Front. Ecol. Evol. Frontiers in Ecology and Evolution Front. Ecol. Evol. 2296-701X Frontiers Media S.A. 10.3389/fevo.2015.00050 Ecology and Evolution Original Research Quitting time: When do honey bee foragers decide to stop foraging on natural resources? Rivera Michael D. 1 * Donaldson-Matasci Matina 2 Dornhaus Anna 1 1Department of Ecology and Evolutionary Biology, The University of Arizona Tucson, AZ, USA 2Department of Biology, Harvey Mudd College Claremont, CA, USA

Edited by: Roger Schürch, University of Sussex, UK

Reviewed by: Shawn M. Wilder, The University of Sydney, Australia; Christoph Grüter, University of Lausanne, Switzerland

*Correspondence: Michael D. Rivera, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL 61801, USA mdriver3@illinois.edu

This article was submitted to Behavioral and Evolutionary Ecology, a section of the journal Frontiers in Ecology and Evolution

19 05 2015 2015 3 50 03 01 2015 04 05 2015 Copyright © 2015 Rivera, Donaldson-Matasci and Dornhaus. 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Honey bee foragers may use both personal and social information when making decisions about when to visit resources. In particular, foragers may stop foraging at resources when their own experience indicates declining resource quality, or when social information, namely the delay to being able to unload nectar to receiver bees, indicates that the colony has little need for the particular resource being collected. Here we test the relative importance of these two factors in a natural setting, where colonies are using many dynamically changing resources. We recorded detailed foraging histories of individually marked bees, and identified when they appeared to abandon any resources (such as flower patches) that they had previously been collecting from consistently. As in previous studies, we recorded duration of trophallaxis events (unloading nectar to receiver bees) as a proxy for resource quality and the delays before returning foragers started trophallaxis as a proxy for social need for the resource. If these proxy measures accurately reflect changes in resource quality and social need, they should predict whether bees continue foraging or not. However, neither factor predicted when individuals stopped foraging on a particular resource, nor did they explain changes in colony-level foraging activity. This may indicate that other, as yet unstudied processes also affect individual decisions to abandon particular resources.

social insects foraging honey bees Apis mellifera decision making collective behavior

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Animals are often faced with the challenge of foraging on resources whose quality and availability change over space and time. In order to maximize foraging success, animals have evolved mechanisms to judge which resources are worth exploiting (Belovsky, 1978; Pyke, 1978; Pleasants, 1989; Van Nest and Moore, 2012). Many animals forage on resources to which they may make multiple trips (such as bees, nectar foraging ants, and birds); in these cases, foragers need to choose when to return to the same resource and when to abandon it to search for a new one. This is known as the “exploitation vs. exploration” trade-off (Krebs et al., 1978; McNamara and Houston, 1985). In social animals, both the information available to make this decision, and the consequences of foraging success, may be shared among individuals. Social insects have been particularly well studied in this respect.

      Honey bees (Apis mellifera) provide a great model for social foraging due to their ability to rapidly adapt their foraging efforts to changing resource availability, studied particularly in the context of nectar foraging (Seeley, 1986). This is accomplished through the collective actions and decisions of individual foragers, with the benefits and costs of these decisions affecting the colony as a whole. Individual bees integrate several sources of information, including personal and social, when making decisions about foraging (Biesmeijer and Seeley, 2005). Honey bee foragers use information gained in their own experience, such as memory of time and place, sugar concentration and amount of nectar previously collected, to decide whether to continue or resume foraging on particular resources (Wainselboim et al., 2002; Grüter and Farina, 2009a; Van Nest and Moore, 2012; Al Toufailia et al., 2013). They also make use of various sources of social information, such as information about resource location and quality transmitted via the waggle dance (von Frisch, 1967; Grüter and Farina, 2009b), and information about resource quality and type from nectar samples unloaded in the hive (Grüter and Farina, 2009a). Other communication signals and interactions can also affect foraging decisions, such as the tremble dance (food storer activation) and the stop signal (forager inactivation) (Seeley, 1989; Nieh, 1993; Balbuena et al., 2011; Seeley et al., 2012).

      But what kind of information do foragers use to decide when to stop visiting a particular resource? The colony's dynamic ability to allocate foragers to the best resources available can only be maintained if foragers frequently re-evaluate their short-term commitment to resources (Seeley et al., 1991; Detrain and Deneubourg, 2008). While foragers may revisit and check on resources over long periods of time (days or weeks), we are particularly interested in how foragers decide on which resources to continue foraging (Beekman, 2005; Al Toufailia et al., 2013). How do foragers make the decision to stop foraging on a particular resource? Two main processes have been identified. First, an individual personally experiencing a decline in the quality of the resource is more likely to abandon it, and to stop foraging entirely or look for other resources (Seeley et al., 1991; Townsend-Mehler et al., 2010). Second, if the colony's need for foragers in general, or the need for the particular forage brought in by that forager (e.g., if other foragers are bringing higher-quality nectar), has decreased, individuals may also abandon the resource they are currently exploiting (Lindauer, 1952; Seeley, 1989). Foragers get this information from interactions with nestmates, particularly receiver bees (Lindauer, 1952; Seeley, 1989; Biesmeijer and de Vries, 2001).

      In honey bees, foragers can assess resource quality directly when foraging, using several criteria, including concentration and volume of the nectar itself, but also the flight distance to the resource from the hive and the likelihood of predation at the resource (von Frisch, 1967; Tan et al., 2013). These measures are integrated by bees and affect both when bees share information about this resource by dancing and the bees' decision to continue foraging on it (Seeley, 1994; De Marco and Farina, 2001). Nectar can be highly temporally and spatially variable, affected by abiotic factors (rainfall, sunlight, nutrients) and biotic factors (pollinator visitation and nectar replacement rates) (Real and Rathcke, 1991; Boose, 1997; Edge et al., 2011). Even over the course of a day nectar volume can change quite rapidly, by several microliters in an hour (Raihan and Kawakubo, 2014).

      A honey bee forager can also gain valuable social information about the quality of her resource relative to others exploited by her colony, and the need for this resource, from her nest mates. Foragers, after gathering liquid food such as flower nectar or honeydew, return to the hive to pass this food to another bee, called a “receiver bee,” who will carry it deeper into the hive, process it, and either deposit it in a honey store or pass it on to nurse bees (Seeley, 1995). The time it takes from entering a hive to securing a receiver bee we call “wait time,” and is thought to reflect colony foraging needs in one of two ways (Seeley and Tovey, 1994). Receiver bees have access to multiple foragers, and may thus experience multiple sources of nectar; in response they may be reluctant to accept a lower-quality or novel resource compared to what they have recently experienced (Seeley, 1989; Seeley and Tovey, 1994; Gil and Farina, 2002; Wainselboim and Farina, 2003; Goyret and Farina, 2005). Thus a forager who experiences a longer wait time may be informed that her resource is of poorer quality relative to what is being brought into the hive by others. Difficulty of finding a receiver may also indicate the general state of hive-level foraging to the forager: increased wait time could be a result of a redistribution of workers away from unloading to more pressing colony tasks, or a result of a sudden increase in foragers bringing nectar that overwhelms the capacity of the existing receiver bees to process that nectar (Lindauer, 1952; Seeley and Tovey, 1994). In both of these cases, it may be adaptive for a forager experiencing long wait times to stop foraging on its particular resource. Indeed, in an empirical test using artificial feeders and removal of receiver bees, lower densities of receiver bees resulted in longer wait times, decreased the probability that a forager would perform waggle dances, and increased the probability that a forager would stop foraging on its current resource (Seeley, 1989).

      While independently shown to affect foragers' decisions to abandon resources, personal and social information's relative contributions to forager decisions, as well as their importance under natural foraging conditions with many small, temporally and spatially rapidly varying resources, have not been investigated. Does personal or social information more often determine a bee's decision to quit foraging at a resource, and are the bees' decisions fully explained by these two factors, or are other processes also important? For example, bees might simply stop foraging on any particular resource with a fixed probability, which could help the colony maintain flexibility, since it prevents large numbers of foragers from being “locked in” to foraging on particular resources (Detrain and Deneubourg, 2008; Lanan et al., 2012). Does this occur, and how relevant is it compared to quitting in response to the two known factors?

      We thus quantify the influences of decreased trophallaxis duration and increased wait time on the decision to abandon resources under natural foraging conditions. Using detailed foraging histories based on in-hive observations of returning foragers, we test (1) the effect of personal information, in the form of a decline in resource quality, on the decision to stop foraging. To do this we compare the average trophallaxis duration (a proxy for nectar load and thus a potential correlate of resource quality) after the last trip before a forager abandons a resource with its previous average trophallaxis duration over recent trips that are likely to be to the same resource. We also test (2) the effect of social information, in the form of wait time to unload nectar, by measuring this directly in the hive, and comparing wait time on the last trip with that on recent trips.

      Methods Set up and marking

      Each experiment was performed with two colonies of about 2000 domestic Italian honeybees (Apis mellifera ligustica) each, with roughly 500 bees individually marked in each colony. They were housed in a glass sided, two frame observation hive with the exit, a clear plastic tube, connected to the hive near the bottom corner. Foragers were marked at the USDA Carl Hayden Bee Center over a period of 1 week prior to the start of the experiment. Foragers were captured by selectively collecting individuals that had left the hive. Individuals were uniquely marked with a colored/numbered tag and paint. After being sealed into their hives for ~24 h, the colony was transported to a new location and left sealed overnight before the beginning of the experiment the next morning.

      Dates and location

      The two experiments took place in two locations in southern Arizona. Experiments 1a and 1b were located at Appleton–Whittell Research Ranch, an Audubon Society preserve near Elgin, Arizona and took place on June 20 and 27, 2010. Experiments 2a and 2b were performed at the Santa Rita Experimental Range Headquarters in Florida Canyon on Aug 9 and 16, 2010. (These dates and locations correspond to experiments 3 and 4 in Donaldson-Matasci and Dornhaus, 2012).

      Recording

      Hives were opened at dawn and remained open until dusk. During that time all marked bees were recorded coming in and out of the hive. From video recordings taken, we observed all returning marked bees and recorded all instances of trophallaxis within 5 min of entering the hive. Wait time (amount of time from entering the hive until the beginning of the first trophallaxis, an indication of colony foraging needs) and trophallaxis duration (the sum of all trophallaxis event durations in a single hive visit, a proxy for the profitability of the exploited resource) were determined for each returning bee (Wainselboim and Farina, 2003). Trophallaxis duration has been used as a metric for non-invasively determining resource quality (Seeley and Visscher, 1988). We only analyzed foraging histories from foragers who were performing repeated, consistent, successful foraging trips, which we termed to be “employed” (see below); we did this to maximize the likelihood that foragers were indeed repeatedly visiting the same resource. To see if a relationship existed between the decision to quit foraging and declines in trophallaxis duration and/or increases in wait time, we compared these measures on a forager's last trip to the average measure on previous trips of that forager (during its “employment”).

      Individual foraging histories

      Foraging histories were constructed using the following operational definitions, based on the framework in Biesmeijer and de Vries (2001). We consider a forager to be “employed” while it consistently keeps foraging at the same resource (e.g., a patches of flowers that a bee would return to repeatedly). We operationally defined this as a forager who performs three or more consecutive successful foraging trips (where trophallaxis is performed in the hive after each trip), with less than 2 min variability in duration, and less than 10 min spent in the hive between trips. This was a consistent pattern that emerged from our foraging data, in other words most bees that performed several consecutive successful trips conformed to this pattern. Through the lens of these foraging histories we are able to determine when an individual stops foraging at a particular resource (see Figure 1). We found 29 individual bees out of the 227 individuals observed (184 of which showed at least one successful trophallaxis event) over the 4 experiment days and the 2 colonies that showed such consistent foraging patterns. This was perhaps due to many foragers only performing a few short bouts of trophallaxis over the entire day.

      Sample employment histories for 3 employed foragers from experiment 2a. Highlighted portion is the “employment” phase.

      Colony level foraging activity

      To measure the influence of average trophallaxis duration and wait time on colony-level foraging activity, we divided each experiment into 15-min time bins. For each bin we recorded the number of marked foragers who left the hive (employed or unemployed), average length of all trophallaxis events, and the average wait time. Due to the likely presence of autocorrelation in these data series, simply testing for correlations among these factors could lead to erroneous results. Instead, we use a cross-correlation test, which measures the correlations between the two time series as a function of time lag (Venables and Ripley, 2002). If wait time were a major factor affecting foraging activity, we would see a negative correlation (as wait time increases, number of foragers leaving decreases) with a positive time lag (the decrease in the number of foragers would occur after the increase in wait time). If, on the other hand, colony-level foraging activity affected wait time (e.g., because with fewer foragers, bees can unload faster), we would see a positive correlation with a negative lag (decreases in the number of foragers would precede decreases in wait time). Similarly, if changes in trophallaxis duration affected foraging activity, we would see a positive correlation (as resources decline in quality, fewer bees leave the hive) with a positive time lag (a decline in the resource precedes a decline in foragers). We considered only time lags within biologically relevant time scale (less than an hour). To account for multiple testing, i.e., consideration of multiple time lags, we applied a Bonferroni correction (significance level α = 0.05/11, where 11 is the number of potential time lags considered in each experiment). All analyses were performed using the R statistical package (R Core Team, 2013).

      Results Individual level foraging

      Contrary to expectations, we did not find a statically significant effect of either decreased trophallaxis duration or of increasing wait times on individual bees' decision to stop foraging. That is, foragers did not experience a longer-than-average wait time just before quitting any more often than expected by chance (Binomial test p = 0.326, n = 29, see Table 1). Their trophallaxis durations were also not shorter than average any more often than expected by chance (Binomial test p = 0.845, n = 29, see Table 1). Looking at it in a different way, the trophallaxis duration experienced by foragers on their last trip before quitting was not significantly shorter than that experienced on previous trips (Wilcoxon signed-rank test p = 0.56, W = 370.5, n = 29). Neither was wait time on a forager's last trip significantly longer than on previous trips (Wilcoxon signed-rank test p = 0.98, W = 336, n = 29) (Figure 2). These analyses were performed on “employed” foragers, which showed trophallaxis durations on average seven times longer than non-employed categorized foragers (T-test p = 0.0498, n = 4, colony averages for employed and non-employed successful foragers).

      The number of “employed” foragers in each experiment, and whether they experienced a longer wait time/shorter trophallaxis duration on the last trip of their employed period compared to the average for previous trips.

      On last trip experienced
      Colony Number of employed foragers Longer wait time Binomial test P-value Shorter trophallaxis duration Binomial test P-value
      1a 7 4 0.571 4 0.571
      1b 11 7 0.636 3 1.000
      2a 7 2 0.286 3 0.726
      2b 4 3 0.625 3 0.625
      Total 29 16 0.517 13 0.845

      P-values are reported for a test of whether foragers experience a longer-than-average wait time (or shorter-than-average trophallaxis duration) on their last trip more often than expected by chance (exact binomial test).

      Difference between the last and average trophallaxis duration/wait time during a forager's employment period.

      Colony level foraging

      The level of colony foraging activity varied considerably throughout the day, as did trophallaxis and wait times (Figure 3). Experiments 1a and 1b (in June) showed strong foraging peaks in the morning, while experiments 2a and 2b (in August) showed more consistent activity across the day, with more foraging in the afternoon.

      Daily foraging activity, average trophallaxis duration and wait time of all marked foragers across the 4 experiments. Hives were opened and recorded from dawn until dusk.

      We found no evidence that changes in trophallaxis duration across all successful foragers affects colony-level foraging activity (Figure 4—Trophallaxis duration). If changes in trophallaxis duration affected foraging activity, we would expect to see a positive correlation (as resources decline in quality, fewer bees leave to forage) with a positive time lag (a decline in the resource is followed by a decline in foraging activity). However, the only significant correlations we observed were positive correlations with negative time lags, suggesting that decreases in foraging activity preceded decreases in trophallaxis duration (experiments 1b and 2b). In the other experiments, no significant correlations were observed.

      Cross correlation test results showing correlations between either trophallaxis duration or wait time and the number of foragers leaving. Horizontal lines signify critical values corrected for multiple testing (Bonferroni correction: α = 0.0045); a correlation at any time lag above that line is considered statically significant. Time lag is for foragers leaving relative to trophallaxis duration/wait time (i.e., positive time lag indicates that changes in the factor precede changes in foraging activity by the specified time lag).

      We also found no evidence that the wait time experienced by foragers influences the colony's foraging effort (Figure 4—Trophallaxis duration). If wait time were a major factor affecting foraging activity, we would expect to see a negative correlation (as wait time increases, number of foragers leaving decreases) with a positive time lag (the decrease in the number of foragers would occur after the increase in wait time). No significant negative correlation between wait time and foraging effort was observed in any experiment. In experiment 2a, significant positive correlations were observed with both positive and negative time lags. A positive correlation with a negative time lag might indicate that high levels of foraging activity tend to increase wait times (because receiver bees are busier), but the occurrence of correlations at positive time lags as well makes it difficult to infer the direction of causation. In the other experiments, there were no significant correlations observed.

      Discussion

      Our study aimed to quantify and compare the effects of (1) personal experience of a decline in resource quality and (2) social information about a decrease in the colony's need for a particular resource, in a natural setting. Both of these factors had independently been shown to affect honey bees' short term decisions to stop foraging on artificial food sources (Seeley, 1986; Seeley and Tovey, 1994). We also looked for evidence of these effects at the colony level, by testing whether a honey bee colony's overall foraging activity decreases in response to either factor. In our experiment, neither factor appeared to have a noticeable effect: we saw no relationship between changes in trophallaxis duration (our proxy for resource quality) or wait time to unload (a proxy for colony need) and the decision to quit foraging at either the individual or colony levels.

      A crucial assumption made here is that trophallaxis duration and wait time are valid proxies for resource quality and colony foraging need respectively. These two measures have been tested several times with conflicting results. For trophallaxis duration, Farina and Núñez (1991) and Farina and Wainselboim (2001) found no relationship between resource quality and trophallaxis duration, but Wainselboim and Farina (2003) and Seeley et al. (1991) did. Perhaps these differences are reflections in the variation in methods, particularly in terms of feeders used (capillary tubes vs. multi-well feeders) or where the trophallaxis duration measurements were made (in separate observation chambers or within the hive). In general, no artificial feeder mimics resource delivery of natural resources: flowers deliver tiny and extremely variable nectar amounts, but secrete nectar so slowly that they effectively have no “flow rate” where a bee can wait to fill up, and bees generally visit up to several hundred flowers on each trip (Castellanos et al., 2001). By utilizing trophallaxis duration we are able to make direct comparisons against previous studies (Seeley, 1986) using the same metric, but with natural resources. Thus, while there is perhaps not a consensus on how trophallaxis time relates to resource quality, it is a non-invasive measure previously shown to predict foraging decisions.

      Wait time has universally been seen as a source of social information about the need for the particular food brought by a foraging honey bee (Seeley, 1989; Seeley and Tovey, 1994; Gil and Farina, 2002; Wainselboim and Farina, 2003; Goyret and Farina, 2005). What information precisely is contained in this cue, i.e., what social processes affect wait time, has been interpreted somewhat differently in different studies. It may be that the forager mainly receives information about the nutritional status of her colony (Seeley, 1989; Seeley and Tovey, 1994); others conclude that wait time is a reflection on the quality of the foragers resource relative to other resources exploited by the hive (Lindauer, 1961).

      While our colony-level analysis included only marked bees (~500, 25% of the colony), they represented a majority of the foragers, thus providing a good measure of colony foraging effort. Nevertheless, for the individual-level analysis we only recorded 29 bees foraging consistently (“employed” according to our operational definition). This sample size is similar to previous studies of this nature (Seeley and Tovey, 1994: 39 foragers; De Marco and Farina, 2001: 17 foragers), however, a larger study, with more foragers recorded as well as including more different days of foraging, would likely have made any effects of both resource quality and colony need for the resource more apparent. We do not conclude from our results that neither factor ever plays a role; after all, the possible effects of both had been demonstrated previously (Seeley, 1986; Seeley and Tovey, 1994). Despite this, however, our results do show that neither factor explains most of the variation in forager decisions.

      One reason that we may not have seen an effect of either change in resource quality or wait time on the decision to stop foraging is that the magnitude of both of these effects is small under natural conditions. While several previous manipulative studies have demonstrated these effects, this study is the first that uses natural resources and no manipulation of worker allocation (Seeley, 1986; Seeley and Tovey, 1994; Wainselboim and Farina, 2003; Balbuena et al., 2011). Unlike the artificial feeders used in previous experiments, natural resource quality may change quite dramatically or subtly (Real and Rathcke, 1991; Boose, 1997; Edge et al., 2011). Furthermore, the potentially wide variety of resources being exploited may buffer large changes in the overall quantity and quality of nectar being brought into the hive (Donaldson-Matasci and Dornhaus, 2014). Barring any large-scale simultaneous resource landscape changes, the colony may experience relatively subtle and slow changes in resource intake. Continual adjustments in the ratio of receiver bees to foragers may allow the colony to track those changes without ever experiencing long wait times (Seeley, 1986). Thus colonies under natural conditions may rarely experience the dramatic increase in wait time induced by artificially removing receiver bees from the hive. Wait times could be primarily a byproduct of other colony level functions (such as shifts in worker allocation) rather than a result of resource dynamics. For example the density of bees in the entrance area (often called the dance floor) may be a good indicator to foragers on such shifts, and have been shown to vary throughout the day (Seeley, 1995). Such effects would increase the noise in the wait time cue, and may make its effect on foraging decisions less clear. By comparing these measures over the average time to the last, we hope to capture the greatest amount of change (i.e., the greatest decline in trophallaxis duration). However, it could be with the noise or subtly that natural conditions bring, that foragers use a series of poor indicators to make foraging decisions.

      Another possible explanation for the observed lack of effect in our experiment is that both factors are important in nature, but which factor is most influential could change depending on the observed time frame. Our small sample size precluded analyzing the effects separately over different time periods, which might have kept us from finding a significant effect. In the morning, when resources are of higher quality, foraging bees might be willing to wait longer to unload to capitalize on the high quality nectar, in which case these foragers should be relativity insensitive to wait time and highly sensitive to changes in resource quality. Later in the day when there is a higher demand for workers elsewhere in the hive (for example cooling or water collecting) no matter the quality of the resource, the wait time to unload nectar could take precedence in their decision making (Johnson, 2003). At this later time we might then see the sensitivity to wait time increase relative to their response to changing nectar quality. As Figure 3 illustrates, resource quality and unload time were dynamic across the day, which could have been due to the effects of changing resources or additional factors affecting colony organization. However, because we had relatively few employed foragers working consistently across the day, we did not have enough statistical power to test for changes in the importance of each factor over the course of the day. Additionally these factors could impact the decision much differently over a longer time period. While our study looked only at foraging dynamics within a relatively short time frame, previously studies have shown that bees will be more persistent on a previously strong rewarding resource even if it declines in quality (Al Toufailia et al., 2013).

      In addition to variation within a single environment, differences in foraging conditions between environments could have shaped the foraging patterns we saw (Sherman and Visscher, 2002). Whether personal or social information is most important in an individual's decision to stop foraging at a particular resource may change depending on the foraging environments. For example previous work has shown that the benefit a colony receives from communication via the waggle dance depends on the resource environment (Donaldson-Matasci and Dornhaus, 2012). This could be true for the benefits of using a particular type of personal or social information (like waiting times) as well. For example, in environments with short lived, rich resources, using personal information about resource quality may allow a forager to secure a highly profitable resource before it disappears, regardless of possibly out-of-date social information. If resources are long-lived, the colony-level foraging effort should perhaps be more driven by colony need than resource availability. In that case, following wait time to learn about colony needs may ensure that the colony's nectar collection and processing rates are well balanced and efficient. Generally each of these sources of information have been shown to vary in their accuracy, with personal information being more accurate about a single exploited resource, but naïve about the resource landscape (Franks et al., 2003). Social information is thought to operate on a slower timescale than personal, potentially leading inaccuracy about specific resource due to transmission errors and the potential for it to be outdated (Rendell et al., 2010). However, social information allows for comparison among resources without requiring direct comparison by individuals. Thus what may favor the use of either social or personal information may be driven by the need for short term accuracy on about a specific resource (personal) or longer term information across resources (social) in a particular context. Further more different types of social and personal information exist and may be affected by environmental conditions separately. For example the waggle dance may be more suitable for ephemeral resources due to its fast response time, while floral odors shared among foragers may lend to steady resource patches.

      In addition to being context dependent, what information a foraging honey bee uses to quit foraging on a particular resource could vary among individuals and among colonies. It has been shown that nectar response thresholds (the concentration of sucrose at which individuals respond) vary among individuals and colonies (Pankiw and Page, 2000). Individual variation in nectar response thresholds could provide a mechanism for the variation we see in the decision to abandon a resource, with high threshold individuals being more likely to abandon a resource when it declines in quality and low threshold individuals being more persistent. Similarly, inter-individual variation in sensitivity to wait time could obscure the colony-level correlation between increased wait time and quitting foraging. Future studies with larger numbers of marked individuals foraging over the course of several days could show whether individuals are consistent across their foraging careers in their sensitivity to declines in resource quality and/or wait time.

      We have focused on two sources of information that foraging honey bees might use in making the decision to abandon a resource: personal information about resource quality, and social information about colony needs. However, it is likely that there is a stochastic element to their decision-making as well. Some have argued that individuals living in groups can afford to be less precise: individual variance in decision-making may be compensated by the reliability of the system as a whole (Oster and Wilson, 1978). Furthermore, some randomness in individual behavior can actually be good, in the context of collective behavior, because it may allow the group to respond more flexibly to changing environmental conditions (Deneubourg et al., 1983, 1986; Seeley et al., 1991; Detrain and Deneubourg, 2008; Townsend-Mehler and Dyer, 2011). For example, individuals may sometimes persist in foraging at even rather poor nectar sources (“inspectors”), just in case the resource increases in quality (Biesmeijer and de Vries, 2001; Biesmeijer and Seeley, 2005; Granovskiy et al., 2012). Likewise it could be advantageous for some individuals to abandon even a strong nectar source, in order to keep the colony from overcommitting to any single resource while potentially missing out on even stronger ones. Given the potential for rapid resource dynamics, a colony being “locked into” one or a few resources may miss newly emerging ones (Detrain and Deneubourg, 2008; Lanan et al., 2012).

      If there is a strong element of randomness in a forager's decision to abandon a resource, it may be difficult to detect the subtler effects of personal or social information under natural foraging conditions. Our results may reflect a complex interplay of factors influencing honey bee decision making in natural environments, but the potential importance of stochasticity in these systems should not be overlooked.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      MCD was funded by the University of Arizona's Center for Insect Science through a NIH Training Grant #1K12GM000708. AD was funded by NSF grants no. IOS-1045239 and DBI-1262292. Honey bee colonies were kindly provided by R. Page at Arizona State University and G. DeGrandi-Hoffman at the USDA Carl Hayden Bee Research Center, and housed at the latter's facility with assistance from M. Chambers and T. Deeby. We thank E. Francis (SASI), L. Kennedy (AWRR), M. Heitlinger (SRER) and R. Smith (UADS) for their cooperation and support at our field sites. We gratefully acknowledge the field work assistance of N. Matasci, G. Barraza, J. Brown, J. Chappell, M. Hughes, J. Icely, N. Narkhede, S. Williams and Y. Zhu.

      References Al Toufailia H. Grüter C. Ratnieks L. W. (2013). Persistence to unrewarding feeding locations by honeybee foragers (Apis mellifera): the effect of experience, resource profitability, and season. Ethology 119, 10961106. 10.1111/eth.12170 Balbuena M. S. Molinas J. Farina W. M. (2011). Honeybee recruitment to scented food sources: correlations between in-hive social interactions and foraging decisions. Behav. Ecol. Sociobiol. 66, 445452. 10.1007/s0265-011-1290-3 Beekman M. (2005). How long will honey bees (Apis mellifera L.) be stimulated by scent to revisit past-profitable forage sites? J. Comp. Physiol. A. 191, 11151120. 10.1007/s00359-005-0033-116049699 Belovsky G. E. (1978). Diet optimization in a generalist herbivore: the moose. Theor. Populat. Biol. 134, 105134. 10.1016/0040-5809(78)90007-2741393 Biesmeijer J. C. de Vries H. (2001). Exploration and exploitation of food sources by social insect colonies: a revision of the scout-recruit concept. Behav. Ecol. Sociobiol. 49, 8999. 10.1007/s002650000289 Biesmeijer J. C. Seeley T. D. (2005). The use of waggle dance information by honey bees throughout their foraging careers. Behav. Ecol. Sociobiol. 59, 133142. 10.1007/s00265-005-0019-6 Boose D. L. (1997). Sources of variation in floral nectar production rate in Epilobium canum (Onagraceae): implications for natural selection. Oecologia 110, 493500. 10.1007/s004420050185 Castellanos M. C. Wilson P. Thomson J. D. (2001). Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). Am. J. Bot. 89, 111118. 10.3732/ajb.89.1.11121669718 De Marco R. Farina W. (2001). Changes in food source profitability affect the trophallactic and dance behavior of forager honeybees (Apis mellifera L.). Behav. Ecol. Sociobiol. 50, 441449. 10.1007/s002650100382 Deneubourg J. Aron S. Goss S. Pasteels J. Duerinck G. (1986). Random behaviour, amplification processes and number of participants: how they contribute to the foraging properties of ants. Phys. D Nonlin. Phenom. 22, 176186. 10.1016/0167-2789(86)90239-3 Deneubourg J. L. Pasteels J. M. Verhaeghe J. C. (1983). Probabilistic behaviour in ants: a strategy of errors? Theor. Biol. 105, 259271. 10.1016/S0022-5193(83)80007-1 Detrain C. Deneubourg J. (2008). Collective decision-making and foraging patterns in ants and honeybees. Adv. Insect Physiol. 35, 123173. 10.1016/S0065-2806(08)00002-7 Donaldson-Matasci M. Dornhaus A. (2012). How habitat affects the benefits of communication in collectively foraging honey bees. Behav. Ecol. Sociobiol. 66, 583592. 10.1007/s00265-011-1306-z Donaldson-Matasci M. Dornhaus A. (2014). Dance communication affects consistency, but not breadth, of resource use in pollen-foraging honey bees. PLoS ONE 9:e107527. 10.1371/journal.pone.010752725271418 Edge A. Nest B. N. Johnson J. N. Miller S. N. Naeger N. Boyd S. D. . (2011). Diel nectar secretion rhythm in squash (Cucurbita pepo) and its relation with pollinator activity. Apidologie 43, 116. 10.1007/s13592-011-0087-8 Farina W. M. Núñez J. A. (1991). Trophallaxis in the honeybee, Apis mellifera (L.) as related to the profitability of food sources. Anim. Behav. 42, 389394. 10.1016/S0003-3472(05)80037-510877897 Farina W. M. Wainselboim A. J. (2001). Changes in the thoracic temperature of honeybees while receiving nectar from foragers collecting at different reward rates. J. Exp. Biol. 204, 16531658. 11398754 Franks N. R. Dornhaus A. Fitzsimmons J. Stevens M. (2003). Speed versus accuracy in collective decision making. Proc. Biol. Sci. 270, 24572463. 10.1098/rspb.2003.252714667335 Gil M. Farina W. M. (2002). Foraging reactivation in the honeybee Apis mellifera L.: factors affecting the return to known nectar sources. Naturwissenschaften 89, 322325. 10.1007/s00114-002-0323-112216865 Goyret J. Farina W. M. (2005). Non-random nectar unloading inter- actions between foragers and their receivers in the honeybee hive. Naturwissenschaften 92, 440443. 10.1007/s00114-005-0016-716133104 Granovskiy B. Latty T. Duncan M. Sumpter D. Beekman M. (2012). How dancing honey bees keep track of changes: the role of inspector bees. Behav. Ecol. 23, 588596. 10.1093/beheco/ars002 Grüter C. Farina W. M. (2009a). Past experiences affect interaction patterns among foragers and hive-mates in honeybees. Ethology 115, 790797. 10.1111/j.1439-0310.2009.01670.x Grüter C. Farina W. M. (2009b). The honeybee waggle dance: can we follow the steps? Trends Ecol. Evol. 24, 242247. 10.1016/j.tree.2008.12.00719307042 Johnson B. R. (2003). Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. R. Soc. Lond. B Biol. Sci. 270, 147152. 10.1098/rspb.2002.220712590752 Krebs J. Kacelnik A. Taylor P. (1978). Test of optimal sampling by foraging great tit. Nature 275, 2731. 10.1038/275027a0 Lanan M. C. Dornhaus A. Jones E. I. Waser A. Bronstein J. L. (2012). The trail less traveled: individual decision-making and its effect on group behavior. PLoS ONE 7:e47976. 10.1371/journal.pone.004797623112880 Lindauer M. (1952). Ein beitrag zur frage der arbeitsteilung im bienenstaat. Z. Vergl. Physiol. 34, 253259. 10.1007/BF00298048 Lindauer M. (1961). Communication Among Social Bees. Cambridge: Harvard University Press. McNamara J. M. Houston A. I. (1985). Optimal foraging and learning. J. Theor. Biol. 117, 231249. 10.1016/S0022-5193(85)80219-8 Nieh J. C. (1993). The stop signal of honey bees: reconsidering its message. Behav. Ecol. Sociobiol. 33, 5156. 10.1007/BF00164346 Oster G. F. Wilson E. O. (1978). Caste and Ecology in the Social Insects. Princeton, NJ: Princeton University Press. Pankiw T. Page R. E. (2000). Response thresholds to sucrose predict foraging division of labor in honeybees. Behav. Ecol. Sociobiol. 47, 265267. 10.1007/s00265005066419142222 Pleasants J. M. (1989). Optimal foraging by nectarivores: a test of the marginal-value theorem. Am. Nat. 134, 5171. 10.1086/284965 Pyke G. H. (1978). Optimal foraging: movement patterns of bumblebees between inflorescences. Theor. Populat. Biol. 13, 7298. 10.1016/0040-5809(78)90036-9644520 R Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Availible online at: http://www.r-project.org Raihan J. Kawakubo N. (2014). Nondestructive and continuous observation of nectar volume using time-interval photography. Plant Species Biol. 29, 212215. 10.1111/1442-1984.12007 Real L. Rathcke B. (1991). Individual variation in nectar production and its effect on fitness in kalmia latifolia. Ecology 72, 149155. 10.2307/1938910 Rendell L. Boyd R. Cownden D. Enquist M. Eriksson K. Feldman M. W. . (2010). Why copy others? Insight from the social learning strategies tournament. Science 328, 208213. 10.1126/science.118471920378813 Seeley T. D. (1986). Social foraging by honeybees: how colonies allocate foragers among patches of flowers. Behav. Ecol. Sociobiol. 19, 343354. 10.1007/BF00295707 Seeley T. D. (1989). Social foraging in honey bees: how nectar foragers assess their colony's nutritional status. Behav. Ecol. Sociobiol. 24, 181199. 10.1007/BF00292101 Seeley T. D. (1994). Honey bee foragers as sensory units of their colonies. Behav. Ecol. Sociobiol. 34, 5162. 10.1007/BF00175458 Seeley T. D. (1995). Wisdom of the Hive: The Social Phyisology of Honeybee Colonies. Cambridge, MA: Harvard University Press. Seeley T. D. Camazine S. Sneyd J. (1991). Collective decision-making in honey bees: how colonies choose among nectar sources. Behav. Ecol. Sociobiol. 28, 277290. 10.1007/BF00175101 Seeley T. D. Tovey C. (1994). Why search time to find a food-storer bee accurately indicates the relative rates of nectar collecting and nectar processing in honey bee colonies. Anim. Behav. 47, 311316. 10.1006/anbe.1994.1044 Seeley T. D. Visscher P. K. (1988). Assessing the benefit of cooperation in honeybee foraging: search costs, forage quality, and competitive ability. Behav. Ecol. Sociobiol. 22, 229237. 10.1007/BF00299837 Seeley T. D. Visscher P. K. Schlegel T. Hogan P. M. Franks N. R. Marshall J. A. R. (2012). Stop signals provide cross inhibition in collective decision-making by honeybee swarms. Science 335, 108111. 10.1126/science.121036122157081 Sherman G. Visscher K. P. (2002). Honeybee colonies achieve fitness through dancing. Nature 419, 920922. 10.1038/nature0112712410309 Tan K. Hu Z. Chen W. Wang Z. Wang Y. Nieh J. C. (2013). Fearful foragers: honey bees tune colony and individual foraging to multi-predator presence and food quality. PLoS ONE 8:e75841. 10.1371/journal.pone.007584124098734 Townsend-Mehler J. M. Dyer F. C. (2011). An integrated look at decision-making in bees as they abandon a depleted food source. Behav. Ecol. Sociobiol. 66, 275286. 10.1007/s00265-011-1275-2 Townsend-Mehler J. M. Dyer F. C. Maida K. (2010). Deciding when to explore and when to persist: a comparison of honeybees and bumblebees in their response to downshifts in reward. Behav. Ecol. Sociobiol. 65, 305312. 10.1007/s00265-010-1047-4 Van Nest B. N. Moore D. (2012). Energetically optimal foraging strategy is emergent property of time-keeping behavior in honey bees. Behav. Ecol. 23, 649658. 10.1093/beheco/ars010 Venables W. N. Ripley B. D. (2002). Modern Applied Statistics with S, 4th Edn. New York, NY: Springer-Verlag. von Frisch K. (1967). The Dance Language and Orientation of Bees. Cambridge: Belknap Press. Wainselboim A. J. Farina W. M. (2003). Trophallaxis in honeybees, Apis mellifera (L.), as related to their past experience at the food source. Anim. Behav. 66, 791795. 10.1006/anbe.2003.2256 Wainselboim A. J. Roces F. Farina W. M. (2002). Honeybees assess changes in nectar flow within a single foraging bout. Anim. Behav. 63, 16. 10.1006/anbe.2001.1879
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.kqntpi.com.cn
      fsdianbi.com.cn
      www.hyxqoj.com.cn
      www.hxxbbk.com.cn
      www.gzyhncp.com.cn
      www.obsmo.org.cn
      reyuu.com.cn
      www.njchain.com.cn
      ufnews.com.cn
      vividsoft.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p