Front. Digit. Humanit. Frontiers in Digital Humanities Front. Digit. Humanit. 2297-2668 Frontiers Media S.A. 10.3389/fdigh.2019.00009 Digital Humanities Original Research Understanding AWE: Can a Virtual Journey, Inspired by the Overview Effect, Lead to an Increased Sense of Interconnectedness? Stepanova Ekaterina R. * Quesnel Denise Riecke Bernhard E. iSpace Lab, School Of Interactive Arts and Technology, Simon Fraser University, Surrey, BC, Canada

Edited by: Albert Rizzo, University of Southern California, United States

Reviewed by: Carlos Vaz De Carvalho, Polytechnic Institute of Porto, Portugal; Glenn Ryan Fox, University of Southern California, United States

*Correspondence: Ekaterina R. Stepanova erstepan@sfu.ca

This article was submitted to Human-Media Interaction, a section of the journal Frontiers in Digital Humanities

22 05 2019 2019 6 9 01 11 2018 29 04 2019 Copyright © 2019 Stepanova, Quesnel and Riecke. 2019 Stepanova, Quesnel and Riecke

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Immersive technology, such as virtual reality, provides us with novel opportunities to create and explore affective experiences with a transformative potential mediated through awe. The profound emotion of awe, that is experienced in response to witnessing vastness and creates the need for accommodation that can lead to restructuring of one's worldview and an increased feeling of connectedness. An iconic example of the powers of awe is observed in astronauts who develop instant social consciousness and strong pro-environmental values in response to the overwhelming beauty of Earth observed from space. Here on Earth, awe can also be experienced in response to observing vast natural phenomenon or even sometimes in response to some forms of art, presenting vast beauty to its audience. Can virtual reality provide a new powerful tool for reliably inducing such experiences? What are some unique potentials of this emerging medium? This paper describes the evaluation of an immersive installation “AWE”—Awe-inspiring Wellness Environment. The results indicate that the experience of being in “AWE” can elicit some components of awe emotion and induce minor cognitive shifts in participant's worldview similar to the Overview Effect, while this experience also has its own attributes that might be unique to this specific medium. Comparing the results of this exploratory study to other virtual environments designed to elicit Overview Effect provides insights on the relationship between design features and participant's experience. The qualitative results highlight the importance of perceived safety, personal background and familiarity with the environment, and the induction of a small visceral fear reaction as a part of the emotional arc of the virtual journey—as some of the key contributers to the affective experience of the immersive installation. Even though the observed components of awe and a few indications of cognitive shift support the potential of Virtual Reality as a transformative medium, many more iterations of the design and research tools are required before we can achieve and fully explore a profound awe-inspiring transformative experience mediated through immersive technologies.

virtual reality overview effect awe transformative experiences interconnectedness cognitive shift positive technology experience design

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      1. Introduction

      The overwhelmingly beautiful sight of our Earth triggers a profound emotional response in most astronauts, leading to a cognitive shift, making them realize the global interconnectedness of all life and feel responsibility for the future of our planet. This phenomenon was described by White (2014) and termed the Overview Effect. This experience has the attributes of self-transcendence and awe (Yaden et al., 2016) and is a remarkable example of a transformative experience. Besides the Overview Effect, there are other experiences that have similar effect of evolving an individual as a changed person and promoting the feeling of unity or interconnectedness. For instance, such experiences happen in the context of interaction with nature (Williams and Harvey, 2001; McDonald et al., 2009; Tsaur et al., 2013) or in religious or spiritual context (Keltner and Haidt, 2003; Levin and Steele, 2005), as well as mystical experiences, meditation, peak and flow experiences during high task performance and several other contexts (Yaden et al., 2017). The emotion of awe is often at the core of these experiences (Yaden et al., 2017; Chirico and Yaden, 2018). Even though the terms “transformative,” “transcedent,” and “awe-inspiring” experiences are not interchangeable, there is a large overlap between the phenomena they are describing. For the purpose of the project described in this paper, as we were aiming for the experience that is laying anywhere within the cluster of these phenomena, we will be discussing them together, without drawing a careful distinction between the terms.

      Besides being an enjoyable experience (Shiota et al., 2011), such phenomena can have short and long-term positive outcomes: leading to increased well-being (Ihle et al., 2006; Suedfeld et al., 2012; Krause and Hayward, 2015), pro-social (Piff et al., 2015; Prade and Saroglou, 2016; Yang et al., 2016; Stellar et al., 2017, 2018), and pro-environmental (White, 2014; Garan, 2015) attitudes, and even improved physical health (Stellar et al., 2015). The feeling of interconnectedness can lead to the development of social consciousness, which in turn would lead to pro-social behavior (Schlitz et al., 2010). However, despite all the benefits of transformative and awe-inspiring experiences, they remain rare, inaccessible to some people (e.g., due to physical or economic reasons) and could be challenging to achieve at will. Developing tools that could allow us to create environments that could reliably invite such experiences to happen would greatly benefit the world on both individual and societal levels. If we can facilitate the invitation of transformative experiences even only half of the time, that already would make such experiences much more accessible, and the tool allowing us to do that, arguably, would be able to claim itself as a transformative medium.

      Virtual Reality (VR) technology with its controllability and ability to afford sense of presence could provide us with a unique medium to design for and study awe-inspiring experiences (Chirico et al., 2016), making them more accessible to the public and researchers (Stepanova et al., 2018). The potential of immersive technology to create applications for positive change has been widely explored in different contexts, see reviews in Kitson et al. (2018a) and Riva et al. (2016). Researchers explored the potential of VR to induce awe in controlled lab conditions through using immersive videos (Chirico et al., 2017) and virtual environments (Chirico et al., 2018a), and were successfully able to elicit a self-reported awe response in some of their participants. Quesnel and Riecke (2018) and Gallagher et al. (2015) have also used virtual experiences of a spaceflight and evaluated its potential for inducing awe. Even though none of these studies observed a transformative experience of a similar scale to the Overview Effect in their participants, they still showed promising results indicating that VR, as a medium, could successfully deliver experiences that can trigger profound emotional responses such as awe.

      However, there is still little research on awe, as well as the Overview Effect and other transformative experiences, that could inspire the design of a transformative experience in VR. Moreover, a larger body of knowledge needs to be build about the specific potential and affordances provided by VR for the design of profound experiences, as well as an understanding of what would someone's experience of going through such installation be like. As VR technology and affective design are both relatively new fields, it is important to not only bring in the understanding of how profound transformative experiences happen outside of VR as a guidance for the design of the immersive experiences and assessment of their effectiveness, but to also develop rich body of knowledge of how such immersive installations are experienced by different individuals. This study attempts to contribute to this developing body of knowledge by describing and analyzing personal experiences of individuals going through an immersive VR installation designed with a goal of awe elicitation and invitation of a transformative experience. This understanding will be essential for future assessment of VR technology as a more ecologically-valid approach to conducting controlled lab studies of complex phenomena and for informing design strategies, affordances and limitations for the development of profound positive immersive experiences with transformative potential. VR technology can not only allow us to “replicate” in a virtual world experiences that are poorly accessible in real world, such as a spaceflight, but this medium also presents its own unique opportunities for creating spaces and journeys that can invite a transformative experience. For instance, technology in itself, with the vastness of the data it can connect you to, can elicit awe (Bai et al., 2017). Thus, it is reasonable to explore the virtual transformative experiences as its own sub-cluster of transformative phenomena with its own unique attributes and processes, but similar desired benefits such as an increased feeling of interconnectedness, and the benefits for well-being and pro-social and pro-environmental attitudes that could follow from it.

      In order to build this knowledge base about the transformative potential of VR and the phenomenology of individual's experience in a VR installation, we need to utilize our knowledge of profound transformative experiences to motivate the design of VR installations and then study the experience it induces as its own phenomenon. Using qualitative research methods allows us to develop an understanding of how personal experience is unfolding and what the important aspects of it are. Then, we can relate that understanding to the attributes of the design and the desired outcome. Comparing the experience elicited by different VR installations would provide deeper insights in how different design elements, as well as the setting and participant's background might correlate with particular aspects of the elicited experience. Additionally, relating the personal experiences of participants to the design decisions will help developers of transformative VR experiences validate their design hypotheses and intuitions, as well as propose new direction for investigation.

      To achieve that, for this exploratory study we designed an immersive VR installation “AWE”—Awe-inspiring Wellness Environment (description of the development including the design hypotheses can be found in Quesnel et al., 2018b)—that was inspired by the Overview Effect and other awe-inspiring experiences in nature. This installation is not an attempt of a virtual replication of an astronaut's experience, but rather an artistic creation aiming at eliciting an experience that will have some similar outcomes to the Overview Effect. The Overview Effect is described as a cognitive shift that includes an experience of awe and feeling of connectedness to the world, the people and nature (White, 2014; Yaden et al., 2016; Stepanova et al., 2018, 2019), so these were the qualities of the experience that we were hoping to observe in the immersants going through AWE. At the same time, giving the complexity of the experiences of awe, self-transcendence, connection and the Overview Effect, and the complexity of the conditions in which they may occur, at this stage we couldn't directly test for an effect of singular aspect of the design of the virtual experience on likelihood of the desired experience occurring. It doesn't seem to be possible to isolate a singular aspect of the experience that might be responsible for the desired experience in the immersants. Thus, in order to form testable hypotheses about the relationship of the design and user experience, we first need to develop a VR experience capable of eliciting the feelings of awe, connectedness and cognitive shifts, related to the Overview Effect; and then build a rich knowledge of the phenomenological experience of that VR experience, from which new hypotheses can be derived.

      In this exploratory study we discuss the aspects of the experience that the participants of “AWE” have described and relate their accounts to the research on the Overview Effect and awe-inspiring experiences. This study has two distinct goals: (1) evaluate the potential of the current research prototype, “AWE,” for eliciting some of its desired effects that have been associated with the Overview Effect; (2) develop a better understanding of what are the important components of an individual's experience of going through an affective VR installation designed for awe elicitation, and how it can inform future system development and hypothesis formation. To develop a better understanding of the different components of the experience of a person going through an affective VR installation like “AWE” we performed in-depth qualitative interviews with participants about their experience. To evaluate the potential of our “AWE” experience to elicit awe and ideally lead to a cognitive shift and increased interconnectedness, besides comparing the thematic analyses of interviews to existing qualitative research on awe and Overview Effect, we also implemented two quantitative measures that could be used for assessing components of the Overview Effect: occurrences of awe measured through goosebumps extending work of Quesnel and Riecke (2017) and Benedek and Kaernbach (2011) and connectedness to nature measured through an Implicit Association Test (IAT) used in Schultz et al. (2004).

      As this is an exploratory and largely qualitative study, we were not testing any formal scientific hypothesis. However, in the process of designing the “AWE” installation, several design hypotheses were made as a part of the creation process. Some of these design hypotheses are discussed in our paper describing the development of “AWE” (Quesnel et al., 2018b). Even though these hypotheses are not directly tested in this study, they might have formed some expectations that we had prior to collecting and analyzing the data, that were informed by these hypotheses. Additionally, in a separate publication, we have also proposed design guidelines for a virtual Overview Effect experience based on astronauts' recollections of it and available research—Stepanova et al. (2019). Those proposed guidelines have both informed the design of the “AWE” and might have formed our expectations for the current study. To minimize our bias in the analyses, we used phenomenological method that attempts to suspend the researchers' expectations through the process of epoché (a.k.a. “bracketing”) (Smith and Osborn, 2004). After the analyses and reporting results, we turn back to our expectations formed prior to the study and discuss the relation of the results of this study to the guidelines discussed in Stepanova et al. (2019) in the section 4 of this paper.

      This paper makes a contribution to several fields: to the field of the VR experience design (esp. VR4Good—Virtual Reality for positive change) by identifying the aspects of an affective experience of being in VR that can be supported with thoughtful design of VR installation; to the field of transformative experience design by describing possibility for inducing cognitive shifts in VR and how they might occur; to the field of psychology describing possible methodological approach for investigating awe, the feeling of connectedness and transformative experiences, that might be difficult to access, like the Overview Effect.

      2. Materials and Methods 2.1. Immersive Experience and Physical Set-Up

      Participants were invited into the study room where there was a separate “tent” section for the virtual experience and the preparation area with a table and a laptop, where participants were signing the consent form and doing the IAT. The “tent” was set up with a 305 × 305 × 211 cm gazebo, that was diagonally separated with black curtains into the VR and the researcher (from where the equipment was operated) areas. Inside the “tent” there was an office chair covered with a blanket (to suggest the atmosphere of comfort) and some pillows on the floor (to match the virtual environment (VE)); the outside of the “tent” was decorated with fairy lights, that resemble starry night sky when viewed from inside, which corresponds to the first stage of the VE (Figure 1). We set up the virtual experience inside the physical tent for two main reasons. Firstly, to create an explicit entry into the experience space, that would separate it from the formal study procedures space. As such, the stepping into the tent was serving as a small ritual, that is proposed as a design guideline for transcendent VR experiences (Kitson et al., 2018b). Secondly, the tent was creating a semi-private environment where participants knew that they were not being directly observed and can be more immersed and expressive. We believed that these two conditions might be important for inviting the opportunity of a transformative experience.

      A participant inside the tent (with the open entrance curtain) inside the “AWE” installation. The participant is seated on a swivel chair, wearing an HTC Vive (2016 model, 2,160 × 1,200 total resolution, 1,080 × 1,200 per eye, 90 Hz refresh rate at 110° diagonal field of view) and noise-canceling headphones on his head, and a goosebump camera on his right hand. Written informed consent for the publication of this image was obtained from the person depicted.

      The navigation interface used for locomotion was adapted from Swivel Chair (Nguyen-Vo, 2018), which uses the rotation and leaning of one's body for locomotion through a virtual space. Participants were sitting on an office chair and controlling their simulated self-motion by leaning in the direction they want to go, with the amount of leaning determining the translation velocity in the direction they were leaning. To rotate, participant turn around on the chair that can spin 360°. The interface was calibrated for the individual's height.

      The immersive experience “AWE” (Quesnel et al., 2018b) consisted of three environments: forest, lake and space (see Figure 2 and a video of the latest prototype http://ispace.iat.sfu.ca/project/awe/).

      A summary of the virtual journey through “AWE.”. (1) The immersant finds themselves in a tent at a campsite. (2) The magical Sprite creature lures the immersant out of the tent to explore the night forest. (3) Following the Sprite, immersant takes a leap of faith into the lake, (4) where they descend down passing by deep water creatures. (5) The bottom of the lake opens into space where the Earth and Sun appear in a dramatic reveal. (6) After orbiting around the Earth, the immersant finds themselves back in the campsite.

      The three stages of VE allowed for different amounts of active locomotion:

      In the forest stage, immersants could freely explore the environment along the horizontal plane;

      in the lake, there is a limited range of movement in the horizontal plane, but the overall vertical direction is directed by descending within a virtual tube;

      in space participants were taken on a pre-designed trajectory with a limited range of movement.

      2.2. Participants

      As the main contribution of this exploratory study relies on the phenomenological analyses of the interviews, we were aiming for the recommended sample size between 5 and 25 participants (Creswell, 1998). We used purporsive sampling method commonly used in exploratory qualitative research in order to obtain rich descriptions from knowledgeable participants (Palys, 2008). A total of 15 participants were recruited through a purposive sampling method with the help of our partner organization—NGX Interactive, a local company that creates interactive exhibits for culture industry. Participants were recruited within the company's employees and clients and are representing the community of professionals working in the field of culture industry and technology. We specifically recruited participants who will be able to provide us with well-informed feedback on the system and its potential to be used in culture industry for facilitating shifts in worldviews, but they were naive in terms of the specific details of this study. Additionally, even though the experience with VR technology varied between participants, they had ample experience with interactive technologies, and therefore would be able to go beyond the initial “wow” response, that first time users of VR sometimes have. We will be referring to participants as P#. Two participants (P07,P15) were excluded from the analyses as they did not finish the experience due to cybersickness, resulting in a final sample of 13 (7 females). The ethics approval was granted by Simon Fraser University Office of Research Ethics (Study#: 2017s0269).

      Throughout the iterative development of the AWE experience we conducted a multitude of smaller formative user tests with a range of participant populations to inform the design of the AWE experience. While they generally confirm the results of the current study, reporting them in any detail goes beyond the scope of the current study and would not substantially alter the findings.

      2.3. Procedure

      After signing the written informed consent form, participants were asked to enter the tent and sit down on the swivel chair. The researcher explained the set-up procedure and the navigation, handed the Head-Mounted Display (HMD, HTC Vive) and the noise-canceling headphones to the participant and assisted with putting the equipment on. Participants were instructed in case of a mild cybersickness to close their eyes for a moment, and, if the feeling persists or is strong, to notify the researcher and they would stop the experience. Next, the researcher asked the participant to roll up their sleeve and put the goosebump camera (explained in the following section) on their arm. Once confirmed that the participant feels comfortable, the second researcher starts the virtual experience, and the first researcher directs the participant through the initial calibration process for the navigation, while second researcher starts the recording of the goosebump camera. Then, the first researcher notifies the participant that everything is now in order and leaves the tent leaving the participant in privacy for the experience. After the virtual experience, the first researcher returns to the tent to assist the participant with taking off the equipment and sets up for the interview. After the interview, the participant is directed out of the tent to complete the Implicit Association Test (IAT) on a laptop (13-inch MacBook Pro). The participant's experience in the VE was recorded through screen capture and the interviews were recorded with a GoPro camera. The study took approximately 1 h.

      2.4. Evaluation Methods

      We have used a combination of qualitative and quantitative measures to help us address two goals: (1) understand the participant's phenomenological experience and (2) to assess the potential of the AWE experience to create conditions in which an awe-inspiring experience similar to the overview effect (or a degree of) may occur. As the overview effect is described as a cognitive shift that starts with an experience of awe and leads to the increased feeling of connection and responsibility for Earth (White, 2014; Yaden et al., 2016; Stepanova et al., 2018, 2019), we included measures of awe and connection with nature. We didn't include specific measures of the responsibility for Earth at this stage, as first we needed to establish that earlier stages of the desired transformative experience can be achieved.

      We used interviews to collect qualitative data about the participants' phenomenological experience of going through the VR installation. Additionally, we included two quantitative measures to assess two components of the Overview Effect experience: an implicit association test to assess the interconnectedness, and a measure of piloerection (goose bumps) to assess the occurrences of awe. These two quantitative measures were included as a methodological exploration in preparation for future studies, that will use a randomized controlled experimental design, less in-depth qualitative measures and a larger sample size. Here, we hypothesized that we will observe a trend indicative of correlation between the measure of awe and the measure of connectedness (higher scores on the implicit association test will co-occur with higher number of instances of piloerection), as in the Overview Effect they are described to occur together.

      2.4.1. Interviews

      We collected the qualitative data through either cued-recall debrief (Bentley et al., 2005) or micro-phenomenological interviews (Petitmengin et al., 2009). Both of these methods are designed to help participants get re-immersed in the past experience and therefor to have more direct access to different aspects of the experience reducing recall errors that could be introduced with the use of retrospective measures (Henry et al., 1994). To further minimize the recall errors caused by the delay between the experience and the interview, each interview was administered immediately after the virtual experience. We implemented both methods in order to assess how they fit into the context of research of affective VR experiences and evaluate what type of data they will be most effective at yielding. To keep the study under an hour to avoid participant's fatigue, we used only one type of interview with each participant: four participants (P02, P03, P04, P09) were interviewed with micro-phenomenological and nine with cued-recall debrief methods. Each interview was followed by a short set of general questions about the experience. The type of the interview administered depended on the timeslot (determined by the availability of the trained micro-phenomenological interviewer). When signing up for the study, participants were not informed about the relationship between the timeslots and interview methods. Each interview took about 20–30 min.

      2.4.1.1. Cued-recall debrief

      After the virtual experience, the researcher would help the participant to take off the equipment, while the second researcher would turn around the monitor and load the recording of participant's experience on the screen and set-up the video camera. During cued-recall debrief (Bentley et al., 2005) the participant watched the screen capture of the experience together with the researcher and talked through what was happening at any particular moment of the experience. The researcher may prompt the participant with questions to direct their attention to different aspects of their experience, for example: “What were you doing here?,” “Did you have any thoughts when you looked up?” or “What did it feel like when you went in?”; or to direct their attention to a specific behavior observed in the recording: “You seem to be looking around a little more here, was there something that caught your eye?”

      2.4.1.2. Micro-phenomenology

      Unlike cued-recall, micro-phenomenological interview (Petitmengin et al., 2009) did not use visual prompts to assist the participant with re-immersion, and was administered by an interviewer trained in the method. The interview started with a short practice interview not related to the virtual experience (discussing a moment from the recent weekend) to give an opportunity for the participant to get familiarized with the method and what is expected from them. Then the interviewer asked the participant to identify one or a few moments in their experience that stood out to them and invited them to focus on each moment at a time. The interviewer than lead the participant through the process of the re-evocation of that moment directing their attention to different sensory and temporary dimensions of their experience.

      2.4.2. Implicit Attitudes

      We used the same Implicit Association Test (IAT) for assessing one's connection to Nature as in Schultz et al. (2004). This measure is used to measure interconnectedness—the component of the Overview Effect. This test asks participants to categorize words in one of the two categories by pressing “E” or “I” key on a computer with left and right index finger, respectively. In the test trials the categories are appearing together creating either a congruent or non-congruent pair (Figure 3). The results are based on response reaction time and accuracy for congruent and non-congruent category pairs. The categories were Self vs. Other and Nature vs. Build with 7 blocks of trials.

      The Implicit Association Test (IAT) screen with congruent categories pairing and inaccurate response.

      2.4.3. Piloerection: Goosebumps and Shivers

      Piloerection observed in a form of goosebump or shivers can be used as a physiological marker of awe (Benedek and Kaernbach, 2011; Quesnel and Riecke, 2017). A “goosebump camera” (see Figure 4) was placed on participant's arm to record a video of their skin during the experience. The researcher helped participant to put on the camera and adjusted the focal distance from the camera to the skin for the best clarity of image. Video recording from the camera was manually synchronized with the screen recording of participant's experience for future alignment.

      Custom made set-up of a wearable camera for recording a video of participant's skin for identifying goosebumps and shivers.

      2.5. Analyses 2.5.1. Interview Thematic Analyses

      The interviews were transcribed and analyzed in NVivo. Even though some of the data was collected with micro-phenomenological interviews, we didn't perform a micro-phenomenological analyses for this study, but analyzed all of the interviews through the same phenomenolgical method. First, two researchers independently went through the transcripts, identified meaning units and combined them into higher level themes. The two researchers then compared and discussed the themes, they have identified, to agree upon one set of themes. Then the researcher went back to NVivo and proceeded with coding. To minimize the researcher's bias in interpreting the data we used “bracketing” and a bottom-up coding approach similar to interpretive phenomenology analyses (Smith and Osborn, 2004) and looked for themes that naturally emerge from the data instead of coding for the specific themes of interest. We present the summary of the distribution of all themes, however, in the interest of space, we will only report in detail on the most prominent and relevant themes.

      2.5.2. Implicit Association Test

      We calculated IAT effect D scores of strength of association based on a standard algorithm for IAT (Wittenbrink and Schwarz, 2007). D scores have a possible range of -2 to +2. According to standard conventions we identified the strength of connection in accordance with the following break points: “slight” - (0.15 ≤ |D| < 0.35), “moderate” - (0.35 ≤ |D| < 0.65); and “strong” - (0.65 ≤ |D|).

      2.5.3. Goosebumps and Shivers

      The video recordings from goosebumps camera were independently manually coded by two researchers to identify moments of goosebumps or shivers. Moments of goosebumps are visually evident from hairs erecting, with the appearance of raised bumps on the skin. Shivers have less prominent raised bumps, but they are evident from micro-movements of muscles under the skin that visually look like a wave lifting the hairs up slightly.

      3. Results and Discussion

      The first two section of the results report on quantitative data, and the following discuss the interview data. First, we present the interview data based on the thematic analyses. After, we present the analyses of categories of emotions related to awe based on a hermeneutical analyses reported in Gallagher et al. (2015) and compare it to the results observed in Quesnel and Riecke (2018), that used Google Earth VR.

      3.1. Implicit Association Test

      Mean D score across all participants was 0.46 (SD = 0.54), which indicates a moderate strength of positive connection between Self and Nature. Nine participants had a moderate to strong positive connection (M = 0.78, SD = 0.23), two participants had slight or moderate negative connection (M = −0.39, SD = 0.25), and two participants had neutral scores (M = −0.11, SD = 0.0015).

      To give context to our observed results, we compared our results to to D-scores obtained on the same IAT test by Schultz and Tabanico (2007), who observed an average 0.40 score between 60 undergraduate psychology students and 0.45 between 121 park visitors in California, we can speculate that possibly the effect of our virtual experience is similar to the effect of walking in the park in terms of one's implicit connection with nature. However, the sample sizes and the context in which the measures were conducted were widely different, and therefor a strong comparison is not possible.

      3.2. Shivers

      In this study we observed one moment of shivers in one participant, when the participant was observing the sun revealing behind the dark Earth. The Figure 5 illustrates the moment when the shivers occurred.

      The moment of shivers: aligned recording from the goosebump camera and screen recording from the HMD showing the Earth scene with the sun appearing from behind it.

      3.2.1. Thematic Interview Analyses

      Table 1 summarizes all the themes observed and coded in the data. We are setting the usability and design related comments aside, as they are outside of the scope of this paper and will be reported separately. We are reporting on the most prominent and relevant themes to this paper, specifically: emotions and feelings, body-centric sensations and embodiment, familiarity and novelty (role of the personal background) and cognitive mini-shifts. These themes are highlighted in the Table 1 and their frequencies are summarized in Figure 6.

      Comprehensive summary of themes coded in the interview data, with the prominent themes reported in this chapter bolded.

      Emotions and Feelings Affects Positive
      Negative
      Emotional states Fear/Discomfort
      Safety/Trust/Comfort
      Immersion and Engagement
      Bodily sensations Internal bodily reactions
      Reflexes
      Vection
      Weightlessness/Floating
      Cognitive shifts and Processes Mini-shifts Connectedness
      Renewed conceptual knowledge
      Vastness and small-self
      Intent of behavioral change
      Processes Anticipation
      Imagination
      States and Constructs Experiential vs. Analytical
      Agency/Self-relevance
      Embodiment
      Presence (“being there”)
      Acts & Intents Orienting Anchoring
      “Where am I?”
      Seeking a goal
      Justifying/Making sense
      Inner tensions and debates Exploring vs. Following
      “Taking it in” vs. Goal-oriented
      Thinking of/testing the system Fear to miss something
      Pushing to the edge
      Trying to predict what is coming
      External (to the system) factors Personal background Familiarity vs. Novelty
      Love or hate of the environment
      Comparing to other mediums
      Expectation Participant bias
      Realistic representation
      System/Experience design Usability Navigation Interface
      Quality of models
      Collisions
      Cybersickness
      Physical space and objects
      Narrative Transitions
      Ending
      Sprite character
      Attributes of the environment Lighting
      Sound
      Open vs. Claustrophobic
      Realistic vs. magical

      The number of participants (total = 13), that had statements coded with themes reported in this paper.

      3.2.2. Emotions and Feelings 3.2.2.1. Curiosity and wonder

      After “cool,” “interesting,” and “pretty,” “curiosity” was the most frequent affect related word used by participants. Curiosity and wonder were positive emotions driving participants' exploration behavior: “Another sense of delight: Oh it's a lake! Not knowing what's gonna happen. Do I just look at the lake? But when I break through the lake its quite a sense of wonder: oh, that's quite lovely!” (P08). The properties of the environment, specifically some level of mysteriousness or the “unknown-ness” of it, were inspiring the curiosity: “I was just curious about the environment. The environment felt deep. It reminded me the Truman show, where you have the bubble that you can explore.” (P06), but at same time inducing some level of fear: “It's really a lot of curiosity and I guess nervousness.” (P11).

      The novelty and new perspectives were also contributing to curiosity: “I am enjoying the curiosity. I guess I was more interested in looking at the Earth, from this vantage point. I enjoyed looking at the space in reference to the Earth” (P05).

      3.2.2.2. Safety and fear

      Most of participants (N = 8) were distinguishing two states in relation to the environment: comfortable and safe vs. uncomfortable and scary.

      3.2.2.2.1. Safety. The majority (N = 11) considered the first environment, the forest, and especially the tent to be safe and comforting: “the whole set up of the tent, and what I saw here…as a tent was really, like, I felt safe. I felt the tent provided a safe starting spot for me to start to going into the outside world.” (P01). When aiming to achieve a transformative experience in VR, we believed that it was important to have a safe starting point, to help participants trust the system to take them on a potentially emotional journey and help them be more open to this experience. If the medium is not allowing participants to feel comfortable within it, they will likely be more resistant and closed-off from the experience. The physical and the virtual tent appeared to successfully serve that function for most participants. It was also important to conclude the experience with a safe environment. Here participant describes the last transition and coming back into the tent: “this again is much more familiar, I do this every day kind of thing. It was comforting. Probably in a weird way one of the most comforting parts” (P05). And since participants already developed some connection and familiarity with that environment, it was even more likely to elicit a sense of comfort: “Cozy. I felt like I was home, even though it's a temporary home. Daylight, so it's more comforting” (P06).

      3.2.2.2.2. Fear. Fear, was probably one of the strongest and most interesting emotional reactions observed. Participants reported being a little “scared,” “nervous,” “uncomfortable,” or “anxious,” which was usually associated with the jump into or descend in the water, or, in a few cases, with walking through the dark forest. Both, the act of jumping of a height and the descend into the deep water was uncomfortable for some participants: “Then I looked down and I see everything is dark, so for me it was .. I don't know how to explain.. it was just uncomfortable a little bit.. somewhere you are in the water and everything is dark and you are going down” (P09). This was also the transition into the lake where the locomotion was more restricted than in the forest, that increased the level of fear:“I know that if I jump into the lake I can get out as fast as I can, and it's up to me, but I felt like jumping in with the weights attached to your ankle—I am not in control of this situation and it doesn't make me feel comfortable. I am being lead. I don't want to be lead” (P06). This also relates to the role of the sense of agency in the environment, the loss of which was often undermining participant's enjoyment.

      There were many strong bodily reactions to the jump and descend into the lake in the VE, that was surprising and in some way profound for the participants: “I felt a shock. It felt like I was choked. That surprised me. It was not just like “Oh that was kind of weird,” I did feel like someone poked me or something. I felt an actual zap to myself, a tension, that I wasn't expecting.” (P05)

      The strategies participants used to cope with this fear were: (1) dissociate from the experience and bring yourself to the analytical level: “Mentally overwrote back that this is just the experience.” (P06), (2) find a comforting point of reference: “There is fish, which is a comforting reference point in this black void. Trying to follow the light.” (P05), and (3) just wait for it to pass: “I noticed myself clutching my hands. I am not comfortable, I am just going to wait it out until it goes away” (P06).

      3.2.2.3. Other affects

      A distribution of positive and negative valence affects were observed. Negative affects were coming through two main sources: (1) usability issues were causing frustration and inability to explore something of interest was causing disappointment and (2) some parts of the environment were causing nervousness, anxiety or fear, discussed in the sections below. Positive affects could be categorized into the following groups: excitement, inner peace and appreciation of beauty.

      3.2.2.3.1. Excitement. Participants were describing their experience as “fun,” “exciting,” “wow.” These affects were often related to the visual and audio attributes of the environment: “The sun was really exciting, because it is bright. There is music attached to it obviously, other than just my vision, it was also creating that kind of excitement. Bright and exciting” (P04); or to an interest and anticipation: “When I first looked around I was kind of hoping I would get to go in there, an when I saw that you can, there was a bit of excitement that I can go and explore the forest around. During that time I was actually looking around a lot. It was kind of immersive, it was fun” (P03).

      Another aspect of the experience that seemed to elicit excitement was the vertical dimension, which is opening a novel perspective. Often, when looking up: “I kept looking up and thinking how far down am I. It was pretty neat, it was cool” (P13) or down: “So I didn't look down that much, but when I did, it was kind of fun and kind of scarier than looking elsewhere” (P04) participants would describe themselves being more engaged and excited. While the lack of vertical dimension of gaze direction they considered to be the evidence of low engagement: “I wasn't inclined to look up and down, I was looking more left and right, more like if you are in museum or something and you're kinda looking around” (P03).

      3.2.2.3.2. Inner peace. Participants reported feeling relaxed and peaceful. The soundtrack appeared to significantly contribute to it: “It was very peaceful and soundtrack was nice and reminded me of nature and being in the forest” (P08), which was also helping with coping with anxiety from jumping into the lake: “The sound was calming, just seeing fish and seeing the opening above me made me feel a little more relaxed” (P09).

      3.2.2.3.3. Appreciation of beauty. Participants described the beauty of the elements of the experience and how it made them feel delighted or appreciative. Both, the mystical and novel environments like the nebula: “There is something about it that I can't define. Because I know these are asteroids and that's probably a planet of some sort but then the fog is like ‘Awww.’” (P01) and familiar natural beauty of the forest: “I like lakes, particularly because I can see the mountains and the sky behind it, so I wanted to look closer <…> I liked it, I can just sit there and look” (P06), as well as the beauty of the image of our planet: “It's just visually really striking. And again, familiar because you've seen images like that. And, the contrast between the dark and the light is really nice.” (P12)—were all eliciting moments of appreciation and delight in participants.

      3.2.3. Familiarity and Novelty 3.2.3.1. Relation to emotions

      The feeling of safety or fear as well as curiosity and wonder seem to often be related to the feelings of familiarity and novelty. The first environment of a campsite in a forest was familiar to most participants, and associated with positive emotions, which let them feel comfortable going into the environment. “It's a very familiar place. It's a tent, and there's a bonfire. There might be other people there. I chose to come here. I chose to be here and setup a tent and sleep in a tent” (P01). Moreover, throughout the virtual experience, participants will form new connections with elements of the environment and use them to bring themselves back to the state of comfort in the parts that felt scary to them: “…for my one comfort: ‘here is the light, follow the light, here are some fish, I am being sort of acclimatized here’—that time helped” (P05)

      While usually familiar environments were providing a sense of comfort, for other participants, they appeared less engaging. Contrary, novel environments were stimulating curiosity, wonder and excitement. Here a participant is at the end of the lake scene: “It felt like ‘oh cool!’—Its not something you would normally be able to see, where is in the previous environment—I have gone camping before, so I get it. But here I am thinking this is cool, its really creative, really beautiful to see the stars through the water”(P08). For some participants it was easier to accept and get immersed in more novel environments, they wouldn't have had a concept for, while having a compelling familiar environment seemed more challenging:

      It is neat to explore a perspective on the world that you would have none of <…> Where is when anything that is too familiar, because I am so in-tune with how I walk and how that feels, so you have that disconnect <…> Where in space—I have no context for that. So okay, this is how I would float in space, fair enough, I have no other way of knowing it. (P02)

      3.2.3.2. Anchoring

      The act of cognitive anchoring to a familiar place was quite prominent, and it was not only used as a coping mechanism against anxiety and discomfort provoking environments, but also to orient oneself: “I saw the sun and recognized it, and quickly after that I saw the Earth, so there was a relation there—I knew where I was for the first time in the experience. Not that I haven't been in a tent before, that was quite familiar. But there I for sure knew where I was.” (P04) and to connect with the environment in a more meaningful way: “This is kinda of an interesting angle of North America and South America. I have a colleague, who is working in Columbia right now, so I am trying …I am putting real people I know” (P05).

      3.2.3.3. Importance of individual variables and background

      We were surprised to observe polarly different responses from our participants within such a fairly simple experience, with a fairly consisted journey. Each of the stages and transitions in the experience has produced opposing responses from love to hate and from relaxation and peacefulness to excitement or fear. This distribution of reactions has stressed the significance of participant's individual background.

      The lake environment was the most striking example of opposing experiences participants were having and its relation to their background. One participant describes her delight in that stage: “I just love the water, and so going into the water was quite delightful. Happiness, familiarity, for me not too calm, but connectedness to nature in that way” (P08). While another participant had a very different reaction to the same environment: “A little worried. I don't like deep water. A little anxious. Okay, we got to go over to the lake, I hope we stay above it” (P06). Transition into the lake as well, which was reported to be one of the most memorable moments by most participants, elicited opposing reaction depending on personal background: an uncomfortable anticipation and anxiety by one participant: “coming down the little ledge to go in the water. that was kind of .. I was a little bit hesitant before, because I don't normally like jumping into the water from height. Or jumping from height in general. That feeling scares me a little bit” (P09), while another participant had a positive anticipation and excitement coming up to that transitions: “I realized that okay, I am going down to the water, so perfect. This is great. <…> I was a little stoked, cause thats the direction where I wanted to go <…> I was a little bit timed here: Am I supposed to jump in here? <…> then I went for it” (P11), this participant later mentioned being a cliff-jumper.

      Another important influence on the experience was coming from the video-games experience, that participants had, that was both helping them with navigation: “I have a little bit of a gaming background so I am sort of very comfortable with this first-person movement through virtual space” (P13), and setting up an expectation to have a goal: “ it reminded me of old video games where there is like a mission or something, I wouldn't necessarily do that mission and I would end up going off somewhere else” (P10).

      3.2.4. Body-Centric Sensations and Embodiment 3.2.4.1. Jump into the water

      As discussed in the section on safety and fear, the transition into the water environment, that was inviting participants to jump into the lake, was inducing strong reactions in participants' bodies. They were describing clutching their hands, tensing up their muscles and holding their breath: “all your muscles constrict, or contract, so it's almost like you are trying to hold yourself tight, so when you get that cold, you can release it once you hit the water” (P02). This tension was often followed by a release and relaxation, when “hitting the water”: “the body just kind of tense up, and you just kind of …just kind of muscles release …As soon as I got in the water” (P09).

      3.2.4.2. Weightlessness

      Interestingly, that feeling of release might have facilitated the feeling of floating or weightlessness. Here a participant describes the moment when that release happened:

      That's weird, because, on the ground, up to that transition, I am super conscious of how I am sitting on a chair, and that kind of leaning forward is feeling a little awkward…But in that second I didn't feel the…And that's what I kind of loved too, is how, I had no idea you could reproduce that, give that sense that you are weightless, suddenly I wasn't conscious of my body pressing into the Earth. (P02)

      For a different participant a similar moment of release leading to the sense of weightlessness happened in the transition into the space: “When I was in the water I felt like I was not in control and I was weighted down, like if I had weights around my ankles, where is when I was transitioning into the night sky it felt like the opposite: the weights are off the ankles, you are weightless” (P06). This participant was afraid of the water environment, and even though that transition into space produced less internal bodily responses for most participants than the transition into water, the psychological release of letting go of the fear still lead this participant to experience the illusion of weightlessness.

      It was interesting to observe that 6 participants have mentioned floating or the feeling of weightlessness. It might not have been a strong bodily feeling for everyone, but it is encouraging to see that even with a simple hands-free leaning-based interface through a design of the storyline and the visuals, we were able to elicit some level of the feeling of weightlessness without submersing participants in a flotation tank [which would be a more literal induction of the feeling of weightlessness, for instance, planned by SpaceVR for 2018 Burning Man festival (Bonasio, 2018)].

      3.2.4.3. Connect and disconnect between mind and body

      Imaginative immersion in combination with sensory immersion (Ermi and Mäyrä, 2005) when achieved successfully creates a condition in which participants experience a disconnect between their mind and body. Participants discuss these moments of disconnect, and having their perceptions overridden by their imagination as the optimal moments of their experience: “It was a bit more of the imagination and just like the feeling of being in warm water and submerging and yet not worrying about the panic of not being able to breath, and just something about that, that I quite liked. And maybe it's because I didn't feel this [points at different parts of his body], right?” (P02). While the moments, in which the conflict between the physical body position and the virtual position became apparent, lead to frustration and disappointment: “You start unpacking, okay, so you have this goggles, the audio here, and my arms and legs just feel static and crossed, how does that connect? Because that feels weird, when you come back to your body and then realize that it is a stagnate lump going through this [points at where HMD would have been]” (P02). It would be interesting to investigate how this connect/disconnect transitions are being triggered. In case of this participant, he had this desired disconnect during the lake stage that was initiated by a visceral jump into the lake and then “something broke the spell” (P02) when transition into the space happened. For him, the transition into the space came as a surprise and did not make sense. For a different participant, the conflict was the result of not having an avatar representation in the VE: “I felt a bit disconnected from my body, because when I look down I don't see my body, and usually its there, obviously” (P04).

      3.2.4.4. Reflexes and vection

      Vection (an illusion of self-motion) and reflexes are often perceived as an indicator of how immersive and “believable” the experience was by participants.

      For example, a participant describes descending down in the lake: “I see the sparkles, <…> I realized that they are kind of like surrounding me, that's when I really got the sense of the descent down. The closest I can compare it to is when you are going down a roller coaster, but it wasn't that intense, it was more calm kind of feeling” (P03) and then going into space: “As soon as the movement started, it kind of again felt a bit more immersive, the floating feeling came back again” (P03). The lack of self-motion illusion for some participants in space combined with restricted locomotion might have also contributed to some of them feeling as if they are watching a movie instead of participating.

      Sometimes, participants would also report having a reflex in reaction to an event in the VE: for example, when the sun appeared, a participant was surprised and reported: “I am pretty sure I jumped.” (P05) while another participant mentioned: “I found the sun pretty bright, almost wanted to put my hand up. But yeah, this is neat.” (P10). While putting the hand up to protect one's eyes wouldn't have worked with an HMD, a different participant adopted her reflexes from diving to the VR equipment: “because I'm a diver I felt like I'm descending, there was one point were I adjusted my face but it's a bit like adjusting your regulator.” (P14). This type of behavior could potentially indicate how “real” the experience was for the participants at that moment.

      This “realness” and “being there” of the experience, that is indicated by multidimensional responses, including your internal body feelings and actions, are likely an important precursor to the possibility of transformative experience that could lead to cognitive shifts. For instance “presence,” which is often described as the feeling of “realness” or “being there” in a virtual experience was shown to correlate with a stronger effect of the virtual experience on the following real-world behavior (Fox et al., 2009; Rosenberg et al., 2013).

      3.2.5. Cognitive Mini-Shifts

      As the ultimate goal of this project is to evaluate if VR experiences can be designed to elicit positive cognitive shifts similar to the Overview Effect and other awe-inspiring transformative experiences, we were excited (and a little surprised) to see some indication of some minor cognitive shifts voluntarily described in the interviews. Participants themselves were also intrigued by the shift in perspective resulted from their experience, even when the shift was in the perception of seemingly simple concepts:

      I kinda compared that sort of spatial environment that I was in with all of the representations of space that we get used to, which is a very 2D item, the solar system prospective. And that difference, that being in it, and that way how it altered my sense of that relational space of one celestial body to another, that was really cool actually how it changed something in my mind slightly. (P13)

      3.2.5.1. Day and night

      Four participants found the concept of day and night happening at the same time on different sides of the globe, that was observable in the experience when traveling around the Earth, very interesting. Even though they are intellectually familiar with this idea, seeing it from the first person perspective was a somewhat “eye-opening” experience. Participant reflects on her mental process of coming to that realization:

      To realize that it is so easy to look at something through one lens, but when, if you are exposed to it in a different way, then something that was so familiar to you …can give you such a different perspective. Something as simple as that sun is not shinning on the other side of the half of the world, means its night time, and it's so simple. And I studied, moons, and tides and sunrises and sunsets, but never thought about it quite so simply: that sun is shining on one side but not the other side. (P08)

      3.2.5.2. Vastness

      Vastness can be better described as part of the perceptual experience that could lead to a cognitive shift (rather than a shift in itself), but as it is considered to be the precursor for the experience of awe (Keltner and Haidt, 2003) and cognitive shift of perspective (Gaggioli, 2016), they are closely related. A participant, who works at an aquarium described:

      I remember thinking that the Pacific ocean is so big and for a while I thought that I am not seeing things correctly. Which is funny, because I <…> know that its huge. But it was so vast! And to see it in that perspective was what was very unique for me. <…> It was impressive and gave me another perspective on something that I see and think about everyday. (P04)

      This admiration of vastness is also often related to the realization of how small each individual human is on the scale of the whole world. Here a participant describes his thoughts when orbiting around Earth: “I was really hoping to see maybe that sparkle of the civilization, some kind of movement, some kind of glimmer, to denote my …what's the word …like the size of people, how small compare to where I am” (P03).

      3.2.5.3. Interconnection

      Overview Effect and other transcendent and awe-inspiring experiences have all in common the cognitive shift leading to a realization of interconnectedness of life. In our data there were a number of instances that could indicate this realization of wholeness of the world: “transition from the bottom of the water into the space scape and that sort of the initial moment when you look at it holistically and you see …everything is involved in it” (P11). But the most striking was the observation of the participant when traveling around the Earth:

      There has been so many natural disasters lately with the hurricanes, fires and all of that. When you see at a global level, the connection between things that are otherwise separate because of the political things…When you see as a whole—its just like, well, its just one planet. When you go around and see that Brazil is so close to Florida, you know politically things are so far away… (P06)

      This realization of interconnectedness can then lead to behavioral changes, where in case of the Overview Effect, astronauts feel the need for everyone to unite together to protect our planet and its inhabitants (White, 2014).

      3.2.5.4. Intent of a behavioral change

      In our data there were two comments from one participant that could suggest an intent for a change in behavior, that could be triggered by the feeling of interconnectedness. Firstly, on a personal level, she was inspired to learn more about other people and countries she may not know enough about: “I don't know much about south America, so it was interesting to look at it when I can see all other distracting places I know more about. I thought I should learn more about it” (P06). This could be related to the aspect of perspective shift related to brining cultures together by developing an understanding of other cultures [similar to what astronauts describe (Gallagher et al., 2015)]. Secondly, on a more global level, she had the urge to communicate this view of interconnectedness to more people:

      Just need for people to figure out the environmental sciences, because its effecting everybody, but these are the artificial lines that seemed to be so unhelpful. I was thinking from the educators perspective. What a disservice it is to see a map as flat: things look so much further apart than they actually are. And that need—if we are going to problem solve bigger things, how this flat political map is just not going to get us there. (P06)

      3.3. Gallagher's Hermeneutic Analyses of Awe

      Gallagher et al. (2015) undertook syntactical followed by hermeneutic analysis of astronauts' awe experiences based on 51 texts by 45 astronauts. From the analysis, Gallagher et al., generated 34 consensus categories of awe. They allow researchers to determine whether in experimental studies, participants have experience of awe and Overview Effect. Here (Figure 7), we count the frequency of statements made by our participants that fit into the awe consensus categories. The categories that were not observed in our data and not included in the graph are: sublime, poetic expression, peace (conceptual thought about), inspired, home (feeling of being at home), fulfillment, floating in void (not related to weightlessness), elation, disorientation.

      The number of participants, that had statements coded with hermeneutics analyses of categories of awe (Gallagher et al., 2015).

      We can compare the results of this study to the study by Quesnel and Riecke (2018), that had 16 participants traveling through Google Earth VR, whose interviews were coded with the same categories of awe based on Gallagher et al. (2015). Figure 8 shows the comparison of the frequencies of participants coded with the awe categories between these two studies. The “AWE” experience was able to elicit more responses of totality, spatial perspective shifts, sensation of floating and inquisitiveness, while the Google Earth experience was better at eliciting feelings of sublime and elation. We can speculate that the sensation of floating and inquisitiveness were elicited as a result of the narrative arc of the “AWE” experience, that wasn't a part of the Google Earth experience used in Quesnel and Riecke (2018). Totality and the spatial perspective shifts observed in our data are likely related to the “AWE” experience presenting the Earth from a more distant perspective than Google Earth VR allows. While the lack of sublime and elation responses in our study could be explained by the difference of the quality of the Earth models that we had in “AWE” and in the Google Earth VR.

      The percentage of participants, that had statements coded with hermeneutics analyses of categories of awe (Gallagher et al., 2015) in current study and Quesnel and Riecke (2018).

      Gallagher et al. (2015) did not report on the number of participants coded with a certain theme, but rather the total frequencies of codes (within 19 interviews). However, since the lengths and types of interview procedures were different between the current and Gallagher et al. (2015) studies, we can not make a precise comparison based on these counts. Still, in their data the most frequent categories were perspective shift (moral,internal), contentment, interest/inquisitiveness, scale effect, and significant sensory experiences, which only partially intersects with our data, as these categories, even though present, were not as prominent in our data. The study design was fairly different between our studies: Gallagher et al. (2015) study used a spaceflight simulation, designed to be realistic, that was presented through the screens of cockpit/window as opposed to an HMD. As their study was a more literal simulation of a spaceflight than “AWE,” it is possible that their participants were more inclined to think about what they know about astronauts' experiences, so it is possible that some of these thoughts were introduced externally based on associations rather than emerged from the properties of the experience.

      4. Discussion and Limitations 4.1. Relating to the Overview Effect

      Stepanova et al. (2019) analyzed existing records and research on the Overview Effect and derived design guidelines and evaluation methods for virtual experiences aiming to elicit the Overview Effect or an extent of it. Comparing the themes that emerged from our data and the guidelines outlined in Stepanova et al. (2019), we identify an intersection in the themes outlined in Table 2.

      Selected design and evaluation guidelines for design of the virtual experience of the Overview Effect from Stepanova et al. (2019).

      1. From Design Guidelines
      a. Embodied experience and self-relevance The feeling of being in the virtual environment and having a first-person experience of it (as opposed to watching a movie), that can be facilitated though a full-body experience and a perception of being an agent in the environment
      b. Privacy and social space A combination of a private physical space, where the virtual experience is experienced, to facilitate immersant's comfort and openness to the experience, and a social space following the virtual experience to facilitate the process of accommodation
      c. Vastness Creating virtual stimuli that can facilitate the experience of something that is much greater than oneself
      d. Suspending disbelief through aesthetics. Using imagination-provoking imagery to assist the suspension of disbelief and openness to experience
      e. Initial fear Including a fear-inducing part at the beginning of the emotional journey to imitate the emotional trajectory that astronauts go through when being shot in a rocket into space
      f. Weightlessness Facilitating sense of floating or weightlessness to imitate zero gravity environment
      g. Personal connection Providing familiar elements into the environment to help immersants establish personal connection with them, that then can be extrapolated into a larger feeling of global interconnectedness
      2. From Evaluation Methods
      a. Weightlessness Feeling of weightlessness or floating
      b. Changed perception of space Altered perception of the relative size, distances and positions of celestial objects and geographic locations as well as the relative position of oneself in relation to them
      c. Awe Emotion of awe that can be evident from introspective, physiological or implicit measures
      d. Interconnectedness The feeling of or a realization of global interconnectedness of all people, living species, or the planet at large. Transcendence of one's perceived boundaries of self and the feeling of belonging to something greater
      e. Increased responsibility for earth The concern for and desire to protect the environment and all of the inhabitants of our Earth

      From the evaluation guidelines we were pleased to observe some mini-shifts reported by participants, that would indicate each one of the 2b-2e themes. Even though we only observed a few instances of each, it was still very encouraging, considering that cognitive shifts are not easy to achieve, and it was still an early prototype of “AWE.” From the design guidelines, the most strong and interesting intersection was in the privacy, initial fear, weightlessness and personal connection components.

      4.1.1. Privacy and Social Space

      Even though participants were not using the term “private,” from their discussion of felt safety and comfort we can speculate that “AWE” was able to achieve the goal set out by the “privacy” design guideline—creating a safe space for participants to feel comfortable to have a transformative experience. The social space guideline was aiming to assist with the process of accommodation that is a necessary component of a transformative experience following a witnessing of an awe-inspiring vista. Even though only one participant explicitly discussed it, but he reflected on how going through the process of the interview was valuable to help him unpack his experience and understand it on a deeper level than if he was just asked a few questions. Hence, we believe that the interviews, especially the microphenomenological method, were able to provide the social space and the conversation that could facilitate the process of accommodation.

      4.1.2. Initial Fear

      The precursors for the Overview Effect are hard to separate from components of a spaceflight, but the initial moment of fear naturally experienced when being shot in a rocket into space, is, quite possibly, an important stage in the progression of the experience (White, 2014). However, few people have personal experiences associated with rockets, and as such, jumping into water is a more visceral experience for most and therefore, when part of VR, has a potential to induce stronger response, which we indeed observed. However, we were surprised by the strength, length and frequency of fear experiences, as we were only intending for the jump into the lake to be a moment inducing hesitation and requiring participants to take the leap of faith. The personal background of participants shaped their experience of descending through water to be more fearful than we anticipated during the design process.

      4.1.3. Weightlessness

      The connection of feeling of weightlessness and Overview Effect is also unknown as the records of them are inseparable: it might be essential or not relevant (White, 2014). As the sense of weightlessness on Earth is logistically challenging to achieve in combination with VR, we were not aiming to replicate it as a part of the experience. It was insightful to observe that several participants did have a feeling of floating or weightlessness, and informed us how the narrative of the experience can facilitate the induction of this sensation.

      4.1.4. Personal Connection

      In at least some astronaut's descriptions the feeling of connectedness starts small from the personal connection to a familiar location, and then extends from there to the rest of the world. It was interesting to see in our data how prominent the concept of familiarity was—10/13 participants were discussing it (with no targeted prompts from interviewers). Two participants also described how, when orbiting around the Earth, they were picking out familiar locations to establish connection to them, much like the astronauts describe. The virtual travel to a familiar place in Google Earth was also powerful at eliciting awe in the study by Quesnel and Riecke (2018).

      The other three design guidelines (embodied experience and self-relevancy, vastness, suspending disbelief through aesthetics) were not as evident in our data. Even though there are some indications of self-relevancy, for a lot of participants it was significantly reduced as a result of restricted locomotion in the last parts of the experience. While perceived vastness was mentioned three times, this is a fairly low frequency for an experience aiming to elicit awe (Keltner and Haidt, 2003). Suspending disbelief through aesthetics was only partially successful, as a lot of participants were still expecting an accurate representation of the real world inside the VE and were thrown off by any observable conflicts. Despite the clearly magical creature, sprite, and the lake portal into space, some participant's sense of immersion was broken by seeing jellyfish in fresh water, some trees appearing too tropical for the local biosphere or the tent seeming too large for one person. Evidently having magical elements in the narrative wasn't enough for suspending participant's disbelief, especially when they were very familiar with a specific environment (e.g., the jellyfish comment was made by participant working at the aquarium). It might be important to set up the right expectations from before the VR experience starts by adding a narrative to why participants enter the tent for going into the VR experience to prepare them for the virtual story.

      Overall, even though the “AWE” experience did not follow all of the guidelines outlined in Stepanova et al. (2019), it was able to achieve some indications of each one of the core components of the overview effect: awe, increased connectedness, increased responsibility for the environment. The latter being indicated only once by a participant discussing the need for everyone to unite together to develop a better understanding of the weather systems as it is effecting everyone. While awe is a complex emotion, it is hard to make definite claims as to how much awe did our participants experience: their interviews indicate a number of components of awe identified by Gallagher et al. (2015) specifically in the context of the Overview Effect. However, the physiological measure of piloerection (Benedek and Kaernbach, 2011) revealed only one instance of awe in this study, which is either the fault of the recording instrument or, more likely, the result of the lack of intensity of awe that, even though experienced to some degree, didn't trigger the physiological reaction.

      Connectedness is also a difficult cognitive construct to objectively measure, that we attempted with IAT. IAT scores indicated a fairly strong connection between Self and Nature, however these results are challenging to interpret, as we don't have a baseline for our Vancouver population. We made the comparison with the data collected with the same test (with identical items) in California, which could be an approximately comparable population as they are both from the West Coast of North America, although there still might be differences. Besides lack of baseline, we also cannot know how much of the connectedness of nature and self was attributed to the “AWE,” and how much of it was a personal trait. Implementing IAT as a pre- and post-test measure could be a possible approach to tackling this challenge (as in Peck et al. (2013) in the context of racial bias), but as a reaction time measure, IAT scores are greatly influenced by learning effects, and therefor repeated tests become difficult to interpret as a measure of change. IAT is very rarely implemented as a pre- and post-test measure, and as in Peck et al. (2013) it requires inviting participants to visit the lab multiple times, and still expects to observe a strong learning effect. The qualitative data in our study, however, showed some promising indications of moments of realization of interconnectedness.

      As traditionally the records of the overview effect are describing a moment during the spaceflight, it is difficult to separate which components of a spaceflight experience might be contributing to the Overview Effect and which ones are unrelated. Until this relationship is clarified, we will have to target both the components of the spaceflight and the Overview Effect experiences in VR experience design. In our data we observed some indications of some components of an experience of a spaceflight: change in perception of space and weightlessness, but not the change of perception of time and silence. However, we did not explicitly try to measure them.

      4.2. Comparing to Other VR Awe-Inspiring Experiences

      Here, we want to compare the current VR experience and study with other research attempting to elicit awe and Overview Effect through the use of VR. This comparison allows us to speculate about the role that the aspects of the VR experiences and research tools had on the obtained results, thus informing future research in this field. Chirico et al. (2017), Chirico et al. (2018a), and Chirico et al. (2018b) have shown that an immersive experience of awe-inducing stimuli were associated with a self-reported awe measured with a questionnaire, however these studies used less interactive environment than in our study, and did not perform an extensive qualitative analyses of how a participant's experience in VR unfolded, what some key components of it were, and how they relate to aspects of the virtual environments. Our study is most similar to Gallagher et al. (2015) and Quesnel and Riecke (2018), who also used a VR experience of a spaceflight/orbiting the Earth and collected qualitative interview data. They reported participants' experiences of awe in those VEs across 34 consensus categories defined by Gallagher et al. (2015) hermeneutic analysis, and compared participants' reports of the virtual experience to real-life accounts from astronauts, with some similarities identified. However, the environments used in both of these studies were aiming to provide a realistic representation of the view of the Earth from outer space, and did not have a strong narrative component unlike “AWE.” Conversely, with “AWE” we were not aiming to provide a direct, realistic representation of the astronauts' actual experience, but rather wanted to integrate specific design features (artistic strategies and narratives) to create a target emotional journey in a research prototype. Our installation has elicited less observable goosebumps than Google Earth used in Quesnel and Riecke (2018), which could be due to a lower-fidelity quality of the Earth model and usability issues in “AWE.” Another reason might be that in Quesnel and Riecke (2018) participants had a choice of their destination in Google Earth and would often travel to their hometown, which was eliciting nostalgia, which could have contributed to awe. Another explanations might include limitations in the wearable goosebump recording instrument, which changed in prototype design from Quesnel and Riecke (2018) to the present study; see section 4.4 below. However, it should be noted that hermeneutic analyses of interviews have produced comparable distributions of reports related to awe categories between current and Quesnel and Riecke (2018) studies, meaning that while goosebump recording may have failed to detect physical indications of awe, the qualitative analysis has shown some reliability. The observed differences in distribution of awe categories can be explained through specifics of the design of the experience, as discussed above.

      Even though our “AWE” installation in its current state did not elicit profound transformative experience in participants, it showed promising results supporting the premise that VR installations can elicit authentic emotional experiences and induce minor cognitive shifts in some participants. This study has also revealed some important aspects of an experience participants have when experiencing this type of immersive installation: specifically the safety and fear of the environment, familiarity and novelty, affects and bodily sensations were prominent themes in participants' descriptions.

      4.3. Key Outcomes

      The elicited fear and the relief from it were an especially interesting part of the experience of many participants. Astronauts also describe a similar transition including the association of the release from fear with the feeling of weightlessness and silence experiences when floating in space (Stepanova et al., 2019). This suggests an intriguing opportunity that a narrative in VR affords: where we could replicate some part of an emotional journey associated with a spaceflight with a use of a different but more familiar and visceral metaphor. If we have had recreated in VR an actual spaceflight experience, that probably wouldn't have achieved the same intensity of an emotional response as a jump into the lake did. This could also be indicated by an observation that most participants found the lake or the forest to be the environments they felt most emotionally connected to. However, when designing a VR experience seeking a profound emotional reaction, we should be cautious with inducing fear to avoid prompting a traumatic experience (Madary and Metzinger, 2016). It's important to learn from the variety of the experiences that participants had and to design the virtual journey in a way that facilitates the relief after the minimal fear induction.

      To the best of our knowledge the role of psychological relief on inducing the feeling/illusion of physical weightlessness hasn't been discussed in the context of VR experience design. However some VR experiences were able to induce the feeling of floating or weightlessness. For instance, a meditation walk through a virtual forest for chronic pain management was able to elicit the sensation of weightlessness at least in one participant of Tong et al. (2016). Their study doesn't report on what might have triggered that sensation, but possibly it was a similar mechanism of relief/release, but in their case from some of the chronic pain. Jain et al. (2016) discussed that some of the divers participating in their virtual scuba-diving simulation felt weightless. However, it's hard to determine what have triggered it: it might have been that the familiarity of the environment brought back participants' memories of past diving experiences, or that the physical set-up of the simulation that was involving a swiveling torso support and harnesses for the limbs was responsible for the sensation, as participants were more or less suspended in the air. These type of set-ups dedicated to specific floating experiences are arguably a little cumbersome and expensive, as they often include large physical structure, moving platforms or strapping participants into harnesses, for instance: flying interface such as Birdly (Rheiner, 2014), skydiving (Eidenberger and Mossel, 2015) or swimming (Fels et al., 2005). Even though these interfaces often provide very compelling experiences, some simpler and cost effective solutions are desirable. Learning from the reports of our participant's describing the moments when they suddenly felt weightless could provide new strategies for developing VR experiences inducing the feeling of floating and weightlessness without the complicated physical set-ups.

      The number of fear responses observed in the interviews stressed the high importance of understanding the personal background of participants, and that each individual's experience would be very different. Experience with video-games tend to help with objective performance measures in VR simulations, e.g., in a surgical simulation (Grantcharov et al., 2003). In our observations, gaming experience has not only influenced how quickly participants were able to learn the interface and efficiently navigate through environment, but it also significantly shaped what expectations participants brought in. We propose (and explore in our ongoing studies) for affective VR installations to design a pre-VR environment to help create appropriate expectations of the VR experience being an experiential piece as opposed to a game that is presenting a challenge that a gamer often seeks when entering a 3D environment.

      Also, the individual experiences with forest and water environments were key for how the virtual experience unveiled. Some of participants had diving, cliff-jumping and camping experiences, while others also reported getting lost in a dark forest in childhood or being afraid of jumping from heights. All of them formed a connection between their personal experiences and being in the VE, which greatly effected their experience. Given everyone's different backgrounds at the design stage it was difficult to predict the distribution of the reactions of participants. Similarly, Shin (2018) in his study showed that personal traits and predispositions of immersants may have a larger effect on individual's experience of an empathy-provoking VR (specifically level of embodiment and empathy elicited), than the specifics of the VR environment and interface. In Quesnel and Riecke (2018) that used Google Earth VR we also observed that the innate experiences of each participant were completely different, and that their personal background and life experience factored into their experience of positive emotions in the study. However, the trend (that can be generalized across participants) is that they experienced more awe in VR when they had a personal connection to the virtual location. Even though some generalizable trends can be identified, the substantial role of the personal background presents a challenge for designing profound VR experiences as well as to the interpretation of results of studies with them, especially quantitative results. Both designers and researchers need to develop strategies for addressing this challenge. Including interviews and demographic surveys, as well as pilot tests with varied demographics should be an integral part of the development of affective immersive installations in order to be able to understand participant's experiences, and what was the contribution of the installation to the affective state achieved by the participant. Studies of complex experiences and emotions that only collect quantitative data face a risk of not having the tools to disambiguate the responses they observe that stem from different participants' backgrounds and mis-attribute it to the components of the virtual system. This also raises the issue of whether ‘one size fits all approach’ could be suitable for immersive affective installations. It will be interesting to explore if procedural content generation in combination with bio-responsive environments can help create a more customized journey for each participant building on their personal background and reactions to the elements of the environment.

      4.4. Limitations

      There were likely some biases resulted from being a participant in the study. Even though participants were provided with limited information about the purpose of the study, the description given within the consent form could have shaped their expectations. Another bias stemmed from participants being purposefully recruited as experts in interactive exhibits and culture spaces, and consequently they were inclined to provide a lot of feedback on the quality of the installation. This feedback is exceptionally useful, however the focus on providing a critic might have distracted some participants from being in a more experiential state. This is also likely the reason why usability was the most frequent topic in the interviews, whereas usability concerns were not as prominent in previous tests of the prototype with a different demographic. Having to wear the goosebump camera sensors also might have presented a bias in participant's expectations. Only one participant had explicitly discussed how she was expecting something to jump out at her to give her goosebumps, but other participants possibly have also formed some expectations.

      4.4.1. Usability Issues and Navigation Interface

      One of the main limitations of this study in terms of assessing the potential of VR installation to induce an experience similar to an Overview Effect, is the usability issues with the “AWE.” Even though most of the participants generally liked the installation, there are several technical aspects that need to be improved. Many participants wanted to have more control of their movement, especially in the underwater and space part of the experience and be able to move faster. Contrary, a few participants were experiencing motion sickness from movement through the forest scene, where they had the most freedom and the fastest movement. Also, some participants wanted to have full freedom to explore the virtual environment on their own and not to be guided in any obvious way through the narrative. Some also pointed that qualities of some virtual models can be improved and larger variety of models can be added to populate the virtual environment, especially in the underwater scene. The choice of soundtrack also was questioned by some participants, while appreciated by others. These, and many other usability related concerns were limiting the ability of the “AWE” installation to provide environment for a profound awe-inspiring experience leading to cognitive shifts.

      Additionally, the leaning interface used in this study, even though useful for navigation and spatial orientation as supported by previous research (Nguyen-Vo, 2018), was found awkward by some participants and likely was not supporting the sensation of floating. Alternative interfaces, designed for flying (Rheiner, 2014; Eidenberger and Mossel, 2015) could have supported the feeling of floating, which might be useful for providing environment in which an experience of an Overview Effect can occur. In our current iteration of “AWE” we are integrating the Limbic Chair interface (Patrik Kunzler, 2019) to hopefully support the feeling of floating. However, all of these interfaces are fairly complex and expensive, and thus a more affordable solution of supporting the feeling of floating in VR would be desirable.

      4.4.2. Lack of Goosebumps

      A low number of occurrences of goosebumps in our study is likely associated with a number of usability issues in the prototype, which would be improved for future studies, including the resolution of the HMD, the quality of models and soundscape. However, it is also possible that some goosebumps or shivers did not register on our camera. There are limitations to our second prototype goosebump recording device used. In this case, the goosebump recording device touches nearby skin that is being recorded, and our concern is that goosebumps that would have otherwise appeared are thus suppressed by the recording device itself. The first prototype used in Quesnel and Riecke (2018) was bulkier, but instead touched the underside of the forearm, leaving the top of the forearm (the recorded surface) out of contact. This may have allowed for that study's 43% goosebump elicitation rate in line with previous studies also between 40 and 43% (Benedek and Kaernbach, 2011; Sumpf et al., 2015; Wassiliwizky et al., 2017). Our most recent goosebump instrument prototype now records the back of the participant's neck.

      Interestingly in this study, the participant that had the moment of shivers, had a slightly negative connection between Self and Nature. Even though this is only one instance and no strong inferences can be drawn, this could be an indication that participants with a lower connection of Self and Nature could be more likely to have a stronger emotional reaction from observing awe-inspiring view of the Earth as they would have a stronger need for accommodation than participants who already feel a strong connection to nature and the experience easily assimilates into their worldview (Lorini and Castelfranchi, 2007; Gaggioli, 2016). However, the relationship between the strength of awe and the need for accommodation was not supported in the study by Schurtz et al. (2012), where the measure of the need for accommodation did not predict the measure of awe. However, their study was investigating awe in the social context, not nature, and their measure of the need of accommodation wasn't validated, and as such, the results do not eliminate the possibility of the relationship between the degree of the need of accommodation and the intensity of awe.

      4.4.3. Gender Effects

      Noteworthy, some gender differences were apparent in the descriptions of evoked emotions in the experience, that were less readily discussed by male participants than female, which is aligned with the research on gender differences in use of affective language (Goldshmidt and Weller, 2000). Micro-phenomenological interviews might be useful for guiding male participants to bring their attention to the affective dimension and assist them with verbalizing their feelings.

      4.5. Comparing the Interview Methods

      The two interview techniques—cued-recall debrief and micro-phenomenology—were successful in helping participants provide a detailed account of their experience, with more thorough and deep description than a semi-structured interview or a survey could have achieved. This is evident from comparing the richness and precision of the descriptions collected in this study with our earlier pilot tests, that used semi-structured interviewers. Unsurprisingly, the cued-recall method was a little better at encouraging the feedback about the system/installation and the micro-phenomenology the feedback about the progression and dimensions of individual experience. However, both methods have limitations: the micro-phenomenological interviews are zooming in only on a few moments, and thus don't address experience as a whole and provide little light on the portions of the experience that were not chosen, while cued-recall debrief doesn't provide as much depth in descriptions and is less rigorously structured, meaning that there might be more bias introduced by interviewer. We can also observe some trends in what type of responses are more likely to be provided within a given interview: for instance, from Figure 7 we can see that body change responses are more likely to be reported in a micro-phenomenological interview, while intellectual appreciation in a cued-recall interview. This is anticipated given the interview structure.

      5. Conclusions and Future Work

      This study indicated that a virtual experience, inspired by the Overview Effect and designed to elicit awe, despite some usability concerns, was able to invite minor transformative experiences in some participants, including the main aspects of it: the appreciation of beauty and vastness (Keltner and Haidt, 2003), realization of interconnectedness (Yaden et al., 2016) and a potential intent to change one's behavior based on that realization (White, 2014; Stepanova et al., 2018). We have also discovered some unique opportunities VR technology affords for a design of a profound experience: the opportunity to create a journey taking the participant through induction of a minimal fear in a safe environment and a following release from it; and the opportunity to explore the mind-body connection and the effects of shifting the strength and the locus of control within it.

      The qualitative data of participants' experiences in this study inspires some research hypotheses that can be tested with experimental studies. A few of the hypotheses generated as a result of this study are:

      Designing for a transition between environments eliciting feelings of safety and fear can induce shifts in those states and these shifts, can be associated with bodily sensations and perceived separation of mind and body.

      Familiarity and Novelty of the virtual environment are important parameters that effect the affective experience of the virtual world. Designing familiar environments would elicit experiences of safety, comfort and trust, while novel environments will elicit curiosity and excitement.

      Creating or providing familiar objects or characters in VR, helps immersants cope with uncomfortable experiences.

      A familiar visceral experience simulated in VR, such as a jump into water will induce stronger emotional reaction than more dangerous, but unfamiliar experience such as a simulation of flying in a rocket.

      Seeing rotating Earth and day and night happening on Earth at the same time from first person perspective gives a novel perspective and understanding of the world.

      Giving the reliance of this line of research on deep emotional responses and importance of individual background, we see two important directions for future development of this project: first, extensive demographics information and interviews are required when using quantitative methods of assessment in order to be able to explain results in the context of a personal experience; second, more flexible, bio-responsive and personalizable experience, that can adapt to the immersant's state is desirable and will be able to create a smoother journey to the desired emotional response.

      In the future work we are planning to integrate more physiological sensors (Quesnel et al., 2018a) and automatizing the goosebump detection (Uchida et al., 2018), combined with interviews of the events identified from the physiological data. This will allow us to develop deeper understanding of progression of one's experience in an immersive affective installations, and identify what elements of the journey might be triggering the specific responses in the participants.

      VR experiences, inspired by natural phenomena, provide us with an exciting opportunity to study an individual's experience in detail and establish the relation between the experience and the environment. However, we argue that a profound experiences mediated through technology should be seen as its own category of phenomena that requires more exploration. To build this body of knowledge more studies need to explore how profound affective VR personal experiences unfold. This knowledge would inform future design of positive transformative VR experiences that would make such desirable experiences more accessible to the public.

      Ethics Statement

      The ethics approval was granted by Simon Fraser University Office of Research Ethics (Study#: 2017s0269). Consent form was signed digitally by each participant upon arrival to the study space.

      Author Contributions

      ES, DQ, and BR contributed conception of the project and design of the virtual experience and the study. ES coordinated the study. ES and DQ lead the data collection process. ES transcribed most of the interviews with the help of other members of the research group. ES and DQ developed the coding scheme and analyzed the interview data. ES was responsible for the thematic analyses, while DQ for the awe consensus categories analyses. ES implemented and analyzed IAT test. DQ designed goosebump camera instrument. DQ and ES coded the goosecamera recordings. ES wrote the majority of the manuscript. DQ contributed several sections, specifically related to hermeneutics analyses and goosebump camera. All authors revised and contributed to manuscript. BR supervised the whole project. This work appears in ES's thesis (Stepanova, 2018).

      Conflict of Interest Statement

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      We are thanking the Centre for Digital Media, Patrick Pennefather and the Drifting Pugs team for their tremendous help with the development of the virtual experience as well as the NGX Interactive for their valuable support and providing the space for the study. We are also thanking the members of the iSpace Lab (Ivan Aguilar and Alexandra Kitson) and Elgin-Skye Mclaren for their assistance with running the study and Mirjana Prpa for conducting the micro-phenomenological interviews.

      References Bai Y. Maruskin L. A. Chen S. Gordon A. M. Stellar J. E. McNeil G. D. . (2017). Awe, the diminished self, and collective engagement: universals and cultural variations in the small self. J. Pers. Soc. Psychol. 113:185. 10.1037/pspa000008728481617 Benedek M. Kaernbach C. (2011). Physiological correlates and emotional specificity of human piloerection. Biol. Psychol. 86, 320329. 10.1016/j.biopsycho.2010.12.01221276827 Bentley T. Johnston L. von Baggo K. (2005). Evaluation using cued-recall debrief to elicit information about a user's affective experiences, in Proceedings of the 17th Australia Conference on Computer-Human Interaction: Citizens Online: Considerations for Today and the Future (Canberra: Computer-Human Interaction Special Interest Group (CHISIG) of Australia), 110. Bonasio A. (2018). Making the World a Better Place With Virtual Reality. Available online at: http://techtrends.tech/tech-trends/making-the-world-a-better-place-with-virtual-reality/ (accessed June 11, 2018). Chirico A. Cipresso P. Yaden D. B. Biassoni F. Riva G. Gaggioli A. (2017). Effectiveness of immersive videos in inducing awe: an experimental study. Sci. Rep. 7:1218. 10.1038/s41598-017-01242-028450730 Chirico A. Ferrise F. Cordella L. Gaggioli A. (2018a). Designing awe in virtual reality: an experimental study. Front. Psychol. 8:2351. 10.3389/fpsyg.2017.0235129403409 Chirico A. Glaveanu V. P. Cipresso P. Riva G. Gaggioli A. (2018b). Awe enhances creative thinking: an experimental study. Creat. Res. J. 30, 123131. 10.1080/10400419.2018.1446491 Chirico A. Yaden D. B. (2018). Awe: a self-transcendent and sometimes transformative emotion, in The Function of Emotions, ed Lench H. C. (Cham: Springer), 221233. Chirico A. Yaden D. B. Riva G. Gaggioli A. (2016). The potential of virtual reality for the investigation of awe. Front. Psychol. 7:1766. 10.3389/fpsyg.2016.0176627881970 Creswell J. W. (1998). Qualitative Research and Research Design: Choosing Among Five Traditions. London; Thousand Oaks, CA: Sage Publications. Eidenberger H. Mossel A. (2015). Indoor skydiving in immersive virtual reality with embedded storytelling, in Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology (Beijing: ACM), 912. Ermi L. Mäyrä F. (2005). Fundamental components of the gameplay experience: analysing immersion. Worlds Play Int. Perspect. Digit. Games Res. 37, 3753. Fels S. Kinoshita Y. Chen T. P. G. Takama Y. Yohanan S. Gadd A. . (2005). Swimming across the pacific: a vr swimming interface. IEEE Comput. Graph. Appl. 25, 2431. 10.1109/MCG.2005.2015691168 Fox J. Bailenson J. Binney J. (2009). Virtual experiences, physical behaviors: the effect of presence on imitation of an eating avatar. Presence 18, 294303. 10.1162/pres.18.4.294 Gaggioli A. (2015). Transformative experience design, in Human Computer Confluence: Transforming Human Experience Through Symbiotic Technologies, eds Gaggioli A. Ferscha A. Riva G. Dunne S. Viaud-Delmon I. (Warsaw: De Gruyter Open), 97121. Gallagher S. Janz B. Reinerman L. Trempler J. Bockelman P. (2015). A Neurophenomenology of Awe and Wonder: Towards a Non-reductionist Cognitive Science. London: Springer. Garan R. (2015). The Orbital Perspective: Lessons in Seeing the Big Picture From a Journey of 71 Million Miles. Oakland, CA: Berrett-Koehler Publishers. Goldshmidt O. T. Weller L. (2000). Talking emotions: gender differences in a variety of conversational contexts. Symb. Interact. 23, 117134. 10.1525/si.2000.23.2.117 Grantcharov T. Bardram L. Funch-Jensen P. Rosenberg J. (2003). Impact of hand dominance, gender, and experience with computer games on performance in virtual reality laparoscopy. Surg. Endosc. Other Intervent. Techniq. 17, 10821085. 10.1007/s00464-002-9176-012728373 Henry B. Moffitt T. E. Caspi A. Langley J. Silva P. A. (1994). On the “remembrance of things past”: a longitudinal evaluation of the retrospective method. Psychol. Assessm. 6:92. 10.1037/1040-3590.6.2.92 Ihle E. C. Ritsher J. B. Kanas N. (2006). Positive psychological outcomes of spaceflight: an empirical study. Aviat. Space Environ. Med. 77, 93101. 16491575 Jain D. Sra M. Guo J. Marques R. Wu R. Chiu J. . (2016). Immersive terrestrial scuba diving using virtual reality, in Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (San Jose, CA: ACM), 15631569. Keltner D. Haidt J. (2003). Approaching awe, a moral, spiritual, and aesthetic emotion. Cogn. Emot. 17, 297314. 10.1080/0269993030229729715721 Kitson A. Prpa M. Riecke B. E. (2018a). Immersive interactive technologies for positive change: a scoping review and design considerations. Front. Psychol. 9:1354. 10.3389/fpsyg.2018.0135430123161 Kitson A. Schiphorst T. Riecke B. E. (2018b). Are you dreaming?: a phenomenological study on understanding lucid dreams as a tool for introspection in virtual reality, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal, QC: ACM), 343. Krause N. Hayward R. D. (2015). Assessing whether practical wisdom and awe of god are associated with life satisfaction. Psychol. Religion Spiritual. 7:51. 10.1037/a0037694 Levin J. Steele L. (2005). The transcendent experience: conceptual, theoretical, and epidemiologic perspectives. Explore 1, 89101. 10.1016/j.explore.2004.12.00216781509 Lorini E. Castelfranchi C. (2007). The cognitive structure of surprise: looking for basic principles. Topoi 26, 133149. 10.1007/s11245-006-9000-x Madary M. Metzinger T. K. (2016). Real virtuality: a code of ethical conduct. Recommendations for good scientific practice and the consumers of vr-technology. Front. Robot. AI 3:3. 10.3389/frobt.2016.00003 McDonald M. G. Wearing S. Ponting J. (2009). The nature of peak experience in wilderness. Human. Psychol. 37:370. 10.1080/08873260701828912 Nguyen-Vo T. (2018). Efficiently navigating virtual environments with simulated reference frames and body-based sensory information. Master's thesis, Simon Fraser University, Surrey, BC, Canada. Palys T. (2008). Purposive sampling, in The Sage Encyclopedia of Qualitative Research Methods, Vol. 2, ed Given L. M. (London: Sage), 697698. Patrik Kunzler (2019). Limbic chair. Available online at: https://www.limbic-life.com/. 2793341 Peck T. C. Seinfeld S. Aglioti S. M. Slater M. (2013). Putting yourself in the skin of a black avatar reduces implicit racial bias. Conscious. Cogn. 22, 779787. 10.1016/j.concog.2013.04.01623727712 Petitmengin C. (2009). The validity of first-person descriptions as authenticity and coherence. J. Conscious. Stud. 16, 252284. Piff P. K. Dietze P. Feinberg M. Stancato D. M. Keltner D. (2015). Awe, the small self, and prosocial behavior. J. Pers. Soc. Psychol. 108:883. 10.1037/pspi000001825984788 Prade C. Saroglou V. (2016). Awe's effects on generosity and helping. J. Posit. Psychol. 11, 522530. 10.1080/17439760.2015.1127992 Quesnel D. DiPaola S. Riecke B. E. (2018a). Deep learning for classification of peak emotions within virtual reality systems, in International SERIES on Information Systems and Management in Creative eMedia (CreMedia), 611. Quesnel D. Riecke B. E. (2017). Awestruck: natural interaction with virtual reality on eliciting awe, in 3D User Interfaces (3DUI), 2017 IEEE Symposium on (Los Angeles, CA: IEEE), 205206. Quesnel D. Riecke B. E. (2018). Are you awed yet? Exploring interactive virtual reality for positive emotions. Front. Psychol. 8, 122. 10.3389/fpsyg.2018.02158 Quesnel D. Stepanova E. R. Aguilar I. Pennefather P. Riecke B. E. (2018b). Creating AWE: artistic and scientific practices in research-based design for exploring a profound immersive installation, in In 2018 Game, Entertainment and Media Conference(GEM) (Galway: IEEE). Rheiner M. (2014). Birdly an attempt to fly, in ACM SIGGRAPH 2014 Emerging Technologies (Vancouver, BC: ACM), 3. Riva G. Baños R. M. Botella C. Mantovani F. Gaggioli A. (2016). Transforming experience: the potential of augmented reality and virtual reality for enhancing personal and clinical change. Front. Psychiatry 7:164. 10.3389/fpsyt.2016.0016427746747 Rosenberg R. S. Baughman S. L. Bailenson J. N. (2013). Virtual superheroes: using superpowers in virtual reality to encourage prosocial behavior. PLoS ONE 8:e55003. 10.1371/journal.pone.005500323383029 Schlitz M. M. Vieten C. Miller E. M. (2010). Worldview transformation and the development of social consciousness. J. Consciousn. Stud. 17, 1836. Schultz P. W. Shriver C. Tabanico J. J. Khazian A. M. (2004). Implicit connections with nature. J. Environ. Psychol. 24, 3142. 10.1016/S0272-4944(03)00022-7 Schultz P. W. Tabanico J. (2007). Self, identity, and the natural environment: exploring implicit connections with nature 1. J. Appl. Soc. Psychol. 37, 12191247. 10.1111/j.1559-1816.2007.00210.x Schurtz D. R. Blincoe S. Smith R. H. Powell C. A. Combs D. J. Kim S. H. (2012). Exploring the social aspects of goose bumps and their role in awe and envy. Motivat. Emot. 36, 205217. 10.1007/s11031-011-9243-8 Shin D. (2018). Empathy and embodied experience in virtual environment: to what extent can virtual reality stimulate empathy and embodied experience? Comput. Hum. Behav. 78, 6473. 10.1016/j.chb.2017.09.012 Shiota M. N. Neufeld S. L. Yeung W. H. Moser S. E. Perea E. F. (2011). Feeling good: autonomic nervous system responding in five positive emotions. Emotion 11:1368. 10.1037/a002427822142210 Smith J. A. Osborn M. (2004). Interpretative phenomenological analysis. Doing Soc. Psychol. Res. 229254. 10.1002/9780470776278.ch10 Stellar J. E. Gordon A. Anderson C. L. Piff P. K. McNeil G. D. Keltner D. (2018). Awe and humility. J. Pers. Soc. Psychol. 114:258. 10.1037/pspi000010928857578 Stellar J. E. Gordon A. M. Piff P. K. Cordaro D. Anderson C. L. Bai Y. . (2017). Self-transcendent emotions and their social functions: compassion, gratitude, and awe bind us to others through prosociality. Emot. Rev. 9, 200207. 10.1177/1754073916684557 Stellar J. E. John-Henderson N. Anderson C. L. Gordon A. M. McNeil G. D. Keltner D. (2015). Positive affect and markers of inflammation: discrete positive emotions predict lower levels of inflammatory cytokines. Emotion 15:129. 10.1037/emo000003325603133 Stepanova E. R. (2018). Virtual reality as a medium for designing and understanding transformative experiences: The case of the overview effect. Master's thesis, Simon Fraser University, Surrey, BC, Canada. Stepanova E. R. Quesnel D. Riecke B. E. (2018). Transformative experiences become more accessible through virtual reality, in Virtual and Augmented Reality for Good (VAR4GOOD), 2018 IEEE VR International Workshop on (Reutlingen: IEEE). Stepanova E. R. Quesnel D. Riecke B. E. (2019). Space – a virtual frontier: how to design and evaluate a virtual experience of the overview effect promoting the feeling of connectedness. Front. Digit. Humanit. 6:7. 10.3389/fdigh.2019.00007 Suedfeld P. Brcic J. Johnson P. J. Gushin V. (2012). Personal growth following long-duration spaceflight. Acta Astronaut. 79, 118123. 10.1016/j.actaastro.2012.04.039 Sumpf M. Jentschke S. Koelsch S. (2015). Effects of aesthetic chills on a cardiac signature of emotionality. PLoS ONE 10:e0130117. 10.1371/journal.pone.013011726083383 Tong X. Gromala D. Gupta D. Squire P. (2016). Usability comparisons of head-mounted vs. stereoscopic desktop displays in a virtual reality environment with pain patients. Stud. Health Technol. Informat. 220:424. 27046617 Tsaur S.-H. Yen C.-H. Hsiao S.-L. (2013). Transcendent experience, flow and happiness for mountain climbers. Int. J. Tour. Res. 15, 360374. 10.1002/jtr.1881 Uchida M. Akaho R. Ogawa-Ochiai K. Tsumura N. (2018). Image-based measurement of changes to skin texture using piloerection for emotion estimation. Artif. Life Robot. 24, 17. 10.1117/12.2284297 Wassiliwizky E. Jacobsen T. Heinrich J. Schneiderbauer M. Menninghaus W. (2017). Tears falling on goosebumps: co-occurrence of emotional lacrimation and emotional piloerection indicates a psychophysiological climax in emotional arousal. Front. Psychol. 8:41. 10.3389/fpsyg.2017.0004128223946 White F. (2014). The Overview Effect. Reston, VA: American Institute of Aeronautics and Astronautics. Williams K. Harvey D. (2001). Transcendent experience in forest environments. J. Environ. Psychol. 21, 249260. 10.1006/jevp.2001.0204 Wittenbrink B. Schwarz N. (2007). Implicit Measures of Attitudes. New York, NY: Guilford Press. Yaden D. B. Haidt J. Hood R. W. Jr. Vago D. R. Newberg A. B. (2017). The varieties of self-transcendent experience. Rev. Gen. Psychol. 21:143. 10.1037/gpr0000102 Yaden D. B. Iwry J. Slack K. J. Eichstaedt J. C. Zhao Y. Vaillant G. E. . (2016). The overview effect: awe and self-transcendent experience in space flight. Psychol. Conscious. Theory Res. Pract. 3:1. 10.1037/cns0000086 Yang Y. Yang Z. Bao T. Liu Y. Passmore H.-A. (2016). Elicited awe decreases aggression. J. Pacif. Rim Psychol. 10, 113. 10.1017/prp.2016.8

      Funding. The funding for this project was provided through NSERC R619563 and 31-611547 and Small Institutional SSHRC Grant R632273, Simon Fraser University (SFU), and Centre for Digital Media (CDM).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.lucoqn.com.cn
      hpqibeng.com.cn
      www.hzgfdz.com.cn
      www.idhifa.com.cn
      oxifxy.com.cn
      nncq.com.cn
      www.scchain.com.cn
      www.sdjt518.com.cn
      www.osuz.com.cn
      rlxeyt.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p