in urban areas. From an ecophysiological perspective, oxidative damage, antioxidant defense, and oxidative balance are considered reliable indicators of environmental stressors such as pollutants. To carry out this study, blood samples were collected from House Sparrows in three different habitats that varied in terms of urbanization degree: urban, suburban, and rural; during the winter and breeding season. According to our results, urban sparrows showed higher levels of oxidative damage and higher activity of antioxidant enzymes, but lower antioxidant capacity in comparison with the rural birds; and these differences especially increase during the breeding season. The maintenance of oxidative balance increases in an urban environment in comparison to a rural one; we suggest that the high level of pollution and the poor quality diet linked to urban environments. The breeding season is expected to be particularly challenging for the oxidative balance of urban birds, when the reallocation of resources between self-maintenance and reproduction may be critical due to the scarcity of antioxidants found in urban areas. This study may contribute to determining the causes of the population decrease of House Sparrows in cities.

urbanization biomarker pollution antioxidant defense oxidative damage bird

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Urban areas have been growing rapidly over the last several decades, and it is expected that they will continue to expand at the expense of natural and rural habitats. From an ecological perspective, urban environments present some novel challenges for birds, such as new predators, new flora, human presence, unique food resources, and high levels of chemical, light, and acoustic pollution (Gaston, 2010; Lepczyck and Warren, 2012; Forman, 2013; Gil and Brumm, 2014). However, these novel and potentially stressful conditions generated by urban environment processes have also provided new opportunities for certain species to gain an ecological advantage by exploiting city resources (Lepczyck and Warren, 2012; Costantini et al., 2014). Such resources are characterized by lower predation rates (Evans et al., 2015), higher environmental temperatures (Tryjanowski et al., 2015), lower competition for resources (Kark et al., 2007), and a constant, abundant, and more predictable food resources supply, in comparison with the surrounding non-anthropogenic areas (Shochat, 2004; Oro et al., 2013; Andersson et al., 2015; Tryjanowski et al., 2015; Marzluff, 2016).

      The House Sparrow (Passer domesticus L.) is one of these urban exploiter species, meaning that it dominates highly urbanized environments. It is the most ubiquitous and globally distributed bird, probably due to its ecological tolerance that allows them to cope with urban environments: they are generalist, granivorous, gregarious, and sedentary, they nest in cavities, they are unbothered by human presence, and they are able to explore new feeding sources (Anderson, 2006; Kark et al., 2007; Evans et al., 2011). However, in the last few decades, urban populations of House Sparrow have significantly dropped, especially in the highly developed regions of Western Europe (De Laet and Summers-Smith, 2007; Peach et al., 2008; Shaw et al., 2008; De Coster et al., 2015). There is no consensus on the reason for such a decline, but the increasing level of pollution has been highlighted as one of the main driving factors (Shaw et al., 2008; Herrera-Dueñas et al., 2014).

      The atmosphere of urban areas tends to accumulate high concentrations of carbon dioxide (CO2), nitrous oxides (NOx), sulfur dioxide (SO2), ozone (O3), heavy metals and other suspended particulate matters (PM). In cities, these pollutants are mainly derived by burning fossil fuels (Grimm et al., 2008; Gaston, 2010), representing an environmental risk from human to ecosystem levels (Forman, 2013). In relation to human health, a correlation has been described between the level of pollution and higher human mortality rates, mainly associated with cancer, asthma and cardiovascular disorders (Kelly, 2003). To date, deleterious effects on wildlife are less well-known, but pollution has been related to reproductive performance, lower survival rates and shorter lifespans (Isaksson, 2010; Koivula and Eeva, 2010; Salmón et al., 2016). One trait that has been highlighted as responsible for the toxicity of urban pollutants is their high reactivity to biomolecules (Koivula et al., 2011). Therefore, oxidative stress has been described as an underlying mechanism by which urban pollutants cause deleterious effects in living organisms (Isaksson, 2010).

      Oxidative stress has been defined as the occurrence of enzymatic and non-enzymatic antioxidants that cannot fully neutralize the free radicals produced in the cells of living organisms. Free radicals are commonly generated as a by-product of normal metabolic processes. Hence all aerobic organisms have evolved multiple defense lines to prevent or counteract the toxicity of reactive by-products, ranging from antioxidant enzymes to low molecular weight endogenous antioxidants (i.e., GSH), complemented by some dietary antioxidant such as carotenoids or vitamins (Halliwell, 2007). Under pro-oxidant conditions, the unquenched free radicals remain in the system long enough to cause further oxidation reactions (Monaghan et al., 2009). Such reactions may damage macromolecules, such as lipids, proteins, and DNA. Severe accumulation of oxidative damage in these molecules leads to cellular dysfunction or apoptosis, which triggers disease and age-related degeneration (Costantini and Verhulst, 2009; Isaksson, 2015). This supports the hypothesis that the resistance to oxidative stress is a key cellular mechanism to cope with urban pollutants, so the capacity to quench the oxidative damage has been highlighted as a critical adaptation to life in the city (Costantini et al., 2014).

      The levels of oxidative stress in organisms could also vary with developmental stage, environmental condition, and level of activity (Isaksson, 2015). Reproduction could increase oxidative stress as an inevitable consequence of increased reproductive effort (Romero-Haro et al., 2016) and/or because the developing offspring consume antioxidants otherwise allocated to self-maintenance (Alonso-Alvarez et al., 2004; Moller et al., 2010; Berglund et al., 2014). Therefore, oxidative stress may have a dramatic effect on bird fitness during the breeding season.

      Regarding the roles of these antioxidants in maintaining the oxidative balance, four different scenarios could be described: (I) low oxidative damage due free radicals being quenched by the excess supply of antioxidants (endogenous or diet-provided); the maintenance of the oxidative balance in this case is not costly for self-maintenance of individuals, and resources can be reallocated to other functions (i.e., reproduction). (II) Oxidative damage is in balance with antioxidant availability; therefore, there is no surplus of resources, but self-maintenance is not yet costly for individuals. (III) Oxidative damage persists and to counteract it, the individual may increase its antioxidant capacity by up-regulating some antioxidant enzymes; this entails a cost because some resources must be diverted from self-maintenance. (IV) Oxidative damage is uncontrolled; the antioxidant defenses have been overwhelmed and the survival of the individual is compromised (Costantini and Verhulst, 2009; Monaghan et al., 2009) (Figure 1).

      The different scenarios (I, II, and III) depending on the relationship between the environmental stressors (such as pollution) and dietary antioxidants (the scenario IV has been excluded due to it is not expected to be related to urban environments). FR (red color) represents free radical production: intrinsic + induced by environmental stressors; and AOX (green color) represents a number of antioxidants available: endogenous + antioxidant enzymes + dietary antioxidants.

      We predict that the first scenario will correspond to areas with a low degree of urbanization and therefore to lower levels of pollution (such as the rural ones); the second one will correspond to mild stressor environment (such as the suburban areas); whereas the third scenario will correspond to highly urbanized areas, where the high level of pollution may be a challenge for antioxidant defenses. We will explore the oxidative stress balance during winter, but also during the breeding season, when adults are reproducing.

      Materials and methods Area characterization

      House sparrows were sampled at six locations of central Iberian Peninsula: Plasenzuela, a small village 230 km away from big cities such as Madrid (PZ: 39°22′39″ N; 6°02′57″ W and 427 m altitude), Olmeda de las Fuentes, another small village 50 km East of Madrid located in a traditional agricultural area of the region (OF: 40°21′38″ N; 3°12′23″ W and 794 m altitude), El Escorial, a small town 50 km Northwest of Madrid with typical suburban structure (i.e., family houses with individual gardens) (EE: 40°34′55″ N; 4°07′41″ W and 1.030 m altitude), Las Matas, a small town 25 km Northwest of Madrid in an area with a similar suburban structure (LM: 40°33′41″ N; 3°53′56″ W and 720 m altitude), Fuenlabrada, a town 25 km South of Madrid in the traditional industrial area of the region (FB: 40°17′07″ N; 3°48′35″ W and 650 m altitude) and Madrid city center, one of the biggest cities of the Mediterranean region (MD: 40°25′03″ N; 3°42′42″ W and 670 m altitude). These sampling areas were chosen because they show strong differences in their landscape and their anthropization degree. In addition they showed high bird densities due to the constant food supply: a horse stable in MD and a farm-school in FB, gardens with hen cages in the suburban areas, and a sheep farm in OF and a poultry farm in PZ. Therefore, it was expected that birds would not show symptoms of starvation and their condition would vary depending on other environmental stressors such as pollutants, and the availability of essential nutritional complements that they should intake (i.e., insects).

      One of the most reliable indicators of the urbanization process is land cover (Marzluff, 2008; Gaston, 2010; Niemelä, 2011; Lepczyck and Warren, 2012), which can be complemented by the population density (Marzluff, 2008; Lepczyck and Warren, 2012) and air quality (Gaston, 2010; Forman, 2013). Data referring to air quality (NO2 and PM10) were collected from the European Environmental Agency (EEA), and data referring to human density and land uses were collected from the Spanish Statistics Institute (INE) and the Information System for Land Uses in Spain (SIOSE), which had a resolution of 0.05 km2 (Table 1). The percentage of each land use (industrial, housing, recreation urban areas, agricultural and natural) was calculated in a 4 km2 area around the sample point using Photoshop (Figure 2), based on the species movements described by Anderson (2006).

      Characteristic of sampled localities based on the habitat variables: population density (n° inhabitants/km2), land use (%) and air quality (NO2, SO2, PM10, and PM2.5 in μg/m3).

      Habitat Site Population density Housing land Recreation land Industrial land Agricultural land Natural land NO2 SO2 PM10 PM2.5
      Urban MD 5,225 58.88 38.34 1.12 0.00 0.00 37.95 5.03 ND ND
      Urban FB 4,960 33.75 8.27 13.23 34.53 8.72 31.11 ND 28.26 ND
      Suburban LM 1,040 31.35 3.96 0.23 0.87 60.89 27.69 ND ND 13.4
      Suburban EE 222 17.26 7.91 0.59 9.76 58.83 22.66 ND 23.21 ND
      Rural OF 20 0.97 0.19 0.00 54.19 37.65 7.03 ND 17.30 ND
      Rural PZ 14 0.47 0.03 0.00 41.47 56.18 4.97 2.54 16.05 ND

      Images used for calculating the land uses at each sample point: Madrid city (A), Fuenlabrada (B), Las Matas (C), El Escorial (D), Olmeda de las Fuentes (E), and Plasenzuela (F). The dark pink areas represent housing and roads, the light pink represent urban parks and recreation facilities, the purple ones represent industrial areas, the yellowish ones represent agricultural lands and the greenish ones represent natural areas like forest or field.

      Bird sampling

      This study was carried out in accordance with all applicable institutional and national guidelines for the care and use of animals. Bird sampling was performed with permissions from landowners and the regional Consejería de Medioambiente de la Comunidad de Madrid (REFS: JML/ecc-10/038121.9/13; IPZ/ecc-10/068353.9.14; and Delegación de Medioambiente de la Junta de Extremadura REFS: EJD/jmca-CN0004/14/ACA).

      A total of 210 adult House Sparrows were captured during the winter period (December 2013 to February 2014) and the breeding season (April 2014 to June 2014) in the different habitats (Table 2). The birds were trapped with mist nests or traps and ringed. They were weighed (±0.1 g), their tarsus length was measured (±0.1 mm) and blood samples were collected. Birds were captured in mist nets and retained until manipulation in cloth bags to keep them safe and calm. All sampled birds were released unharmed at the site of capture after manipulation.

      Number of individuals captured per locality and season.

      Rural Suburban Urban
      PZ OF EE LM FB MD
      Winter Males 12 12 12 10 7 26
      Females 9 11 11 11 13 14
      Breeding season Males 8 ND ND 19 ND 8
      Females 11 11 5

      Blood samples (~0.2 ml) were collected (~15 min after capture) by jugular venepuncture using 30 G needles. The blood was collected in heparinized tubes and kept at 4°C before transporting to the laboratory (maximum 4 h). Blood was centrifuged for 10 min at 1,800 × g (10,000 rpm) to separate the erythrocyte pellet and plasma, and was divided into aliquots to avoid freeze-thaw cycles. All samples were stored at −80°C until use.

      Oxidative stress biomarkers

      Due to the complex relationship between the different elements constituting the oxidative stress system, at least several oxidative damage and antioxidant capacity biomarkers must be determined to correctly interpret the results (Monaghan et al., 2009). To evaluate the oxidative stress balance of House Sparrows, we determined the antioxidant capacity of plasma, as well as the oxidative damage and activity of some antioxidant enzymes in the erythrocytes.

      The total antioxidant capacity (TAC) of plasma is a reliable biomarker to describe the global oxidant/antioxidant balance of individuals. This was determined spectrophotometrically using the ferric reducing ability of plasma (FRAP) method described by Benzie and Strain (1996), with the slight modifications described by Hargitai et al. (2012). This method is based on the ferric reduction: Fe3+ (ferric) to Fe2+ (ferrous) ion reduction at low pH causes the formation of the colored ferrous-tripyridyltriazine (Fe2+-TPTZ) complex. Briefly, 20 μl of diluted plasma was mixed with 150 μl of ferrous ion and TPTZ at low pH and incubated for 20 min. FRAP values were obtained by comparing the absorbance change at 593 nm in test reaction mixtures with those containing Fe2+ in known concentration. The parameter was corrected with the uric acid value (Costantini, 2011), which was spectrophotometrically measured at 520 nm by the uricase method (Fossati et al., 1980) using a commercial kit from Spinreact®. The intra-assay and inter-assay coefficient variation (CV), respectively, were 1.72 and 1.97%.

      The oxidative damage was determined in the lipid and erythrocyte proteins. The lipid peroxidation was estimated spectrophotometrically by the thiobarbituric acid (TBA) reaction with malondialdehyde (MDA), a by-product of the peroxidation of membrane lipids according to the method of Ohkawa et al. (1979). This method is controversial since it has been considered less accurate in comparison with the quantification based on the HPLC method, due to overestimation of the results (Grotto et al., 2009). Although other authors still consider spectrophotometry as a reliable methodology for the determination of lipid peroxidation (Zeb and Ullah, 2016) and we still use it due to technical reasons, this result is less reliable and it should be interpreted carefully and together with other biomarkers of oxidative damage. Briefly, 250 μl of the erythrocyte homogenate was reacted with 500 μl of TBA solution (pH 3.5), the mixture was heated at 80°C for 60 min. Under these conditions, the TBA-reactive substances (mainly MDA) reacted with TBA to yield TBA-MDA adducts, which were detected at 532 nm. The concentration of the chromophore was calculated from a calibration curve prepared with tetramethoxypropane (TMP) solution. The intra-assay and inter-assay CVs, respectively, were 2.89, and 7.24%. The protein oxidation was estimated spectrophotometrically by 2,4-dinitrophenyl hydrazine (DNPH) reaction with the carbonyl groups, by-products of the oxidation of proteins, using the method by Reznick and Packer (1994) with the modifications describe by Arnal et al. (2011). Briefly, 100 μl of the erythrocyte homogenate was subjected to a reaction with 100 μl of DNPH in acid solution of HCl at 37°C in the dark for 30 min; the corresponding hydrazone derivatives were revealed after the addition of 200 μl of NaOH and measured at 505 nm. The concentration of carbonyls was calculated from a calibration curve prepared with a stock solution of sodium pyruvate. The intra-assay and inter-assay CVs, respectively, were 2.56 and 8.67%.

      The enzymatic antioxidant system capacity was determined by the evaluation of glutathione peroxidase (GPX) and superoxide dismutase (SOD) activity. The activity of GPX was measured spectrophotometrically by reduction of 5, 5′-dithiobis, 2-nitrobenoic acid (DTNB) for the activity of GPX using the glutathione (GSH) of the cells, as described by Moin (Tkachenko et al., 2014). The reaction was read at 412 nm every 30 s for 3 min. Activity is expressed as μmol GSH/min/ml. The intra-assay and inter-assay CVs, respectively, were 6.92 and 7.69%. The activity of SOD was measured spectrophotometrically by the containment of autoxidation of pyrogallol, as described by Marklund and Marklund (1974). The reaction was read at 420 nm every 60 s for 5 min. Activity is expressed as U/ml. The intra-assay and inter-assay CVs, respectively, were 7.39 and 8.74%.

      Samples were randomly distributed among plates. All the assays were running in duplicate. The same assay was running in all the samples during the same lab session.

      Data analysis

      The body condition index of individuals was calculated using the scaled mass index (SMI) recommended by Peig and Green (2009) for small animals. The SMI has been calculated according to the equation: SMI=Mi× (L0Li)bSMA where Mi and Li are the body mass and tarsus length of individual I, respectively; L0 is the arithmetic mean value of tarsus length for the study population; and bSMA is the scaling exponent estimated by the standardized major axis (SMA) regression of ln M on ln L.

      In order to evaluate the effect of habitat and season, we used a general linear mix model (GLMM). Fix factors included in the whole model were habitat (rural, suburban, or urban), season (winter or breeding) and their interaction (habitat × season) and the capture locality as random factor. In all analyses, sex (male or female) and body condition (as SMI) were also included as covariates. A post-hoc assay (Tukey's HSD) was performed only for traits regarding habitat. All the models were tested for residual normality.

      All results are expressed as means ± standard error of means (X¯ ± S.E.M.). All analyses were performed in R-Studio version 3.3.1 using the lme4, the lmerTest, and the lsmeans packages.

      Results Area characterization

      Although the characterization of urban landscapes is complex due to its heterogeneity and huge variation between regions, the sampling sites showed a clear pattern in terms of air quality, land use, and population density. We were able to clearly disentangle three different categories (Marzluff, 2008; Gaston, 2010; Forman, 2013): (I) urban, a completely anthropic landscape typical of big cities or town centers, usually characterized by a high percentage of ground occupied by buildings and pavements mixed with facilities (such as shops, museum, schools, hospitals, and sport-centers), with high population densities. These areas are usually associated with high pollutant levels due to traffic and heater emissions. (II) Suburban, residential areas located at the edge of big cities and/or smaller towns. It is also characterized by a high building density, but the most common structures are houses with gardens so the percentage of green areas is usually higher and better distributed than in urban areas. In addition, non-anthropized areas, such as forests or fields, contribute to the landscape. The quality of the air usually improves in these areas because of the lower population density; however, it is still high in comparison with rural settlements. Finally, (III) rural, villages, or even smaller settlements embedded in natural or agricultural landscapes. In this case, the percentage of buildings and roads is lower when compare to green areas. Its population density is sparse and the quality of air is good according to the standard.

      Body condition and oxidative stress biomarkers

      The body condition, calculated as SMI, showed a significant interaction between habitat and season [F(2, 113.02) = 5.92; p = 0.003], driven by the fact that the SMI of urban birds had a trend for being lower during the breeding season compared to winter (t = −2.86; p = 0.052), whereas rural birds showed the opposite trend (they were bigger during the breeding season). In the suburban population, SMI was similar in both seasons. Overall, the SMI of rural birds was higher in comparison with the other population (Figure 3, Table 3).

      Body condition and oxidative stress biomarkers analyzed. (A) Body condition calculated as scaled mass index (SMI). Values are expressed as mean ± S.E.M. Asterisk (*) represent individuals captured at winter and filled circles (•) represent individuals captured during the breeding season. Letters indicate statistical difference: means with the same letter are not statistically different (Tukey's tests, p ≤ 0.05); (B) Total antioxidant capacity calculated as FRAP. Values are expressed as mean ± S.E.M. Asterisk (*) represent individuals captured at winter and filled circles (•) represent individuals captured during the breeding season. Letters indicate statistical difference: means with the same letter are not statistically different (Tukey's tests, p ≤ 0.05); (C) Lipid damage calculated as TBARS. Values are expressed as mean ± S.E.M. Asterisk (*) represent individuals captured at winter and filled circles (•) represent individuals captured during the breeding season. Letters indicate statistical difference: means with the same letter are not statistically different (Tukey's tests, p ≤ 0.05); (D) Protein damage calculated as concentration of carbonyls groups. Values are expressed as mean ± S.E.M. Asterisk (*) represent individuals captured at winter and filled circles (•) represent individuals captured during the breeding season. Letters indicate statistical difference: means with the same letter are not statistically different (Tukey's tests, p ≤ 0.05); (E) Glutathione peroxidase activity (GPX). Values are expressed as mean ± S.E.M. Asterisk (*) represent individuals captured at winter and filled circles (•) represent individuals captured during the breeding season. Letters indicate statistical difference: means with the same letter are not statistically different (Tukey's tests, p ≤ 0.05); (F) Superoxide dismutase activity (SOD). Values are expressed as mean ± S.E.M. Asterisk (*) represent individuals captured at winter and filled circles (•) represent individuals captured during the breeding season.

      The model for each dependent variable when exploring the effect of the habitat and season on body condition and oxidative stress biomarkers.

      Dependent variable Source of variation d.f. F p-value
      BODY CONDITION
      Scaled mass index (SMI) Habitat 2, 2.51 14.04 0.043
      Season 1, 125.25 0.80 0.371
      Habitat × Season 2, 113.02 5.92 0.003
      OXIDATIVE BALANCE
      Total Antioxidant Capacity (FRAP) Habitat 2, 2.92 17.14 0.024
      Season 1, 51.79 6.04 0.017
      Habitat × Season 2, 37.02 3.63 0.036
      OXIDATIVE DAMAGE
      Lipid peroxidation (TBARS) Habitat 2, 177 5.68 0.004
      Season 1, 177 0.35 0.549
      Protein oxidation (Carbonyls) Habitat 2, 123 3.23 0.042
      Season 1, 123 2.04 0.154
      ANTIOXIDANT DEFENSES
      Glutathione peroxidase activity (GPX) Habitat 2, 141 9.22 <0.001
      Season 1, 141 0.05 0.815
      Superoxide dismutase activity (SOD) Habitat 2, 2.78 2.83 0.530
      Season 1, 84.76 0.39 0.213

      They were corrected by covariates (sex in all cases, and sex and body condition in oxidative stress biomarkers). Significant factors (p ≤ 0.05) have been highlighted in bold. Non-significant interactions were excluded from the model.

      In relation to oxidative stress biomarkers, the season did not show any effects, while the habitat seemed to play a main role. Only in the case of TAC did the model show a significant interaction between habitat and season [F(2, 37.02) = 3.63; p = 0.036]: overall, the rural birds showed a higher antioxidant capacity in comparison with the suburban and urban birds. The urban birds showed a significantly lower antioxidant capacity during the breeding season compared to winter (t = −3.34; p = 0.012) (Figure 3, Table 3).

      Regarding oxidative damage, lipid peroxidation was significantly higher in urban birds in comparison with the suburban (t = 2.65; p = 0.023) and rural birds (t = 3.12; p = 0.005) [F(2, 177) = 5.68; p = 0.004] (Figure 3, Table 3). The oxidation of proteins was also higher in the urban population compared to the suburban (t = 2.49; p = 0.036) and rural population (t = 1.54; p = 0.027) [F (2, 123) = 3.23; p = 0.042] (Figure 3, Table 3).

      The activity of the antioxidant defense system was also influenced by habitat. The activity of GPX was significantly higher in urban birds compared to suburban (t = 3.75; p < 0.001) and rural birds (t = 3.68; p = 0.001) [F (2, 144) = 9.22; p < 0.001] (Figure 3, Table 3). However, the activity of SOD did not show significant differences [F(2, 151) = 4.88; p = 0.008] (Figure 3, Table 3).

      Discussion

      We found that urban sparrows showed higher levels of oxidative damage and a higher activity of antioxidant enzymes, but a lower antioxidant capacity in comparison with the rural birds. Some of these differences are especially increased during the breeding season.

      According to our predictions, the low oxidative damage scenarios (I and II) matches the situation found in the rural and suburban populations, respectively. Oxidative damage seems to be low or the level of dietary antioxidants is high, because the oxidative status (total antioxidant capacity) is balanced. In this case, up-regulation of antioxidant enzymes has not been required, and the depletion of antioxidants is low (Costantini and Verhulst, 2009; Monaghan et al., 2009); therefore, they are available for self-maintenance, which reduces the cost of coping with oxidative damage (Isaksson et al., 2011). The higher antioxidant capacity found in the rural populations (scenario I) could reflect a surplus of dietary antioxidants, probably due to the availability of some dietary antioxidant complements such as vitamins or minerals. Based on the antioxidant capacity found in suburban birds, the pool of antioxidants must be lower or, probably, oxidative damage increases with urbanization process (scenario II) (Costantini et al., 2014; Isaksson, 2015). In both cases (rural and suburban areas), the maintenance of the oxidative balance would not be costly for individuals, and a reproductive investment should not represent an additional challenge for coping with the oxidative balance (Alonso-Alvarez et al., 2004; Wiersma et al., 2004).

      On the other hand, the increasing oxidative damage scenario (III) is in accordance with the results found in urban areas. The oxidative damage in lipids, proteins, and GPX activity showed higher values than those in rural and suburban populations; and the antioxidant capacity of urban birds was lower, especially during the breeding season. These results were expected and in line with a previous study which also found a lower TAC linked to urban areas (Herrera-Dueñas et al., 2014). Here, we propose that pollution could be responsible for the variation in oxidative stress balance between urban and rural areas. For instance, major atmospheric pollutants, such as particles (PM) or heavy metals, have been described as pro-oxidant elements (Kelly, 2003; Isaksson, 2010; Koivula and Eeva, 2010) and their deleterious effects on oxidative stress balance have been described in some urban birds such as Great Tits (Parus major L.) (Koivula et al., 2011), Feral Pidgeon (Columba livia L.) (Kurhalyuk et al., 2009), White Stork (Ciconia ciconia L.) (Kaminski et al., 2007). Similar results have also been found in humans (Chuang et al., 2007; Moller et al., 2014). Therefore, the quantification of these pollutants in the blood or feathers of our populations of House Sparrow may be a useful parameter to confirm this hypothesis in the future.

      The lower response to TAC in the urban population is also in line with previous studies that reported poor quality of urban food in terms of antioxidant levels such as carotenoids, vitamins, and minerals (Isaksson and Andersson, 2007; Isaksson, 2015; Tryjanowski et al., 2015). In other urban species like Blackbirds (Turdus merula L.), it has been reported that rural populations showed higher concentrations of vitamin E and carotenoids than their urban conspecifics, mainly caused by differences in their diet (Moller et al., 2010). Additional studies about the quality of diet in urban birds and its effects on oxidative stress balance could contribute to verifying this theory.

      Under pro-oxidant conditions, the up-regulation of antioxidant enzymes may be required and dietary antioxidants may be depleted; both mechanisms entail some costs (Dowling and Simmons, 2009; Isaksson et al., 2011), which may reduce the fitness and reproductive performance of urban birds (Isaksson, 2015). This is a costly status for individuals, as they must allocate all available resources to counteract the oxidative stress imbalance (Costantini and Verhulst, 2009; Monaghan et al., 2009; Isaksson, 2015). The lack of dietary antioxidants during the breeding season in a challenging environment such as an urban area could lead to potentially negative carry-over effects, in nestlings, linked to early-life nutritional constraints (Metcalfe and Monaghan, 2001). It has been widely reported that the poor condition of House Sparrows nestlings in urban areas is linked to a nutritional deficit (Liker et al., 2008; Bókony et al., 2010; Seress et al., 2012; Meillère et al., 2015). Furthermore, an early-life diet that is poor in antioxidants can result in a long-term impairment in the capacity to assimilate dietary antioxidants, like the carotenoids, vitamin A and E in adulthood (Blount et al., 2003; Monaghan et al., 2009; Costantini et al., 2014). Nutritional constraints in early-life further interact to shape the organization of the redox system (Costantini et al., 2014), which could may explain the lack of the antioxidant capacity that we have found in the adults from our urban populations which could be due to the important role that epigenetic mechanism seem to play in the final modulation of oxidative status (Isaksson, 2015).

      In our study, we found that rural birds showed better body condition in comparison with their conspecifics in other areas, especially the urban individuals. This result is consistent with the hypothesis of Shochat (2004) in which birds from urban environments show a poorer condition than conspecifics rural birds; and according to previous studies that found these differences between urban and rural populations of House Sparrow (Vincent, 2005; Liker et al., 2008; Bókony et al., 2010; Seress et al., 2012; Herrera-Dueñas et al., 2014). The weak condition of urban birds may be also linked to the nutritional constraints that they suffer during early-life, which could negatively affect body condition in adulthood (Bókony et al., 2010; Seress et al., 2012), even if the restriction diminish at later life stages (Liker et al., 2008). Body condition, especially during development, is often positively correlated with pre- and post-fledgling survival rates (Lamb et al., 2016); consequently, poor condition is often observed in a declining population such as urban House Sparrows (Dulisz et al., 2016).

      Apart from the direct effects of poor diet and pollution on oxidative stress, we should also consider that natural selection may have favored different phenotypes in urban and rural populations. For instance, it has been reported that expression of genes that code for metal detoxification enzymes are upregulated in urban populations of Great Tits (Parus major L.) in comparison with rural ones. Therefore, epigenetic mechanisms could generate life-long changes in gene expression, and subsequently, phenotypic traits between urban and rural populations (Watson et al., 2017).

      Our study has revealed the fragile oxidative stress balance of the urban House Sparrow, promoted either by an excess of harmful free radicals due to pollution, or insufficient antioxidants due to scarce availability of dietary antioxidants, or both in urban environments. Therefore, birds need to invest resources in maintaining the oxidative stress balance, which is costly especially during the breeding season, when the constraints of antioxidants could entail negative consequences not only on the body condition of the individuals, but also on the viability and future fitness of their offspring. The accumulative effects of lower quality individuals and carry over effects at the population level may be one of the causes underlying the population decreases of urban House Sparrow populations across European cities.

      Author contributions

      JA, MA, JP, and AH conceived and designed the study. JA, JP, and AH performed the fieldwork. JP and AH conducted lab work. AH performed statistical analyses with support from JP. AH drafted the manuscript and all the authors contributing to the final text.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We acknowledge Comunidad de Madrid and Junta de Extremadura for issuing the permissions, and the CMA for the ringing license. We are grateful to Javier de la Puente, Álex García, Yaiza Aragón, Eva Banda, Alicia Jacoste, and Juan from the Royal Palace of Madrid staff, people from Olmeda de la Fuentes and people from Plasenzuela for their assistance during fieldwork; and to Pablo S. and Pablo C. for their assistance during ringing training of AHD. We are also grateful to Javier Pérez-Tris lab for its financial support, and Jasper vH. and Melinda H. for improving this manuscript. Finally, we thank the editors for giving us the opportunity to participate in this issue, and the two reviewers who have contributed to improving this manuscript.

      References Alonso-Alvarez C. Bertrand S. Devevey G. Prost J. Faivre B. Sorci G. (2004). Increased susceptibility to oxidative stress as a proximate cost of reproduction: oxidative stress as a cost of reproduction. Ecol. Lett. 7, 363368. 10.1111/j.1461-0248.2004.00594.x Anderson T. (2006). Biology of the Ubiquitous House Sparrow: From Genes to Populations. New York, NY: Oxford University Press. Andersson M. N. Wang H.-L. Nord A. Salmón P. Isaksson C. (2015). Composition of physiologically important fatty acids in great tits differs between urban and rural populations on a seasonal basis. Front. Ecol. Evol. 3:93. 10.3389/fevo.2015.00093 Arnal N. de Alaniz M. J. T. Marra C. A. (2011). Carnosine and neocuproine as neutralizing agents for copper overload-induced damages in cultured human cells. Chem. Biol. Interact. 192, 257263. 10.1016/j.cbi.2011.03.01721501601 Benzie I. F. Strain J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 7076. 10.1006/abio.1996.02928660627 Berglund Å. M. M. Rainio M. J. Kanerva M. Nikinmaa M. Eeva T. (2014). Antioxidant status in relation to age, condition, reproductive performance and pollution in three passerine species. J. Avian Biol. 45, 235246. 10.1111/j.1600-048X.2013.00126.x Blount J. D. Metcalfe N. B. Arnold K. E. Surai P. F. Devevey G. L. Monaghan P. (2003). Neonatal nutrition, adult antioxidant defences and sexual attractiveness in the zebra finch. Proc. R. Soc. B 270, 16911696. 10.1098/rspb.2003.241112964996 Bókony V. Kulcsár A. Liker A. (2010). Does urbanization select for weak competitors in house sparrows? Oikos 119, 437444. 10.1111/j.1600-0706.2009.17848.x Chuang K.-J. Chan C.-C. Su T.-C. Lee C.-T. Tang C.-S. (2007). The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am. J. Respir. Crit. Care Med. 176, 370376. 10.1164/rccm.200611-1627OC17463411 Costantini D. (2011). On the measurement of circulating antioxidant capacity and the nightmare of uric acid: antioxidant capacity and uric acid. Methods Ecol. Evol. 2, 321325. 10.1111/j.2041-210X.2010.00080.x Costantini D. Greives T. J. Hau M. Partecke J. (2014). Does urban life change blood oxidative status in birds? J. Exp. Biol. 217, 29942997. 10.1242/jeb.10645024948638 Costantini D. Verhulst S. (2009). Does high antioxidant capacity indicate low oxidative stress? Funct. Ecol. 23, 506509. 10.1111/j.1365-2435.2009.01546.x De Coster G. De Laet J. Vangestel C. Adriaensen F. Lens L. (2015). Citizen science in action—evidence for long-term, region-wide house sparrow declines in Flanders, Belgium. Landscape Urban Plan. 134, 139146. 10.1016/j.landurbplan.2014.10.020 De Laet J. Summers-Smith J. D. (2007). The status of the urban house sparrow Passer domesticus in north-western Europe: a review. J. Ornithol. 148, 275278. 10.1007/s10336-007-0154-0 Dowling D. K. Simmons L. W. (2009). Reactive oxygen species as universal constraints in life-history evolution. Proc. Biol. Sci. 276, 17371745. 10.1098/rspb.2008.179119324792 Dulisz B. Nowakowski J. J. Górnik J. (2016). Differences in biometry and body condition of the house sparrow (Passer domesticus) in urban and rural population during breeding season. Urban Ecosyst. 19, 13071324. 10.1007/s11252-016-0546-0 Evans B. S. Ryder T. B. Reitsma R. Hurlbert A. H. Marra P. P. (2015). Characterizing avian survival along a rural-to-urban land use gradient. Ecology 96, 16311640. 10.1890/14-0171.1 Evans K. L. Chamberlain D. E. Hatchwell B. J. Gregory R. D. Gaston K. J. (2011). What makes an urban bird? Glob. Change Biol. 17, 3244. 10.1111/j.1365-2486.2010.02247.x Forman R. T. T. (2013). Urban Ecology: Science of Cities. Cambridge: Cambridge University Press. Fossati P. Prencipe L. Berti G. (1980). Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 26, 227231. 7353268 Gaston K. J. (ed.). (2010). Urban Ecology. Cambridge: Cambridge University Press. Gil D. Brumm H. (eds.) (2014). Avian Urban Ecology: Behavioural and Physiological Adaptations. Oxford; New York, NY: Oxford University Press. Grimm N. B. Faeth S. H. Golubiewski N. E. Redman C. L. Wu J. Bai X. . (2008). Global change and the ecology of cities. Science 319, 756760. 10.1126/science.115019518258902 Grotto D. Maria L. S. Valentini J. Paniz C. Schmitt G. Garcia S. C. . (2009). Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification. Quim. Nova 32, 169174. 10.1590/S0100-40422009000100032 Halliwell B. (2007). Biochemistry of oxidative stress. Biochem. Soc. Trans. 35, 11471150. 10.1042/BST035114717956298 Hargitai R. Costantini D. Moskát C. Bán M. Muriel J. Hauber M. E. (2012). Variation in plasma oxidative status and testosterone level in relation to egg-eviction effort and age of brood-parasitic common cuckoo nestlings. Condor 114, 782791. 10.1525/cond.2012.110166 Herrera-Dueñas A. Pineda J. Antonio M. T. Aguirre J. I. (2014). Oxidative stress of house sparrow as bioindicator of urban pollution. Ecol. Indic. 42, 69. 10.1016/j.ecolind.2013.08.014 Isaksson C. (2010). Pollution and its impact on wild animals: a meta-analysis on oxidative stress. Ecohealth 7, 342350. 10.1007/s10393-010-0345-720865439 Isaksson C. (2015). Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29, 913923. 10.1111/1365-2435.12477 Isaksson C. Andersson S. (2007). Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38, 564572. 10.1111/j.0908-8857.2007.04030.x Isaksson C. Sheldon B. C. Uller T. (2011). The challenges of integrating oxidative stress into life-history biology. BioScience 61, 194202. 10.1525/bio.2011.61.3.5 Kaminski P. Kurhalyuk N. Szady-Grad M. (2007). Heavy metal-induced oxidative stress and changes in physiological process of free radicals in the blood of white stork (Ciconia ciconia) chicks in polluted areas. Pol. J. Environ. Stud. 16, 555562. Kark S. Iwaniuk A. Schalimtzek A. Banker E. (2007). Living in the city: can anyone become an 'urban exploiter'? J. Biogeogr. 34, 638651. 10.1111/j.1365-2699.2006.01638.x Kelly F. J. (2003). Oxidative stress: its role in air pollution and adverse health effects. J. Occup. Environ. Med. 60, 612616. 10.1136/oem.60.8.61212883027 Koivula M. J. Eeva T. (2010). Metal-related oxidative stress in birds. Environ. Pollut. 158, 23592370. 10.1016/j.envpol.2010.03.01320382455 Koivula M. J. Kanerva M. Salminen J.-P. Nikinmaa M. Eeva T. (2011). Metal pollution indirectly increases oxidative stress in great tit (Parus major) nestlings. Environ. Res. 111, 362370. 10.1016/j.envres.2011.01.00521295293 Kurhalyuk N. Hetmanski T. Antonowicz J. Tkachenko H. (2009). Oxidative stress and protein oxidation affected by toxic metals in feral pigeon (Columba livia) from Northern Poland. Baltic Coastal Zone. J. Ecol. Prot. Coastline 13, 187197. Lamb J. S. O'Reilly K. M. Jodice P. G. R. (2016). Physical condition and stress levels during early development reflect feeding rates and predict pre- and post-fledging survival in a nearshore seabird. Conserv. Physiol. 4:cow060. 10.1093/conphys/cow06027957336 Lepczyck C. A. Warren P. S. (eds.). (2012). Urban Bird Ecology and Conservation. Berkeley, CA: University of California Press. Liker A. Papp Z. Bókony V. Lendvaiá Z. (2008). Lean birds in the city: body size and condition of house sparrows along the urbanization gradient. J. Anim. Ecol. 77, 789795. 10.1111/j.1365-2656.2008.01402.x18479344 Marklund S. Marklund G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469474. 10.1111/j.1432-1033.1974.tb03714.x4215654 Marzluff J. M. (ed.). (2008). Urban Ecology: An International Perspective on the Interaction between Humans and Nature. New York, NY: Springer. Marzluff J. M. (2016). A decadal review of urban ornithology and a prospectus for the future. Ibis 159, 113. 10.1111/ibi.12430 Meillère A. Brischoux F. Parenteau C. Angelier F. (2015). Influence of urbanization on body size, condition, and physiology in an urban exploiter: a multi-component approach. PLoS ONE 10:e0135685. 10.1371/journal.pone.013568526270531 Metcalfe N. B. Monaghan P. (2001). Compensation for a bad start: grow now, pay later? Trend. Ecol. Evol. 16, 254260. 10.1016/S0169-5347(01)02124-311301155 Moller A. P. Erritzøe J. Karadas F. (2010). Levels of antioxidants in rural and urban birds and their consequences. Oecologia 163, 3545. 10.1007/s00442-009-1525-420012100 Moller P. Danielsen P. H. Karottki D. G. Jantzen K. Roursgaard M. Klingberg H. . (2014). Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat. Res. Rev. Mutat. Res. 762, 133166. 10.1016/j.mrrev.2014.09.00125475422 Monaghan P. Metcalfe N. B. Torres R. (2009). Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol. Lett. 12, 7592. 10.1111/j.1461-0248.2008.01258.x19016828 Niemelä J. (ed.). (2011). Urban Ecology: Patterns, Processes, and Applications. Oxford; New York, NY: Oxford University Press. Ohkawa H. Ohishi N. Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351358. 10.1016/0003-2697(79)90738-336810 Oro D. Genovart M. Tavecchia G. Fowler M. S. Martínez-Abraín A. (2013). Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 15011514. 10.1111/ele.1218724134225 Peach W. J. Vincent K. E. Fowler J. A. Grice P. V. (2008). Reproductive success of house sparrows along an urban gradient. Anim. Conserv. 11, 493503. 10.1111/j.1469-1795.2008.00209.x Peig J. Green A. J. (2009). New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 18831891. 10.1111/j.1600-0706.2009.17643.x Reznick A. Z. Packer L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233, 357363. 10.1016/S0076-6879(94)33041-78015470 Romero-Haro A. A. Sorci G. Alonso-Alvarez C. (2016). The oxidative cost of reproduction depends on early development oxidative stress and sex in a bird species. Proc. R. Soc. B 283:20160842. 10.1098/rspb.2016.084227358368 Salmón P. Nilsson J. F. Nord A. Bensch S. Isaksson C. (2016). Urban environment shortens telomere length in nestling great tits, Parus major. Biol. Lett. 12:20160155. 10.1098/rsbl.2016.015527303051 Seress G. Bókony V. Pipoly I. Szép T. Nagy K. Liker A. (2012). Urbanization, nestling growth and reproductive success in a moderately declining house sparrow population. J. Avian Biol. 43, 403414. 10.1111/j.1600-048X.2012.05527.x Shaw L. M. Chamberlain D. Evans M. (2008). The house sparrow Passer domesticus in urban areas: reviewing a possible link between post-decline distribution and human socioeconomic status. J. Ornithol. 149, 293299. 10.1007/s10336-008-0285-y Shochat E. (2004). Credit or debit? Resource input changes population dynamics of city-slicker birds. Oikos 106, 622626. 10.1111/j.0030-1299.2004.13159.x Tkachenko H. Kurhaluk N. Grudniewska J. Andriichuk A. (2014). Tissue-specific responses of oxidative stress biomarkers and antioxidant defenses in rainbow trout Oncorhynchus mykiss during a vaccination against furunculosis. Fish Physiol. Biochem. 40, 12891300. 10.1007/s10695-014-9924-924599827 Tryjanowski P. Skórka P. Sparks T. H. Biaduń W. Brauze T. Hetmański T. . (2015). Urban and rural habitats differ in number and type of bird feeders and in bird species consuming supplementary food. Environ. Sci. Pollut. Res. 22, 1509715103. 10.1007/s11356-015-4723-026003091 Vincent K. E. (2005). Investigating the Causes of the Decline of the Urban House Sparrow Passer Domesticus Population in Britain. Thesis, De Monfort University, Leicester, UK. Watson H. Videvall E. Andersson M. N. Isaksson C. (2017). Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7:44180. 10.1038/srep4418028290496 Wiersma P. Selman C. Speakman J. R. Verhulst S. (2004). Birds sacrifice oxidative protection for reproduction. Proc. R. Soc. B 271, S360S363. 10.1098/rsbl.2004.017115504018 Zeb A. Ullah F. (2016). A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods. J. Anal. Methods Chem. 2016, 15. 10.1155/2016/941276727123360
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.gxcrrg.com.cn
      hnmjcx.com.cn
      nlkxxz.com.cn
      shengyu123.com.cn
      www.weconz.com.cn
      www.sptqyh.com.cn
      www.ndchain.com.cn
      vietlotto.org.cn
      www.odchsl.com.cn
      the20s.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p