Front. Commun. Frontiers in Communication Front. Commun. 2297-900X Frontiers Media S.A. 10.3389/fcomm.2020.00011 Communication Review Toward Data Sense-Making in Digital Health Communication Research: Why Theory Matters in the Age of Big Data Lee Edmund W. J. 1 2 3 * Yee Andrew Z. H. 4 1Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States 2Medical Oncology, Dana–Farber Cancer Institute, Boston, MA, United States 3Wee Kim Wee School of Communication and Information, College of Humanities, Arts, and Social Sciences, Nanyang Technological University, Singapore, Singapore 4Humanities, Arts, and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore

Edited by: Sunny Jung Kim, Virginia Commonwealth University, United States

Reviewed by: Peter Johannes Schulz, University of Lugano, Switzerland; Victoria Team, Monash University, Australia

*Correspondence: Edmund W. J. Lee edmundlee@ntu.edu.sg

This article was submitted to Health Communication, a section of the journal Frontiers in Communication

†These authors have contributed equally to this work

27 02 2020 2020 5 11 15 10 2019 05 02 2020 Copyright © 2020 Lee and Yee. 2020 Lee and Yee

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The rapidly increasing volume of health data generated from digital technologies have ushered in an unprecedented opportunity for health research. Despite their promises, big data approaches in understanding human behavior often do not consider conceptual premises that provide meaning to social and behavioral data. In this paper, we update the definition of big data, and review different types and sources of health data that researchers need to grapple with. We highlight three problems in big data approaches—data deluge, data hubris, and data opacity—that are associated with the blind use of computational analysis. Finally, we lay out the importance of cultivating health data sense-making—the ability to integrate theory-led and data-driven approaches to process different types of health data and translating findings into tangible health outcomes—and illustrate how theorizing can matter in the age of big data.

big data artificial intelligence machine learning digital health social media wearables patient portals communication theory

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      The rapidly increasing volume of health data generated from digital health technologies such as social media, search engines, smartphones, and wearable gadgets (wearables), as well as electronic health records (EHRs) and web patient portals have ushered in an unprecedented opportunity for health communication researchers to tap on both “naturally occurring” and structured data (e.g., surveys) to improve health. To date, researchers have utilized digital data in various ways, such as predicting the onset of mental and physical illnesses (Torous et al., 2015; Merchant et al., 2019), understanding public sentiments toward health issues and patterns of information diffusion (Himelboim and Han, 2014; Sedrak et al., 2016), as well as anticipating and managing outbreak of infectious diseases (Charles-Smith et al., 2015; Huang et al., 2016). Despite the promises and sophistication, the allure of big data approaches in understanding human behavior often do not consider conceptual premises that provide meaning to social and behavioral data (Coveney et al., 2016).

      In this paper, we provide a critical review of the use of big data in health communication research1. Synthesizing concepts and research from a variety of disciplines, we contend that simply using big data in research is insufficient in furthering health communication as a discipline, or to elicit insights which can improve societal health outcomes. In order to fully leverage digital health data to improve health outcomes, it is essential for health communication and public health researchers to cultivate health data sense-making, which is the competence to integrate theory-led and data-driven approaches to process different forms of health data. Researchers who strive for this ideal would also translate findings from big data research into tangible health outcomes.

      Our objectives are 3-fold. First, we briefly define what health data sense-making is, and highlight the types of big data that health communication and public health scholars need to be acquainted with. Second, we introduce the trinitarian problems of health big data—(i) data deluge, (ii) data hubris, and (iii) data opacity—that are significant barriers to health researchers. Third, we explain why health data-sense making is an essential quality for health researchers who are working with—or who are intending to work with—big data.

      What is Health Data Sense-Making?

      Health data sense-making is an important quality that health communication researchers should possess when working with health big data, or computationally intensive projects. As described earlier, health data sense-making is the efficacy of health researchers to achieve a reasonable balance in straddling between the two worlds of a-priori theory building research and data-driven work. But what really constitutes engaging in health data sense-making? We postulate that health researchers must fulfill two key components. First, to be able to claim that one is engaging in health data sense-making, extending health communication theories and elucidating communication phenomenon must be at the heart of the research, and not just a peripheral afterthought. Second, there must be adoption of novel data collection or analytical methodologies in the theory-building work. For instance, while developing algorithms to effectively mine data from EHRs to detect and manage high-cost and high-risks patients is novel methodologically (e.g., Bates et al., 2014), it would not strictly constitute as health data sense-making based on our definition as health communication theory building was not the focal point of the research. Likewise, working on social media data alone would not automatically mean that the health researchers are engaged in health data sense-making. That is unless the researchers (e.g., Himelboim and Han, 2014; Kim et al., 2016) explicitly highlight how their use of computational approaches will significantly advance existing theories (e.g., social network structures, information diffusion) or our understanding of health communication behaviors.

      What is “Health Data” and “Big Data” in Digital Health Technologies?

      Health data according to the General Data Protection Regulation (GDPR) in the European Union, are defined as information that are related to either the physical or mental health of a person, or the provision of health services to an individual (GDPR Register, 2018). They could be obtained from a variety of sources such as EHRs, electronic patient portals, pharmacy records, wearables and smartphone apps, population health surveys, as well as social media. Despite the popularity of the term “big data” and the hype of what they could do to improve health, the definition is nebulous and elusive (Boyd and Crawford, 2012; Bansal et al., 2016). Yet, researchers have largely agreed that big data in health contexts possess five key characteristics—volume, velocity, variety, veracity, and value (Wang et al., 2018).

      Volume and Velocity

      At the fundamental level, one quality of big data is the sheer volume, often generated through digital and electronic mediums such as posts on social media, location tracking on smartphones, or even collective health records of patients in hospitals. However, beyond the size of data, they have the characteristics of being generated and analyzed at an exponential rate (i.e., velocity) as compared to traditional means of data collection such as national census or health surveys. For instance, Google processes approximately 40,000 search queries every second, which equates to 3.5 billion searches daily (Internet Live Stats, 2019).

      Variety: Dimensions of Big Data

      In terms of data structure, health big data consist of different varieties (see Figure 1) and could be user-generated, institutional-generated, or be a hybrid of being generated by both users and institutions (i.e., user-institutional generated). User-generated data are naturally occurring digital traces (Peng et al., 2019) from (a) social media (e.g., Ayers et al., 2016), (b) wearables and health apps (Casselman et al., 2017), (c) search engines and web browsing behaviors (Mavragani et al., 2018). Institutional-generated health big data comprise of (a) EHRs which stores all the medical history of an individual, (b) claims data from insurance companies, as well as (c) pharmacy prescriptions (Wallace et al., 2014). In terms of hybrid user-institutional generated big data, an example would be web patient portals, where patients could access their medical record, interact with their healthcare providers through direct messaging, and manage their medical health such as prescription refills, schedule appointments, or accessing education content (Wells et al., 2015; Antonio et al., 2019).

      Sources of digital health big data.

      Veracity and Value

      Veracity refers to the trustworthiness of the data. For instance, data on geolocations obtained through smartphone apps would be more accurate in giving information on people's mobility patterns compared to self-reports. The final dimension of big data is the value they bring to aid decision-making, especially in the context of improving health outcomes for different population subgroups (Asokan and Asokan, 2016; Zhang et al., 2017), or enabling radiologists to detect cancer tumors more effectively (Bi et al., 2019).

      Trinitarian Problems of Health Big Data

      The increasing complexity surrounding the types of big data that health communication and public health scholars work with poses significant challenges. Remaining blind, or unaware, of some of the vexing problems of health big data could lead to potential pitfalls in public health communication research design, analysis, and poor interpretation. This would dilute the promise of big data for informing health communication and public health practice. Among the many challenges, researchers should be cognizant of the trinitarian problems of health big data—(a) data deluge, (b) data hubris, and (c) data opacity (see Figure 2).

      Summary of problems in health big data.

      The Problem of Data Deluge

      Data deluge refers to the phenomenon where the sheer amount of health data being produced at such granularity and exponentiality would be overwhelming for health communication and public health researchers to store, manage, process, and analyze. To put scale of the problem in context, it was estimated that volume of data generated by the healthcare system in the U.S. amounted to about 500 petabytes (PB)—or 1,015 bytes—in 2012, equivalent to having 10 billion file cabinets (Pramanik et al., 2017). Conservatively, this figure is expected to increase to an astounding 25,000 PB by 2020. Besides data generated via healthcare systems, the problem of data deluge is in-part driven by revolutions in different digital health technologies, computing prowess to manage data at-scale efficiently, sophisticated data storage and management systems, and the widespread adoption of data-producing technologies by the general public (Viswanath et al., 2012).

      For instance, smartphone penetration in the U.S. alone rose from 35% in 2011 to 81% in 2019 (Pew Research Center, 2019a). In terms of social media use, the percentages of American adults who use social media rose from 5% in 2005 to 72% in 2019 (Pew Research Center, 2019b). Despite having numerous scandals surrounding data privacy violation and political manipulation such as the infamous Cambridge Analytica saga, Facebook's growth remains unparalleled, with 2.4 billion monthly active users as of June 2019 (Noyes, 2019).

      Artificial Intelligence as a Solution to the Data Deluge

      To cope with the huge amount of data, researchers have turned to artificial intelligence (AI) algorithms (Gupta et al., 2016; Wahl et al., 2018) to mine for insights. A key benefit of AI algorithms is their ability to computationally crunch large number of factors or variables in both interactive linear and non-linear ways to detect patterns in data (Kreatsoulas and Subramanian, 2018). While researchers have recognized that there are areas in the problem of data deluge could be effectively dealt with by AI (Maddox et al., 2019), such as identifying complex patterns in clinical settings in the area of cancer tumors detection (Bi et al., 2019), its efficacy is limited in other areas, especially in understanding motivations behind why people adhere to or reject certain health behaviors (e.g., vaccination). A blind and unassuming faith in health big data, or AI to make sense of it, would contribute to the problem of data hubris.

      The Problem of Data Hubris

      Data hubris refers to overstated claims that arise from big data analysis. It is a consequence of an implicit adherence to radical empiricism, the belief that inductive pattern recognition from big data can substitute and perhaps overtake the traditional hypothetico-deductive model of science (Kitchin, 2014; Lazer et al., 2014). Proponents of such an approach believe in supplanting theory-driven research with data-driven insights. Anderson (2008) exemplified such a position with the claim that “we can analyze the data without hypotheses about what it might show…throw the numbers into the biggest computing clusters the world has ever seen and let statistical algorithms find patterns where science cannot.” Specifically, data hubris is most problematic when scholars use big data incorrectly to make causal claims from an inherently inductive method of pattern recognition (Boyd and Crawford, 2012).

      Causal Inferences in Health Communication Theorizing

      The issue of overstating causal relationships from big data is particularly important for health communication researchers. Although health communication is a broad and multidisciplinary field, a central goal of health communication research is to understand how the process of communication influences health outcomes (Kreps, 2001; Beck et al., 2004; Schiavo, 2013). This means that an underlying and unifying goal of health communication research is in identifying causal communication-related mechanisms that have an effect on individual's health-related outcomes and behaviors. In other words, causal inferences are fundamental in health communication research.

      Undergirding various causal claims in health communication are theories that specify how and why health-related behaviors and health outcomes are enacted (e.g., Janz and Becker, 1984; Bandura, 2004; Ryan and Deci, 2007; Goldenberg and Arndt, 2008; Rimal, 2008; Fishbein and Ajzen, 2010). Solid theoretical grounding allows for robust predictions of health behaviors, leading to more confident empirically based recommendations for policymakers and healthcare practitioners to effect real change. While big data offer an opportunity to examine health communication phenomena on an unprecedented scale, using them without theoretical considerations to guide analyses can be highly problematic. This is particularly pertinent to health communication research, as one issue we face in our field is the lack of substantial theoretical development (Beck et al., 2004; Sandberg et al., 2017). Inductive approaches to big data analysis can exacerbate this.

      Spurious Correlations

      Specifically, purely data-driven big data analyses have the potential to generate large amounts of spurious findings. Spurious correlations refer to variables being associated with each other, either entirely from chance, or due to confounding factors. The enormous amount of data available in big data analyses mean that spurious correlations are more likely to be encountered (Calude and Longo, 2017). While not exactly digital traces, researchers who scanned a dead salmon in an fMRI machine while exposing it to photos of humans in a variety of social situations, found that 16 out of 8,064 brain regions in the dead salmon had a statistically significant response to the images (Bennett et al., 2009). The sheer amount of data in an fMRI scan meant that impossible findings can also be flagged out as significant. As big data datasets could be exponentially larger than an fMRI scan, spurious correlations are even more likely to be identified through various analyses. Instead of producing robust knowledge, data-driven approaches could potentially lead to a deluge of unimportant associations being flagged out. In other words, patterns derived from big data analysis are far from reliable, and causal claims arising from such findings can be nothing more than hubris. For example, the increase in Google search frequency of disease-related words during disease outbreaks is more likely due to extensive media coverage, rather than actual disease outbreak (Cervellin et al., 2017). After all, social media and search engines have the propensity to amplify risks (Strekalova, 2017; Strekalova and Krieger, 2017). Adopting the social amplification of risk framework (SARF), Strekalova and Krieger (2017) highlighted that health risks could be heightened via social media or online platforms through the mechanisms of (a) user engagement: where content of health risks are freely generated and diffused among social networks, (b) media richness (e.g., vivid descriptions or photographs depicting health risks), and (c) signal sharing: online communities adopting certain words, phrases, and pictures to create shared socially constructed meaning (e.g., posting selfies of people with mustache during November as part of the Movember campaign which raises awareness for prostate cancer) and experiences of health risks (Jacobson and Mascaro, 2016). In a study examining people's response to Centers for Disease Control and Prevention's (CDC) Facebook page, Strekalova (2017) found that even though the CDC had fewer posts of Ebola as compared to posts on health promotion posts, the former received more attention from Facebook users.

      Misconceptions About the Generalizability of Big Data

      A second problematic issue is the assumption that the enormous number of observations in big data analysis leads to generalizable findings. In contrast, big data have significant issues pertaining to sampling bias and representativeness. Specifically, existing big data studies in health research tend to utilize one platform, such as Twitter, Facebook, or EHRs (Hargittai, 2015). These different platforms have sample bias problems, with race, gender, and class being factors that determine their use (Tufekci, 2014; Hargittai, 2015). For example, only 40% of patients in the US have their information in EHRs, while gender, race, and income predict Facebook, LinkedIn, and Twitter use (Kaplan et al., 2014; Hargittai, 2015). This means that findings and conclusions drawn from single-platform big data studies are limited to the type of user that is characteristic to each platform. To add to this, supposedly random samples drawn from Twitter's Application Programming Interfaces (APIs) are sometimes skewed by the presence of sample cheaters, corporate spammers, and frequency bots (Pfeffer et al., 2018).

      Relatedly, self-selection bias is particularly prevalent in social media studies that utilize hashtags. By selecting only hashtagged tweets or posts to answer certain research questions, it excludes other related content. This self-selected sample of content might lead to systematic errors which can severely impact the validity of findings (Tufekci, 2014). In sentiment analysis, hashtagged content might reflect more polarizing opinions, as in the case of the #himtoo hashtag during Brett Kavanaugh's supreme court confirmation, or the #vaccinescauseautism and #vaccineskill hashtags among the antivax population. It is possible that users who utilize hashtags have a stronger opinion on certain issues, while content produced by users who are neutral are ignored by studies that draw their data from hashtags.

      The Problem of Data Opacity

      Data opacity refers to the “black-box” nature of data acquisition and analysis that health communication and public health researchers need to contend with. In terms of data acquisition and collection, public health communication researchers are often at the mercy of both large private or public corporations that have monopolistic claim on the data produced in their platforms, and work with a certain degree of ambiguity and trust with the data they are provided by these organizations, and play by their rules from the get-go. In other words, data owners such as social media companies, or even healthcare facilities such as hospitals, decide what data heath researchers would be able to access. For instance, researchers are only able to access one percent of tweets at Twitter's API for free or at most 10% of all tweets if they have funding (Pfeffer et al., 2018). Beyond the limitations on the number of tweets, the problem of opacity is exacerbated by claims that Twitter is politically biased and censors conservatives and right-wing ideologies (Kang and Frenkel, 2018). While not conclusive, this may pose a significant problem if researchers want to investigate what people are talking about when it comes to health issues that are closely related with political affiliations, such as abortion, gun control, tobacco use, and health care reforms.

      Corporate Gatekeeping of Data

      The problem of data opacity in data acquisition is not unique to social media platforms. Researchers utilizing mobile phones for health communication and public health also face the problem of data opacity. Like social media companies, researchers often do not have access to large-scale mobility data from smartphones, and would rely on data provided by telecommunication companies which often operate within strict regulations (Wesolowski et al., 2016). While researchers may be able to access large scale mobility data form telecommunication companies from open challenges such as Data for Refugees Turkey—an initiative by Turk Telekom (2018) to release large anonymized mobile datasets to researchers for utilizing big data solutions to improve living conditions for Syrian refugees—researchers ultimately would not have full details as to how the data was prepared, and if certain details were left out.

      Data opacity at the data collection level poses practical challenges for health researchers who rely on them for their research. Recently, Facebook partnered with Harvard University and the Social Science Research Council to forge an industry-academic partnership, and pledged to support academic scholars to use a subset of Facebook data to study the impact of social media on democracy (Social Science One, 2018). The collaboration would involve Facebook providing URLs to researchers who have been granted ethical approval from their respective Institutional Review Boards (IRB) for their research. Yet, due to Facebook being unable to provide what was promised in the original request for proposals in 2018 (King and Persily, 2019), researchers would need to work with reduced versions of the data until the full release. While this is not in the health context, it shows the extent of reliance that health researchers have on companies who play a gate-keeping role in health big data.

      Analytical Tools as Black Boxes

      In addition to data acquisition, data opacity occurs at the level of analysis as well. For instance, for health researchers analyzing social media data, one very common algorithm to deploy is topic modeling. Topic modeling is a text mining approach for identifying “themes” computationally in a large corpus of unstructured texts (Richardson et al., 2014). One of the most widely used algorithms for topic modeling is Latent Dirichlet Allocation (LDA), which is a popular technique used by researchers to examine what people are talking about online pertaining to health (Bian et al., 2017). In using LDA, researchers need to specify a priori how many latent topics there are. For deciding on the final number of topics there are in a given text, researchers typically turn to computational measures such as perplexity scores or the likes—a measure of goodness of fit, where lower scores meant that the number of topics fit the LDA model (Blei et al., 2003; Fung et al., 2017). The strict reliance on computational power ignores nuanced meaning in languages that may skew the results, or how certain geo-political environmental contexts may augment the nature of the topics.

      A second example of data opacity in the context of data analysis is in the use of geospatial analytics on location or physiological data obtained from smartphones or wearables. While some would argue that mobile sensing in public health has a higher degree of objectivity in terms of the data it could capture (Chaix, 2018)—GPS location would inform researchers where individuals have been—yet, there are multiple factors at the analysis stage that dilute this objectivity. For instance, in analyzing proximity to key features (e.g., hospitals, services), a common technique is buffer analysis, which allows researchers to create artificial boundaries around the features of interests and count how many data points (e.g., mobility patterns) are within the artificial boundaries (ArcMap, 2019). For instance, research in understanding opioid overdose has used buffer analysis to identify the total number of discarded needles in in a given area (Bearnot et al., 2018). The selection of such boundaries for buffer analysis is inherently subjective, and the assumptions of such selection would need to be supported theoretically.

      Toward Health Data Sense-Making

      Our proposed solution to the trifecta of problems—data deluge, hubris, and opacity—is for researchers to cultivate health data sense-making. To do that, we need to adopt approaches to big data research which prioritize the use of theory in providing meaning to data. This is not a new idea, and is fundamental to the hypothetico-deductive model of science (Godfrey-Smith, 2003). There are two ways in which health researchers can effectively practice health data sense-making. First, health researchers should view big data primarily as methodological innovations which can lend itself to testing existing health communication theory in novel ways; and second, health researchers should utilize these methodological innovations to engender new health communication theory that is made possible by the nature of big data (see Figure 3).

      Overview of health data sense-making.

      Viewing Big Data as Methodological Innovations for the Testing of Existing Theories

      The most immediate way to cultivate health data sense-making is for researchers to utilize the possibilities afforded by big data to develop innovative methods for the testing of existing theory. To do this, health researchers must approach research projects involving big data from a theory-driven, rather than data-driven, perspective. As described by Chaffee (2009), theory development should come from careful explication of abstract concepts. This involves both logically explaining the theoretical underpinnings behind hypothesized effects between abstract concepts and conducting careful explication and operationalization of those abstract concepts for formal testing.

      Big Data as Operationalizations of Abstract Theoretical Concepts

      While existing research in health communication research utilize surveys and experiments to measure abstract concepts such as attitudes and beliefs, it might be possible to view social media content as operationalizations of abstract concepts as well. Specifically, social media posts can be operationalizations of sentiment, or attitude, toward certain health behaviors. For example, in the context of alcohol consumption, production of social media content—tweets or posts—can be conceptualized as an underlying positive or negative attitude toward drinking, while the consumption of social media content (what people are exposed to) regarding drinking can be conceptualized as social norms (Cavazos-Rehg et al., 2015). In combination with other measures, these can be used as measures within existing theoretical frameworks such as the theory of normative social behavior or the theory of planned behavior (Ajzen, 1991; Rimal and Lapinski, 2015).

      Despite this, formal explication of how existing theoretical constructs such as attitude and beliefs can be measured through big data is rare. In one study, researchers looked at how both visual and textual posts about alcohol on Facebook predicts binge drinking, in addition to attitude and injunctive norms (D'Angelo et al., 2014). Instead of viewing the social media posts as a distinct and separate construct to attitude in a predictive model, we propose that health communication researchers should aim to explicate what these specific data are reflecting. Could they be reflective of an individuals' attitude toward drinking, or something else? Health communication researchers must begin clarifying what specific pieces of big data mean.

      Testing Theories in New Ways

      Beyond the process of concept explication, big data also offer opportunities for the testing of existing theories that was previously impossible. For example, traditional ways of testing priming effects utilize laboratory experiments where researchers manipulate stimuli of interest (e.g., Alhabash et al., 2016). Instead of testing priming effects in a lab, big data tools allow us to examine these effects in a naturalistic setting.

      Take for example screenomics, a novel approach in measuring digital media use through the capturing of screenshots periodically (e.g., screenshot every 5 s), before being encrypted and sent to university servers for processing, in which textual and image data are extracted using computer vision technology and natural language processing (Reeves et al., 2019). Instead of manipulating Facebook alcohol ads to investigate priming effects intention to consume alcohol, as Alhabash et al. (2016) had done, screenomics paired with ecological momentary assessment (EMA) measuring alcohol consumption intentions can provide us with a unique way of investigating priming effects naturalistically. Furthermore, with the sheer amount of data generated, in addition to examining priming effects across participants, it is possible to examine priming effects within an individual (e.g., whether exposure to alcohol images and posts primes a specific individual's intention to consume alcohol) by using a person's daily screenshot data and EMA responses as a single data point. This leads to the potential testing of health communication theories through both an idiographic and nomothetic approach. Such naturalistic ways of collecting media and behavioral data, addresses one of the biggest criticisms of traditional experimental media effects research—the artificiality of the environment in which stimuli are manipulated, and the artificiality of the stimuli themselves (Livingstone, 1996).

      Engender New Health Communication Theories Through Health Data Sense-Making

      In addition to enhancing existing health communication theories, health data sense-making could potentially engender new health communication theories and concepts through the synergistic and iterative combination of traditional a-priori social scientific communication theorizing and data-driven approaches. When health researchers pair health communication theorizing with computational prowess, it avoids the reckless use of algorithms that might lead to spurious correlations, or engagement in p-hacking, where researchers selectively report positive results by running computational models many times to get statistical significance (Head et al., 2015). After all, the key word in data science is the practice of science, and big data and AI techniques are the computational enablers for large-scale and in-depth theory testing through an iterative process. While the potential for engendering new health communication theories and models is limitless, we list three areas how health data sense-making could be useful for developing new health communication theories and conceptual explication.

      Connecting the Dots for Health Disparities

      First, as health communication scholars increasingly need to work with big data from diverse sources, there is a potential to connect the dots by drawing upon diverse datasets on how social determinants exacerbate health disparities (Lee and Viswanath, 2020). There are two key developments that would enable health data sense-making for the context of health disparities. First, the incorporation of factors such as social determinants and geographical variables into existing EHRs (Zhang et al., 2017). The second is the move toward utilizing digital and traditional media and social norms in nudging individuals to take responsibilities of their own health through active health monitoring (Patel et al., 2015; Hentschel et al., 2016; Ho et al., 2016).

      The potential to link social determinants, demographic, and geographical variables with how people are utilizing digital devices for health and subsequent health outcomes would shed light on how different forms of communication inequalities—differences among social groups in generation and use of information that contribute to differential health outcomes—serve as intermediary mechanisms that moderate the effects of social determinants on health disparities (Viswanath et al., 2012; Lee and Viswanath, 2020). The ability to synthesize insights from datasets would contribute to macro health communication theorizing (e.g., ecological health model, social cognitive model), and enable scholars to specifically tease out how external and individual determinants factors collectively influence health outcomes and behaviors (Bandura, 2001; Richard et al., 2011; Lee et al., 2016; Lee and Viswanath, 2020).

      Quantifying Interactivity of Media and Interpersonal Influence

      The second way new health communication theories could emerge is in the area of quantifying the interactivity of media consumption and interpersonal networks on health communication behaviors. Screenomics, for example, has the potential to allow health communication researchers to explicate health information seeking beyond traditional survey measures, and specifically examine the process of health information seeking, and how different groups seek health information (Reeves et al., 2019). In terms of quantifying the interactivity of media and network effects, researchers could test their a-priori hypotheses on how they expect information flow and interpersonal networks to influence health outcomes through the use of dynamic or agent-based modeling (Zhang et al., 2015; Song and Boomgaarden, 2017), and compare how reinforcing spirals (Slater, 2007) of media effects and interpersonal influence on health behaviors differ in a simulated environment and in real environment.

      Explicating Location—Modeling the Ebb and Flow of <italic>in situ</italic> Health Behaviors

      The third area which there is a potential for emergence of new health communication theories is in the area of explicating different dimensions of locations within health communication theories and examine the variability in health outcomes at a granular level. Traditionally, health communication theories such as the structural influence model of communication postulates that social determinants such as geographical locations in terms of neighborhood and urbanicity (Kontos and Viswanath, 2011) are underlying macro-level factors influencing health outcomes. Yet, how scholars conceptualize locations are often based on artificial administrative boundaries (e.g., census tracts or zip codes), which would be problematic as people are highly mobile and not constrained to a single location.

      The advancement in collection of location data, together with physiological and behavioral data through mobile health apps and wearables, would enable researchers to do a deep dive into how specific locations matter in health outcomes. For instance, by drawing upon geolocations, galvanic skin response, skin temperature, and heart rate variability, researchers could identify areas quantify moments and movements of stress in an urban environment, such as cyclists' emotionala states when traveling in certain paths (Kyriakou et al., 2019). In other words, coupled with geospatial analytical tools such as emerging hotspot analysis, researchers could accurately identify potential hotspots where traffic accidents are likely to happen because of the stress-clustering. In addition, by utilizing geolocation tracking from smartphones, researchers would be conceptualize and concretize mobility signatures, and connect how real-time exposure to point-of-sale tobacco marketing, differential tobacco product pricing, location of tobacco retail outlets, influence quit attempts (Kirchner et al., 2012).

      Conclusion

      The advent of health big data is both a boon and bane to researchers. The ability to leverage on big data for health communication depends largely on researchers' ability to see beyond the hype, separate wheat from the chaff, and put the horse before the cart. Otherwise, the blind pursuit and application of AI and big data would simply lead to artificial inflation of findings. Health data-sense making—the science and art of prioritizing theories before computation—would place health researchers in good stead to avoid the pitfalls of health big data, and move the field of health communication forward with new perspectives on improving health behaviors by synthesizing health data from individuals, their interaction with environmental factors, significant others, and the media. After all, health data sense-making is a critical response to the call to humanize data instead of data-fying humans (Israni and Verghese, 2018), which would be absolutely critical for moving the field of health communication forward in the digital age.

      Author Contributions

      All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      References Ajzen I. (1991). The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179211. 10.1016/0749-5978(91)90020-T Alhabash S. McAlister A. R. Kim W. Lou C. Cunningham C. Quilliam E. T. . (2016). Saw it on Facebook, drank it at the bar! Effects of exposure to Facebook alcohol ads on alcohol-related behaviors. J. Interact. Advertis. 16, 4458. 10.1080/15252019.2016.1160330 Anderson C. (2008). The end of theory: The data deluge makes the scientific method obsolete. WIRED. Retrieved from: https://www.wired.com/2008/06/pb-theory/ Antonio M. G. Petrovskaya O. Lau F. (2019). Is research on patient portals attuned to health equity? A scoping review. J. Am. Med. Inform. Assoc. 26, 871883. 10.1093/jamia/ocz05431066893 ArcMap (2019). How Buffer (Analysis) Works. Available online at: http://desktop.arcgis.com/en/arcmap/10.3/tools/analysis-toolbox/how-buffer-analysis-works.htm (accessed January 3, 2020). Asokan G. V. Asokan V. (2016). Leveraging “big data” to enhance the effectiveness of “one health” in an era of health informatics. J. Epidemiol. Glob. Health 5, 311314. 10.1016/j.jegh.2015.02.00125747185 Ayers J. W. Westmaas J. L. Leas E. C. Benton A. Chen Y. Dredze M. . (2016). Leveraging big data to improve health awareness campaigns: a novel evaluation of the great American smokeout. JMIR Public Health Surveil. 2:e16. 10.2196/publichealth.530427227151 Bandura A. (2001). Social cognitive theory of mass communication. Media Psychol. 3, 265299. 10.1207/S1532785XMEP0303_03 Bandura A. (2004). Health promotion by social cognitive means. Health Educ. Behav. 31, 143164. 10.1177/109019810426366015090118 Bansal S. Chowell G. Simonsen L. Vespignani A. Viboud C. (2016). Big data for infectious disease surveillance and modeling. J. Infect. Dis. 214, S375S379. 10.1093/infdis/jiw40028830113 Bates D. W. Saria S. Ohno-Machado L. Shah A. Escobar G. (2014). Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff. 33, 11231131. 10.1377/hlthaff.2014.004125006137 Bearnot B. Pearson J. F. Rodriguez J. A. (2018). Using publicly available data to understand the opioid overdose epidemic: geospatial distribution of discarded needles in boston, Massachusetts. Am. J. Public Health 108, 13551357. 10.2105/AJPH.2018.30458330138067 Beck C. S. Benitez J. L. Edwards A. Olson A. Pai A. Torres M. B. (2004). Enacting “health communication”: the field of health communication as constructed through publication in scholarly journals. Health Commun. 16, 475492. 10.1207/s15327027hc1604_515465691 Bennett C. M. Baird A. A. Miller M. B. Wolford G. L. (2009). Neural correlates of interspecies perspective taking in the post-mortem atlantic salmon: an argument for proper multiple comparisons correction, in 15th Annual Meeting of the Organization for Human Brain Mapping (San Francisco, CA). Bi W. L. Hosny A. Schabath M. B. Giger M. L. Birkbak N. J. Mehrtash A. . (2019). Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J. Clin. 69, 127157. 10.3322/caac.2155230720861 Bian J. Zhao Y. Salloum R. G. Guo Y. Wang M. (2017). Using social media data to understand the impact of promotional information on laypeople's discussions: a case study of lynch syndrome. J. Med. Internet Res. 19, 116. 10.2196/jmir.926629237586 Blei D. M. Ng A. Y. Jordan M. I. (2003). Latent dirichlet allocation. J. Mach. Learn. Res. 3, 9931022. Boyd D. Crawford K. (2012). Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon. Inform. Commun. Soc. 15, 662679. 10.1080/1369118X.2012.678878 Calude C. S. Longo G. (2017). The deluge of spurious correlations in big data. Found. Sci. 22, 595612. 10.1007/s10699-016-9489-4 Casselman J. Onopa N. Khansa L. (2017). Wearable healthcare: lessons from the past and a peek into the future. Telemat. Informat. 34, 10111023. 10.1016/j.tele.2017.04.011 Cavazos-Rehg P. A. Krauss M. J. Sowles S. J. Bierut L. J. (2015). “Hey everyone, I'm drunk.” An evaluation of drinking-related Twitter chatter. J. Stud. Alcohol Drugs 76, 635639. 10.15288/jsad.2015.76.63526098041 Cervellin G. Comelli I. Lippi G. (2017). Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. J. Epidemiol. Glob. Health 7, 185189. 10.1016/j.jegh.2017.06.00128756828 Chaffee S. H. (2009). Thinking about theory, in An Integrated Approach to Communication Theory and Research, 2nd Edn, eds Salwen M. B. Stacks D. W. (Mahwah, NJ: Lawrence Erlbaum Associates), 1229. Chaix B. (2018). Mobile sensing in environmental health and neighborhood research. Annu. Rev. Public Health 39, 367384. 10.1146/annurev-publhealth-040617-01373129608869 Charles-Smith L. E. Reynolds T. L. Cameron M. A. Conway M. Eric H. Lau Y. . (2015). Using social media for actionable disease surveillance and outbreak Management: a systematic literature review. PLoS ONE 10:e0139701. 10.1371/journal.pone.013970126437454 Coveney P. V. Dougherty E. R. Highfield R. R. (2016). Big data need big theory too. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374:20160153. 10.1098/rsta.2016.015327698035 D'Angelo J. Kerr B. Moreno M. A. (2014). Facebook displays as predictors of binge drinking. Bull. Sci. Technol. Soc. 34, 159169. 10.1177/027046761558404426412923 Fishbein M. Ajzen I. (2010). Predicting and Changing Behavior: The Reasoned Action Approach. New York, NY: Psychology Press. Fung I. C. H. Jackson A. M. Ahweyevu J. O. Grizzle J. H. Yin J. Tsz Z. H. Z. . (2017). #Globalhealth Twitter conversations on #Malaria, #HIV, #TB, #NCDs, and #NTDS: A cross-sectional analysis. Ann. Glob. Health 83, 682690. 10.1016/j.aogh.2017.09.00629221545 GDPR Register (2018). Healthcare Sector: How to Comply With GDPR? Available online at: https://www.gdprregister.eu/gdpr/healthcare-sector-gdpr/ Godfrey-Smith P. (2003). Theory and Reality: An Introduction to the Philosophy of Science, 1st Edn. Chicago, IL: The University of Chicago Press. Goldenberg J. L. Arndt J. (2008). The implications of death for health: a terror management health model for behavioral health promotion. Psychol. Rev. 115, 10321053. 10.1037/a001332618954213 Grant M. J. Booth A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info. Libr. J. 26, 91108. 10.1111/j.1471-1842.2009.00848.x19490148 Gupta P. Sharma A. Jindal R. (2016). Scalable machine-learning algorithms for big data analytics: a comprehensive review. WIREs Data Mining Knowl. Discov. 6, 194214. 10.1002/widm.1194 Hargittai E. (2015). Is bigger always better? Potential biases of big data derived from social network sites. Ann. Am. Acad. Political Soc. Sci. 659, 6376. 10.1177/0002716215570866 Head M. L. Holman L. Lanfear R. Kahn A. T. Jennions M. D. (2015). The extent and consequences of p-hacking in science. PLoS Biol. 13:e1002106. 10.1371/journal.pbio.100210625768323 Hentschel M. A. Haaksma M. L. van de Belt T. H. (2016). Wearable technology for the elderly: underutilized solutions. Eur. Geriatr. Med. 7, 399401. 10.1016/j.eurger.2016.07.008 Himelboim I. Han J. Y. (2014). Cancer talk on Twitter: community structure and information sources in breast and prostate cancer social networks. J. Health Commun. 19, 210225. 10.1080/10810730.2013.81132124111482 Ho S. S. Lee E. W. J. Ng K. Leong G. S. H. Tham T. H. M. (2016). For fit's sake: a norms-based approach to healthy behaviors through influence of presumed media influence. Health Commun. 31, 10721080. 10.1080/10410236.2015.103877226799846 Huang D. Wang J. Huang J. Sui D. Z. Zhang H. (2016). Towards identifying and reducing the bias of disease information extracted from search engine data. PLoS Comput. Biol. 12:e1004876. 10.1371/journal.pcbi.100487627271698 Internet Live Stats (2019). Google Search Statistics. Available online at: https://www.internetlivestats.com/google-search-statistics/ Israni S. T. Verghese A. (2018). Humanizing artificial intelligence. JAMA 169, 2029. 10.1001/jama.2018.19398 Jacobson J. Mascaro C. (2016). Movember: Twitter conversations of a hairy social movement. Soc. Media Soc. 2, 112. 10.1177/2056305116637103 Janz N. K. Becker M. H. (1984). The health belief model: a decade later. Health Educ. Q. 11, 147. 10.1177/1090198184011001016392204 Kang C. Frenkel S. (2018). Republicans accuse Twitter of bias against conservatives. The New York Times. Available online at: https://www.nytimes.com/2018/09/05/technology/lawmakers-facebook-twitter-foreign-influence-hearing.html Kaplan R. M. Chambers D. A. Glasgow R. E. (2014). Big data and large sample size: a cautionary note on the potential for bias. Clin. Transl. Sci. 7, 342346. 10.1111/cts.1217825043853 Kim E. Hou J. Han J. Y. Himelboim I. (2016). Predicting retweeting behavior on breast cancer social networks: network and content characteristics. J. Health Commun. 21, 479486. 10.1080/10810730.2015.110332627007166 King G. Persily N. (2019). Building Infrastructure for Studying Social Media's Role in Elections and Democracy. Available online at: https://socialscience.one/blog/building-infrastructure-studying-social-media's-role-elections-and-democracy (accessed January 3, 2020). Kirchner T. R. Vallone D. Cantrell J. Anesetti-Rothermel A. Pearson J. Cha S. . (2012). Individual mobility patterns and real-time geo-spatial exposure to point-of-sale tobacco marketing, in WH'12 Proceedings of the Conference on Wireless Health (San Diego, CA), 18. Kitchin R. (2014). Big Data, new epistemologies and paradigm shifts. Big Data Soc. 1, 112. 10.1177/2053951714528481 Kontos E. Z. Viswanath K. (2011). Cancer-related direct-to-consumer advertising: a critical review. Nat. Rev. Cancer 11, 142150. 10.1038/nrc299921258398 Kreatsoulas C. Subramanian S. V. (2018). Machine learning in social epidemiology: learning from experience. SSM Popul. Health 4, 347349. 10.1016/j.ssmph.2018.03.00729854919 Kreps G. L. (2001). The evolution and advancement of health communication inquiry. Ann. Int. Commun. Assoc. 24, 231253. 10.1080/23808985.2001.11678988 Kyriakou K. Resch B. Sagl G. Petutschnig A. Werner C. Niederseer D. . (2019). Detecting moments of stress from measurements of wearable physiological sensors. Sensors 19, 126. 10.3390/s1917380531484366 Lazer D. Kennedy R. King G. Vespignani A. (2014). The parable of google flu: traps in big data analysis. Science 343, 12031205. 10.1126/science.124850624626916 Lee E. W. J. Shin M. Kawaja A. Ho S. S. (2016). The augmented cognitive mediation model: examining antecedents of factual and structural breast cancer knowledge among Singaporean women. J. Health Commun. 21, 583592. 10.1080/10810730.2015.111405327128006 Lee E. W. J. Viswanath K. (2020). Big data in context: addressing the twin perils of data absenteeism and chauvinism in the context of health disparities. J. Med. Internet Res. 22, 17. 10.2196/1637731909724 Livingstone S. (1996). On the continuing problems of media effects research, in Mass Media and Society, 2nd Edn, eds Curran J. Gurevitch M. (London), 305324. Retrieved from: http://eprints.lse.ac.uk/21503/1/On_the_continuing_problems_of_media_effects_research%28LSERO%29.pdf Maddox T. M. Rumsfeld J. S. Payne P. R. O. (2019). Questions for artificial intelligence in health care. JAMA 321, 3132. 10.1001/jama.2018.1893230535130 Mavragani A. Ochoa G. Tsagarakis K. P. (2018). Assessing the methods, tools, and statistical approaches in Google trends research: systematic review. J. Med. Internet Res. 20, 120. 10.2196/jmir.936630401664 Merchant R. M. Asch D. A. Crutchley P. Ungar L. H. Guntuku S. C. Eichstaedt J. C. . (2019). Evaluating the predictability of medical conditions from social media posts. PLoS ONE 14:e0215476. 10.1371/journal.pone.021547631206534 Noyes D. (2019). The Top 20 Valuable Facebook Statistics. Available online at: https://zephoria.com/top-15-valuable-facebook-statistics/ (accessed January 3, 2020). Patel M. Asch D. Volpp K. (2015). Wearable devices as facilitators, not drivers, of health behavior change. JAMA 313, 459460. 10.1001/jama.2014.1478125569175 Peng T. Q. Liang H. Zhu J. J. H. (2019). Introducing computational social science for Asia-Pacific communication research. Asian J. Commun. 29, 205216. 10.1080/01292986.2019.1602911 Pew Research Center (2019a). Mobile Fact Sheet. Available online at: https://www.pewinternet.org/fact-sheet/mobile/ Pew Research Center (2019b). Social Media Fact Sheet. Available online at: http://www.pewinternet.org/fact-sheet/social-media/ Pfeffer J. Mayer K. Morstatter F. (2018). Tampering with Twitter's sample API. EPJ Data Sci. 7:50. 10.1140/epjds/s13688-018-0178-0 Pramanik M. I. Lau R. Y. K. Demirkan H. Azad M. A. K. (2017). Smart health: big data enabled health paradigm within smart cities. Expert Syst. Appl. 87, 370383. 10.1016/j.eswa.2017.06.027 Reeves B. Ram N. Robinson T. N. Cummings J. J. Giles C. L. Pan J. . (2019). Screenomics: a framework to capture and analyze personal life experiences and the ways that technology shapes them. Hum. Comp. Interact. 152. 10.1080/07370024.2019.1578652 Richard L. Gauvin L. Raine K. (2011). Ecological models revisited: their uses and evolution in health promotion over two decades. Annu. Rev. Public Health 32, 307326. 10.1146/annurev-publhealth-031210-10114121219155 Richardson G. M. Bowers J. Woodwill A. J. Barr J. R. Gawron J. M. Levine R. A. (2014). Topic models: a tutorial with R. Int. J. Semant. Comput. 8, 8598. 10.1142/S1793351X14500044 Rimal R. N. (2008). Modeling the relationship between descriptive norms and behaviors: a test and extension of the theory of normative social behavior (TNSB). Health Commun. 23, 103116. 10.1080/1041023080196779118443998 Rimal R. N. Lapinski M. K. (2015). A re-explication of social norms, ten years later. Commun. Theory 25, 393409. 10.1111/comt.12080 Ryan R. M. Deci E. L. (2007). Active human nature: self-determination theory and the promotion and maintenance of sport, exercise, and health, in Intrinsic Motivation and Self-determination in Exercise and Sport, eds Hagger M. S. Chatzisarantis N. L. D. (Champaign, IL: Human Kinetics), 120. Sandberg H. Fristedt R. A. Johansson A. Karregard S. (2017). Health communication an in-depth analysis of the area of expertise and research literature 2010-2016. Eur. J. Public Health 27(Suppl. 3):ckx186.137. 10.1093/eurpub/ckx186.137 Schiavo R. (2013). Health Communication: From Theory to Practice, 2nd Edn. San Francisco, CA: Jossey-Bass. Sedrak M. S. Cohen R. B. Merchant R. M. Schapira M. M. (2016). Cancer communication in the social media age. JAMA Oncol. 2, 822823. 10.1001/jamaoncol.2015.547526940041 Slater M. D. (2007). Reinforcing spirals: the mutual influence of media selectivity and media effects and their impact on individual behavior and social identity. Commun. Theory 17, 281303. 10.1111/j.1468-2885.2007.00296.x Social Science One (2018). Our Facebook Partnership. Available online at: https://socialscience.one/our-facebook-partnership Song H. Boomgaarden H. G. (2017). Dynamic spirals put to test: an agent-based model of reinforcing spirals between selective exposure, interpersonal networks, and attitude polarization. J. Commun. 67, 256281. 10.1111/jcom.12288 Strekalova Y. A. (2017). Health risk information engagement and amplification on social media: news about an emerging pandemic on Facebook. Health Educ. Behav. 44, 332339. 10.1177/109019811666031027413028 Strekalova Y. A. Krieger J. L. (2017). Beyond words: amplification of cancer risk communication on social media. J. Health Commun. 22, 849857. 10.1080/10810730.2017.136733628956723 Torous J. Staples P. Onnela J. P. (2015). Realizing the potential of mobile mental health: new methods for new data in psychiatry. Curr. Psychiatry Rep. 17, 17. 10.1007/s11920-015-0602-026073363 Tufekci Z. (2014). Big questions for social media big data: Representativeness, validity and other methodological pitfalls, in ICWSM'14: Proceedings of the 8th International AAAI Conference on Weblogs and Social Media. Ann Arbor, MI. Turk Telekom (2018). D4R. Available online at: https://d4r.turktelekom.com.tr Viswanath K. Nagler R. H. Bigman-Galimore C. A. McCauley M. P. Jung M. Ramanadhan S. (2012). The communications revolution and health inequalities in the 21st century: implications for cancer control. Cancer Epidemiol. Biomark. Prev. 21, 17011708. 10.1158/1055-9965.EPI-12-085223045545 Wahl B. Cossy-gantner A. Germann S. Schwalbe N. R. (2018). Artificial intelligence (AI) and global health : how can AI contribute to health in resource-poor settings? BMJ Glob. Health 3, 17. 10.1136/bmjgh-2018-00079830233828 Wallace P. J. Shah N. D. Dennen T. Bleicher P. A. Crown W. H. (2014). Optum labs: building a novel node in the learning health care system. Health Aff. 33, 11871194. 10.1377/hlthaff.2014.003825006145 Wang Y. Kung L. A. Byrd T. A. (2018). Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 126, 313. 10.1016/j.techfore.2015.12.019 Wells S. Rozenblum R. Park A. Dunn M. Bates D. W. (2015). Organizational strategies for promoting patient and provider uptake of personal health records. J. Am. Med. Inform. Assoc. 22, 213222. 10.1136/amiajnl-2014-00305525326601 Wesolowski A. Buckee C. O. Engø-Monsen K. Metcalf C. J. E. (2016). Connecting mobility to infectious diseases: the promise and limits of mobile phone data. J. Infect. Dis. 214, S414S420. 10.1093/infdis/jiw27328830104 Zhang J. Tong L. Lamberson P. J. Durazo-Arvizu R. A. Luke A. Shoham D. A. (2015). Leveraging social influence to address overweight and obesity using agent-based models: the role of adolescent social networks. Soc. Sci. Med. 125, 203213. 10.1016/j.socscimed.2014.05.04924951404 Zhang X. Perez-Stable E. Bourne P. Peprah E. Duru K. Breen N. . (2017). Big data science: opportunities and challenges to address minority health and health disparities in the 21st century. Ethnic. Dis. 27, 95106. 10.18865/ed.27.2.9528439179

      1According to Grant and Booth (2009), a critical review is aimed at synthesizing material from a variety of sources in order to achieve conceptual innovation through the analysis of diverse material. Our goal is for this paper to serve as a starting point for discussion, and a foundation for future systematic and empirical approaches in examining health data sense-making.

      Funding. The article processing fee was funded by Singapore University of Technology and Design's Faculty Early Career Award (RGFECA19004).

      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.gqnxjtx.com.cn
      www.ipkoo.org.cn
      www.jetdxk.com.cn
      www.euxbko.com.cn
      www.kychain.com.cn
      sysndq.org.cn
      uieworld.com.cn
      tjfhs.org.cn
      tdpgkz.com.cn
      www.u8cbi.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p