Front. Chem. Frontiers in Chemistry Front. Chem. 2296-2646 Frontiers Media S.A. 774987 10.3389/fchem.2021.774987 Chemistry Mini Review Enabling Technology for Supramolecular Chemistry Ollerton et al. Enabling Technology for Supramolecular Chemistry Ollerton Katie 1 Greenaway Rebecca L. 2 * Slater Anna G. 1 * Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool, United Kingdom Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, United Kingdom

Edited by: Jennifer Hiscock, University of Kent, United Kingdom

Reviewed by: Richard J. Hooley, University of California, Riverside, United States

Alessandro Scarso, Ca’ Foscari University of Venice, Italy

*Correspondence: Rebecca L. Greenaway, r.greenaway@imperial.ac.uk; Anna G. Slater, anna.slater@liverpool.ac.uk

This article was submitted to Supramolecular Chemistry, a section of the journal Frontiers in Chemistry

15 11 2021 2021 9 774987 13 09 2021 21 10 2021 Copyright © 2021 Ollerton, Greenaway and Slater. 2021 Ollerton, Greenaway and Slater

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Supramolecular materials–materials that exploit non-covalent interactions–are increasing in structural complexity, selectivity, function, stability, and scalability, but their use in applications has been comparatively limited. In this Minireview, we summarize the opportunities presented by enabling technology–flow chemistry, high-throughput screening, and automation–to wield greater control over the processes in supramolecular chemistry and accelerate the discovery and use of self-assembled systems. Finally, we give an outlook for how these tools could transform the future of the field.

supramolecular chemistry self-assembly flow chemistry high-throughput screening automation reaction monitoring University Research Fellowship Royal Society10.13039/501100000288 Engineering and Physical Sciences Research Council10.13039/501100000266

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Supramolecular chemistry exploits weak, reversible interactions to form complex structures from simpler components (Lehn, 1988; Vantomme and Meijer, 2019). Two key tenets of supramolecular chemistry are host-guest molecular recognition and self-assembly (Davis et al., 2002), which have both become broad disciplines (Albrecht, 2007). Both concepts are ubiquitous in nature: the enzyme-substrate complex, base stacking of DNA and assemblies of virus cages are only a few examples (Whitesides et al., 1991). It is clear to see why chemists want to harness these principles in artificial structures for applications such as artificial enzymes, drug delivery systems, innovative materials, and more.

      Huge progress has been made in the function, selectivity, and efficiency of artificial supramolecular systems. The diversity of materials and structures, including those that exploit mechanical bonds [catenanes (Gil-Ramírez et al., 2015), rotaxanes (Yang et al., 2019), knots (Fielden et al., 2017)], host-guest interactions [macrocycle (Liu et al., 2017), cage structures (Hasell and Cooper, 2016)], and framework or soft materials [metal-organic frameworks (MOFs) (Zhou and Kitagawa, 2014; Jiao et al., 2019), hydrogen-bonded organic frameworks (HOFs) (Yusov et al., 2021), supramolecular polymers (Yang et al., 2015) and gels (Weiss, 2014)], is ever-increasing, as is our ability to design and use these structures. As such, promising applications are emerging: porous supramolecular materials have potential in carbon capture (Huck et al., 2014), self-healing polymers could produce materials with enhanced recyclability (Song et al., 2019), and glucose binders could transform how diabetes is managed (Tromans et al., 2019), to name just a few.

      However, the formation of supramolecular structures often presents challenges, which in turn limits their wide-spread use. Both non-covalent reversible interactions and reversible covalent reactions can be difficult to control due to their sensitivity to environmental conditions, and often a multitude of possible products are formed as a result (Wu and Isaacs, 2003). Solvent effects (Würthner, 2021) can be unpredictable and lead to unexpected outcomes (Little et al., 2014; Zhang et al., 2015). The use of high-dilution conditions, templating strategies, long reaction times or slow addition of reagents, and/or complex synthetic routes can help overcome these challenges (Marti-Centelles et al., 2015), but in turn limits the scalability of the process. Predictions of which assembly pathway will be followed, or the likely success of the process, can be aided using crystal engineering (Desiraju, 1997) or guided by computation (Greenaway and Jelfs, 2020), but the targeted design of materials with desirable properties can still be a long and restrictive process. Discoveries have generally been made via rational and iterative design techniques (Hong et al., 2015), often based on known structures, trial-and-error, or even serendipity (Winpenny, 2002; Saalfrank et al., 2008). However, these approaches limit the scope of possible accessible materials and leave vast areas of chemical space unexplored.

      How, then, do supramolecular chemists approach these challenges? Standard tools for the chemist–i.e., round bottomed flasks–do not offer either fine control over environmental parameters (concentration, diffusion and mixing, temperature gradients), particularly on a large scale (Nomura et al., 1996; Kuśmierek and Świątkowski, 2015), or rapid exploration of chemical parameter space. There is therefore a need for tools that enable: 1) greater control over the formation of reversible and/or non-covalent interactions; 2) faster and more extensive exploration of chemical space; and 3) scalable, efficient, and “green” synthesis. This Minireview will explore two complementary approaches to solving these issues: flow chemistry and high-throughput automation, both of which fall under the umbrella of “enabling technology.”

      Flow chemistry involves conducting a reaction in a continuous stream in a tube or microreactor (Myers et al., 2014; Plutschack et al., 2017). Flow processes are used extensively in industry; the majority of commodity chemicals are continuously manufactured (Glaser, 2015; Porta et al., 2016; Baumann et al., 2020). Flow chemistry offers benefits such as improved safety and control of reactions, access to a wider range of reaction conditions, easier scale-up, and potential savings in energy use and wastage (Newman and Jensen, 2013). Early adopters of continuous flow chemistry within the supramolecular community used microfluidic chips to influence process outcome (Whitesides, 2006; Zhang et al., 2012; Foster et al., 2015; Parker et al., 2015; Yu et al., 2015; Gong et al., 2016); significant progress in flow technology has since opened a wealth of new opportunities for the field (Arnon et al., 2016; Fang et al., 2018; Cohen-Gerassi et al., 2020; Méndez-Ardoy et al., 2020; Khoeini et al., 2021; Puigmarti-Luis et al., 2021).

      High-throughput screening (HTS) enables reactions or processes to be rapidly carried out in parallel, potentially running thousands of samples simultaneously (McNally et al., 2011). Whilst HTS may have been previously affected by a bottleneck in slower dispensing, and analytical or data-processing steps, its growing success has been enabled by the development of automated experimentation platforms and technologies such as liquid and solid handling devices, robotics, autosamplers, and data-analyst software or scripts (Carson, 2020). It has been widely adopted within the pharmaceutical industry (Mennen et al., 2019) and is now finding its use in many other chemical fields.

      Although both technologies have had uptake in adjacent fields, there have been fewer reports on the use of flow or HTS in supramolecular chemistry. To showcase the benefits of such enabling technologies, this review will focus on the following four steps of development that are particularly relevant to supramolecular chemistry: enhanced process control, rapid screening and discovery of new structures, fast and/or automated optimisation, and facilitating scale-up (Figure 1).

      Typical processes involved in supramolecular system discovery and exploitation that can be enhanced using automation, flow chemistry, and/or high-throughput screening.

      Enabling Technologies for the Stages of Development in Supramolecular Chemistry Enhanced Process Control

      Supramolecular chemists seek to develop materials and systems made of multiple molecular building blocks where the whole is “more than the sum of its parts.” Many have exploited the reversibility of both non-covalent and dynamic covalent systems to form multicomponent structures under thermodynamic equilibrium (Whitesides et al., 1991; Rowan et al., 2002; Otto and Severin, 2007; Han et al., 2010; Okesola and Mata, 2018). Under fully reversible equilibrium conditions, the final outcome of such processes only depends on the molecular building blocks being used and the overall stability of the products: the thermodynamic product is often observed, representing the global energy minimum (Rowan et al., 2002). However, “out-of-equilibrium” structures have recently gained more attention (Ogi et al., 2014). For these systems, the reaction environment has a strong influence on the assembly pathway and the final structures obtained. Under non-equilibrium conditions, or where diffusion is slower than the rate of reaction, the impact of mixing efficiency or local concentration gradients can be substantial (Sevim et al., 2018). Controlling mixing is very difficult to achieve in a standard flask, but can be readily achieved under flow and microfluidic conditions (Nagy et al., 2012; Ward and Fan, 2015).

      Microfluidic reactors–where reactions are carried out in channels <1 mm–offer unique control over the mixing of reagents in both space and time (“spatio-temporal control”) (Sevim et al., 2018). The degree of mixing can be much more finely controlled compared to batch, ranging from extremely turbulent flow and thus fast mixing to extremely slow: in the laminar flow regime, streams of fluids flow parallel to each other, creating a defined liquid-liquid interface between them (Brivio et al., 2006). Thus, specific assembly pathways can be deliberately targeted by controlling the flow regime, and obtaining non-equilibrium structures becomes easier in microfluidic environments, facilitating the targeted synthesis of materials with desired properties. Furthermore, in flow, a higher degree of control results in greater reproducibility and a consequent avoidance of off-target reactions due to poor mixing and local concentration gradients.

      One recent example where this has been successfully exploited in supramolecular chemistry is the work of Numata et al. (2015b) who were able to synthesise porphyrin microfilms stabilized by an extended two-dimensional hydrogen bonding network. In contrast to batch conditions which formed an amorphous material, the use of microflow conditions enabled the formation of regular hydrogen-bonded networks leading to micron-sized multi-layered porphyrin sheets. This suggested that the microsheets could only be formed following the non-equilibrium kinetic pathway established under microflow conditions. Microfluidic conditions have also been used to access alternative self-assembled structures in a controlled manner in the field of organic conductors (Puigmartí-Luis et al., 2010), co-ordination polymers (Rubio-Martinez et al., 2016b), covalent organic frameworks (COFs) (Rodríguez-San-Miguel et al., 2016; Singh et al., 2018), and MOFs (Ameloot et al., 2011), and to control the hierarchical supramolecular assembly of perylene bisimides (Numata et al., 2015a), nanofibers (Numata and Kozawa, 2013), and amphiphiles (Numata et al., 2015c), with the latter enabling the formation of energetically unfavourable self-assembled structures under kinetic control.

      Whilst control over reaction outcomes and the assembly process is a powerful tool, it is made more powerful if it can be rapidly applied to a wide range of systems. One potential drawback of continuous flow is the challenge of parallelising experiments, which currently limits throughput. HTS allows a much faster, and arguably more efficient, exploration of a wider chemical space, and can lead to the accelerated discovery of new structures. Efforts to parallelise or improve the throughput of flow experiments include microdroplet screening (Reizman et al., 2016), continuous variation of variables coupled within inline analysis (Aroh and Jensen, 2018), and multi-channel chip architectures (Headen et al., 2018), and it is likely that these approaches will become increasingly used to combine the benefits of enhanced control with rapid screening.

      Faster, Targeted Screening

      Synthetic screening often results in a vast number of structures with only a select few being suitable for the application of interest. Fast and effective screening of the design space thus plays an important role in identifying materials and assemblies with desirable properties in supramolecular chemistry, and this is where HTS can offer its services.

      A typical approach to HTS involves the use of multi-well microtiter plates and is often aided by the use of automated robotic platforms. For example, Greenaway et al. (2018) illustrated the advantages of employing an automated platform for HTS alongside computational analysis in the search for new organic cages. Overall, this led to the streamlined discovery of 33 new organic cages, with two forming bridged-catenane structures upon recrystallization, a new cage topology, highlighting the advantage of HTS in accelerating serendipitous discoveries. Their automated workflow has also been employed in the discovery of other supramolecular assemblies including an unsymmetrical organic cage (Berardo et al., 2018) and socially self-sorted organic pots (Greenaway et al., 2019). More recently, Cui et al. (2019) demonstrated how automated platforms can be used for polymorph screening, resulting in different HOFs being accessed. Additionally, Lin et al. (2021) demonstrated how HTS can screen for supramolecular diversification, resulting in a range of different hierarchical self-assemblies such as thin fibrils, helical ribbons, twisted ribbons, wide and thin ribbons, and macroscopic hydrogels.

      Despite the potential advantages HTS offers, it has still not been widely adopted in the field of supramolecular chemistry. This could be due to factors such as the typically high initial cost of automated platforms, or challenges in finding suitable and equally high-throughput characterisation techniques for the supramolecular assemblies being targeted. However, with the availability of lower cost and open-source automated liquid handling platforms, and with several advances having been made in the HT characterisation of supramolecular materials (Greenaway et al., 2018; White et al., 2020), we expect these techniques to become more widely adopted in the field for screening and discovery of new “hits.”

      Rapid Optimization

      Once a “hit” has been found, the next step in the process is to optimize for parameters such as yield, selectivity, performance, throughput, or stability; this process can take as long as the discovery phase. Here, enabling technologies offer the opportunity to shorten this timeline and assist the chemist in making key decisions to ensure the best chance of finding an optimal supramolecular system.

      Flow chemistry enables real-time analysis, giving mechanistic insight that can be used to inform optimization. Intermediates can be isolated from the reaction stream and separately analysed to provide a better understanding of the reaction pathway and general self-assembly processes (Sagmeister et al., 2021). For example, recently Jones et al. (2021) exploited this to optimise the synthesis of a macrocyclic molecular hinge using a semi-continuous method informed by at-line analysis. Here, the fast heat transport possible in flow enabled a rapid temperature change mid-synthesis, leading to a threefold increase in yield and simultaneous reduction in reaction times.

      HTS can also be used to screen many different parameters in parallel (e.g., reagent stoichiometries, solvents, catalysts, additives, and temperatures), and has been widely used in the pharmaceutical industry to optimise yield and selectivity (Shevlin, 2017; Mennen et al., 2019). This optimisation process can also be aided by incorporating Design of Experiments (DoE) to narrow down the number of reactions required. In addition, microfluidic platforms can also be employed for HTS which, when compared to automated platforms and microplates, can significantly reduce the quantities of reagents required for both screening and optimisations (Zhou et al., 2020). Whilst there are very few examples of applying flow, microfluidics, or automated platforms for high-throughput screening in supramolecular chemistry, there is no reason why these approaches could not be adopted for the field.

      It is worth noting that whilst HTS can enable a large amount of the design space to be investigated, it is not desirable to fully empirically explore all precursor combinations or reaction conditions to ensure the optimal conditions are selected. By combining HTS and flow chemistry with machine learning algorithms and Bayesian optimisations, and in situ analysis techniques, this process can be streamlined by using closed-loop autonomous screening to optimise towards a target parameter or property (Zhou et al., 2017; Bédard et al., 2018; Clayton et al., 2019; Clayton et al., 2020). A recent example that highlights this in the area of supramolecular chemistry is the work of Cronin and co-workers who used a closed-loop autonomous “chemical robot” to explore a large combinatorial space for the discovery of coordination architectures (Porwol et al., 2020). The group calculated that it would take 4 × 104 experiments to fully explore the variables chosen, and therefore proposed an autonomous decision-making approach to explore this space as rapidly as possible, discovering four new coordination complexes in the process. This example highlights the importance of decision-making in screening large parameter spaces: the task of deciding “what to explore,” or “what to explore next,” normally taken by the chemist, is a critical point that determines the success or failure of the experiment as well as how fast that point is reached. Emerging research in algorithms for process space exploration, growing from the established science of DoE approaches, are yielding incredible advances in discovery speed in adjacent fields and are likely to make a similar impact in supramolecular chemistry, especially if suitable conditions for scale-up can also be identified.

      Scale-Up

      Despite the activity in the field, currently, there are only a few supramolecular materials that are produced for commercial purposes. The many issues surrounding the scale-up process (e.g., large amounts of organic solvents, long reaction times, poor reproducibility) have hindered this transition, preventing structures from being viably used for the many promising applications they present (Rubio-Martinez et al., 2017).

      Continuous flow reactors are one of the latest technologies being employed to produce supramolecular structures at scale. Their large surface area-to-volume ratio allows more efficient mass and heat transfer, giving safer and faster reactions. Improvements on the reproducibility and product quality can be obtained due to the higher level of control over the reaction. Flow reactors also generally require less solvent compared to traditional batch reactions, driving down the cost and waste which are all factors that need to be considered for an industrial scale process (Rubio-Martinez et al., 2017).

      Recently, flow chemistry has been used to optimize the yield, selectivity, and limited scale-up, of both macrocyclic (Bogdan and James, 2010; Bogdan and James, 2011; Bedard et al., 2013; Bédard et al., 2015; Lucke et al., 2016; Morin et al., 2019; Jones et al., 2021; Seemann et al., 2021) and cage (Briggs et al., 2015; Kitchin et al., 2015) supramolecular structures. For example, Bédard et al. synthesized medicinally relevant (Marsault and Peterson, 2011) macrocyclic lipids under continuous flow, with yields of up to 97% in short reaction times (Bedard et al., 2013). They were also able to increase the reaction to a multigram scale for some macrocycles; high yields were retained without the need for re-optimisation. Similarly, Briggs et al. (2015) translated the synthesis of porous organic cages (POCs) from batch to flow, resulting in greatly reduced reaction times and reduced solvent use, offering a continuous method of scale-up. It should be acknowledged, however, that there is still significant method development required to achieve the multi-kilo or tonne scale needed for many industrial applications, and here collaboration with process chemists and engineers is essential.

      Flow has also assisted in the scale-up of MOFs (Munn et al., 2015), which have promising applications in gas storage, gas separation and heterogeneous catalysis, but are typically produced by solvothermal batch synthesis that is challenging on a large scale (Czaja et al., 2009). For example, Rubio-Martinez et al. (2016a) were able to scale-up the synthesis of the aluminium fumate (Al-Fum) MOF from a laboratory to a pilot-plant system by more than 2 orders of magnitude giving an increased space-time-yield (STY) of 97,159 kg m−3 day−1. Since then, significant progress has been made towards the commercial synthesis of MOFs; for example, a continuous hydrothermal synthesis is now being used by Promethean Particles, who commercially produce nine different MOFs and porous structures (Munn et al., 2015).

      It is also worth noting that scale-up of supramolecular materials has also been demonstrated under mechanochemical continuous flow, namely using twin-screw extrusion (TSE), which can reduce the solvent requirement for synthesis even further. For example, both MOFs and POCs have been formed on scale with very little to no solvent using TSE (Crawford et al., 2015; Egleston et al., 2020; Casaban et al., 2021). Finally, there have also been promising developments in combining flow reactors and microwave heating for the process intensification of MOF formation (Laybourn et al., 2019). It is clear that the materials chemist has a number of tools at their disposal to ensure compounds can be made at-scale, and we anticipate this will become more widespread in supramolecular chemistry.

      Conclusion and Outlook

      Emerging examples of the use of enabling technology in supramolecular chemistry showcase the potential impact on the field: from faster discovery and screening to efficient optimisation, analysis, and scale-up (Figure 2). Commercial flow reactors, robots and high-throughput work stations are increasingly available alongside low-cost, home-build options (Baas and Saggiomo, 2021), meaning these enabling technologies are becoming more accessible to research laboratories. It is likely that as this availability of technology increases, it will become more integrated in research laboratory procedures and industrial manufacturing. If these technologies are to become mainstream, then training the chemists of the future will become vital. Examples of pre-designed flow chemistry experiments for potential use in undergraduate teaching laboratories (König et al., 2013; Leibfarth et al., 2018; Kuijpers et al., 2021) represent the acknowledgement of a changing skill set required of graduate chemists.

      Examples of supramolecular species and precursors and self-assembly processes that have been examined or enhanced using enabling technology for process control (Puigmartí-Luis et al., 2010; Numata et al., 2015a; Rubio-Martinez et al., 2016b; Gong et al., 2016; Thorne et al., 2019; Puigmarti-Luis et al., 2021, This figure contains an image of Figure 2a from Thorne et al. that has been used to make this composite figure under the terms of a Creative Commons Attribution 4.0 International License https://creativecommons.org/licenses/by/4.0/), screening (Greenaway et al., 2018), optimisation (Jones et al., 2021, The flow diagram and crystal structures in the optimization panel have been reused from Figure 2 and 11 from https://pubs.acs.org/doi/abs/10.1021/jacs.1c02891 respectively with permission from the ACS. Further permission related to the material excerpted should be redirected to the ACS), and scale up (Briggs et al., 2015; Rubio-Martinez et al., 2016a).

      It should also be noted, that whilst this review has focussed on the benefits of enabling technology, it is now frequently coupled with computation to carry out prior predictions and subsequent analysis. Growing examples can already be seen of computational predictions in areas such as organic cages (Berardo et al., 2020), photocatalysts (Singh et al., 2015), and drug molecules (Yu et al., 2020). The likely outlook for the future of chemistry, including supramolecular chemistry, is a hybrid approach of automated experimentation coupled with computation, whether that is using computation to first narrow down the design space, or using HTS to collect large amounts of robust data to feed into data-led computational approaches and machine learning algorithms. It seems certain that the benefits these tools offer will play an increasing role in supramolecular chemistry, from screening to scale-up.

      Author Contributions

      All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      AS and RG thank the Royal Society for University Research Fellowships that supported this work. KO and AS thank the EPSRC for a Summer Vacation Bursary.

      References Albrecht M. (2007). Supramolecular Chemistry-General Principles and Selected Examples from Anion Recognition and Metallosupramolecular Chemistry. Naturwissenschaften 94, 951966. 10.1007/s00114-007-0282-7 Ameloot R. Vermoortele F. Vanhove W. Roeffaers M. B. J. Sels B. F. De Vos D. E. (2011). Interfacial Synthesis of Hollow Metal-Organic Framework Capsules Demonstrating Selective Permeability. Nat. Chem 3, 382387. 10.1038/nchem.1026 Arnon Z. A. Vitalis A. Levin A. Michaels T. C. T. Caflisch A. Knowles T. P. J. (2016). Dynamic Microfluidic Control of Supramolecular Peptide Self-Assembly. Nat. Commun. 7, 13190. 10.1038/ncomms13190 Aroh K. C. Jensen K. F. (2018). Efficient Kinetic Experiments in Continuous Flow Microreactors. React. Chem. Eng. 3, 94101. 10.1039/c7re00163k Baas S. Saggiomo V. (2021). Ender3 3D Printer Kit Transformed into Open. Programmable Syringe Pump Set. Hardwarex.10, e00219. 10.1016/j.ohx.2021.e00219 Baumann M. Moody T. S. Smyth M. Wharry S. (2020). A Perspective on Continuous Flow Chemistry in the Pharmaceutical Industry. Org. Process. Res. Dev. 24, 18021813. 10.1021/acs.oprd.9b00524 Bédard A.-C. Adamo A. Aroh K. C. Russell M. G. Bedermann A. A. Torosian J. (2018). Reconfigurable System for Automated Optimization of Diverse Chemical Reactions. Science 361, 12201225. 10.1126/science.aat0650 Bédard A.-C. Régnier S. Collins S. K. (2013). Continuous Flow Macrocyclization at High Concentrations: Synthesis of Macrocyclic Lipids. Green. Chem. 15, 19621966. 10.1039/c3gc40872h Bédard A.-C. Santandrea J. Collins S. K. (2015). Efficient Continuous-Flow Synthesis of Macrocyclic Triazoles. J. Flow Chem. 5, 142144. 10.1556/jfc-d-14-00042 Berardo E. Greenaway R. L. Miklitz M. Cooper A. I. Jelfs K. E. (2020). Computational Screening for Nested Organic Cage Complexes. Mol. Syst. Des. Eng. 5, 186196. 10.1039/c9me00085b Berardo E. Greenaway R. L. Turcani L. Alston B. M. Bennison M. J. Miklitz M. (2018). Computationally-inspired Discovery of an Unsymmetrical Porous Organic Cage. Nanoscale 10, 2238122388. 10.1039/c8nr06868b Bogdan A. R. James K. (2011). Flow Macrocyclization Using Copper Tubing. Synfacts 2011, 0449. 10.1055/s-0030-1259736 Bogdan A. R. James K. (2010). Efficient Access to New Chemical Space through Flow-Construction of Druglike Macrocycles through Copper-Surface-Catalyzed Azide-Alkyne Cycloaddition Reactions. Chem. Eur. J. 16, 1450614512. 10.1002/chem.201002215 Briggs M. E. Slater A. G. Lunt N. Jiang S. Little M. A. Greenaway R. L. (2015). Dynamic Flow Synthesis of Porous Organic Cages. Chem. Commun. 51, 1739017393. 10.1039/c5cc07447a Brivio M. Verboom W. Reinhoudt D. N. (2006). Miniaturized Continuous Flow Reaction Vessels: Influence on Chemical Reactions. Lab. Chip 6, 329344. 10.1039/b510856j Calvo Galve N. Abrishamkar A. Sorrenti A. Di Rienzo L. Satta M. D'Abramo M. (2021). Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF. Angew. Chem. Int. Ed. Engl. 60, 1592015927. 10.1002/anie.202101611 Carson N. (2020). Rise of the Robots. Chem. Eur. J. 26, 31943196. 10.1002/chem.202000656 Casaban J. Zhang Y. Pacheco R. Coney C. Holmes C. Sutherland E. (2021). Towards MOF's Mass Market Adoption: MOF Technologie's Efficient and Versatile One-step Extrusion of Shaped MOFs Directly from Raw Materials. Faraday Discuss. 231, 312325. 10.1039/D1FD00025J Clayton A. D. Manson J. A. Taylor C. J. Chamberlain T. W. Taylor B. A. Clemens G. (2019). Algorithms for the Self-Optimisation of Chemical Reactions. React. Chem. Eng. 4, 15451554. 10.1039/c9re00209j Clayton A. D. Schweidtmann A. M. Clemens G. Manson J. A. Taylor C. J. Niño C. G. (2020). Automated Self-Optimisation of Multi-step Reaction and Separation Processes Using Machine Learning. Chem. Eng. J. 384, 123340. 10.1016/j.cej.2019.123340 Cohen-Gerassi D. Arnon Z. A. Guterman T. Levin A. Ghosh M. Aviv M. (2020). Phase Transition and Crystallization Kinetics of a Supramolecular System in a Microfluidic Platform. Chem. Mater. 32, 83428349. 10.1021/acs.chemmater.0c02187 Crawford D. Casaban J. Haydon R. Giri N. Mcnally T. James S. L. (2015). Synthesis by Extrusion: Continuous, Large-Scale Preparation of MOFs Using Little or No Solvent. Chem. Sci. 6, 16451649. 10.1039/c4sc03217a Cui P. Mcmahon D. P. Spackman P. R. Alston B. M. Little M. A. Day G. M. (2019). Mining Predicted crystal Structure Landscapes with High Throughput Crystallisation: Old Molecules, New Insights. Chem. Sci. 10, 99889997. 10.1039/c9sc02832c Czaja A. U. Trukhan N. Müller U. (2009). Industrial Applications of Metal-Organic Frameworks. Chem. Soc. Rev. 38, 12841293. 10.1039/b804680h Davis A. V. Yeh R. M. Raymond K. N. (2002). Supramolecular Assembly Dynamics. Proc. Natl. Acad. Sci. 99, 47934796. 10.1073/pnas.052018299 Desiraju G. R. (1997). Designer Crystals: Intermolecular Interactions, Network Structures and Supramolecular Synthons. Chem. Commun., 14751482. 10.1039/a607149j Egleston B. D. Brand M. C. Greenwell F. Briggs M. E. James S. L. Cooper A. I. (2020). Continuous and Scalable Synthesis of a Porous Organic Cage by Twin Screw Extrusion (TSE). Chem. Sci. 11, 65826589. 10.1039/d0sc01858a Fang H. Sun Y. Wang X. Sharma M. Chen Z. Cao X. (2018). Probing the Kinetics in Supramolecular Chemistry and Molecular Assembly by Microfluidic-NMR Spectroscopy. Sci. China Chem. 61, 14601464. 10.1007/s11426-018-9293-3 Fielden S. D. P. Leigh D. A. Woltering S. L. (2017). Molecular Knots. Angew. Chem. Int. Ed. 56, 1116611194. 10.1002/anie.201702531 Foster J. A. Parker R. M. Belenguer A. M. Kishi N. Sutton S. Abell C. (2015). Differentially Addressable Cavities within Metal-Organic Cage-Cross-Linked Polymeric Hydrogels. J. Am. Chem. Soc. 137, 97229729. 10.1021/jacs.5b05507 Gil-Ramírez G. Leigh D. A. Stephens A. J. (2015). Catenanes: Fifty Years of Molecular Links. Angew. Chem. Int. Ed. 54, 61106150. 10.1002/anie.201411619 Glaser J. A. (2015). Continuous Chemical Production Processes. Clean. Techn Environ. Pol. 17, 309316. 10.1007/s10098-015-0903-3 Gong C. Zhang J. Zeng X. Xie J. (2016). Highly Effective Synthesis of a Cobalt(ii) Metal-Organic Coordination Polymer by Using Continuous Flow Chemistry. Dalton Trans. 46, 2528. 10.1039/c6dt04000d Greenaway R. L. Jelfs K. E. (2020). High‐Throughput Approaches for the Discovery of Supramolecular Organic Cages. ChemPlusChem 85, 18131823. 10.1002/cplu.202000445 Greenaway R. L. Santolini V. Bennison M. J. Alston B. M. Pugh C. J. Little M. A. (2018). High-throughput Discovery of Organic Cages and Catenanes Using Computational Screening Fused with Robotic Synthesis. Nat. Commun. 9, 2849. 10.1038/s41467-018-05271-9 Greenaway R. L. Santolini V. Pulido A. Little M. A. Alston B. M. Briggs M. E. (2019). From Concept to Crystals via Prediction: Multi‐Component Organic Cage Pots by Social Self‐Sorting. Angew. Chem. Int. Ed. 58, 1627516281. 10.1002/anie.201909237 Han J.-M. Pan J.-L. Lei T. Liu C. Pei J. (2010). Smart Macrocyclic Molecules: Induced Fit and Ultrafast Self-Sorting Inclusion Behavior through Dynamic Covalent Chemistry. Chem. Eur. J. 16, 1385013861. 10.1002/chem.201001606 Hasell T. Cooper A. I. (2016). Porous Organic Cages: Soluble, Modular and Molecular Pores. Nat. Rev. Mater. 1, 16053. 10.1038/natrevmats.2016.53 Headen D. M. García J. R. García A. J. (2018). Parallel Droplet Microfluidics for High Throughput Cell Encapsulation and Synthetic Microgel Generation. Microsyst Nanoeng 4, 17076. 10.1038/micronano.2017.76 Hong S. Rohman M. R. Jia J. Kim Y. Moon D. Kim Y. (2015). Porphyrin Boxes: Rationally Designed Porous Organic Cages. Angew. Chem. Int. Ed. 54, 1324113244. 10.1002/anie.201505531 Huck J. M. Lin L.-C. Berger A. H. Shahrak M. N. Martin R. L. Bhown A. S. (2014). Evaluating Different Classes of Porous Materials for Carbon Capture. Energy Environ. Sci. 7, 41324146. 10.1039/c4ee02636e Jiao L. Seow J. Y. R. Skinner W. S. Wang Z. U. Jiang H.-L. (2019). Metal-organic Frameworks: Structures and Functional Applications. Mater. Today 27, 4368. 10.1016/j.mattod.2018.10.038 Jones C. D. Kershaw Cook L. J. Marquez-Gamez D. Luzyanin K. V. Steed J. W. Slater A. G. (2021). High-Yielding Flow Synthesis of a Macrocyclic Molecular Hinge. J. Am. Chem. Soc. 143, 75537565. 10.1021/jacs.1c02891 Khoeini D. Scott T. F. Neild A. (2021). Microfluidic Enhancement of Self-Assembly Systems. Lab. Chip 21, 16611675. 10.1039/d1lc00038a Kitchin M. Konstas K. Sumby C. J. Czyz M. L. Valente P. Hill M. R. (2015). Continuous Flow Synthesis of a Carbon-Based Molecular Cage Macrocycle via a Three-fold Homocoupling Reaction. Chem. Commun. 51, 1423114234. 10.1039/c5cc05181a König B. Kreitmeier P. Hilgers P. Wirth T. (2013). Flow Chemistry in Undergraduate Organic Chemistry Education. J. Chem. Educ. 90, 934936. 10.1021/ed3006083 Kuijpers K. P. L. Weggemans W. M. A. Verwijlen C. J. A. Noël T. (2021). Flow Chemistry Experiments in the Undergraduate Teaching Laboratory: Synthesis of Diazo Dyes and Disulfides. J. Flow Chem. 11, 712. 10.1007/s41981-020-00118-1 Kuśmierek K. Świątkowski A. (2015). The Influence of Different Agitation Techniques on the Adsorption Kinetics of 4-chlorophenol on Granular Activated Carbon. React. Kinetics, Mech. Catal. 116, 261271. Laybourn A. López-Fernández A. M. Thomas-Hillman I. Katrib J. Lewis W. Dodds C. (2019). Combining Continuous Flow Oscillatory Baffled Reactors and Microwave Heating: Process Intensification and Accelerated Synthesis of Metal-Organic Frameworks. Chem. Eng. J. 356, 170177. 10.1016/j.cej.2018.09.011 Lehn J.-M. (1988). Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices(Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89112. 10.1002/anie.198800891 Leibfarth F. A. Russell M. G. Langley D. M. Seo H. Kelly L. P. Carney D. W. (2018). Continuous-Flow Chemistry in Undergraduate Education: Sustainable Conversion of Reclaimed Vegetable Oil into Biodiesel. J. Chem. Educ. 95, 13711375. 10.1021/acs.jchemed.7b00719 Lin Y. Penna M. Spicer C. D. Higgins S. G. Gelmi A. Kim N. (2021). High-Throughput Peptide Derivatization toward Supramolecular Diversification in Microtiter Plates. ACS Nano 15, 40344044. 10.1021/acsnano.0c05423 Little M. A. Chong S. Y. Schmidtmann M. Hasell T. Cooper A. I. (2014). Guest Control of Structure in Porous Organic Cages. Chem. Commun. 50, 94659468. 10.1039/c4cc04158e Liu Z. Nalluri S. K. M. Stoddart J. F. (2017). Surveying Macrocyclic Chemistry: from Flexible crown Ethers to Rigid Cyclophanes. Chem. Soc. Rev. 46, 24592478. 10.1039/c7cs00185a Lücke D. Dalton T. Ley S. V. Wilson Z. E. (2016). Synthesis of Natural and Unnatural Cyclooligomeric Depsipeptides Enabled by Flow Chemistry. Chem. Eur. J. 22, 42064217. 10.1002/chem.201504457 Marsault E. Peterson M. L. (2011). Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J. Med. Chem. 54, 19612004. 10.1021/jm1012374 Martí-Centelles V. Pandey M. D. Burguete M. I. Luis S. V. (2015). Macrocyclization Reactions: The Importance of Conformational, Configurational, and Template-Induced Preorganization. Chem. Rev. 115, 87368834. 10.1021/acs.chemrev.5b00056 Mcnally A. Prier C. K. Macmillan D. W. C. (2011). Discovery of an α-Amino C-H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science 334, 11141117. 10.1126/science.1213920 Méndez-Ardoy A. Bayón-Fernández A. Yu Z. Abell C. Granja J. R. Montenegro J. (2020). Spatially Controlled Supramolecular Polymerization of Peptide Nanotubes by Microfluidics. Angew. Chem. Int. Ed. Engl. 59, 69026908. 10.1002/anie.202000103 Mennen S. M. Alhambra C. Allen C. L. Barberis M. Berritt S. Brandt T. A. (2019). The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. Org. Process. Res. Dev. 23, 12131242. 10.1021/acs.oprd.9b00140 Morin É. Sosoe J. Raymond M. Amorelli B. Boden R. M. Collins S. K. (2019). Synthesis of a Renewable Macrocyclic Musk: Evaluation of Batch, Microwave, and Continuous Flow Strategies. Org. Process. Res. Dev. 23, 283287. 10.1021/acs.oprd.8b00450 Munn A. S. Dunne P. W. Tang S. V. Y. Lester E. H. (2015). Large-scale Continuous Hydrothermal Production and Activation of ZIF-8. Chem. Commun. 51, 1281112814. 10.1039/c5cc04636j Myers R. M. Fitzpatrick D. E. Turner R. M. Ley S. V. (2014). Flow Chemistry Meets Advanced Functional Materials. Chem. Eur. J. 20, 1234812366. 10.1002/chem.201402801 Nagy K. D. Shen B. Jamison T. F. Jensen K. F. (2012). Mixing and Dispersion in Small-Scale Flow Systems. Org. Process. Res. Dev. 16, 976981. 10.1021/op200349f Newman S. G. Jensen K. F. (2013). The Role of Flow in green Chemistry and Engineering. Green. Chem. 15, 14561472. 10.1039/c3gc40374b Nomura T. He Y. Takahashi K. (1996). Development and Mixing Characteristics of Foldiny Anchor for Round-Bottomed Flask. J. Chem. Eng. Jpn. 29, 134138. 10.1252/jcej.29.134 Numata M. Kozawa T. Nogami R. Tanaka K. Sanada Y. Sakurai K. (2015a). Synchronized Activation of π-Conjugated Molecules toward Self-Assembly: Precisely Controlling the Hysteresis of the Metastable State along Microflow. Bcsj 88, 471479. 10.1246/bcsj.20140365 Numata M. Kozawa T. (2013). Supramolecular Polymerization in Microfluidic Channels: Spatial Control over Multiple Intermolecular Interactions. Chem. Eur. J. 19, 1262912634. 10.1002/chem.201301810 Numata M. Nishino Y. Sanada Y. Sakurai K. (2015b). Creation of Kinetically Stabilized Porphyrin Microfilms through Synchronized Hydrogen-Bonding Interactions in Microflow. Chem. Lett. 44, 861863. 10.1246/cl.150149 Numata M. Sato A. Nogami R. (2015c). Energy-dissipative Self-Assembly Driven in Microflow: A Time-Programmed Self-Organization and Decomposition of Metastable Nanofibers. Chem. Lett. 44, 995997. 10.1246/cl.150292 Ogi S. Fukui T. Jue M. L. Takeuchi M. Sugiyasu K. (2014). Kinetic Control over Pathway Complexity in Supramolecular Polymerization through Modulating the Energy Landscape by Rational Molecular Design. Angew. Chem. Int. Ed. 53, 1436314367. 10.1002/anie.201407302 Okesola B. O. Mata A. (2018). Multicomponent Self-Assembly as a Tool to Harness New Properties from Peptides and Proteins in Material Design. Chem. Soc. Rev. 47, 37213736. 10.1039/c8cs00121a Otto S. Severin K. (2007). Dynamic Combinatorial Libraries for the Development of Synthetic Receptors and Sensors. Creat. Chem. Sensor Syst. 277, 267288. Parker R. M. Zhang J. Zheng Y. Coulston R. J. Smith C. A. Salmon A. R. (2015). Electrostatically Directed Self‐Assembly of Ultrathin Supramolecular Polymer Microcapsules. Adv. Funct. Mater. 25, 40914100. 10.1002/adfm.201501079 Plutschack M. B. Pieber B. Gilmore K. Seeberger P. H. (2017). The Hitchhiker's Guide to Flow Chemistry∥. Chem. Rev. 117 , 1179611893.10.1021/acs.chemrev.7b00183 Porta R. Benaglia M. Puglisi A. (2016). Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Org. Process. Res. Dev. 20, 225. 10.1021/acs.oprd.5b00325 Porwol L. Kowalski D. J. Henson A. Long D. L. Bell N. L. Cronin L. (2020). An Autonomous Chemical Robot Discovers the Rules of Inorganic Coordination Chemistry without Prior Knowledge. Angew. Chem. Int. Ed. 59, 1125611261. 10.1002/anie.202000329 Puigmartí-Luis J. Schaffhauser D. Burg B. R. Dittrich P. S. (2010). A Microfluidic Approach for the Formation of Conductive Nanowires and Hollow Hybrid Structures. Adv. Mater. 22, 22552259. 10.1002/adma.200903428 Reizman B. J. Wang Y.-M. Buchwald S. L. Jensen K. F. (2016). Suzuki-Miyaura Cross-Coupling Optimization Enabled by Automated Feedback. React. Chem. Eng. 1, 658666. 10.1039/c6re00153j Rodríguez-San-Miguel D. Abrishamkar A. Navarro J. A. R. Rodriguez-Trujillo R. Amabilino D. B. Mas-Ballesté R. (2016). Crystalline Fibres of a Covalent Organic Framework through Bottom-Up Microfluidic Synthesis. Chem. Commun. 52, 92129215. 10.1039/c6cc04013f Rowan S. J. Cantrill S. J. Cousins G. R. L. Sanders J. K. M. Stoddart J. F. (2002). Dynamic Covalent Chemistry. Angew. Chem. Int. Ed. 41, 898952. 10.1002/1521-3773(20020315)41:6<898::aid-anie898>3.0.co;2-e Rubio-Martinez M. Avci-Camur C. Thornton A. W. Imaz I. Maspoch D. Hill M. R. (2017). New Synthetic Routes towards MOF Production at Scale. Chem. Soc. Rev. 46, 34533480. 10.1039/c7cs00109f Rubio-Martinez M. Hadley T. D. Batten M. P. Constanti-Carey K. Barton T. Marley D. (2016a). Scalability of Continuous Flow Production of Metal-Organic Frameworks. ChemSusChem 9, 938941. 10.1002/cssc.201501684 Rubio-Martinez M. Imaz I. Domingo N. Abrishamkar A. Mayor T. S. Rossi R. M. (2016b). Freezing the Nonclassical Crystal Growth of a Coordination Polymer Using Controlled Dynamic Gradients. Adv. Mater. 28, 81508155. 10.1002/adma.201506462 Saalfrank R. W. Maid H. Scheurer A. (2008). Supramolecular Coordination Chemistry: The Synergistic Effect of Serendipity and Rational Design. Angew. Chem. Int. Ed. 47, 87948824. 10.1002/anie.200702075 Sagmeister P. Lebl R. Castillo I. Rehrl J. Kruisz J. Sipek M. (2021). Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow**. Angew. Chem. Int. Ed. 60, 81398148. 10.1002/anie.202016007 Seemann A. Panten J. Kirschning A. (2021). Flow Chemistry under Extreme Conditions: Synthesis of Macrocycles with Musklike Olfactoric Properties. J. Org. Chem.86(20):13924-13933. 10.1021/acs.joc.1c00663 Sevim S. Sorrenti A. Franco C. Furukawa S. Pané S. Demello A. J. (2018). Self-assembled Materials and Supramolecular Chemistry within Microfluidic Environments: from Common Thermodynamic States to Non-equilibrium Structures. Chem. Soc. Rev. 47, 37883803. 10.1039/c8cs00025e Shevlin M. (2017). Practical High-Throughput Experimentation for Chemists. ACS Med. Chem. Lett. 8, 601607. 10.1021/acsmedchemlett.7b00165 Singh A. K. Mathew K. Zhuang H. L. Hennig R. G. (2015). Computational Screening of 2D Materials for Photocatalysis. J. Phys. Chem. Lett. 6, 10871098. 10.1021/jz502646d Singh V. Jang S. Vishwakarma N. K. Kim D.-P. (2018). Intensified Synthesis and post-synthetic Modification of Covalent Organic Frameworks Using a Continuous Flow of Microdroplets Technique. NPG Asia Mater. 10, e456. 10.1038/am.2017.209 Song F. Li Z. Jia P. Zhang M. Bo C. Feng G. (2019). Tunable "soft and Stiff", Self-Healing, Recyclable, Thermadapt Shape Memory Biomass Polymers Based on Multiple Hydrogen Bonds and Dynamic Imine Bonds. J. Mater. Chem. A. 7, 1340013410. 10.1039/c9ta03872h Thorne M. F. Simkovic F. Slater A. G. (2019). Production of Monodisperse Polyurea Microcapsules Using Microfluidics. Sci. Rep. 9, 17983. 10.1038/s41598-019-54512-4 Tromans R. A. Carter T. S. Chabanne L. Crump M. P. Li H. Matlock J. V. (2019). A Biomimetic Receptor for Glucose. Nat. Chem 11, 5256. 10.1038/s41557-018-0155-z Vantomme G. Meijer E. W. (2019). The Construction of Supramolecular Systems. Science 363, 13961397. 10.1126/science.aav4677 Ward K. Fan Z. H. (2015). Mixing in Microfluidic Devices and Enhancement Methods. J. Micromech. Microeng. 25, 094001094017. 10.1088/0960-1317/25/9/094001 Weiss R. G. (2014). The Past, Present, and Future of Molecular Gels. What Is the Status of the Field, and where Is it Going? J. Am. Chem. Soc. 136, 75197530. 10.1021/ja503363v White L. J. Wark C. Croucher L. Draper E. R. Hiscock J. R. (2020). High-throughput Characterisation of Supramolecular Gelation Processes Using a Combination of Optical Density, Fluorescence and UV-Vis Absorption Measurements. Chem. Commun. 56, 95579560. 10.1039/d0cc04033a Whitesides G. M. Mathias J. P. Seto C. T. (1991). Molecular Self-Assembly and Nanochemistry: a Chemical Strategy for the Synthesis of Nanostructures. Science 254, 13121319. 10.1126/science.1962191 Whitesides G. M. (2006). The Origins and the Future of Microfluidics. Nature 442, 368373. 10.1038/nature05058 Winpenny R. E. P. (2002). Serendipitous Assembly of Polynuclear Cage Compounds. J. Chem. Soc. Dalton Trans., 110. 10.1039/b107118c Wu A. Isaacs L. (2003). Self-Sorting: The Exception or the Rule? J. Am. Chem. Soc. 125, 48314835. 10.1021/ja028913b Würthner F. (2021). Solvent Effects in Supramolecular Chemistry: Linear Free Energy Relationships for Common Intermolecular Interactions. J. Org. Chem. 10.1021/acs.joc.1c00625 Yang K. Chao S. Zhang F. Pei Y. Pei Z. (2019). Recent Advances in the Development of Rotaxanes and Pseudorotaxanes Based on Pillar[n]arenes: from Construction to Application. Chem. Commun. 55, 1319813210. 10.1039/c9cc07373f Yang L. Tan X. Wang Z. Zhang X. (2015). Supramolecular Polymers: Historical Development, Preparation, Characterization, and Functions. Chem. Rev. 115, 71967239. 10.1021/cr500633b Yu R. Chen L. Lan R. Shen R. Li P. (2020). Computational Screening of Antagonists against the SARS-CoV-2 (COVID-19) Coronavirus by Molecular Docking. Int. J. Antimicrob. Agents 56, 106012. 10.1016/j.ijantimicag.2020.106012 Yu Z. Zhang J. Coulston R. J. Parker R. M. Biedermann F. Liu X. (2015). Supramolecular Hydrogel Microcapsules via Cucurbit[8]uril Host-Guest Interactions with Triggered and UV-Controlled Molecular Permeability. Chem. Sci. 6, 49294933. 10.1039/c5sc01440a Yusov A. Dillon A. M. Ward M. D. (2021). Hydrogen Bonded Frameworks: Smart Materials Used Smartly. Mol. Syst. Des. Eng. 6, 756778. 10.1039/D1ME00055A Zhang B. Zhang J. Liu C. Sang X. Peng L. Ma X. (2015). Solvent Determines the Formation and Properties of Metal-Organic Frameworks. RSC Adv. 5, 3769137696. 10.1039/c5ra02440d Zhang J. Coulston R. J. Jones S. T. Geng J. Scherman O. A. Abell C. (2012). One-step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets. Science 335, 690694. 10.1126/science.1215416 Zhou H.-C. J. Kitagawa S. (2014). Metal-Organic Frameworks (MOFs). Chem. Soc. Rev. 43, 54155418. 10.1039/c4cs90059f Zhou P. He J. Huang L. Yu Z. Su Z. Shi X. (2020). Microfluidic High-Throughput Platforms for Discovery of Novel Materials. Nanomaterials 10, 2514. 10.3390/nano10122514 Zhou Z. Li X. Zare R. N. (2017). Optimizing Chemical Reactions with Deep Reinforcement Learning. ACS Cent. Sci. 3, 13371344. 10.1021/acscentsci.7b00492
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016la8news.com.cn
      www.egnea.com.cn
      www.hdelec.com.cn
      fdnpnp.com.cn
      www.kdrybber.com.cn
      www.lznucb.com.cn
      www.r06.com.cn
      www.qiang1122.com.cn
      qeoiof.com.cn
      www.szcxj5288.com.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p