Front. Conserv. Sci. Frontiers in Conservation Science Front. Conserv. Sci. 2673-611X Frontiers Media S.A. 10.3389/fcosc.2023.1250996 Conservation Science Brief Research Report Capturing environmental DNA in snow tracks of polar bear, Eurasian lynx and snow leopard towards individual identification Hellström Micaela 1 * Kruger Elisabeth 2 Näslund Johan 3 Bisther Mia 4 Edlund Anna 5 Hernvall Patrick 1 Birgersson Viktor 1 Augusto Rafael 1 Lancaster Melanie L. 6 * 1 MIX Research Sweden AB, Uppsala, Sweden 2 WWF-US Arctic Program, World Wildlife Fund, Inc. (WWF), Anchorage, AK, United States 3 Circular Economy Department, Swedish Environmental Protection Agency, Stockholm, Sweden 4 Department of Game and Wildlife, Västra Götalands County Administrative Board, Vänersborg, Sweden 5 Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA, United States 6 WWF Arctic Programme, Worldwide Fund for Nature, Solna, Sweden

Edited by: Arne Ludwig, Leibniz Institute for Zoo and Wildlife Research (LG), Germany

Reviewed by: Nicholas W. Pilfold, San Diego Zoo Institute for Conservation Research, United States; Laura Iacolina, University of Primorska, Slovenia

*Correspondence: Melanie L. Lancaster, melanie.lancaster@wwf.se; Micaela Hellström, micaela@mixresearch.se

†Present address: Anna Edlund, OATH, Inc., Mill Valley, CA, United States

04 12 2023 2023 4 1250996 30 06 2023 11 10 2023 Copyright © 2023 Hellström, Kruger, Näslund, Bisther, Edlund, Hernvall, Birgersson, Augusto and Lancaster 2023 Hellström, Kruger, Näslund, Bisther, Edlund, Hernvall, Birgersson, Augusto and Lancaster

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Polar bears (Ursus maritimus), Eurasian lynx (Lynx lynx) and snow leopards (Panthera uncia) are elusive large carnivores inhabiting snow-covered and remote areas. Their effective conservation and management are challenged by inadequate population information, necessitating development of novel data collection methods. Environmental DNA (eDNA) from snow tracks (footprints in snow) has identified species based on mitochondrial DNA, yet its utility for individual-based analyses remains unsolved due to challenges accessing the nuclear genome. We present a protocol for capturing nuclear eDNA from polar bear, Eurasian lynx and snow leopard snow tracks and verify it through genotyping at a selection of microsatellite markers. We successfully retrieved nuclear eDNA from 87.5% (21/24) of wild polar bear snow tracks, 59.1% (26/44) of wild Eurasian lynx snow tracks, and the single snow leopard sampled. We genotyped over half of all wild polar bear samples (54.2%, 13/24) at five loci, and 11% (9/44) of wild lynx samples and the snow leopard at three loci. Genotyping success from Eurasian lynx snow tracks increased to 24% when tracks were collected by trained rather than untrained personnel. Thirteen wild polar bear samples comprised 11 unique genotypes and two identical genotypes; likely representing 12 individual bears, one of which was sampled twice. Snow tracks show promise for use alongside other non-invasive and conventional methods as a reliable source of nuclear DNA for genetic mark-recapture of elusive and threatened mammals. The detailed protocol we present has utility for broadening end user groups and engaging Indigenous and local communities in species monitoring.

nuclear eDNA snow snow track individual polar bear (Ursus maritimus) Eurasian lynx (Lynx lynx) snow leopard (Panthera uncia) sampling protocol section-in-acceptance Conservation Genetics and Genomics

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Effective conservation and management of many large carnivores is seriously challenged by inadequate knowledge of their ecology and behaviour, the size and connectivity of populations, and their adaptive capacity (Doran-Myers et al., 2021). While genetic tools can help address these questions, difficulty accessing necessary material from target individuals remains. Polar bears (Ursus maritimus), Eurasian lynx (Lynx lynx) and snow leopards (Panthera uncia) share common ecological attributes including expansive home ranges, low population densities, and solitary behaviour (Amstrup et al., 2003; Barea-Azcón et al., 2007; Alexander et al., 2016; von Arx, 2020). They come into conflict with people in many places, either directly, or through loss of property or predation of pets or livestock (Inskip and Zimmermann, 2009; Clark et al., 2012). Subject to management regimes that necessitate regular monitoring, they are good candidates for exploring the utility of environmental DNA (eDNA) as a tool to help inform these.

      Conventional techniques for collecting genetic material from living large carnivores such as polar bears, snow leopards and Eurasian lynx can be labour intensive, costly, potentially hazardous for personnel, and stress-inducing for animals (Adams et al., 2019). Techniques may include capture, handling, and close physical proximity (e.g., Vongraven et al., 2012). The advancement of molecular techniques has enabled genetic information to be obtained from lower quality and quantity source material. This includes eDNA, defined here as the genetic traces that living organisms leave behind in the environment (Taberlet et al., 2012). eDNA can be captured and analysed from cells shed in urine, faeces, sweat, breath, skin and other sources using similar field and molecular methods to those in forensic science (Taberlet et al., 2012; Pedersen et al., 2015; Bruce et al., 2021). eDNA has been successfully extracted and amplified from water (Ficetola et al., 2008; Kelly et al., 2014; Thomsen, 2015), soil (Guerrieri et al., 2021) and air (Bohmann and Lynggaard., 2023; Garrett et al., 2023). It is becoming a routine biological survey tool for detecting and quantifying species and describing community assemblages because of the advantages it offers to traditional sampling (Beng and Corlett, 2020; Bruce et al., 2021).

      eDNA is still in its infancy as a tool for obtaining population genetic information, which often requires analysis at the individual level (Adams et al., 2019). However, non-invasive population genetic analyses using eDNA are increasing used in conservation and ecology (Broquet et al., 2007), e.g., water samples in studies of whale sharks (Sigsgaard et al., 2017; Dugal et al., 2022), hair samples in studies of Eurasian lynx, wolverines and snow leopards (Ulizio et al., 2006; Janečka et al., 2008; Davoli et al., 2013), and scats for population genetics of brown bears and wolverines (Bellemain et al., 2005; Ulizio et al., 2006). While fecal DNA is a common source of eDNA for non-invasive population genetics (Broquet et al., 2007), collection from wild populations of large carnivores such as polar bears, lynx and snow leopards can potentially interfere with territorial behaviours (Brzeziński and Romanowski, 2006; Lefort et al., 2015).

      Even if individual material can be sourced, it may not be from a medium that preserves the DNA at a high enough quality to yield genetic information (Harrison et al., 2019). For individual identification, yield is especially important because of the relative scarcity of the material needed: mammalian cells each contain only two copies of nuclear DNA compared with thousands of copies of mitochondrial DNA (mtDNA). Working with degraded and/or trace amounts of DNA presents its own set of challenges for genetic analysis, which is a well-known issue for ancient and modern eDNA (Pedersen et al., 2015). However, if efficient, simple and cost-effective collection methods can be developed that overcome these issues, eDNA as a population genetic tool offers promise for research and monitoring of species, including large carnivores. The benefits of such a tool could reduce field sampling costs, enable sample collection by non-experts, and achieve more comprehensive representation of wild populations.

      The nivean habitats in which the three species live offer a promising alternative: sloughed skin cells in their snow tracks (footprints left in snow). The benefits of snow tracks are that they are attributable to individual animals, especially by hunters and trackers, and they occur at cold temperatures, which are likely to slow down eDNA degradation rate (Hellström et al., 2019). While snow as a medium has been used to identify forest-dwelling mammals to species level using eDNA (Dalén et al., 2007; Franklin et al., 2019; Kinoshita et al., 2019; Barber-Meyer et al., 2020), no studies to date have reported successful use of eDNA from snow for individual-level analyses.

      The objectives of this study were to 1) determine success of nuclear eDNA retrieval from polar bear, Eurasian lynx and snow leopard snow tracks towards individual identification, verified by genotyping at a selection of multilocus markers commonly used for this purpose, and 2) provide a detailed collection protocol for capturing nuclear eDNA from the snow tracks of these species.

      Methods Sample collection

      We collected snow from polar bears and Eurasian lynx snow tracks in the wild and in captivity, and from a snow leopard in captivity. For all three species we retrieved reference material (hair, saliva, nasal mucus) as positive controls to refine methods and verify the accuracy of snow tracks for microsatellite genotyping. Hair samples were stored in dry envelopes at room temperature (RT), and saliva samples were dried and stored at RT. The field protocol for collecting eDNA from polar bear and snow leopard snow tracks was adapted from previous trials with Eurasian lynx and European otter (Lutra lutra) in Sweden in 2017 and 2018. It includes detailed field sampling, filtering, and fixation protocols ( Supplementary Material S1 ). Information recorded during sample collection included date, number of snow tracks (individual paw impressions), air temperature, geographical coordinates of sampling locations, collection vessels, type of filters, and volume of melted snow filtered ( Table S1 ). All samples were fixed in ethanol 200 proof Molecular Biology Grade (Thermo Fisher Scientific Inc., Waltham, MA, USA).

      Wild polar bear snow tracks were collected in the vicinity of Utqiaġvik, Alaska, United States of America ( Figure 1 ) in January 2019 and May 2022. Field crews included staff from the North Slope Borough Department of Wildlife Management, Utqiaġvik, Alaska and individuals from the Inupiat community, who had extensive knowledge of the area, environment and working in extreme conditions. Snow tracks were detected visually from snow mobiles and collected when discovered. Tracks clearly created by more than one individual were not collected. Sampling of fresh snow tracks and corresponding hair samples as positive controls from captive polar bears took place in 2018 from Orsa predator park, Sweden and Rauna Zoo, Finland.

      Collection sites of (A) wild polar bear (U. maritimus) snow tracks in the vicinity of Utgiaqvik, USA and (B) wild Eurasian lynx (L. lynx) snow tracks in Sweden.

      Wild Eurasian lynx snow tracks were collected from several locations across central and southern Sweden in December 2018, January 2019, and January and February 2021, with the assistance of local hunters, and wildlife trackers and staff from five Swedish County Administrative boards ( Figure 1 ). Eurasian lynx regularly move in family groups of females with kittens, and multiple individuals walk in the same footprints (Doran‐Myers et al., 2021). Trackers are skilled at detecting the point at which individuals deviate from shared footprints and form individual tracks. Care was taken to collect tracks most likely to be from single individuals. Fresh snow tracks, together with hair and saliva as positive controls were collected from captive Eurasian lynx at Rauna Zoo, Finland, and Nordens Ark, Sweden. Samples collected from wild lynx were divided into those taken by trained personnel (n = 25) and those taken by untrained personnel and volunteers (n = 19) to assess potential differences in success between the groups. Trained personnel constitute individuals who were provided written protocols and completed a one-hour theoretical training, observed sample collection conducted by experts, and then collected samples under the supervision of trainers. Untrained personnel and volunteers had access to written protocols but did not receive hands-on training prior to collecting samples.

      Snow tracks from one snow leopard were collected from Nordens Ark, Sweden in 2021 using fresh snow brought in from a nearby forest. Nasal mucus was collected from the same individual as a positive control.

      eDNA extraction

      After snow was melted and filtered, eDNA was extracted from the filters in facilities purpose-built for aquatic eDNA analysis (Bruce et al., 2021), following the ethanol extraction protocol outlined in Spens et al. (2017). Additional steps to the protocol included overnight pooling of the lysate from the pellet in ethanol with the lysate from the filter capsules. DNA was extracted from hair, saliva, and nasal mucus using the Qiagen Blood and Tissue kit following the manufacturer’s instructions. The protocol was modified by adding 70 μl TE buffer pH 8 (Promega, Germany) instead of the AE buffer, heated to 70°C. Samples were stored at -20°C until further processing.

      The extracted DNA showed signs of inhibition, so all samples were concentrated and cleaned using the Genomic DNA Clean & Concentrator Kit (Zymo Research, Carlsbad, CA) following the manufacturer’s instructions and using TE buffer pH 8 (Promega, Germany) heated to 70°C. LoBind tubes (Eppendorf, Sweden) were used to avoid DNA absorption into the plastic. We measured total DNA concentrations using the dsDNA Qubit high-sensitivity assay (Thermo Fisher Scientific, Carlsbad, CA) following the manufacturer’s protocol.

      Microsatellite analysis

      The aim of microsatellite analysis from nuclear DNA was to determine whether eDNA collected from snow is a suitable source for future population analyses, and we used a subset of microsatellites to investigate this. For full population analyses, six replicates of each marker and sample would be required to quantify genotyping errors such as allelic dropout and false alleles.

      We analysed a total of 30 polar bear samples (24 wild-collected and four captive-collected snow track samples, two positive controls). We pre-screened a subset of samples (n = 5) at 10 polymorphic microsatellite loci that were purpose-designed to maximize genotyping success from degraded DNA (Brandt et al., 2014). PCR products were visualized on a 2% agarose gel. We selected five microsatellites that showed clean bands within the expected allelic size range for genotyping: Uma 14, Uma 40, Uma 42, Uma 73 and Uma 95 (Brandt et al., 2014). Forty-eight Eurasian lynx samples (44 wild-collected and two captive-collected snow track samples, two positive controls) and two snow leopard samples (one captive-collected snow track sample, one positive control) were genotyped at feline microsatellites FCA001, FCA026 and F115 (Menotti-Raymond et al., 1999). All PCRs were run in single-plex format to maximise performance and minimise errors.

      PCR amplification conditions following published protocols for polar bears (Brandt et al., 2014) and felid protocols for Eurasian lynx and snow leopards (Menotti-Raymond et al., 1999) resulted in very poor amplification success. Therefore, we adjusted the protocols to include a 2-step touch-down PCR. Each primer set was run in separate tubes and was not pooled during PCR. For all samples, PCRs were performed in 10 μl reaction volumes: 2 × multiplex PCR master mix (Qiagen Multiplex kit), 0.3 μM F and R primer and 2 μl template DNA. Annealing temperatures were initially set at 57°C and decreased (touched-down) by 0.5°C per cycle until 50°C, as follows: 95°C 5 min, 14 (95°C 20 s, 57 – 50°C 30 s, 72°C 20 s), 25 (95°C 20 s, 50°C 30 s, 72°C 20 s), 72°C 5 min. PCR products were then used as template DNA for the second PCR, with amplification conditions of 95°C 5 min, 25 (95°C 20 s, 51°C 30 s, 72°C 20 s) 72°C 5 min.

      Final PCR products were visualized on a 2% agarose gel to confirm amplification success and sent to Macrogen Europe for fragment analysis using GeneScan™ GS350 size standard (Applied Biosystems). Three different people visualized and scored the data using the software Peak Scanner 1.0 (Applied Biosystems). Allele boundaries were set at 0.5 bp on either side of allele peaks for dinucleotide repeat loci and 1.0 bp for tetra- and penta- nucleotide repeat loci. Negative controls were included for every tenth sample.

      Where full (5-locus) genotypes were obtained for polar bear snow track samples, we used the Matches function for multilocus data in GENALEX v. 6.5 (Smouse and Peakall, 2012) to automatically detect repeated genotypes within the dataset and determine the number of unique and duplicate genotypes.

      Results Nuclear eDNA capture from snow tracks and microsatellite genotyping success

      Total DNA concentrations from snow track samples were low, especially from wild polar bear and Eurasian lynx tracks (polar bear: 0.02 - 7.06 ng/µl, mean 0.92, median 0.37, Eurasian lynx: 0.01 - 32.00 ng/µl, mean 3.83, median 1.18, snow leopard:1.2 ng/µl). We successfully captured nuclear eDNA, verified by microsatellite genotyping, from 87.5% (21/24) of wild polar bear snow track samples, 59.1% (26/44) of wild Eurasian lynx snow track samples, and the single snow leopard sampled ( Table 1 ; Figure S1 ).

      Success of microsatellite amplification in wild and captive polar bears, U. maritimus, Eurasian lynx, L. lynx and captive snow leopards, P. uncia, from nuclear eDNA isolated from their snow tracks.

      Species Sample source (W, wild, C, captivity) No. samples analysed Cumulative no. and proportion (%) samples successfully amplified and genotyped across microsatellites No. and proportion (%) samples no amplification
      1 locus 2 loci 3 loci 4 loci 5 loci
      Polar bear W 24 21 (87.5) 21 (87.5) 19 (79.2) 16 (66.7) 13 (54.2) 3 (12.5)
      Polar bear C 4 4 (100) 4 (100) 4 (100) 3 (75) 3 (75) 0 (0)
      Eurasian lynx W^ 25 19 (76) 14 (56) 6 (24) 0 (0) 0 (0) 6 (24)
      Eurasian lynx W* 19 7 (36.8) 4 (21.1) 3 (15.8) 0 (0) 0 (0) 12 (63.2)
      Eurasian lynx C 2 2 (100) 2 (100) 2 (100) 0 (0) 0 (0) 0 (0)
      Snow leopard C 1 1 (100) 1 (100) 1 (100) 0 (0) 0 (0) 0 (0)

      ^collected by scientists; *collected by trainees.

      Genotyping performance varied among species. Over half of all wild polar bear snow track samples were genotyped across all five microsatellites screened (54.2%, 13/24, Table 1 ), compared with one fifth of wild Eurasian lynx samples genotyped across all three microsatellites screened (20.5%, 9/44, Table 1 ). Snow track samples from captive lynx, the captive snow leopard and three out of four captive polar bears were genotyped at all loci screened ( Table 1 ). All negative controls were negative.

      Genotyping success from Eurasian lynx snow tracks was affected by the training level of personnel collecting snow tracks. We retrieved nuclear eDNA from three-quarters (76%, 19/25) of all lynx snow tracks collected by trained personnel, and genotyped around a quarter (24%, 6/25) of samples at three microsatellites. This was significantly higher than for samples collected by untrained personnel and volunteers, where we retrieved nuclear eDNA from 36.8% (7/19) of tracks and genotyped 15.7% (3/19) at three microsatellites (X 2 = 6.85, d.f. = 1, p = 0.01, Table 1 ).

      Three wild polar bear and 18 Eurasian lynx snow track samples did not amplify scorable genotypes at any loci. Three wild polar bear snow track samples amplified three alleles at multiple loci, suggesting more than one individual in the sample.

      Of the 13 wild polar bear snow track samples scored at all five loci, 11 had unique genotypes. The remaining two samples were identical at all five loci and were collected on consecutive days. Based on this, the 13 snow track samples are likely attributable to 12 polar bears, with one of those bears sampled on two occasions.

      Deviations from expected microsatellite allele signatures

      For two of the five polar bear microsatellite loci screened, allele sizes were inconsistent with their nucleotide repeat type. Uma 14 (hexanucleotide, (AAATG)8) and Uma 95 (tetranucleotide, (ATCC)9) displayed a two base-pair (bp) shift in allele size that was sustained for all subsequent larger alleles.

      In Eurasian lynx, locus F115 contained two different allele length ranges, with the majority of alleles between 122-142 bp, alleles at 163 and 169 bp and one allele at 229 bp, expressed as a homozygote in three individuals. This locus has been omitted from previous studies of African lions (Panthera leo) and sequencing of alleles revealed size homoplasy in one (Miller et al., 2014).

      Evidence of nuclear eDNA integrity

      Genotypes from hair, nasal mucus and saliva (positive controls) were identical to those from their corresponding snow tracks across all microsatellite loci and species for the paired samples we collected. In these, we did not observe amplification errors that may be indicative of allelic dropout or false alleles across 19 genotypes, of which 10 were heterozygous and nine were homozygous.

      Discussion

      Using the detailed collection protocol presented, we have successfully and reliably retrieved nuclear eDNA from snow tracks of three carnivore species and generated multilocus microsatellite genotypes at a selection of markers commonly used for individual identification. Nuclear eDNA retrieval was high from wild polar bear snow tracks (87.5%) and wild lynx snow tracks (76% from samples collected by trained personnel and 59% overall). We genotyped over half of all polar bear snow track samples at five microsatellites, which were sufficiently polymorphic to enable differentiation of genotypes. Eleven unique genotypes and two matching genotypes from thirteen sets of snow tracks likely represented 12 polar bears, one of which was sampled on different days. Around a quarter of all wild lynx snow tracks were successfully genotyped at all three loci screened, as was the single snow leopard: a promising step towards the use of snow tracks for individual identification of these species.

      To our knowledge, this is the first time nuclear eDNA retrieval from snow tracks in Eurasian lynx, polar bears and a snow leopard has been reported. Sample sizes for lynx and polar bears were able to provide estimates of genotyping success from snow tracks, which we can relate to other non-invasive and traditional sampling methods for the species. In polar bears, tissue sampling with remote biopsy darting reported genotyping success of 79% (Pagano et al., 2014), compared with 43% success from scats (within Jensen et al., 2020), and 54% success from snow tracks, reported here. Microsatellite genotyping success of Eurasian lynx tissue samples in France was 88% (Huvier et al., 2023), while hair samples resulted in amplification (to PCR product) in 67% of samples, and 12-locus genotypes in 48% of samples (Davoli et al., 2013). We amplified 59% of lynx snow tracks to PCR product at one locus and genotyped 11 – 24% of lynx snow tracks at three loci. Finally, in Mongolia, up to 54% of putative snow leopard scats collected in the field were misidentified as red fox. Microsatellite genotypes at seven loci were obtained for 71 – 73% of those identified correctly, resulting in 33% success from scats (Janečka et al., 2008). While genotyping success from materials collected by non-invasive sampling is generally lower than that of tissue sampling, the abundance and relative ease with which hair and tracks can be encountered make them useful to augment sample sizes for population genetic analyses.

      Viability of snow tracks for individual-level population genetic analyses

      Post-sampling challenges of eDNA for population genetic analyses include amplification errors associated with degraded DNA, such as allelic dropout and false alleles (Taberlet and Luikart, 1999; Adams et al., 2019). If not identified and/or overcome, these errors can jeopardize the accuracy of population genetic analyses and subsequent findings related to e.g., parentage and mating systems, species hybridization, and population connectivity (Piggott and Taylor, 2003). Access to captive polar bears, Eurasian lynx and a snow leopard enabled us to preliminarily assess nuclear eDNA integrity from snow tracks by comparing genetic results with corresponding source material, including hair with follicles, saliva and nasal mucus. For all samples across all loci amplified, we retrieved identical genotypes from the snow tracks and their respective positive controls, both for homozygous and heterozygous genotypes: an encouraging result. However, because of the low quantity of DNA we retrieved from snow tracks in the wild, and our small number of positive controls, the risk of amplification error remains and should be accounted for in population genetic analyses that use snow tracks as a source of nuclear eDNA. Following best practices for molecular analyses derived from the fields of forensics, ancient DNA research and non-invasive genetic sampling will help to safeguard against and recognize errors (Piggott and Taylor, 2003; Broquet et al., 2007; Pedersen et al., 2015). Additional screening of known mother-offspring pairs and positive controls could further inform the reliability of snow tracks for microsatellite analyses. Finally, genome-wide protocols for snow samples could help to overcome downstream error specific to microsatellites (Coates et al., 2009).

      Potential benefits of the method for the research field

      Carnivore monitoring and conservation requires suitable and efficient sampling protocols (Barea-Azcón et al., 2007). Our study shows that snow tracks have good potential as a reliable source of nuclear DNA compared to other non-invasive sources and could complement conventional sources. The method offers several benefits. Firstly, the non-invasive nature of collecting snow tracks greatly reduces direct disturbance to animals and offers a culturally considerate method of studying populations. Disturbance of polar bears associated with research activities has been cause for concern by some Arctic Indigenous communities, and polar bear snow tracks have already been explored as a non-invasive way to assess individual characteristics (sex and size of bears) through visual assessment by Inuit hunters (Wong et al., 2011; Wong et al., 2017). Secondly, the availability of snow tracks of many species year-round in the Arctic and seasonally elsewhere makes them a promising additional source of nuclear eDNA for population monitoring, especially in regions where few animals but many footprints are observed, e.g., snow leopards in Gansu province, China, and polar bears in Russia-USA (Alexander et al., 2016; Conn et al., 2021). Finally, in our experience, the collection protocol presented, and the materials required to collect snow tracks, should be non-technical enough to be carried out by non-scientists once trained. This study demonstrated the need for investment into appropriate field training of non-professionals, as genotyping success increased substantially when samples were collected by trained personnel, rather than by untrained personnel and volunteers following written protocols alone. Furthermore, individuals who underwent theoretical and technical sample collection training contributed to the improvement of the written protocols through their interactions with trainers over the course of the training. Trainers amended the written protocols based on questions posed by the trainees during the training. Thus, the combination of detailed protocols and interactive field training with experts could broaden the range of end user groups to include hunters, trackers and Indigenous and local community members or volunteers. Snow tracks could be collected by such groups during existing programs, such as annual management inventories of large snow-dwelling mammals and community-based monitoring networks in Arctic sub-regions.

      Potential conservation applications of the method

      Obtaining estimates of abundance and trends for populations is deemed essential for monitoring responses to climate change (e.g., Vongraven et al., 2012), direct use, and other management measures. Especially if a variety of end user groups could collect snow tracks, genetic mark-recapture databases could be augmented by such sampling, thus achieving more complete representations of populations in time and space. Currently, 10 of the 19 polar bear subpopulations lack the data necessary to determine short-term trends in population status, and only three subpopulations have sufficient data to determine long-term trends (PBSG, 2021). Sampling from snow tracks could also further knowledge of ecological connectivity, which has been identified as a population attribute to understand, maintain and restore, both for snow leopard conservation globally and for Eurasian lynx conservation in Italy and Austria (Li et al., 2020; von Arx, 2020). Finally, as all three species are threatened by conflict with people (human-wildlife conflict, Inskip and Zimmermann, 2009; Clark et al., 2012), sampling of “problem animals” from their snow tracks could help identify and characterize individuals to inform correct management responses.

      Next steps

      Total DNA yield from snow tracks was sufficient to capture nuclear eDNA and successfully amplify a selection of microsatellites. Further experimental field work could include determining the minimum number and maximum age of snow tracks required to obtain high quality nuclear eDNA (Hellström et al., 2019; Barber-Meyer et al., 2020), understanding how environmental variables affect DNA from tracks (e.g., high winds, air temperatures, snow types, ultraviolet light exposure) with the aim of producing optimized collection guidelines, and testing the method in wild populations of snow leopards. PCR protocols were adjusted with a two-step PCR to increase success rates in this study, but more optimization of PCR protocols could further improve success. Screening samples at larger panels of microsatellite loci currently used in population genetic analyses of these species would also be informative to precisely compare success rates of snow tracks with other sources of DNA, generate robust genotyping error rates, and assess relative cost-effectiveness of snow tracks with other genetic sampling methods. Finally, familiarizing the method with researchers, managers at local, national and international scales, and people living alongside polar bears, Eurasian lynx and snow leopards, is necessary to mainstream it as an additional tool for conservation and management of these and other snow-living species.

      Data availability statement

      The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

      Ethics statement

      Ethical approval was not required for the study involving animals in accordance with the local legislation and institutional requirements because eDNA from snow tracks required no approvals. Sample collection from captive animals was performed by staff of the captive institutions as part of their institutionally approved animal procedures.

      Author contributions

      EK, MH, and ML: concept for polar bears, wild polar bear sample collections, writing of manuscript. MB, and MH: concept for lynx. MH: concept for snow leopard. JN, MB, MH, PH, and VB: sample collections and field protocol adjustments, Sweden. MB: coordination of collection by hunters and trackers, Sweden. MH, PH, and VB: designing final field protocol. MH, AE and RA: molecular methods and laboratory methods design and changes. MH, RA and AE: Laboratory work. MH, ML, AE, PH, VB and RA: data analysis. VB and PH: Map design. All authors: sampling design and testing of snow track collection protocols, contribution to earlier versions or sections of manuscript, approval of final manuscript. All authors contributed to the article and approved the submitted version.

      Funding

      The authors declare that this study received funding from WWF Global Arctic Programme and World Wildlife Fund, Inc. (polar bears), Swedish Environmental Protection Agency (lynx; grant 331-18-016 and 331-19-005) and by MIX Research Sweden AB (snow leopard).

      Acknowledgments

      We are grateful to Billy Adams and Bobby Sarren for guidance in the field and assistance with sample collection in the vicinity of Utqiaġvik, Alaska. We thank Alaska Nannut Co-Management Council board members and polar bear subsistence hunters of Utqiaġvik for generously sharing Indigenous Knowledge of polar bears. We thank Andrew Von Duyke from the North Slope Borough in Utqiaġvik for organizing accommodation, research permits and field logistics in Alaska and assisting in sample collections. We appreciate Eben Hopson for field support in Utqiaġvik. Nicklas Wijkmark and Pähr Hellström collected samples in Alaska, Finland, and Sweden. Cecilia Edbom Blomstrand and Liselott Rasmussen collected snow samples in Sweden. Hunters and trackers at Västra Götaland-, Blekinge-, Halland-, Jönköping-, Östra Götaland- and Uppsala County Administrative Boards assisted with field collections of Lynx. Staff at Rauna Zoo in Finland, Orsa Predator Park and Mats Niklasson at Nordens Ark in Sweden assisted in snow collection and provided positive control samples in the parks. Gert Polet and Norwegian Polar Institute biologists Jon Aars and Magnus Andersson assisted with snow track collection in early iterations of the project. Cuong Tang at NatureMetrics Ltd, UK for fruitful discussions and performing initial laboratory trials. Jessica Sjöstedt MoRe Research, Sweden, Sabrina Neyrink INBO Belgium extracted DNA and Hannah Phillips assisted with extractions at J Craig Venter Institute USA. Samples in Alaska were collected under USFWS permit #MA80164B-0. Polar bear samples collected in 2019 were sent to Sweden to be processed under permit CITES 19US33153D/9. Polar bear samples collected in 2022 were processed at J Craig Venter Institute in La Jolla, San Diego USA.

      Conflict of interest

      Authors MH, PH, VB and RA were employed by the company MIX Research Sweden AB.

      The remaining authors declare that the research was conducted in the absence of any commercial or financial relationship that could be constricted as a potential conflict of interest.

      MIX Research Sweden AB funded the laboratory work for the snow leopard data. The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.

      Publisher’s note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      Supplementary material

      The Supplementary Material for this article can be found online at: /articles/10.3389/fcosc.2023.1250996/full#supplementary-material

      References Adams C. I. Knapp M. Gemmell N. J. Jeunen G. J. Bunce M. Lamare M. D. . (2019). Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool? Genes 10 (3), 192. doi: 10.3390/genes10030192 Alexander J. S. Gopalaswamy A. M. Shi K. Hughes J. Riordan P. (2016). Patterns of snow leopard site use in an increasingly human-dominated landscape. PloS One 11 (5), e0155309. doi: 10.1371/journal.pone.0155309 Amstrup S. C. Feldhamer G. A. Thompson B. C. Chapman J. A. (2003). “Polar bear, Ursus maritimus,” in Wild Mammals of North America: biology, management, and conservation (Baltimore: John Hopkins University Press), 587610. Barber-Meyer S. M. Dysthe J. C. Pilgrim K. L. (2020). Testing environmental DNA from wolf snow tracks for species, sex, and individual identification. Can. Wildlife Biol. Manage. 9 (1), 1220. Barea-Azcón J. M. Virgós E. Ballesteros-Duperon E. Moleón M. Chirosa M. (2007). Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Vertebrate Conserv. biodiversity 16, 12131230. doi: 10.1007/s10531-006-9114-x Bellemain E. V. A. Swenson J. E. Tallmon D. Brunberg S. Taberlet P. (2005). Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv. Biol. 19 (1), 150161. doi: 10.1111/j.1523-1739.2005.00549.x Beng K. C. Corlett R. T. (2020). Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity Conserv. 29, 20892121. doi: 10.1007/s10531-020-01980-0 Bohmann K. Lynggaard C. (2023). Transforming terrestrial biodiversity surveys using airborne eDNA. Trends Ecol Evol. 38 (2), 119121. doi: 10.1016/j.tree.2022.11.006 Brandt J. R. Van Coeverden de Groot P. J. Zhao K. Dyck M. G. Boag P. T. Roca A. L. (2014). Development of nineteen polymorphic microsatellite loci in the threatened polar bear (Ursus maritimus) using next generation sequencing. Conserv. Genet. Resour. 6, 5961. doi: 10.1007/s12686-013-0003-9 Broquet T. Ménard N. Petit E. (2007). Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conserv. Genet. 8, 249260. doi: 10.1007/s10592-006-9146-5 Bruce K. Blackman R. C. Bourlat S. J. Hellström M. Bakker J. Bista I. . (2021). A practical guide to DNA-based methods for biodiversity assessment. (Sofia, Bulgaria: Pensoft Advanced Books), 90. doi: 10.3897/ab.e68634 Brzeziński M. Romanowski J. (2006). Experiments on sprainting activity of otters (Lutra lutra) in the bieszczady mountains, southeastern Poland/Observations des épreintes de la loutre (Lutra lutra) sur les montagnes du bieszczady au sud-est de la pologne. Mammalia 70 (1-2), 5863. doi: 10.1515/MAMM.2006.019 Clark D. A. van BEEST F. M. Brook R. K. (2012). Polar bear-human conflicts: state of knowledge and research needs. Can. Wildlife Biol. Manage. 1 (1), 2129. Coates B. S. Sumerford D. V. Miller N. J. Kim K. S. Sappington T. W. Siegfried B. D. . (2009). Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J. Heredity 100 (5), 556564. doi: 10.1093/jhered/esp028 Conn P. B. Chernook V. I. Moreland E. E. Trukhanova I. S. Regehr E. V. Vasiliev A. N. . (2021). Aerial survey estimates of polar bears and their tracks in the Chukchi Sea. PloS One 16 (5), e0251130. doi: 10.1371/journal.pone.0251130 Dalén L. Götherström A. Meijer T. Shapiro B. (2007). Recovery of DNA from footprints in the snow. Can. Field-Naturalist 121 (3), 321324. doi: 10.22621/cfn.v121i3.482 Davoli F. Schmidt K. Kowalczyk R. Randi E. (2013). Hair snaring and molecular genetic identification for reconstructing the spatial structure of Eurasian lynx populations. Mamm. Biol. 78, 118126. doi: 10.1016/j.mambio.2012.06.003 Doran-Myers D. Kenney A. J. Krebs C. J. Lamb C. T. Menzies A. K. Murray D. . (2021). Density estimates for Canada lynx vary among estimation methods. Ecosphere 12 (10), e03774. doi: 10.1002/ecs2.3774 Dugal L. Thomas L. Jensen M. R. Sigsgaard E. E. Simpson T. Jarman S. . (2022). Individual haplotyping of whale sharks from seawater environmental DNA. Mol. Ecol. Resour. 22 (1), 5665. doi: 10.1111/1755-0998.13451 Ficetola G. F. Miaud C. Pompanon F. Taberlet P. (2008). Species detection using environmental DNA from water samples. Biol. Lett. 4 (4), 423425. doi: 10.1098/rsbl.2008.0118 Franklin T. W. McKelvey K. S. Golding J. D. Mason D. H. Dysthe J. C. Pilgrim K. L. . (2019). Using environmental DNA methods to improve winter surveys for rare carnivores: DNA from snow and improved noninvasive techniques. Biol. Conserv. 229, 5058. doi: 10.1016/j.biocon.2018.11.006 Garrett N. R. Watkins J. Simmons N. B. Fenton B. Maeda-Obregon A. Sanchez D. E. . (2023). Airborne eDNA documents a diverse and ecologically complex tropical bat and other mammal community. Environ. DNA. 5 (2), 350362. doi: 10.1002/edn3.385 Guerrieri A. Bonin A. Münkemüller T. Gielly L. Thuiller W. Francesco Ficetola G. (2021). Effects of soil preservation for biodiversity monitoring using environmental DNA. Mol. Ecol. 30 (13), 33133325. doi: 10.1111/mec.15674 Harrison J. B. Sunday J. M. Rogers S. M. (2019). Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc. R. Soc. B 286 (1915), 20191409. doi: 10.1098/rspb.2019.1409 Hellström M. Wijkmark N. Edbom-Blomstrand C. Hellström P. Näslund J. (2019). Footsteps in the snow-Pilot study for future monitoring of individual lynx (Lynx lynx) from eDNA in snow tracks. AquaBiota Rep. 10. Huvier N. Moyne G. Kaerle C. Mouzon-Moyne L. (2023). Time is running out: Microsatellite data predict the imminent extinction of the boreal lynx (Lynx lynx) in France. Front. Conserv. Sci. 4, 1080561. doi: 10.3389/fcosc.2023.1080561 Inskip C. Zimmermann A. (2009). Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43 (1), 1834. doi: 10.1017/S003060530899030X Janečka J. E. Jackson R. Yuquang Z. Diqiang L. Munkhtsog B. Buckley-Beason V. . (2008). Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim. Conserv. 11 (5), 401411. doi: 10.1111/j.1469-1795.2008.00195.x Jensen E. L. Tschritter C. de Groot P. V. Hayward K. M. Branigan M. Dyck M. . (2020). Canadian polar bear population structure using genome-wide markers. Ecol. Evol. 10 (8), 37063714. doi: 10.1002/ece3.6159 Kelly R. P. Port J. A. Yamahara K. M. Crowder L. B. (2014). Using environmental DNA to census marine fishes in a large mesocosm. PloS One 9 (1), e86175. doi: 10.1371/journal.pone.0086175 Kinoshita G. Yonezawa S. Murakami S. Isagi Y. (2019). Environmental DNA collected from snow tracks is useful for identification of mammalian species. Zoological Sci. 36 (3), 198207. doi: 10.2108/zs180172 Lefort M. C. Boyer S. Barun A. Khoyi A. E. Ridden J. Smith V. R. . (2015). Blood, sweat and tears: non-invasive vs. non-disruptive DNA sampling for experimental biology. PeerJ PrePrints 3, e655v3. doi: 10.7287/peerj.preprints.655v3 Li J. Weckworth B. V. McCarthy T. M. Liang X. Liu Y. Xing R. . (2020). Defining priorities for global snow leopard conservation landscapes. Biol. Conserv. 241, 108387. doi: 10.1016/j.biocon.2019.108387 Menotti-Raymond M. David V. A. Lyons L. A. Schäffer A. A. Tomlin J. F. Hutton M. K. . (1999). A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57 (1), 923. doi: 10.1006/geno.1999.5743 Miller S. M. Harper C. K. Bloomer P. Hofmeyr J. Funston P. J. (2014). Evaluation of microsatellite markers for populations studies and forensic identification of African lions (Panthera leo). J. Heredity 105 (6), 856866. doi: 10.1093/jhered/esu054 Pagano A. M. Peacock E. McKinney M. A. (2014). Remote biopsy darting and marking of polar bears. Mar. Mammal Sci. 30 (1), 169183. doi: 10.1111/mms.12029 PBSG (2021). Status report on the world’s polar bear subpopulations (Gland, Switzerland: IUCN: IUCN/SSC Polar Bear Specialist Group), 152. Pedersen M. W. Overballe-Petersen S. Ermini L. Sarkissian C. D. Haile J. Hellstrom M. . (2015). Ancient and modern environmental DNA. Philos. Trans. R. Soc. B: Biol. Sci. 370 (1660), 20130383. doi: 10.1098/rstb.2013.0383 Piggott M. P. Taylor A. C. (2003). Remote collection of animal DNA and its applications in conservation management and understanding the population biology of rare and cryptic species. Wildlife Res. 30 (1), pp.1pp13. doi: 10.1071/WR02077 Sigsgaard E. E. Nielsen I. B. Bach S. S. Lorenzen E. D. Robinson D. P. Knudsen S. W. . (2017). Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat. Ecol. Evol. 1 (1), 0004. doi: 10.1038/s41559-016-0004 Smouse R. P. P. Peakall R. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28 (19), 25372539. Spens J. Evans A. R. Halfmaerten D. Knudsen S. W. Sengupta M. E. Mak S. S. . (2017). Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol. Evol. 8 (5), pp.635pp.645. doi: 10.1111/2041-210X.12683 Taberlet P. Luikart G. (1999). Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68 (1-2), pp.41pp.55. doi: 10.1111/j.1095-8312.1999.tb01157.x Taberlet P. Coissac E. Hajibabaei M. Rieseberg L. H. (2012). Environmental DNA. Mol. Ecol. 21 (8), 17891793. doi: 10.1111/j.1365-294X.2012.05542.x Thomsen P. F. Willerslev E. (2015). Environmental DNA–an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 418. doi: 10.1016/j.biocon.2014.11.019 Ulizio T. J. Squires J. R. Pletscher D. H. Schwartz M. K. Claar J. J. Ruggiero L. F. (2006). The efficacy of obtaining genetic-based identifications from putative wolverine snow tracks. Wildlife Soc. Bull. 34 (5), 13261332. doi: 10.2193/0091-7648(2006)34[1326:TEOOGI]2.0.CO;2 von Arx M. (2020). “Lynx lynx (Europe assessment) (amended version of 2018 assessment),” in The IUCN Red List of Threatened Species 2020, e.T12519A177350310. doi: 10.2305/IUCN.UK.2020-3.RLTS.T12519A177350310.en Vongraven D. Aars J. Amstrup S. Atkinson S. N. Belikov S. Born E. W. . (2012). A circumpolar monitoring framework for polar bears. Ursus 23 (sp2), pp.1pp66. doi: 10.2192/URSUS-D-11-00026.1 Wong P. B. Y. de Groot P. V. C. Fekken C. Smith H. Pagès M. Boag P. T. (2011). Interpretations of polar bear (Ursus maritimus) tracks by Inuit hunters: inter-rater reliability and inferences concerning accuracy. Can. Field-Naturalist 125 (2), 140153. doi: 10.22621/cfn.v125i2.1197 Wong P. B. Dyck M. G. Hunters A. Hunters I. Hunters M. Murphy R. W. (2017). Inuit perspectives of polar bear research: lessons for community-based collaborations. Polar Rec. 53 (3), 257270. doi: 10.1017/S0032247417000031
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016kaijiwh.com.cn
      gzzzyc.com.cn
      jksksd.com.cn
      fsduoxin.com.cn
      szfuyj.com.cn
      wcchain.com.cn
      www.rd5l3.net.cn
      v0kwfy.net.cn
      www.qfw810.org.cn
      www.mkiusi.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p