Front. Ecol. Evol. Frontiers in Ecology and Evolution Front. Ecol. Evol. 2296-701X Frontiers Media S.A. 10.3389/fevo.2015.00044 Ecology and Evolution Review Environmental consultancy: dancing bee bioindicators to evaluate landscape “health” Couvillon Margaret J. * Ratnieks Francis L. W. Laboratory of Apiculture and Social Insects, School of Life Sciences, University of Sussex Brighton, UK

Edited by: Madeleine Beekman, The University of Sydney, Australia

Reviewed by: James C. Nieh, University of California San Diego, USA; Matina Donaldson-Matasci, Harvey Mudd College, USA

*Correspondence: Margaret J. Couvillon, Laboratory of Apiculture and Social Insects, School of Life Sciences, University of Sussex, John Maynard Smith Building, Brighton, BN1 9QG, UK maggiejanec@gmail.com

This article was submitted to Behavioral and Evolutionary Ecology, a section of the journal Frontiers in Ecology and Evolution

01 05 2015 2015 3 44 05 12 2014 17 04 2015 Copyright © 2015 Couvillon and Ratnieks. 2015

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Here we explore how waggle dance decoding may be applied as a tool for ecology by evaluating the benefits and limitations of the methodology compared to other existing ways to evaluate the honey bees' use of the landscape. The honey bee foragers sample and “report” back on large areas (c. 100 km2). Because honey bees perform dances only for the most profitable resources, these data provide spatial information about the availability of good quality forage for any given time. We argue that dance decoding may inform on a range of ecological, conservation, and land management issues. In this way, one species and methodology gives us a novel measure of a landscape's profitability, or “health,” that may be widely relevant, not just for honey bees, but for other flower-visiting insects as well.

waggle dance Apis mellifera dance decoding bee foraging environmental monitoring

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Wilhem Nylander, a Finnish-born botanist, liked to stroll around Paris, finding perhaps that the more verdant parts of the city reminded him of his Helsinki origins. It was during one of these walks, through the Jardin du Luxembourg, that the idea of bioindication was born (Skye, 1979). For years, Nylander had studied lichens, which occur worldwide from the humid tropics to the arctic and can even colonize bare rock. However, they are very sensitive to air pollution. Nylander noticed that there were more lichen species growing in the Luxembourg Gardens than in other parts of Paris. He hypothesized that lichens were susceptible to atmospheric pollutants and therefore failed to thrive in much of Paris, which was very polluted at that time (Nylander, 1866).

      Today, lichens are still routinely used as an assessment of air quality (Pinho et al., 2004). In the years since Nylander, strides have been made to clean up the air, and the lichens have responded by returning to Paris (Skye, 1979). Pollution, however, is not the only challenge humans have introduced to the earth. In the last century, man-made landscape changes, such as agricultural intensification, have had a large, negative impact on biodiversity. For example, insect pollinators that depend on the presence of flowers and flower-rich habitats have been recently challenged by the conversion of those areas to intensively farmed land (Matson et al., 1997; Tilman et al., 2001; Robinson and Sutherland, 2002; Carvell et al., 2006; Winfree et al., 2011; Wright and Wimberly, 2013). The link between landscape changes and pollinator declines has generated intense interest from both government and private sectors (Berenbaum et al., 2007; Kluser et al., 2011), such as a recent announcement by the United States government that they are giving $8 million to increase available forage for Midwestern honey bees (USDA, 2014). However, it is difficult to know not only when and where supplementary forage would be most beneficial, but also to know if such policies, once in place, are having the intended effect.

      The answer may lie with the honey bee, an organism that itself would benefit from a healthy landscape. Honey bees, with their unique waggle dance communication, may be an untapped, biologically relevant resource to provide cost-effective bioindication by surveying, monitoring, and reporting on a landscape's “health,” specifically in regards to floral abundance.

      What information is available from waggle dance decoding?

      Honey bees, Apis species, possess a remarkable and unique behavior. A successful forager communicates to her nestmates the vector (distance and direction) from the hive to the nectar or pollen (von Frisch, 1946, 1967; Grüter and Farina, 2009; Couvillon, 2012) by making waggle dances. The vector information, which the bee repeats many times within a single dance and which is encoded in the waggle phase portion of the dance, can be decoded by researchers (Visscher and Seeley, 1982; Beekman and Ratnieks, 2000; Steffan-Dewenter and Kuhn, 2003; Couvillon et al., 2012b; Schürch et al., 2013). By decoding many dances, a map of where the colony as a whole (or indeed several colonies) is foraging can be made. Importantly, honey bee foragers only dance for profitable resources, which means that, on average, observed dances are for the “best” forage that is available at any given time (von Frisch, 1967; Seeley, 1994) after the forager has weighed the benefit of the forage against the costs, including the distance she must fly (von Frisch, 1967; Seeley, 1994; Couvillon et al., 2014b,c). The dance allows the honey bee colony to exploit either particularly good resources or resources when availability is low, and it therefore contributes to the fitness of the colony (Seeley, 1995; Sherman and Visscher, 2002; Dornhaus et al., 2006; Donaldson-Matasci and Dornhaus, 2012; Schürch and Grüter, 2014).

      Dancing foragers also give direct and indirect information about the forage quality, which could include quantity and the molarity of the nectar. Directly, the number of repeated circuits within a single dance per return to the hive indicates the forager's assessment of quality: when resource quality increases, the forager makes more waggle runs per dance, and this results in the recruitment of more nestmates to the advertised location (von Frisch, 1967; Seeley, 1995; Seeley et al., 2000). Indirectly, a particularly good location may be indicated by multiple dances by the same or different bees, as more and more bees become recruited to the location that they indicate themselves in subsequent dances. When such multiple dances are plotted, “hotspots” of good quality forage become visible (Beekman and Ratnieks, 2000; Steffan-Dewenter and Kuhn, 2003; Couvillon et al., 2014b).

      Lastly, it is also possible to know if a particular dance is for a pollen or a non-pollen, usually nectar, source because the pollen is visible in the corbiculae (Couvillon et al., 2014a). Although it is quite difficult to obtain the pollen from a dancing bee for identification, it is possible for pollen traps to be placed over the entrance to collect pollen from all returning foragers (e.g., colony-level information about pollen collection). These data on plant type composition, particularly a high representation of a single plant type (Garbuzov and Ratnieks, 2014), can then be correlated to the forage location information obtained by dance decoding (Table 1). Knowing the breadth of the plant community composition gives indication of the landscape's biodiversity.

      Comparison of methodologies to investigate honey bee foraging.

      Method Description Obtained data Benefits of data Data limitations Cost References
      Dance decoding Eavesdropping on waggle dances of returning foragers and using the vector from hive to resource to determine where bees forage Approximate location of where honey bees collected nectar and pollen Can determine where and when food is available, use of particular areas or land-types. Dances can be from video, so no time/number limitation Cannot know route information, exact floral type, precise location Cheap equipment, easy for training, but takes time Visscher and Seeley, 1982; Waddington et al., 1994; Seeley, 1995; Beekman and Ratnieks, 2000; Steffan-Dewenter and Kuhn, 2003; Beekman et al., 2004; Donaldson-Matasci and Dornhaus, 2012; Couvillon et al., 2014a,b,c; Garbuzov et al., 2014, 2015
      RFID Tags Automatic identification and data capture of tags that are glued to individual bees and then read by a reader Timing of foragers' departure and return to hive and arrival and departure from a fixed site, such as a feeder (e.g., homing rate, speed, and displacement) Can assess unlimited numbers and record many events, little disturbance to colony, data collection automatic Cannot obtain natural foraging data, as a tag reader must be set up at a single, fixed location Reader costs £320–£1300; each tag costs £0.90. Desneux et al., 2007; Decourtye et al., 2011; Pahl et al., 2011; Schneider et al., 2012
      DNA Barcoding (pollen or honey) Using a short genetic marker in DNA to identify it as belonging to a particular species Plants that are visited by foraging honey bees Can know particular plants that are visited from a certain forager (pollen) or hive (honey) Differing resolution between species, no spatial information £1.30–3.20 per sample Valentini et al., 2010; Wilson et al., 2010; Bruni et al., 2015; Soares et al., 2015
      Harmonic radar Foragers fitted with a tag that echoes back the signal from centrally-located receiver Flight route taken by departing foragers Can construct short distance flight paths Range limited to ~900m, antennae cumbersome; only possible to track 1–2 individuals at a time £10–30 per tag and £1500 to rent receiver for a field season Riley and Smith, 2002; Riley et al., 2003; Menzel et al., 2005; Riley et al., 2005; Chapman et al., 2011
      Observe directly in the field Transects are walked through target areas Counts of insects and flowers that are present in a particular area or landtype Can make calculations of abundance and interactions between species and correlate with area, landtype Correlative, cannot know source of unmarked insects Equipment cheap, but man-power is costly Steffan-Dewenter and Tscharntke, 2000; Kremen et al., 2002, 2004; Greenleaf and Kremen, 2006; Garibaldi et al., 2013
      Pollen analysis under microscope Obtain pollen from entrance and determine plant type using microscope Type and relative contribution of plant types currently being visited by honey bee colony Can see dynamics of pollen collection and plant exploitation Only colony-level information (e.g., not individual forager) Relatively cheap, but requires training and microscope Synge, 1947; McLellan, 1976; Cresswell, 2005; Leonhardt and Blüthgen, 2012; Garbuzov and Ratnieks, 2014; Garbuzov et al., 2015
      What information is not available from waggle dance decoding?

      Firstly, it is not possible to know the route, including obstacle avoidance, that a forager took from the hive to the resource (von Frisch, 1967). Route information can be partially reconstructed if dance decoding is combined with harmonic radar (Table 1), where a radar signal is received by a transponder on an insect and re-emitted such that the flight path of a honey bee is tracked (Riley et al., 2003, 2005; Menzel et al., 2005). However, the antenna for harmonic radar can only be applied after a dancing A. mellifera forager exits the hive, when it would actually be better to obtain the path information from the flight that precedes the dance. Additionally, harmonic radar is limited by a range of approximately 900 m, or the first hedge, for signal reception (Riley and Smith, 2002; Chapman et al., 2011). This would not cover the long-distance foraging of many kilometers that honey bees are capable of performing (von Frisch, 1967; Visscher and Seeley, 1982; Beekman and Ratnieks, 2000; Couvillon et al., 2014c).

      It is equally challenging to know exactly what flowers were visited by a dancing bee. As previously mentioned, pollen samples can be obtained from the pollen traps at the entrance, which gives colony-level information on the plants that have been visited, but individual dances cannot then be linked to the samples. It is potentially possible to collect a pollen forager mid-dance (Hart and Ratnieks, 2001), once she has danced long enough for the data to be extracted (Couvillon et al., 2012b), but this would involve using a cover (e.g., polyurethane and not glass) that can be easily cut through, which may be intractable for large scale analyses. The pollen then could be identified, either by shape (Synge, 1947; McLellan, 1976; Cresswell, 2011; Garbuzov and Ratnieks, 2014), or by DNA markers, such as barcoding (Table 1, Bruni et al., 2015).

      Lastly, because the honey bee is not a very precise dancer, decoding dances does not give exact location information. An individual honey bee often forages in a small area of approximately 10 × 10 m (Ribbands, 1953); however, the waggle dance made by her at different times or made by other bees working the same patch will display considerable scatter in both vector components of distance and direction (e.g., inter-dance variation, Schweiger, 1958; von Frisch and Lindauer, 1961). The variation found within a dance between successive, repeated circuit (intra-dance variation) (Beekman et al., 2005; De Marco et al., 2008; Tanner and Visscher, 2010a,b; Couvillon et al., 2012b; Schürch and Couvillon, 2013; Schürch et al., 2013; Preece and Beekman, 2014) also makes the signal challenging to understand. Certainly it is simply a limitation in dance accuracy that we cannot pinpoint a foraging location to, for example, a hedge.

      One way to combat the issue of dance imprecision when we want to know where a bee foraged is to incorporate the variability from within the dance into the mapping of the dance itself. In Schürch et al. (2013), a Bayesian approach combined with simulations allowed for the production of a spatial probability distribution for a forage location. Instead of plotting a dance as a point, which over-represents our certainty about a location, dances were plotted as a heat map (Schürch et al., 2013; Couvillon et al., 2014c). Additionally, when multiple dances, either from different bees going to the same location or the same bee dancing multiple times, are rasterized together, a more accurate estimation of a “hot spot” can be achieved (Couvillon et al., 2014b; Garbuzov et al., 2015).

      It should be noted that for many specific investigations, we do not need to know a precise location to obtain biologically-relevant information about honey bee foraging ecology. For example, because distance is such a relevant cost in a bees' decision to recruit and because honey bees have evolved exceptional sensitivity to relative energetic reward, communicated distance is a proxy for forage availability: the further a dancer indicates in her recruitment, the relatively less available forage is nearby (Couvillon et al., 2014c). Because dance duration translates into flight distance, examining the average dance duration per month provides important information about in what months forage is relatively less or more available (Beekman and Ratnieks, 2000; Couvillon et al., 2014c) or how relative distances (durations) vary between urban and rural and suburban settings (Waddington et al., 1994; Garbuzov et al., 2014) or across differently structured landscapes (Steffan-Dewenter and Kuhn, 2003).

      Why is the honey bee a useful bioindicator of landscape floral profitability?

      Even given the above limitations, honey bees possess great potential for monitoring the landscape for floral resources. One reason is because the foraging range of the honey bee is so great, probably greater than other bees. Honey bees routinely forage at a distance of a few kilometers and have been known to fly 10–12 km to collect food when it is less available closer to the hive (von Frisch, 1967; Waddington et al., 1994; Beekman and Ratnieks, 2000; Steffan-Dewenter and Kuhn, 2003). In Couvillon et al. (2014b), by statistically correcting for distance, authors were able to assess honey bee foraging preferences across 94 km2, which represents the “surveying power” of three glass-walled observation hives from one location (Couvillon et al., 2014b). A second reason why the honey bee is an ideal bioindicator is because they are generalists in their foraging preferences (Biesmeijer and Slaa, 2006). The flower species visited by honey bees for nectar and pollen will also be visited by other pollinators, which makes information about honey bee foraging preferences broadly relevant to a range of flower-visiting insects. As a proof of concept to the general nature of honey bee foraging, the bees indicated that the highest visited area in the 94 km2 was a National Nature Reserve that is an area well known as being good for butterflies (Ellis et al., 2012; Couvillon et al., 2014b).

      Thirdly, the honey bees possess the waggle dance, which is the only known recruitment behavior that also communicates a distance and direction, information available to eavesdropping researchers. A honey bee forager, in her decision to perform a waggle dance, integrates all relevant costs of flight distance, potential competition with other flower-visiting insects, and nectar and pollen availability, and if her assessment comes out in the positive, she performs a dance. Imagine how difficult it would be to obtain those data directly on the availability of good forage across a landscape-wide area. An ecologist would need to walk transects to count competing flower-visiting insects and flowers and determine forage availability. If an ecologist walks a straight-line transect at 1 m/s and can see a meter to the left and to the right, s/he will cover about 200 m2 in 5 min. Even at this speedy clip and if s/he worked 24 h/day, it would take that ecologist 1632 days to cover 94 km2 one time. Therefore, it is safe to say that the data obtained from decoding waggle dances is not available by surveying.

      What are the potential subject areas that would benefit from waggle dance decoding data?

      In addition to the applied application of landscape evaluation, data obtained from waggle dance decoding could be relevant in a variety of yet-unexplored contexts (Härtel and Steffan-Dewenter, 2014). Honey bees are important pollinators for many crops (Aizen and Harder, 2009), contributing £27 billion annually to the world economy from this ecological service. Combining waggle dance information with the colony-level pollen collection will help farmers better manage pollination services: pollen analysis would allow growers to determine if a target crop was visited or not, and dance information would allow growers to determine which field areas were visited (Kremen et al., 2002; Duan et al., 2008). These data would then work together to help manage the process (e.g., to fine-tune the bloom time such that bees are not attracted elsewhere). Additionally, dance information can also give other information, such as the time taken for a colony's foraging to recover following relocation (Riddell Pearce et al., 2013), which also helps for optimal management of pollination services.

      In recent decades, there has been increasingly intense interest in mitigating the harmful effects of anthropogenic landscape changes through government incentives to encourage more wildlife-friendly farming. These stewardship schemes are required for all EU-member states and carry an impressive price-tag of €41 billion in the past 20 years. And yet there are little data evaluating the efficacy of such schemes, probably because it is hard to survey at the landscape scale. However, by monitoring the dances of honey bees foraging naturally in the landscape, Couvillon et al. (2014b) determined that some management stewardship schemes, such as the ones that encouraged set-asides or field margins in High Level Stewardship, may be more beneficial to honey bees than others, such as Organic Entry Level Stewardship that require the regular mowing of grass, including wildflowers (Couvillon et al., 2014b). The study provided biologically relevant data that may directly impact land management and existing efforts at nature conservation for honey bees and other flower-visiting insects and adds to a growing body of work linking pollinator health to landscape composition/“health” (Kremen et al., 2004; Klein et al., 2007; Brittain et al., 2013).

      Because the honey bees are collecting their food in the landscape, they are potentially exposed to man-made toxins and may therefore provide useful information in environmental risk assessment. For example, in 2013 the European Union imposed a moratorium on the use of neonicotinoid insecticides as seed treatments for bee-attractive crops, such as oilseed rape (canola). However, one potentially missing element in the assessment of pesticide exposure is a better understanding of just how much foraging bees carry out on the treated crops. Recently it was demonstrated that in a typical European landscape that contains the mass-flowering crop of oilseed rape, which is a potential source of neonicotinoids, honey bees visit the nearby fields between 0 and 23% of the foraging time, depending on distance from hive and time of year (Garbuzov et al., 2015). By decoding waggle dances, researchers will better understand the dynamics of exposure (Garbuzov et al., 2015).

      The waggle dance is one of the few Nobel Prize winning discoveries that can be seen with the naked eye in real time. The finding was exciting and, at times, controversial (Gould, 1976; Munz, 2005; Couvillon, 2012). “Language,” as von Frisch diplomatically called the behavior, was thought to be in the exclusive domain of humans. In the waggle dance, not only a non-human but an invertebrate is able to communicate symbolically, using the sun and gravity as a reference, where she has collected good forage. Decoding waggle dances therefore is also a wonderful gateway to biology, providing an observable, interesting behavior to get the public engaged in science. Dance decoding also may be easily demonstrated in the classroom and to the larger, non-scientific community. In fact, the interest and amazement that the public express about the waggle dance and dance decoding may also represent a powerful opportunity for citizen science. It is possible to instruct anyone, even someone without a science background, into the fundamentals of waggle dance decoding, such that video recordings of dancing bees, uploaded to videos, can be decoded by community volunteers. There is great interest at the moment in helping bees, and tapping into the lay community may represent a powerful workforce that in turn are afforded an opportunity to help the honey bee in a very real way by contributing to our understanding of how and where they collect their food.

      Lastly, although this article has mostly underscored the applied uses of the honey bee waggle dance, it is worth noting that studies involving decoded waggle dances also generate significant gains for basic biology, specifically behavioral ecology, foraging ecology, and neuroscience. Karl von Frisch, the Austrian-born ethologist who shared the 1973 Nobel Prize for discovering the waggle dance communication, famously remarked that the honey bee “is like a magic well,” in that the discoveries never end. Certainly this applies to the waggle dance. In recent years, for example, we have witnessed many exciting discoveries about the nature of the honey bee waggle dance. These discoveries include the honey bee dance stop signal, which is made by foragers when they encounter a nestmate dancing for a location that is dangerous (Nieh, 2010), a discovery that helps our understanding of positive and negative feedback loops in self-organizing systems; the flexible use of dance information vs. memory by honey bees (Grüter et al., 2008; Grüter and Ratnieks, 2011); the effect of gravity on the angular intra-dance (im)precision (Couvillon et al., 2012a), which demonstrates how a biological entity manages to communicate in the presence of noise; the increased benefit of the dance for larger-sized colonies (Donaldson-Matasci et al., 2013), which aids in our understanding of how to optimize collective exploitation; and the ability of flying bees to obtain and to signal compass information purely from polarized light (Evangelista et al., 2014), which provides important insight into the capabilities of invertebrate visual navigation. The list is in no way exhaustive and only serves to demonstrate that there are still exciting and unknown features to be uncovered about this amazing behavior.

      Conclusion: Is it worth it?

      Dance decoding is a relatively easy task. No specialist scientific training is needed and a person can be instructed on how to do it within a few hours. However, the method is time-consuming, especially if one wishes to decode hundreds or thousands of dances. After training, a decoder can decode a dance in under 5 min, but this estimate does not include the time spent watching a video to find a bee that is dancing. In all, it may take a trained worker several hours to locate and decode 20 dances from 1 h of video of the dance floor area of an observation hive. Therefore, it is worth considering a discussion on whether or not dance decoding is worth it? Perhaps decoding large numbers of dances, which would take the contributions of many people over many months, would not be worthwhile for basic biology alone. However, the applied benefits that may be gained that can be used to help honey bees and other insect pollinators could outweigh the costs.

      Inherent in the discussion of “Is dance decoding worth it” is a comparison between dance decoding with other methods that may be used to assess where and when honey bees are collecting nectar and pollen (Table 1). Across all the methods, dance decoding is the only way to obtain, at the level of the individual, location information about where nectar and pollen has been collected, and it remains the superior method to use when investigating honey bee use of the landscape for forage (e.g., to assess WHERE bees are foraging; Table 1). Tagging foragers with RFID tags or harmonic radar can provide data on the timing of departure and return from a fixed site (e.g., the hive) or a short-distance flight path; however, neither can be applied realistically to field foraging conditions to determine where bees are collecting nectar and pollen. Tagging foragers generates information on HOW bees are foraging (Table 1). Likewise, methods that analyze the forage itself, such as DNA barcoding or pollen analysis, while providing important information about WHAT the bees are visiting, are limited in that neither provides location information, and both are challenging to perform at the level of the individual (Table 1). Lastly, field observations remain correlative, as it would be difficult to mark insects to identify their colony of origin.

      Because each method carries its own unique benefits and costs, interesting results can be obtained if methods are combined. For example, because RFID tags require a tag reader, they can be used in conjunction with feeder experiments, where tagged foragers are trained to collect sugar water from a set feeder location. These bees, which may carry an additional identifying paint mark, may then analyzed for their dance behavior. In this instance, the actual vector information in the dance is less interesting, as it will communicate the feeder; however, the other interesting questions that require individual-level information regarding dancing and recruitment behavior may be investigated. Secondly, dance decoding can be effectively combined with forage analysis (barcoding or pollen microscopy) in circumstances where the bee may be foraging upon a particular target crop that is growing in known locations to generate powerful individual and colony level information about food collection and pollination services (Garbuzov et al., 2015).

      Currently, there is no reliable method to automate the process, despite decades' worth of effort and even with recent advances in machine vision and automated video analysis for other organisms (Mersch et al., 2013). The goal has always been to create a system that can detect and decode waggle runs reliably. Although some advancement has taken place in the latter (Kimura et al., 2011; Landgraf et al., 2011), the process of detecting dances remains problematic. The dancing bee is just one moving part of a larger, very busy, and also moving background of her nestmates, and attempts to detect dances automatically leads to a large number of false positives [e.g., 199 true dances detected and 25 false positives (Rau, 2014)]. Also, no one has a real sense of the number of false negatives (waggle dances that fail to be detected). However, recently the field appears to be right on the cusp of observing significant advances in this area (see Landgraf et al. in this special issue).

      In conclusion, it is our opinion that, given the time cost of dance decoding by hand, if the data obtained by the methodology were relevant only from a basic honey bee behavioral ecology perspective, it would not be worth to undertake large-scale projects. However, given that these data are unique and not possible to obtain any other way, and given that it may provide biologically-relevant information that could be used to help honey bees and other pollinators and to use resources wisely, we say yes. In dance decoding, we let the honey bees do the hard work to survey huge areas of land. Our job is only to listen to the bees.

      Conflict of interest statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We would like to thank all the people over the years who have worked on Project 2 of the Sussex Plan, “Decoding waggle dances to see where bees forage” and to all LASI members, past and present. MJC was funded by a grant from The Nineveh Charitable Trust and from charitable donations from Rowse Honey and Waitrose Ltd.

      References Aizen M. A. Harder L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915918. 10.1016/j.cub.2009.03.07119427214 Beekman M. Doyen L. Oldroyd B. (2005). Increase in dance imprecision with decreasing foraging distance in the honey bee Apis mellifera L. is partly explained by physical constraints. J. Comp. Physiol. A 191, 11071113. 10.1007/s00359-005-0034-016049698 Beekman M. Ratnieks F. L. W. (2000). Long-range foraging by the honey-bee, Apis mellifera L. Funct. Ecol. 14, 490496. 10.1046/j.1365-2435.2000.00443.x Beekman M. Sumpter D. J. T. Seraphides N. Ratnieks F. L. W. (2004). Comparing foraging behaviour of small and large honey-bee colonies by decoding waggle dances made by foragers. Funct. Ecol. 18, 829835. 10.1111/j.0269-8463.2004.00924.x Berenbaum M. Bernhardt P. Buchmann S. Calderone N. W. Goldstein P. Inouye D. W. . (2007). Status of Pollinators in North America. Washington, DC: The National Academies Press. Biesmeijer J. C. Slaa J. E. (2006). The structure of eusocial bee assemblages in Brazil. Apidologie 37, 240258. 10.1051/apido:2006014 Brittain C. Williams N. Kremen C. Klein A. M. (2013). Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B.. 280:20122767. 10.1098/rspb.2012.276723303545 Bruni I. Galimberti A. Caridi L. Scaccabarozzi D. De Mattia F. Casiraghi M. . (2015). A DNA barcoding approach to identify plant species in multiflower honey. Food Chem. 170, 308315. 10.1016/j.foodchem.2014.08.06025306350 Carvell C. Roy D. B. Smart S. M. Pywell R. F. Preston C. D. Goulson D. (2006). Declines in forage availability for bumblebees at a national scale. Biol. Conserv. 132, 481489. 10.1016/j.biocon.2006.05.008 Chapman J. W. Drake V. A. Reynolds D. R. (2011). Recent insights from radar studies of insect flight. Annu. Rev. Entomol. 56, 337356. 10.1146/annurev-ento-120709-14482021133761 Couvillon M. J. (2012). The dance legacy of Karl von Frisch. Insectes Soc. 59, 297306. 10.1007/s00040-012-0224-z Couvillon M. J. Phillipps H. L. F. Schürch R. Ratnieks F. L. W. (2012a). Working against gravity: horizontal honeybee waggle runs have greater angular scatter than vertical waggle runs. Biol. Lett. 8, 540543. 10.1098/rsbl.2012.018222513277 Couvillon M. J. Riddell Pearce F. C. Accleton C. Fensome K. A. Quah S. K. L. Taylor E. L. . (2014a). Honey bee foraging distance depends on month and forage type. Apidologie 110. 10.1007/s13592-014-0302-5 Couvillon M. J. Riddell Pearce F. C. Harris-Jones E. L. Kuepfer A. M. Mackenzie-Smith S. J. Rozario L. A. . (2012b). Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding. Biol. Open 1, 467472. 10.1242/bio.2012109923213438 Couvillon M. J. Schürch R. Ratnieks F. L. W. (2014b). Dancing bees communicate a foraging preference for rural lands under High Level Agri-Environment Schemes. Curr. Biol. 24, 12121215. 10.1016/j.cub.2014.03.07224856213 Couvillon M. J. Schürch R. Ratnieks F. L. W. (2014c). Waggle dance distances as integrative indicators of seasonal foraging challenges. PLoS ONE 9:e93495. 10.1371/journal.pone.009349524695678 Cresswell J. E. (2005). Accurate theoretical prediction of pollinator-mediated gene dispersal. Ecology 86, 574578. 10.1890/04-1109 Cresswell J. E. (2011). A meta-analysis of experiments testing the effects of a neonicotinoid insecticide (imidacloprid) on honey bees. Ecotoxicology 20, 149157. 10.1007/s10646-010-0566-021080222 Decourtye A. Devillers J. Aupinel P. Brun F. Bagnis C. Fourrier J. . (2011). Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology 20, 429437. 10.1007/s10646-011-0594-421267650 De Marco R. J. Gurevitz J. M. Menzel R. (2008). Variability in the encoding of spatial information by dancing bees. J. Exp. Biol. 211, 16351644. 10.1242/jeb.01342518456891 Desneux N. Decourtye A. Delpuech J.-M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81106. 10.1146/annurev.ento.52.110405.09144016842032 Donaldson-Matasci M. C. Degrandi-Hoffman G. Dornhaus A. (2013). Bigger is better: honeybee colonies as distributed information-gathering systems. Anim. Behav. 85, 585592. 10.1016/j.anbehav.2012.12.020 Donaldson-Matasci M. Dornhaus A. (2012). How habitat affects the benefits of communication in collectively foraging honey bees. Behav. Ecol. Sociobiol. 66, 583592. 10.1007/s00265-011-1306-z Dornhaus A. Klügl F. Oechslein C. Puppe F. Chittka L. (2006). Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model. Behav. Ecol. 17, 336344. 10.1093/beheco/arj036 Duan J. J. Marvier M. Huesing J. Dively G. Huang Z. Y. (2008). A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS ONE 3:e1415. 10.1371/journal.pone.000141518183296 Ellis S. Bourn N. Bulman C. (2012). Landscape-scale Conservation for Butterflies and Moths: Lessons from the UK. Wareham: Butterfly Conservation. Evangelista C. Kraft P. Dacke M. Labhart T. Srinivasan M. V. (2014). Honeybee navigation: critically examining the role of the polarization compass. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130037. 10.1098/rstb.2013.003724395964 Garbuzov M. Couvillon M. J. Schürch R. Ratnieks F. L. W. (2015). Honey bee dance decoding shows limited foraging on oilseed rape - a potential source of neonicotinoid contamination. Agric. Ecosystems Environ. 203, 6268. 10.1016/j.agee.2014.12.009 Garbuzov M. Ratnieks F. L. W. (2014). Ivy: an underappreciated key resource to flower visiting insects in autumn. Insect. Conserv. Diver. 7, 91102. 10.1111/icad.12033 Garbuzov M. Schürch R. Ratnieks F. L. W. (2014). Eating locally: dance decoding demonstrates that urban honey bees in Brighton, UK, forage mainly in the surrounding urban area. Urban Ecosystems 7, 91102. 10.1007/s11252-014-0403-y Garibaldi L. A. Steffan-Dewenter I. Winfree R. Aizen M. A. Bommarco R. Cunningham S. A. . (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. 339, 16081611. 10.1126/science.123020023449997 Gould J. L. (1976). The dance-language controversy. Q. Rev. Biol. 51, 211244. 10.1086/409309785523 Greenleaf S. S. Kremen C. (2006). Wild bees enhance honey bees' pollination of hybrid sunflower. Proc. Natl. Acad. Sci. U.S.A. 103, 1389013895. 10.1073/pnas.060092910316940358 Grüter C. Balbuena M. S. Farina W. M. (2008). Informational conflicts created by the waggle dance. Proc. Biol. Sci. 275, 13211327. 10.1098/rspb.2008.018618331980 Grüter C. Farina W. M. (2009). The honeybee waggle dance: can we follow the steps? Trends Ecol. Evol. 24, 242247. 10.1016/j.tree.2008.12.00719307042 Grüter C. Ratnieks F. L. W. (2011). Honeybee foragers increase the use of waggle dance information when private information becomes unrewarding. Anim. Behav. 81, 949954. 10.1016/j.anbehav.2011.01.014 Hart A. G. Ratnieks F. L. W. (2001). Why do honey-bee (Apis millifera) foragers transfer nectar to several receivers? Information improvement through multiple sampling in a biological system. Behav. Ecol. Sociobiol. 49, 244250. 10.1007/s002650000306 Härtel S. Steffan-Dewenter I. (2014). Ecology: honey bee foraging in human-modified landscapes. Curr. Biol. 24, R524R526. 10.1016/j.cub.2014.04.05224892913 Kimura T. Ohashi M. Okada R. Ikeno H. (2011). A new approach for the simultaneous tracking of multiple honeybees for analysis of hive behavior. Apidologie 42, 607617. 10.1007/s13592-011-0060-6 Klein A.-M. Vaissière B. E. Cane J. H. Steffan-Dewenter I. Cunningham S. A. Kremen C. . (2007). Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 274, 303313. 10.1098/rspb.2006.372117164193 Kluser S. Neumann P. Chauzat M.-P. Pettis J. S. (2011). UNEP Emerging Issues: Global Honey Bee Colony Disorder and Other Threats to Insect Pollinators. Geneva: United Nations Environment Programme. Kremen C. Williams N. M. Bugg R. L. Fay J. P. Thorp R. W. (2004). The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol. Lett. 7, 11091119. 10.1111/j.1461-0248.2004.00662.x Kremen C. Williams N. M. Thorp R. W. (2002). Crop pollination from native bees at risk from agricultural intensification. Proc. Natl. Acad. Sci. U.S.A. 99, 1681216816. 10.1073/pnas.26241359912486221 Landgraf T. Rojas R. Nguyen H. Kriegel F. Stettin K. (2011). Analysis of the waggle dance motion of honeybees for the design of a biomimetic honeybee robot. PLoS ONE 6:e21354. 10.1371/journal.pone.002135421857906 Leonhardt S. D. Blüthgen N. (2012). The same, but different: pollen foraging in honeybee and bumblebee colonies. Apidologie 43, 449464. 10.1007/s13592-011-0112-y Matson P. A. Parton W. J. Power A. G. Swift M. J. (1997). Agricultural intensification and ecosystem properties. Science 277, 504509. 10.1126/science.277.5325.50420662149 McLellan A. R. (1976). Factors affecting pollen harvesting by the honeybee. J. Appl.Ecol. 13, 801811. 10.2307/2402256 Menzel R. Greggers U. Smith A. Berger S. Brandt R. Brunke S. . (2005). Honey bees navigate according to a map-like spatial memory. Proc. Natl. Acad. Sci. U.S.A. 102, 30403045. 10.1073/pnas.040855010215710880 Mersch D. P. Crespi A. Keller L. (2013). Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340, 10901093. 10.1126/science.123431623599264 Munz T. (2005). The bee battles: Karl von Frisch, Adrian Wenner and the honey bee dance language controversy. J. Hist. Biol. 38, 535570. 10.1007/s10739-005-0552-1 Nieh J. C. (2010). A negative feedback signal that is triggered by peril curbs honey bee recruitment. Curr. Biol. 20, 310315. 10.1016/j.cub.2009.12.06020153197 Nylander M. W. (1866). Les lichens du Jardin du Luxembourg. Bull. Soc. Bot. France 13, 364371. 10.1080/00378941.1866.10827433 Pahl M. Zhu H. Tautz J. Zhang S. (2011). Large scale homing in honeybees. PLoS ONE 6:e19669. 10.1371/journal.pone.001966921602920 Pinho P. Augusto S. Branquinho C. Bio A. Pereira M. J. Soares A. . (2004). Mapping Lichen diversity as a first step for air quality assessment. J. Atmos. Chem. 49, 377389. 10.1007/s10874-004-1253-4 Preece K. Beekman M. (2014). Honeybee waggle dance error: adaption or constraint? Unravelling the complex dance language of honeybees. Anim. Behav. 94, 1926. 10.1016/j.anbehav.2014.05.016 Rau A. (2014). Realtime Honey Bee Waggle Dance Decoding System. M.S., Freie Universitat Berlin. Ribbands C. R. (1953). The Behaviour and Social Life of Honeybees. London: Bee Research Association Limited. Riddell Pearce F. C. Couvillon M. J. Ratnieks F. L. W. (2013). Hive relocation does not adversely affect honey bee (Hymenoptera: Apidae) foraging. Psyche 2013, 8. 10.1155/2013/693856 Riley J. R. Greggers U. Smith A. D. Reynolds D. R. Menzel R. (2005). The flight paths of honeybees recruited by the waggle dance. Nature 435, 205207. 10.1038/nature0352615889092 Riley J. R. Greggers U. Smith A. D. Stach S. Reynolds D. R. Stollhoff N. . (2003). The automatic pilot of honeybees. Proc. R. Soc. Lond. B Biol. Sci. 270, 24212424. 10.1098/rspb.2003.254214667330 Riley J. R. Smith A. D. (2002). Design considerations for an harmonic radar to investigate the flight of insects at low altitude. Comput. Electron. Agric. 35, 151169. 10.1016/S0168-1699(02)00016-9 Robinson R. A. Sutherland W. J. (2002). Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157176. 10.1046/j.1365-2664.2002.00695.x Schneider C. W. Tautz J. Grünewald B. Fuchs S. (2012). RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE 7:e30023. 10.1371/journal.pone.003002322253863 Schürch R. Couvillon M. J. (2013). Too much noise on the dance floor: intra- and inter-dance angular error in honey bee waggle dances. Commun. Integr. Biol. 6:e22298. 10.4161/cib.2229823750292 Schürch R. Couvillon M. J. Burns D. D. R. Tasman K. Waxman D. Ratnieks F. L. W. (2013). Incorporating variability in honey bee waggle dance decoding improves the mapping of communicated resource locations. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 199, 11431152. 10.1007/s00359-013-0860-424132490 Schürch R. Grüter C. (2014). Dancing bees improve colony foraging success as long-term benefits outweigh short-term costs. PLoS ONE 9:e104660. 10.1371/journal.pone.010466025141306 Schweiger E. M. (1958). Über individuelle unterschiede in der entfernungs- und richtungsangabe bei den tänzen der bienen. Z. Vergl. Physiol. 41, 272299. 10.1007/BF00365323 Seeley T. D. (1994). Honey bee foragers as sensory units of their colonies. Behav. Ecol. Sociobiol. 34, 5162. 10.1007/BF00175458 Seeley T. D. (1995). The Wisdom of the Hive. Cambridge, MA: Harvard University Press. Seeley T. D. Mikheyev A. S. Pagano G. J. (2000). Dancing bees tune both duration and rate of waggle-run production in relation to nectar-source profitability. J. Comp. Physiol. A 186, 813819. 10.1007/s00359000013411085635 Sherman G. Visscher P. K. (2002). Honeybee colonies achieve fitness through dancing. Nature 419, 920922. 10.1038/nature0112712410309 Skye E. (1979). Lichens as biological indicators of air pollution. Annu. Rev. Phytopathol. 17, 325341. 10.1146/annurev.py.17.090179.001545 Soares S. Amaral J. S. Oliveira M. B. P. P. Mafra I. (2015). Improving DNA isolation from honey for the botanical origin identification. Food Control 48, 130136. 10.1016/j.foodcont.2014.02.035 Steffan-Dewenter I. Kuhn A. (2003). Honeybee foraging in differentially structured landscapes. Proc. Biol. Sci. 270, 569575. 10.1098/rspb.2002.229212769455 Steffan-Dewenter I. Tscharntke T. (2000). Resource overlap and possible competition between honey bees and wild bees in central Europe. Oecologia 122, 288296. 10.1007/s004420050034 Synge A. D. (1947). Pollen collection by honeybees (Apis mellifera). J. Anim. Ecol. 16, 122138. 10.2307/1492 Tanner D. A. Visscher P. K. (2010a). Adaptation or constraint? Reference-dependent scatter in honey bee dances. Behav. Ecol. Sociobiol. 64, 10811086. 10.1007/s00265-010-0922-320585382 Tanner D. A. Visscher P. K. (2010b). Does imprecision in the waggle dance fit patterns predicted by the tuned-error hypothesis? J. Insect Behav. 23, 180188. 10.1007/s10905-010-9204-120414338 Tilman D. Fargione J. Wolff B. D'antonio C. Dobson A. Howarth R. . (2001). Forecasting agriculturally driven global environmental change. Science 292, 281284. 10.1126/science.105754411303102 USDA. (2014). USDA provides $8 million to help boost declining honey bee populations, in U. S. D. O. Agriculture (Washington, DC: USDA). Available online at: http://www.fsa.usda.gov/FSA/newsReleases?area=newsroom&subject=landing&topic=ner&newstype=newsrel&type=detail&item=nr_20140620_rel_0130.html Valentini A. Miquel C. Taberlet P. (2010). DNA barcoding for honey biodiversity. Diversity 2, 610617. 10.3390/d2040610 Visscher P. K. Seeley T. D. (1982). Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63, 17901801. 10.2307/1940121 von Frisch K. (1946). Die tänze der bienen. Österr. Zool. Z. 1, 1148. von Frisch K. (1967). The Dance Language and Orientation of Bees. Cambridge, MA: Harvard University Press. von Frisch K. Lindauer M. (1961). Über die “Mißweisung” bei den richtungsweisenden tänzen der bienen. Naturwissenschaften 48, 585594. 10.1007/BF00601984 Waddington K. D. Herbert T. J. Visscher P. K. Richter M. R. (1994). Comparisons of forager distributions from matched honey bee colonies in suburban environments. Behav. Ecol. Sociobiol. 35, 423429. 10.1007/BF00165845 Wilson E. E. Sidhu C. S. Levan K. E. Holway D. A. (2010). Pollen foraging behaviour of solitary Hawaiian bees revealed through molecular pollen analysis. Mol. Ecol. 19, 48234829. 10.1111/j.1365-294X.2010.04849.x20958818 Winfree R. Bartomeus I. Cariveau D. P. (2011). Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. System. 42, 122. 10.1146/annurev-ecolsys-102710-145042 Wright C. K. Wimberly M. C. (2013). Recent land use change in the Western Corn Belt threatens grasslands and wetlands. Proc. Natl. Acad. Sci. U.S.A. 110, 41344139. 10.1073/pnas.121540411023431143
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016lxchain.com.cn
      www.lygwtbz.com.cn
      lixkcc.com.cn
      www.laimaiche.com.cn
      haztcm.org.cn
      uelcrk.com.cn
      tooyxs.com.cn
      www.si4.com.cn
      xft.org.cn
      szowin.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p