Front. Chem. Frontiers in Chemistry Front. Chem. 2296-2646 Frontiers Media S.A. 742565 10.3389/fchem.2021.742565 Chemistry Perspective Looking for Options to Sustainably Fixate Nitrogen. Are Molecular Metal Oxides Catalysts a Viable Avenue? González-Cabaleiro et al. N2 Fixation With POMs González-Cabaleiro Rebeca 1 * Thompson Jake A. 2 Vilà-Nadal Laia 2 * Department of Biotechnology, Delft University of Technology, Delft, Netherlands School of Chemistry, University of Glasgow, Glasgow, United Kingdom

Edited by: Jennifer Hiscock, University of Kent, United Kingdom

Reviewed by: Subhamay Pramanik, University of Kansas, United States

Matthew A. Addicoat, Nottingham Trent University, United Kingdom

*Correspondence: Rebeca González-Cabaleiro, r.gonzalezcabaleiro@tudelft.nl; Laia Vilà-Nadal, laia.vila-nadal@chem.gla.ac.uk

This article was submitted to Supramolecular Chemistry, a section of the journal Frontiers in Chemistry

14 09 2021 2021 9 742565 16 07 2021 17 08 2021 Copyright © 2021 González-Cabaleiro, Thompson and Vilà-Nadal. 2021 González-Cabaleiro, Thompson and Vilà-Nadal

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Fast and reliable industrial production of ammonia (NH3) is fundamentally sustaining modern society. Since the early 20th Century, NH3 has been synthesized via the Haber–Bosch process, running at conditions of around 350–500°C and 100–200 times atmospheric pressure (15–20 MPa). Industrial ammonia production is currently the most energy-demanding chemical process worldwide and contributes up to 3% to the global carbon dioxide emissions. Therefore, the development of more energy-efficient pathways for ammonia production is an attractive proposition. Over the past 20 years, scientists have imagined the possibility of developing a milder synthesis of ammonia by mimicking the nitrogenase enzyme, which fixes nitrogen from the air at ambient temperatures and pressures to feed leguminous plants. To do this, we propose the use of highly reconfigurable molecular metal oxides or polyoxometalates (POMs). Our proposal is an informed design of the polyoxometalate after exploring the catabolic pathways that cyanobacteria use to fix N2 in nature, which are a different route than the one followed by the Haber–Bosch process. Meanwhile, the industrial process is a “brute force” system towards breaking the triple bond N-N, needing high pressure and high temperature to increase the rate of reaction, nature first links the protons to the N2 to later easier breaking of the triple bond at environmental temperature and pressure. Computational chemistry data on the stability of different polyoxometalates will guide us to decide the best design for a catalyst. Testing different functionalized molecular metal oxides as ammonia catalysts laboratory conditions will allow for a sustainable reactor design of small-scale production.

nitrogen fixation polyoxomatalate nitrogenase compuatational chemistry metabolic modelling Haber Bosch catalyst—N

香京julia种子在线播放

    1. <form id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></form>
      <address id=HxFbUHhlv><nobr id=HxFbUHhlv><nobr id=HxFbUHhlv></nobr></nobr></address>

      Introduction

      Multicellular organisms are unable to metabolize atmospheric N2 because of its high bond enthalpy and zero dipole moment. Instead, they source nitrogen from fixed resources such as nitrate and ammonia (Sadeghi et al., 2015). The process known as biological nitrogen fixation in which N2 is converted into assimilable forms is carried out by a specialized group of microorganisms that possess nitrogenases which are enzymes able to reduce atmospheric nitrogen into ammonia (NH3). At the start of the last century the only solid natural forms of nitrogen to enrich the soil were Peruvian guano and Chilean nitrate but in 1913, the Haber–Bosch process changed the course of the 20th Century allowing mass production of ammonia. In fact, ammonia production is the base of agriculture supporting between a third and a half of human food intake. Despite technical improvements for industrial NH3 production, it still requires both high temperature (350–500°C) and high pressure (15–20 MPa) consuming more than 1% of world-wide energy production and being one of the main world-wide producers of carbon dioxide and nitrous oxide emissions, both tagged as green-house gases (Foster et al., 2018). We can reduce travelling to mitigate climate change, but definitely, we cannot stop eating (Erisman et al., 2008), and massive industrial ammonia production of NH3 is fundamental in sustaining the human population (50% of the nitrogen found in human tissues originates from the Haber–Bosch process). However, the abuse of ammonia fertilizers, of which only about 50% are efficiently absorbed in soils, has led to an accumulation of nitrogen in natural waterbodies with negative consequences (such as limitation of natural diversity and proliferation of toxic algae) (Fields, 2004). Therefore, sustainable nitrogen fixation has remained as a critical area of research at the frontiers of inorganic, organometallic, coordination chemistry, and biochemistry for decades. Finding efficient alternatives to the Haber–Bosch process is a challenge because of the extraordinarily complicated characteristics of the reaction. In fact, ammonia synthesis is currently the most well-characterized heterogeneous catalytic reaction.

      The overall reaction of ammonia synthesis from N2 is accessible thermodynamically at standard conditions (ΔG° = −16.4 kJ mol−1) (Lide, 2005), which indicates that this reaction could occur without external energy input at low temperatures. However, it does not take place spontaneously (Jia and Quadrelli, 2014). Kinetics, and endergonic production of intermediates, dictate operation at ca 350–500°C and elevated pressures are needed to achieve acceptable process yields at an industrial level (Hargreaves et al., 2020). The detailed thermodynamic analysis presented in (Jia and Quadrelli, 2014) also shows that although the overall reaction of fixing N2 is exergonic, the kinetic routes that lead to them demand high amounts of energy. Indeed, diazene and hydrazine are intermediates of the overall reaction with very high enthalpies of formation (Van Der Ham et al., 2014).

      Given its global impact, the fundamentals of the Haber–Bosch process have hardly changed at all over the past 100 years. It still relies on an iron catalyst with potassium oxide and alumina acting as electronic and structural promoters, respectively (Galloway et al., 2013). In the early 1900s, Alwin Mittasch conducted a large-scale screening experiment to find a substitute for Haber’s osmium- and uranium-based catalysts (Hargreaves, 2014). Approximately 3,000 catalyst compositions were evaluated in over 20,000 small-scale tests. He developed a Fe-based catalyst, which is still used today, but in the 1970s ruthenium (Ru) was acknowledged as the best elemental metal catalyst for industrial ammonia production.

      In recent years, there has been a large amount of research on reducing the temperature and pressure of the Haber-Bosch process using a variety of advanced catalysts such as promoted-iron, supported-ruthenium, and metal nitrides (Humphreys et al., 2021). Today we know that Ru has much higher activity than Fe, at least near thermodynamic equilibrium. However, due to the higher cost of Ru and its shorter catalytic lifetime, promoted Ru catalysts have only recently begun to challenge iron-based catalysts (Ross, 2019). Also, it has been long accepted that d-block metals can bind the abundant dinitrogen molecule, however, only a few are able to catalyze the conversion of dinitrogen to ammonia. Indeed, the main impediment to N2 fixation is primarily of kinetic nature (Jia and Quadrelli, 2014). After carefully analyzing existing thermodynamic experimental data, Borden provided an insightful explanation to the energetics of bonding H2 to N2 (Borden, 2017). The study showed how the difficulty associated to N2 fixation, is only partly due to the strength of one of the three N−N π bond that is broken in this reaction. In fact, the relative weakness of the intermediate sp2 N−H σ bonds in E-HN = NH obtained in this reaction plays a slightly larger role which allows us to conclude that reactivity of the intermediates rely on a delicate balance between the bonds that are formed and broken towards the yielding of the final product (Nicolaides and Borden, 1991).

      Under the current global scenario of environmental emergency, it is urgent to find sustainable solutions to fulfil the ammonia demands of the human population. Novel design of catalysts is required to efficiently produce NH3 at low temperatures and with less energy requirements. Ideally, these catalyzers could drive N2 fixation at small scale, tailoring the operation for specific demands and contributing to the reduction of synthetic NH3 accumulation in the environment. But in developing these alternative solutions, it is necessary to design new catalysts which can follow alternative pathways that substitute the endergonic dissociative mechanism used in the Haber–Bosch process, and reduce the industrial energy spilt accounted for NH3 synthetic production.

      Nitrogenases

      Nature, contrary to chemists, has found a way to use the abundant N2 gas effectively at room temperature and neutral pH by using natural catalysts, enzymes, called nitrogenases. The nitrogenase can channel electrons and energy from different sources in anaerobic and aerobic conditions to form bioavailable NH3 breaking the triple bond of the (almost inert) molecules of N2 gas. Three homologous nitrogenases have been reported, distinguished by their metal-centred catalytic cofactors: molybdenum (MoFe), iron (FeFe) and vanadium (VFe) (Hu and Ribbe, 2015). Although the three homologous enzymes have been associated with specific activities, our understanding of the nitrogenase metal cofactors and their role is still incomplete (Rutledge and Tezcan, 2020).

      The more ancient, abundant, efficient, and studied nitrogenase is the molybdenum containing system (Curatti et al., 2006). This nitrogenase is composed of two proteins, an homodimeric iron (FeP) protein (∼66 kDa) and the α2β2 heterotetrameric molybdenum-iron (MoFe) protein (∼240 kDa, with two complex metalloclusters). The FeP protein contains an ATP-binding site within each subunit interface of the protein, and it oversees the shuttle of eight electrons towards the reduction of 1 mole of N2. Concomitantly, 1 mole of H2 is produced per mole of N2 fixed. The explanation for this H2 reduction and apparent waste of equivalent power remains elusive but considering that H2 reduction by nitrogenase occurs only in the presence of N2, it has been proposed that production of H2 activates the FeMo-protein. Together, the oxidation of the low-potential [4Fe-4S]1+ cluster requires activation, and this happens when the hydrolysis of ATP takes place (Barsukova-Stuckart et al., 2012). Commonly, the ATP requirement of nitrogenase is evaluated as 2 moles of ATP are hydrolyzed into ADP and inorganic phosphate (Pi) per mole of electrons transferred, although more efficient ratios (down to 1 mole of ATP consumed per mole of electron) have been reported (Tan et al., 2016; Poudel et al., 2018). With this, the overall stoichiometry of natural N2 fixation remains as presented in Eq. 1. N 2 + 8  H + + 8 e ¯ + nATP 2 NH 3 + H 2 + nADP + nP i

      The detailed explanation for the necessary loss of a cell’s energy currency (ATP) associated with nitrogenase activity remains elusive (Rabo and Schoonover, 2001; Milton et al., 2017) but it is assumed to be essential to reduce the activation barriers associated to the catalysis of the intermediates that lead to the overall reaction (Van Der Ham et al., 2014) and to activate the transfer of electrons (Rutledge and Tezcan, 2020). Also, the electron transfer to the substrate in nitrogenase seems to follow the description drawn in 1978 by Thorneley and colleagues (Thorneley et al., 1978), but the delicate and precise donation of electrons, protons and energy is not fully deciphered yet. Meanwhile, this optimized coordinated mechanism plays a fundamental role in maintaining the high efficiency of the non-selective nitrogenase enzyme (Kang et al., 2021).

      After the donation of electrons, the [4Fe-4S]1+ cluster must be reduced again. This can happen by subsequent reduction by flavodoxin in aerobic or facultative anaerobic organisms, or by ferredoxin (more sensitive to O2 presence) in anaerobic ones. Phylogenetic analyses suggested the use of flavodoxin as strategy for diversification of nitrogenases in aerobic environments (Boyd et al., 2015). The electrons that feed flavodoxin and/or ferredoxin come directly from pyruvate or H2 oxidation (mostly in anaerobic organisms) or NAD(P)H electron carriers (aerobic, facultative anaerobes, and anoxygenic phototrophs) (Poudel et al., 2018). Indeed, the reduction of flavodoxin or ferredoxin starts the cycle towards N2 fixation again.

      Although some research efforts have been trying to take advantage of the high efficiency of nitrogenase using the two-protein mechanism to directly catalyse N2 fixation (Harris et al., 2018), the high efficiency of electrons donated per mole of N2 fixated by nitrogen-fixing bacteria (8 electrons per mole of NH3 produced), has not been achieved by any in vitro system using the MoFe protein, the nitrogenase enzyme or any inorganic catalysts (Table 1). Engineering of nitrogenase in eukaryotic cells is another promising avenue but still requires overcoming fundamental challenges (Yang et al., 2014; Vicente and Dean, 2017). Therefore, other efforts have been directed towards the generation of enzymatic fuel cells, which has been approached using methyl viologen as solely electron mediator between a cathodic surface and a nitrogenase (Milton et al., 2017). This is a rather difficult catalysis as it requires an ATP regenerating system to activate the FeP protein, and anaerobic conditions, with remarkably low efficiencies reported. To remove the necessity of an ATP regeneration, bioelectrocatalysis of N2 fixation has been explored using only the MoFe protein of the nitrogenase and cobaltocene as electron mediator (Milton et al., 2016). However, production of NH3 was only reported with the reduction of N3 or NO2 .

      Efficiencies of selected novel catalysts for N2 fixation under ambient temperatures and pressures. RHE = Reversible Hydrogen Electrode / SCE = Standard Calomel Electrode.

      Catalyst Efficiency (mol NH3 e−1) Ammonia rate (μgNH3 mgcat. −1 h−1) Electronic promotor Ref
      Electrocatalysts
       Ru SAs/N–C 0.0493 120.90 −0.20 V vs RHE Geng et al. (2018)
       Pd/C 0.0137 4.50 0.10 V vs RHE Wang et al. (2018)
       MoO3 nanosheets 0.0032 29.43 −0.50 V vs RHE Han et al. (2018)
       Bi4V2O11/CeO2 0.0169 23.21 −0.20 V vs RHE Lv et al. (2018)
       Mo2N nanorod 0.0075 78.40 −0.30 V vs RHE Ren et al. (2018)
       Au/TiO2 0.0135 21.40 −0.20 V vs RHE Shi et al. (2017)
       CN-C500 0.0280 2.90 −0.30 V vs RHE Peng et al. (2020)
      Photocatalysts
       Bi2MoO6 0.0012 22.14 Xe lamp (λ = 500 nm) Hao et al. (2016)
      Synthetic electron donor
       [Co(N2)(tBuPNP) 0.0442 47.22 KC8 Kuriyama et al. (2016)
      MOF-Polyoxometalate Catalysts PMo 12 @MIL-100 (Fe) precursor
        FeMo-based material 0.0912 105.30 −0.40 V vs RHE Wang et al. (2020)
      Enzymatic Fuel Cells
       MoFe / Cobaltocene 0.0583 12.72 −1.25 V vs SCE Milton et al. (2016)
       MoFe / Methyl viologen 0.0440 2.44 −0.85 V vs SCE Milton et al. (2017)

      Few electrochemical systems that produce convincing amounts of NH3 have been reported with the most successful so far being the molybdenum based ones (see, Table 1). However, the poor Faradaic efficiency of these systems due to their low selectivity competing with H2 production, makes them, in many cases more energy demanding than Haber–Bosh process (Van Der Ham et al., 2014). These inefficiencies can only be surpassed by the design of other catalysts able to follow a more feasible reaction pathway at room temperature. The reliability of experimental electrochemical nitrogen reduction reaction (ENRR) experiments was questioned in a recent publication by Choi et al. detailing the complexity that arises from the potential intrusion of airborne contaminants. The reduction of nitrogen oxides (NO, NO2, etc.,) are more thermodynamically favorable than direct ENRR (Choi et al., 2020). Failure to control this has led to contentious Faradaic efficiencies and ammonia yields.

      The design of novel bio-inspired catalysts, containing multiple active sites, has the potential to bypass the obvious limitations associated with exploitation of the complex nitrogenase enzyme, although competitive CO2 and H2 selectivity must be overcome with concomitant effectiveness in N2 adsorption and mechanistic delivery of electrons and protons (Bagger et al., 2021). Other authors, have reported that the use of a bio-inspired catalysts operating via an associative mechanism, like the one described for nitrogenases, are able to fix N2, CO2 and CH4 simultaneously at room temperature (Revilla-López et al., 2020). This can open the avenue for the development of new industrial processes able to combine N2 fixation with carbon homologation.

      Molecular Metal Oxides or Polyoxometalates

      Molecular metal oxides, or polyoxometalates (POMs) offer a route to design efficient ENRR using Earth abundant transition metals. POMs are primarily comprised of early-transition-metal (d-block) elements in their highest oxidation states. A great majority of these structures are anionic and consequently salts with charge balancing cations. In fact, POMs are an archetypal family of self-assembled molecular clusters that display a vast range of physical properties, structural features and sizes (Vilà-Nadal and Cronin, 2017). POMs are mainly formed by Mo6+ and W6+ combined with a main group oxyanion (phosphate, silicate, etc.,). Simply speaking, the synthesis of POM clusters in a “one-pot” solution involves dissolving the [MO4]n− (M = W, Mo) salt in aqueous solution followed by acidification, addition of electrophiles, buffer, additional cations and in some cases a reducing agent (Proust et al., 2012). The solution can then be processed by normal, microwave or hydrothermal heating followed by controlled precipitation to yield the cluster in crystalline form so that the structure of the cluster can be elucidated by single crystal X-ray diffraction (Long et al., 2004).This route has been used in 99% of all cases in POM chemistry and is very convenient to yield complex structures from “one-pot” but suffers a great deal from dependence on initial reaction conditions, reproducibility, and the ability to systematically investigate parameter space to design new cluster architectures. In this respect, during the last decade the field of POMs has been transformed by trapping reactive building blocks and generating an accessible building block library as a function of pH, template, linker heteroatoms, and cation type (Miras et al., 2020). The key aspect here is that the heteroatom mediated assembly of the anionic metal-oxo units to building blocks which then link to clusters, can be used to form new types of materials with novel and unprecedented architectures (Zheng et al., 2018). In fact, POM structures and functionalities make them ideal candidates as model systems for metal-oxide-anchored single atom catalysts (POM-SAC) (Liu and Streb, 2021). POMs are polynuclear metal oxide anions that are molecular analogues of solid-state metal oxides. Diverse fields such as, water oxidation catalysts (Blasco-Ahicart et al., 2018), photocatalysis (Costa-Coquelard et al., 2010), molecular electronics (Busche et al., 2014), quantum computation (Gaita-Ariño et al., 2019), biology (Gumerova and Rompel, 2021) and medicinal science (Lu et al., 2021) have all been impacted by POM chemistry. Current findings demonstrate the feasibility of hydrogen-production using silicotungstic acid, H6[SiW12O4], by coupling low-pressure oxygen production via water oxidation linked to non-electrolyzer catalytic hydrogen production (Rausch et al., 2014). Given their structural diversity and versatility of POM cluster applications, they are ideal candidates to provide further insight into the heterogeneous Haber–Bosch catalyst or the low-energy nitrogenase enzymes that directly make ammonia.

      Discussion

      Ammonia is a viable hydrogen energy vector, and its pre-existing industry, which produces, stores, and trades millions of tons of ammonia annually, means that the infrastructure necessary to jump-start the hydrogen economy already exists. The United Kingdom has developed detailed plans for the next decade to use “green” ammonia as an energy storage material for renewable electricity (The Royal Society, 2020).

      The global cycling of nitrogen through the biosphere depends upon a heavy element: molybdenum and requires bacteria in the fixation of nitrogen (Hille, 2002). However, when extensively starved nitrogen-fixating bacteria A. Viinelandi were grown in a medium that lacked molybdate but that contained tungstate, A. vinelandii synthesized the regular storage protein but with tungstate. This is perhaps not surprising since tungsten, lies below molybdenum in the d-block, and is consequently expected to feature chemical properties related to those of molybdenum. Recent work indicated that molybdenum and tungsten-based enzymes are incredibly ancient and their enzymatic role and functionality has been preserved (Vitousek et al., 2002). It is thought that in the reducing environment of the primordial world tungsten-enzymes were favoured. In those days, oxygen atom transfer reactions were more challenging than in our oxic modern world, with its preference for molybdenum-enzymes (Schemberg et al., 2007). By deepening our understanding of the microbial populations that cycle nitrogen, we can find opportunities to deliver more efficient bioengineering solutions. To date, no one has systematically explored the new biotechnologies for nitrogen removal that can emerge from this new knowledge because a purely empirical exploration would require significant investigation. To achieve low-temperature, cost-effective and efficient electrochemical ammonia synthesis requires a multidisciplinary approach able to characterise natural biocatalysts (nitrogenases) that efficiently catalyse N2 reduction, as well as develop heterogeneous (molecular) catalytic systems informed by current computational theory developments in the area that can direct efficiently experimental investigation (Foster et al., 2018).

      We will start by looking into transition metal substituted lacunary Keggin anions, as shown in Figure 1. Such structures are derivatives from the parent anion [XM12O40]n−, where X is the heteroatom (most commonly are P5+, Si4+, or B3+), and M = W, Mo, inspired by recent work in the area, (Lin et al., 2020) which investigated the Gibbs free energy change for the reductive adsorption of *N2 and *H on four Keggin-POM-supported Ru single atom electrocatalysts. The phosphorus-templated tungstate- and molybdate-Keggin clusters presented high nitrogen-binding selectivity, whereas the silicon-templated analogues prefer hydrogen binding. Our aim is to explore the functionalization of molecular dinitrogen and its catalytic conversion in POMs by combining our expertise in inorganic chemistry with exploring the catalytic conversion d-block metals. This will be our theoretical model structure, bearing in mind that the pH increases the Mo- and W-based Keggin ions gradually disintegrate (Kondinski and Parac-Vogt, 2018). Computational chemistry will help us to describe the intermediates of bioinspired reaction pathways. These results will complement in-depth metabolic analyses of highly efficient nitrogenases at ambient temperature and pressure. We will work closely with experimentalists in the area that will help us to translate our theoretical results into effective experimental N2 reduction catalysis.

      Polyhedral (top-left) representation of mono-substituted heteropolyanion. The nitrogen molecule adsorbs onto the transition metal site through the η1 (end-on) binding mode. The schematic depiction (top-right) shows the mono-substituted heteropolyanion in the nitrogen-bound state. Below this, a schematic depiction of the associative mechanisms for nitrogen reduction in which the N-N bond is cleaved simultaneously with the release of ammonia. The associative mechanism can proceed via two separate pathways—“alternating” and “distal” which invoke distinctly different intermediates. Colours corresponding to addenda metal = Cyan; substituted metal = yellow; heteroatom = Pink; O = red; N = dark blue; and H = white.

      Data Availability Statement

      The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

      Author Contributions

      LV-N conceived the idea, designed the project and together with RG-C coordinated the efforts of the research team. LV-N and RG-C co-wrote the paper with input from JAT.

      Funding

      Financial support for this work was provided by University of Glasgow and the Engineering and Physical Sciences Research Council Grants (EP/S030603/1; EP/R513222/1; EP/T517896/1), Royal Society of Chemistry RSC Hardship Grant (Covid-19). We also thank the University of Glasgow Early Career Development Programme (ECDP) for support.

      Conflict of Interest

      The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

      Publisher’s Note

      All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

      The authors acknowledge Justin Hargreaves from the School of Chemistry at the University of Glasgow for useful ongoing discussions in this project and proof reading the manuscript. We acknowledge Cindy Smith from the School of Engineering at the University of Glasgow for ongoing discussions on environmental controls of the microorganisms driving the nitrogen cycle.

      References Bagger A. Wan H. Stephens I. E. L. Rossmeisl J. (2021). Role of Catalyst in Controlling N2 Reduction Selectivity: A Unified View of Nitrogenase and Solid Electrodes. ACS Catal. 11, 65966601. 10.1021/acscatal.1c01128 Barsukova-Stuckart M. Izarova N. V. Barrett R. A. Wang Z. van Tol J. Kroto H. W. (2012). Polyoxopalladates Encapsulating 8-Coordinated Metal Ions, [MO8PdII12L8]n− (M = Sc3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Lu3+; L = PhAsO32-, PhPO32-, SeO32-). Inorg. Chem. 51, 1321413228. 10.1021/ic301537n Blasco-Ahicart M. Soriano-López J. Carbó J. J. Poblet J. M. Galan-Mascaros J. R. (2018). Polyoxometalate Electrocatalysts Based on Earth-Abundant Metals for Efficient Water Oxidation in Acidic media. Nat. Chem 10, 2430. 10.1038/NCHEM.2874 Borden W. T. (2017). Why Are Addition Reactions to N2 Thermodynamically Unfavorable? J. Phys. Chem. A. 121, 11401144. 10.1021/acs.jpca.6b11728 Boyd E. S. Costas A. M. G. Hamilton T. L. Mus F. Peters J. W. (2015). Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism. J. Bacteriol. 197, 16901699. 10.1128/JB.02611-14 Busche C. Vilà-Nadal L. Yan J. Miras H. N. Long D.-L. Georgiev V. P. (2014). Design and Fabrication of Memory Devices Based on Nanoscale Polyoxometalate Clusters. Nature 515, 545549. 10.1038/nature13951 Choi J. Suryanto B. H. R. Wang D. Du H.-L. Hodgetts R. Y. Ferrero Vallana F. M. (2020). Identification and Elimination of False Positives in Electrochemical Nitrogen Reduction Studies. Nat. Commun. 11, 110. 10.1038/s41467-020-19130-z Costa-Coquelard C. Sorgues S. Ruhlmann L. (2010). Photocatalysis with Polyoxometalates Associated to Porphyrins under Visible Light: An Application of Charge Transfer in Electrostatic Complexes. J. Phys. Chem. A. 114, 63946400. 10.1021/jp101261n Curatti L. Ludden P. W. Rubio L. M. (2006). NifB-dependent In Vitro Synthesis of the Iron-Molybdenum Cofactor of Nitrogenase. Proc. Natl. Acad. Sci. 103, 52975301. 10.1073/pnas.0601115103 Erisman J. W. Sutton M. A. Galloway J. Klimont Z. Winiwarter W. (2008). How a century of Ammonia Synthesis Changed the World. Nat. Geosci 1, 636639. 10.1038/ngeo325 Fields S. (2004). Global Nitrogen: Cycling Out of Control. Environ. Health Perspect. 112, 556563. 10.1289/ehp.112-a556 Foster S. L. Bakovic S. I. P. Duda R. D. Maheshwari S. Milton R. D. Minteer S. D. (2018). Catalysts for Nitrogen Reduction to Ammonia. Nat. Catal. 1, 490500. 10.1038/s41929-018-0092-7 Gaita-Ariño A. Luis F. Hill S. Coronado E. (2019). Molecular Spins for Quantum Computation. Nat. Chem. 11, 301309. 10.1038/s41557-019-0232-y Galloway J. N. Leach A. M. Bleeker A. Erisman J. W. (2013). A Chronology of Human Understanding of the Nitrogen Cycle. Phil. Trans. R. Soc. B 368, 20130120. 10.1098/rstb.2013.0120 Geng Z. Liu Y. Kong X. Li P. Li K. Liu Z. (2018). Achieving a Record-High Yield Rate of 120.9 μgNH3 mgcat.−1 H−1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts. Adv. Mater. 30, 18034981803507. 10.1002/adma.201803498 Gumerova N. I. Rompel A. (2021). Interweaving Disciplines to Advance Chemistry: Applying Polyoxometalates in Biology. Inorg. Chem. 60, 61096114. 10.1021/acs.inorgchem.1c00125 Han J. Ji X. Ren X. Cui G. Li L. Xie F. (2018). MoO3 Nanosheets for Efficient Electrocatalytic N2 Fixation to NH3. J. Mater. Chem. A. 6, 1297412977. 10.1039/c8ta03974g Hao Y. Dong X. Zhai S. Ma H. Wang X. Zhang X. (2016). Hydrogenated Bismuth Molybdate Nanoframe for Efficient Sunlight-Driven Nitrogen Fixation from Air. Chem. Eur. J. 22, 1872218728. 10.1002/chem.201604510 Hargreaves J. S. J. Chung Y.-M. Ahn W.-S. Hisatomi T. Domen K. Kung M. C. (2020). Minimizing Energy Demand and Environmental Impact for Sustainable NH3 and H2O2 Production-A Perspective on Contributions from thermal, Electro-, and Photo-Catalysis. Appl. Catal. A: Gen. 594, 117419. 10.1016/j.apcata.2020.117419 Hargreaves J. S. J. (2014). Nitrides as Ammonia Synthesis Catalysts and as Potential Nitrogen Transfer Reagents. Appl. Petrochem Res. 4, 310. 10.1007/s13203-014-0049-y Harris D. F. Lukoyanov D. A. Shaw S. Compton P. Tokmina-Lukaszewska M. Bothner B. (2018). Mechanism of N2Reduction Catalyzed by Fe-Nitrogenase Involves Reductive Elimination of H2. Biochemistry 57, 701710. 10.1021/acs.biochem.7b01142 Hille R. (2002). Molybdenum and Tungsten in Biology. Trends Biochem. Sci. 27, 360367. 10.1016/S0968-0004(02)02107-2 Hu Y. Ribbe M. W. (2015). Nitrogenase and Homologs. J. Biol. Inorg. Chem. 20, 435445. 10.1007/s00775-014-1225-3 Humphreys J. Lan R. Tao S. (2021). Development and Recent Progress on Ammonia Synthesis Catalysts for Haber-Bosch Process. Adv. Energ. Sustain. Res. 2, 2000043. 10.1002/aesr.202000043 Jia H.-P. Quadrelli E. A. (2014). Mechanistic Aspects of Dinitrogen Cleavage and Hydrogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen. Chem. Soc. Rev. 43, 547564. 10.1039/c3cs60206k Kang W. Lee C. C. Jasniewski A. J. Ribbe M. W. Hu Y. (2021). Response to Comment on "Structural Evidence for a Dynamic Metallocofactor during N2 Reduction by Mo-Nitrogenase". Science 371, eabe58561385. 10.1126/science.abe5856 Kondinski A. Parac-Vogt T. N. (2018). Keggin Structure, Quō Vādis? Front. Chem. 6, 17. 10.3389/fchem.2018.00346 Kuriyama S. Arashiba K. Tanaka H. Matsuo Y. Nakajima K. Yoshizawa K. (2016). Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands. Angew. Chem. 128, 1450314507. 10.1002/ange.201606090 Lide D. R. (2005). CRC Handbook of Chemistry and Physics: A Ready-Reference of Chemical and Physical Data, 85th ed Edited by David R. Lide. Boca Raton, FL: CRC Press LLC, 23132314. Lin L. Gao L. Xie K. Jiang R. Lin S. (2020). Ru-polyoxometalate as a Single-Atom Electrocatalyst for N2 Reduction to NH3 with High Selectivity at Applied Voltage: A Perspective from DFT Studies. Phys. Chem. Chem. Phys. 22, 72347240. 10.1039/d0cp00698j Liu R. Streb C. (2021). Polyoxometalate‐Single Atom Catalysts (POM‐SACs) in Energy Research and Catalysis. Adv. Energ. Mater. 11, 2101120. 10.1002/aenm.202101120 Long D.-L. Kögerler P. Cronin L. (2004). Old Clusters with New Tricks: Engineering S⋅⋅⋅S Interactions and Novel Physical Properties in Sulfite-Based Dawson Clusters. Angew. Chem. Int. Ed. 43, 18171820. 10.1002/anie.200352896 Lu F. Wang M. Li N. Tang B. (2021). Polyoxometalate‐Based Nanomaterials toward Efficient Cancer Diagnosis and Therapy. Chem. Eur. J. 27, 64226434. 10.1002/chem.202004500 Lv C. Yan C. Chen G. Ding Y. Sun J. Zhou Y. (2018). An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions. Angew. Chem. Int. Ed. Engl. 57, 60736076. 10.1002/adma.20180349810.1002/anie.201801538 Milton R. D. Abdellaoui S. Khadka N. Dean D. R. Leech D. Seefeldt L. C. (2016). Nitrogenase Bioelectrocatalysis: Heterogeneous Ammonia and Hydrogen Production by MoFe Protein. Energy Environ. Sci. 9, 25502554. 10.1039/c6ee01432a Milton R. D. Cai R. Abdellaoui S. Leech D. De Lacey A. L. Pita M. (2017). Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H2 /N2 Fuel Cell. Angew. Chem. Int. Ed. 56, 26802683. 10.1002/anie.201612500 Miras H. N. Mathis C. Xuan W. Long D.-L. Pow R. Cronin L. (2020). Spontaneous Formation of Autocatalytic Sets with Self-Replicating Inorganic Metal Oxide Clusters. Proc. Natl. Acad. Sci. USA 117, 1069910705. 10.1073/pnas.1921536117 Nicolaides A. Borden W. T. (1991). Ab Initio calculations of the Relative Strengths of the .Pi. Bonds in Acetylene and Ethylene and of Their Effect on the Relative Energies of .pi.-bond Addition Reactions. J. Am. Chem. Soc. 113, 67506755. 10.1021/ja00018a005 Peng G. Wu J. Wang M. Niklas J. Zhou H. Liu C. (2020). Nitrogen-Defective Polymeric Carbon Nitride Nanolayer Enabled Efficient Electrocatalytic Nitrogen Reduction with High Faradaic Efficiency. Nano Lett. 20, 28792885. 10.1021/acs.nanolett.0c00698 Poudel S. Colman D. R. Fixen K. R. Ledbetter R. N. Zheng Y. Pence N. (2018). Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds. J. Bacteriol. 200, 119. 10.1128/JB.00757-17 Proust A. Matt B. Villanneau R. Guillemot G. Gouzerh P. Izzet G. (2012). Functionalization and post-functionalization: a Step towards Polyoxometalate-Based Materials. Chem. Soc. Rev. 41, 76057622. 10.1039/c2cs35119f Rabo J. a. Schoonover M. W. (2001). Early Discoveries in Zeolite Chemistry and Catalysis at Union Carbide, and Follow-Up in Industrial Catalysis. Appl. Catal. A: Gen. 222, 261275. 10.1016/S0926-860X(01)00840-7 Rausch B. Symes M. D. Chisholm G. Cronin L. (2014). Decoupled Catalytic Hydrogen Evolution from a Molecular Metal Oxide Redox Mediator in Water Splitting. Science 345, 13261330. 10.1126/science.1257443345 Ren X. Cui G. Chen L. Xie F. Wei Q. Tian Z. (2018). Electrochemical N2fixation to NH3under Ambient Conditions: Mo2N Nanorod as a Highly Efficient and Selective Catalyst. Chem. Commun. 54, 84748477. 10.1039/c8cc03627f Revilla-López G. Sans J. Casanovas J. Bertran O. Puiggalí J. Turon P. (2020). Analysis of Nitrogen Fixation by a Catalyst Capable of Transforming N2, CO2 and CH4 into Amino Acids under Mild Reactions Conditions. Appl. Catal. A: Gen. 596, 117526. 10.1016/j.apcata.2020.117526 Ross J. R. H . (2019, An Introduction to Heterogeneous Catalysis and its Development through the Centuries-Chemistry in Two Dimensions, 3, 38). 10.1016/b978-0-444-63474-0.00001-1 Rutledge H. L. Tezcan F. A. (2020). Electron Transfer in Nitrogenase. Chem. Rev. 120, 51585193. 10.1021/acs.chemrev.9b00663 Sadeghi O. Zakharov L. N. Nyman M. (2015). Aqueous Formation and Manipulation of the Iron-Oxo Keggin Ion. Science 347, 13591362. 10.1126/science.aaa4620 Schemberg J. Schneider K. Demmer U. Warkentin E. Müller A. Ermler U. (2007). Towards Biological Supramolecular Chemistry: A Variety of Pocket-Templated, Individual Metal Oxide Cluster Nucleations in the Cavity of a Mo/W-Storage Protein. Angew. Chem. Int. Ed. 46, 24082413. 10.1002/anie.200604858 Shi M.-M. Bao D. Wulan B.-R. Li Y.-H. Zhang Y.-F. Yan J.-M. (2017). Au Sub-nanoclusters on TiO2toward Highly Efficient and Selective Electrocatalyst for N2Conversion to NH3at Ambient Conditions. Adv. Mater. 29, 16065501606557. 10.1002/adma.201606550 Tan M. L. Perrin B. S. Niu S. Huang Q. Ichiye T. (2016). Protein dynamics and the all‐ferrous [ F e 4 S 4 ] cluster in the nitrogenase iron protein. Protein Sci. 25, 1218. 10.1002/pro.2772 The Royal Society (2020). Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store. London: Policy Briefing. Thorneley R. N. F. Eady R. R. Lowe D. J. (1978). Biological Nitrogen Fixation by Way of an Enzyme-Bound Dinitrogen-Hydride Intermediate. Nature 272, 557558. 10.1038/272557a0 Van Der Ham C. J. M. Koper M. T. M. Hetterscheid D. G. H. (2014). Challenges in Reduction of Dinitrogen by Proton and Electron Transfer. Chem. Soc. Rev. 43, 51835191. 10.1039/c4cs00085d Vicente E. J. Dean D. R. (2017). Keeping the Nitrogen-Fixation Dream Alive. Proc. Natl. Acad. Sci. USA 114, 30093011. 10.1073/pnas.1701560114 Vilà-Nadal L. Cronin L. (2017). Design and Synthesis of Polyoxometalate-Framework Materials from Cluster Precursors. Nat. Rev. Mater. 2. 10.1038/natrevmats.2017.54 Vitousek P. M. Cassman K. Cleveland C. Crews T. Christopher B. Grimm N. B. (2002). Towards an Ecological Understanding of Biological Nitrogen Fixation Rastetter and Janet I . Sprent Published By : Springer Stable URL . Biogeochemistry 57, 145. 10.1007/978-94-017-3405-9_1 Wang J. Yu L. Hu L. Chen G. Xin H. Feng X. (2018). Ambient Ammonia Synthesis via Palladium-Catalyzed Electrohydrogenation of Dinitrogen at Low Overpotential. Nat. Commun. 9. 10.1038/s41467-018-04213-9 Wang X. Feng Z. Xiao B. Zhao J. Ma H. Tian Y. (2020). Polyoxometalate-based Metal-Organic Framework-Derived Bimetallic Hybrid Materials for Upgraded Electrochemical Reduction of Nitrogen. Green. Chem. 22, 61576169. 10.1039/d0gc01149e Yang J. Xie X. Wang X. Dixon R. Wang Y.-P. (2014). Reconstruction and Minimal Gene Requirements for the Alternative Iron-Only Nitrogenase in Escherichia coli . Proc. Natl. Acad. Sci. 111, E3718E3725. 10.1073/pnas.1411185111 Zheng Q. Vilà-Nadal L. Lang Z. Chen J.-J. Long D.-L. Mathieson J. S. (2018). Self-Sorting of Heteroanions in the Assembly of Cross-Shaped Polyoxometalate Clusters. J. Am. Chem. Soc. 140, 25952601. 10.1021/jacs.7b11982
      ‘Oh, my dear Thomas, you haven’t heard the terrible news then?’ she said. ‘I thought you would be sure to have seen it placarded somewhere. Alice went straight to her room, and I haven’t seen her since, though I repeatedly knocked at the door, which she has locked on the inside, and I’m sure it’s most unnatural of her not to let her own mother comfort her. It all happened in a moment: I have always said those great motor-cars shouldn’t be allowed to career about the streets, especially when they are all paved with cobbles as they are at Easton Haven, which are{331} so slippery when it’s wet. He slipped, and it went over him in a moment.’ My thanks were few and awkward, for there still hung to the missive a basting thread, and it was as warm as a nestling bird. I bent low--everybody was emotional in those days--kissed the fragrant thing, thrust it into my bosom, and blushed worse than Camille. "What, the Corner House victim? Is that really a fact?" "My dear child, I don't look upon it in that light at all. The child gave our picturesque friend a certain distinction--'My husband is dead, and this is my only child,' and all that sort of thing. It pays in society." leave them on the steps of a foundling asylum in order to insure [See larger version] Interoffice guff says you're planning definite moves on your own, J. O., and against some opposition. Is the Colonel so poor or so grasping—or what? Albert could not speak, for he felt as if his brains and teeth were rattling about inside his head. The rest of[Pg 188] the family hunched together by the door, the boys gaping idiotically, the girls in tears. "Now you're married." The host was called in, and unlocked a drawer in which they were deposited. The galleyman, with visible reluctance, arrayed himself in the garments, and he was observed to shudder more than once during the investiture of the dead man's apparel. HoME香京julia种子在线播放 ENTER NUMBET 0016www.fpchain.com.cn
      lhdyf.com.cn
      ikrizq.com.cn
      jawcdn.com.cn
      supplyx.com.cn
      wcchain.com.cn
      u8cbi.com.cn
      www.moyushot.org.cn
      rpchain.com.cn
      www.trade360.net.cn
      处女被大鸡巴操 强奸乱伦小说图片 俄罗斯美女爱爱图 调教强奸学生 亚洲女的穴 夜来香图片大全 美女性强奸电影 手机版色中阁 男性人体艺术素描图 16p成人 欧美性爱360 电影区 亚洲电影 欧美电影 经典三级 偷拍自拍 动漫电影 乱伦电影 变态另类 全部电 类似狠狠鲁的网站 黑吊操白逼图片 韩国黄片种子下载 操逼逼逼逼逼 人妻 小说 p 偷拍10幼女自慰 极品淫水很多 黄色做i爱 日本女人人体电影快播看 大福国小 我爱肏屄美女 mmcrwcom 欧美多人性交图片 肥臀乱伦老头舔阴帝 d09a4343000019c5 西欧人体艺术b xxoo激情短片 未成年人的 插泰国人夭图片 第770弾み1 24p 日本美女性 交动态 eee色播 yantasythunder 操无毛少女屄 亚洲图片你懂的女人 鸡巴插姨娘 特级黄 色大片播 左耳影音先锋 冢本友希全集 日本人体艺术绿色 我爱被舔逼 内射 幼 美阴图 喷水妹子高潮迭起 和后妈 操逼 美女吞鸡巴 鸭个自慰 中国女裸名单 操逼肥臀出水换妻 色站裸体义术 中国行上的漏毛美女叫什么 亚洲妹性交图 欧美美女人裸体人艺照 成人色妹妹直播 WWW_JXCT_COM r日本女人性淫乱 大胆人艺体艺图片 女同接吻av 碰碰哥免费自拍打炮 艳舞写真duppid1 88电影街拍视频 日本自拍做爱qvod 实拍美女性爱组图 少女高清av 浙江真实乱伦迅雷 台湾luanlunxiaoshuo 洛克王国宠物排行榜 皇瑟电影yy频道大全 红孩儿连连看 阴毛摄影 大胆美女写真人体艺术摄影 和风骚三个媳妇在家做爱 性爱办公室高清 18p2p木耳 大波撸影音 大鸡巴插嫩穴小说 一剧不超两个黑人 阿姨诱惑我快播 幼香阁千叶县小学生 少女妇女被狗强奸 曰人体妹妹 十二岁性感幼女 超级乱伦qvod 97爱蜜桃ccc336 日本淫妇阴液 av海量资源999 凤凰影视成仁 辰溪四中艳照门照片 先锋模特裸体展示影片 成人片免费看 自拍百度云 肥白老妇女 女爱人体图片 妈妈一女穴 星野美夏 日本少女dachidu 妹子私处人体图片 yinmindahuitang 舔无毛逼影片快播 田莹疑的裸体照片 三级电影影音先锋02222 妻子被外国老头操 观月雏乃泥鳅 韩国成人偷拍自拍图片 强奸5一9岁幼女小说 汤姆影院av图片 妹妹人艺体图 美女大驱 和女友做爱图片自拍p 绫川まどか在线先锋 那么嫩的逼很少见了 小女孩做爱 处女好逼连连看图图 性感美女在家做爱 近距离抽插骚逼逼 黑屌肏金毛屄 日韩av美少女 看喝尿尿小姐日逼色色色网图片 欧美肛交新视频 美女吃逼逼 av30线上免费 伊人在线三级经典 新视觉影院t6090影院 最新淫色电影网址 天龙影院远古手机版 搞老太影院 插进美女的大屁股里 私人影院加盟费用 www258dd 求一部电影里面有一个二猛哥 深肛交 日本萌妹子人体艺术写真图片 插入屄眼 美女的木奶 中文字幕黄色网址影视先锋 九号女神裸 和骚人妻偷情 和潘晓婷做爱 国模大尺度蜜桃 欧美大逼50p 西西人体成人 李宗瑞继母做爱原图物处理 nianhuawang 男鸡巴的视屏 � 97免费色伦电影 好色网成人 大姨子先锋 淫荡巨乳美女教师妈妈 性nuexiaoshuo WWW36YYYCOM 长春继续给力进屋就操小女儿套干破内射对白淫荡 农夫激情社区 日韩无码bt 欧美美女手掰嫩穴图片 日本援交偷拍自拍 入侵者日本在线播放 亚洲白虎偷拍自拍 常州高见泽日屄 寂寞少妇自卫视频 人体露逼图片 多毛外国老太 变态乱轮手机在线 淫荡妈妈和儿子操逼 伦理片大奶少女 看片神器最新登入地址sqvheqi345com账号群 麻美学姐无头 圣诞老人射小妞和强奸小妞动话片 亚洲AV女老师 先锋影音欧美成人资源 33344iucoom zV天堂电影网 宾馆美女打炮视频 色五月丁香五月magnet 嫂子淫乱小说 张歆艺的老公 吃奶男人视频在线播放 欧美色图男女乱伦 avtt2014ccvom 性插色欲香影院 青青草撸死你青青草 99热久久第一时间 激情套图卡通动漫 幼女裸聊做爱口交 日本女人被强奸乱伦 草榴社区快播 2kkk正在播放兽骑 啊不要人家小穴都湿了 www猎奇影视 A片www245vvcomwwwchnrwhmhzcn 搜索宜春院av wwwsee78co 逼奶鸡巴插 好吊日AV在线视频19gancom 熟女伦乱图片小说 日本免费av无码片在线开苞 鲁大妈撸到爆 裸聊官网 德国熟女xxx 新不夜城论坛首页手机 女虐男网址 男女做爱视频华为网盘 激情午夜天亚洲色图 内裤哥mangent 吉沢明歩制服丝袜WWWHHH710COM 屌逼在线试看 人体艺体阿娇艳照 推荐一个可以免费看片的网站如果被QQ拦截请复制链接在其它浏览器打开xxxyyy5comintr2a2cb551573a2b2e 欧美360精品粉红鲍鱼 教师调教第一页 聚美屋精品图 中韩淫乱群交 俄罗斯撸撸片 把鸡巴插进小姨子的阴道 干干AV成人网 aolasoohpnbcn www84ytom 高清大量潮喷www27dyycom 宝贝开心成人 freefronvideos人母 嫩穴成人网gggg29com 逼着舅妈给我口交肛交彩漫画 欧美色色aV88wwwgangguanscom 老太太操逼自拍视频 777亚洲手机在线播放 有没有夫妻3p小说 色列漫画淫女 午间色站导航 欧美成人处女色大图 童颜巨乳亚洲综合 桃色性欲草 色眯眯射逼 无码中文字幕塞外青楼这是一个 狂日美女老师人妻 爱碰网官网 亚洲图片雅蠛蝶 快播35怎么搜片 2000XXXX电影 新谷露性家庭影院 深深候dvd播放 幼齿用英语怎么说 不雅伦理无需播放器 国外淫荡图片 国外网站幼幼嫩网址 成年人就去色色视频快播 我鲁日日鲁老老老我爱 caoshaonvbi 人体艺术avav 性感性色导航 韩国黄色哥来嫖网站 成人网站美逼 淫荡熟妇自拍 欧美色惰图片 北京空姐透明照 狼堡免费av视频 www776eom 亚洲无码av欧美天堂网男人天堂 欧美激情爆操 a片kk266co 色尼姑成人极速在线视频 国语家庭系列 蒋雯雯 越南伦理 色CC伦理影院手机版 99jbbcom 大鸡巴舅妈 国产偷拍自拍淫荡对话视频 少妇春梦射精 开心激动网 自拍偷牌成人 色桃隐 撸狗网性交视频 淫荡的三位老师 伦理电影wwwqiuxia6commqiuxia6com 怡春院分站 丝袜超短裙露脸迅雷下载 色制服电影院 97超碰好吊色男人 yy6080理论在线宅男日韩福利大全 大嫂丝袜 500人群交手机在线 5sav 偷拍熟女吧 口述我和妹妹的欲望 50p电脑版 wwwavtttcon 3p3com 伦理无码片在线看 欧美成人电影图片岛国性爱伦理电影 先锋影音AV成人欧美 我爱好色 淫电影网 WWW19MMCOM 玛丽罗斯3d同人动画h在线看 动漫女孩裸体 超级丝袜美腿乱伦 1919gogo欣赏 大色逼淫色 www就是撸 激情文学网好骚 A级黄片免费 xedd5com 国内的b是黑的 快播美国成年人片黄 av高跟丝袜视频 上原保奈美巨乳女教师在线观看 校园春色都市激情fefegancom 偷窥自拍XXOO 搜索看马操美女 人本女优视频 日日吧淫淫 人妻巨乳影院 美国女子性爱学校 大肥屁股重口味 啪啪啪啊啊啊不要 操碰 japanfreevideoshome国产 亚州淫荡老熟女人体 伦奸毛片免费在线看 天天影视se 樱桃做爱视频 亚卅av在线视频 x奸小说下载 亚洲色图图片在线 217av天堂网 东方在线撸撸-百度 幼幼丝袜集 灰姑娘的姐姐 青青草在线视频观看对华 86papa路con 亚洲1AV 综合图片2区亚洲 美国美女大逼电影 010插插av成人网站 www色comwww821kxwcom 播乐子成人网免费视频在线观看 大炮撸在线影院 ,www4KkKcom 野花鲁最近30部 wwwCC213wapwww2233ww2download 三客优最新地址 母亲让儿子爽的无码视频 全国黄色片子 欧美色图美国十次 超碰在线直播 性感妖娆操 亚洲肉感熟女色图 a片A毛片管看视频 8vaa褋芯屑 333kk 川岛和津实视频 在线母子乱伦对白 妹妹肥逼五月 亚洲美女自拍 老婆在我面前小说 韩国空姐堪比情趣内衣 干小姐综合 淫妻色五月 添骚穴 WM62COM 23456影视播放器 成人午夜剧场 尼姑福利网 AV区亚洲AV欧美AV512qucomwwwc5508com 经典欧美骚妇 震动棒露出 日韩丝袜美臀巨乳在线 av无限吧看 就去干少妇 色艺无间正面是哪集 校园春色我和老师做爱 漫画夜色 天海丽白色吊带 黄色淫荡性虐小说 午夜高清播放器 文20岁女性荫道口图片 热国产热无码热有码 2015小明发布看看算你色 百度云播影视 美女肏屄屄乱轮小说 家族舔阴AV影片 邪恶在线av有码 父女之交 关于处女破处的三级片 极品护士91在线 欧美虐待女人视频的网站 享受老太太的丝袜 aaazhibuo 8dfvodcom成人 真实自拍足交 群交男女猛插逼 妓女爱爱动态 lin35com是什么网站 abp159 亚洲色图偷拍自拍乱伦熟女抠逼自慰 朝国三级篇 淫三国幻想 免费的av小电影网站 日本阿v视频免费按摩师 av750c0m 黄色片操一下 巨乳少女车震在线观看 操逼 免费 囗述情感一乱伦岳母和女婿 WWW_FAMITSU_COM 偷拍中国少妇在公车被操视频 花也真衣论理电影 大鸡鸡插p洞 新片欧美十八岁美少 进击的巨人神thunderftp 西方美女15p 深圳哪里易找到老女人玩视频 在线成人有声小说 365rrr 女尿图片 我和淫荡的小姨做爱 � 做爱技术体照 淫妇性爱 大学生私拍b 第四射狠狠射小说 色中色成人av社区 和小姨子乱伦肛交 wwwppp62com 俄罗斯巨乳人体艺术 骚逼阿娇 汤芳人体图片大胆 大胆人体艺术bb私处 性感大胸骚货 哪个网站幼女的片多 日本美女本子把 色 五月天 婷婷 快播 美女 美穴艺术 色百合电影导航 大鸡巴用力 孙悟空操美少女战士 狠狠撸美女手掰穴图片 古代女子与兽类交 沙耶香套图 激情成人网区 暴风影音av播放 动漫女孩怎么插第3个 mmmpp44 黑木麻衣无码ed2k 淫荡学姐少妇 乱伦操少女屄 高中性爱故事 骚妹妹爱爱图网 韩国模特剪长发 大鸡巴把我逼日了 中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片中国张柏芝做爱片 大胆女人下体艺术图片 789sss 影音先锋在线国内情侣野外性事自拍普通话对白 群撸图库 闪现君打阿乐 ady 小说 插入表妹嫩穴小说 推荐成人资源 网络播放器 成人台 149大胆人体艺术 大屌图片 骚美女成人av 春暖花开春色性吧 女亭婷五月 我上了同桌的姐姐 恋夜秀场主播自慰视频 yzppp 屄茎 操屄女图 美女鲍鱼大特写 淫乱的日本人妻山口玲子 偷拍射精图 性感美女人体艺木图片 种马小说完本 免费电影院 骑士福利导航导航网站 骚老婆足交 国产性爱一级电影 欧美免费成人花花性都 欧美大肥妞性爱视频 家庭乱伦网站快播 偷拍自拍国产毛片 金发美女也用大吊来开包 缔D杏那 yentiyishu人体艺术ytys WWWUUKKMCOM 女人露奶 � 苍井空露逼 老荡妇高跟丝袜足交 偷偷和女友的朋友做爱迅雷 做爱七十二尺 朱丹人体合成 麻腾由纪妃 帅哥撸播种子图 鸡巴插逼动态图片 羙国十次啦中文 WWW137AVCOM 神斗片欧美版华语 有气质女人人休艺术 由美老师放屁电影 欧美女人肉肏图片 白虎种子快播 国产自拍90后女孩 美女在床上疯狂嫩b 饭岛爱最后之作 幼幼强奸摸奶 色97成人动漫 两性性爱打鸡巴插逼 新视觉影院4080青苹果影院 嗯好爽插死我了 阴口艺术照 李宗瑞电影qvod38 爆操舅母 亚洲色图七七影院 被大鸡巴操菊花 怡红院肿么了 成人极品影院删除 欧美性爱大图色图强奸乱 欧美女子与狗随便性交 苍井空的bt种子无码 熟女乱伦长篇小说 大色虫 兽交幼女影音先锋播放 44aad be0ca93900121f9b 先锋天耗ばさ无码 欧毛毛女三级黄色片图 干女人黑木耳照 日本美女少妇嫩逼人体艺术 sesechangchang 色屄屄网 久久撸app下载 色图色噜 美女鸡巴大奶 好吊日在线视频在线观看 透明丝袜脚偷拍自拍 中山怡红院菜单 wcwwwcom下载 骑嫂子 亚洲大色妣 成人故事365ahnet 丝袜家庭教mp4 幼交肛交 妹妹撸撸大妈 日本毛爽 caoprom超碰在email 关于中国古代偷窥的黄片 第一会所老熟女下载 wwwhuangsecome 狼人干综合新地址HD播放 变态儿子强奸乱伦图 强奸电影名字 2wwwer37com 日本毛片基地一亚洲AVmzddcxcn 暗黑圣经仙桃影院 37tpcocn 持月真由xfplay 好吊日在线视频三级网 我爱背入李丽珍 电影师傅床戏在线观看 96插妹妹sexsex88com 豪放家庭在线播放 桃花宝典极夜著豆瓜网 安卓系统播放神器 美美网丝袜诱惑 人人干全免费视频xulawyercn av无插件一本道 全国色五月 操逼电影小说网 good在线wwwyuyuelvcom www18avmmd 撸波波影视无插件 伊人幼女成人电影 会看射的图片 小明插看看 全裸美女扒开粉嫩b 国人自拍性交网站 萝莉白丝足交本子 七草ちとせ巨乳视频 摇摇晃晃的成人电影 兰桂坊成社人区小说www68kqcom 舔阴论坛 久撸客一撸客色国内外成人激情在线 明星门 欧美大胆嫩肉穴爽大片 www牛逼插 性吧星云 少妇性奴的屁眼 人体艺术大胆mscbaidu1imgcn 最新久久色色成人版 l女同在线 小泽玛利亚高潮图片搜索 女性裸b图 肛交bt种子 最热门有声小说 人间添春色 春色猜谜字 樱井莉亚钢管舞视频 小泽玛利亚直美6p 能用的h网 还能看的h网 bl动漫h网 开心五月激 东京热401 男色女色第四色酒色网 怎么下载黄色小说 黄色小说小栽 和谐图城 乐乐影院 色哥导航 特色导航 依依社区 爱窝窝在线 色狼谷成人 91porn 包要你射电影 色色3A丝袜 丝袜妹妹淫网 爱色导航(荐) 好男人激情影院 坏哥哥 第七色 色久久 人格分裂 急先锋 撸撸射中文网 第一会所综合社区 91影院老师机 东方成人激情 怼莪影院吹潮 老鸭窝伊人无码不卡无码一本道 av女柳晶电影 91天生爱风流作品 深爱激情小说私房婷婷网 擼奶av 567pao 里番3d一家人野外 上原在线电影 水岛津实透明丝袜 1314酒色 网旧网俺也去 0855影院 在线无码私人影院 搜索 国产自拍 神马dy888午夜伦理达达兔 农民工黄晓婷 日韩裸体黑丝御姐 屈臣氏的燕窝面膜怎么样つぼみ晶エリーの早漏チ○ポ强化合宿 老熟女人性视频 影音先锋 三上悠亚ol 妹妹影院福利片 hhhhhhhhsxo 午夜天堂热的国产 强奸剧场 全裸香蕉视频无码 亚欧伦理视频 秋霞为什么给封了 日本在线视频空天使 日韩成人aⅴ在线 日本日屌日屄导航视频 在线福利视频 日本推油无码av magnet 在线免费视频 樱井梨吮东 日本一本道在线无码DVD 日本性感诱惑美女做爱阴道流水视频 日本一级av 汤姆avtom在线视频 台湾佬中文娱乐线20 阿v播播下载 橙色影院 奴隶少女护士cg视频 汤姆在线影院无码 偷拍宾馆 业面紧急生级访问 色和尚有线 厕所偷拍一族 av女l 公交色狼优酷视频 裸体视频AV 人与兽肉肉网 董美香ol 花井美纱链接 magnet 西瓜影音 亚洲 自拍 日韩女优欧美激情偷拍自拍 亚洲成年人免费视频 荷兰免费成人电影 深喉呕吐XXⅩX 操石榴在线视频 天天色成人免费视频 314hu四虎 涩久免费视频在线观看 成人电影迅雷下载 能看见整个奶子的香蕉影院 水菜丽百度影音 gwaz079百度云 噜死你们资源站 主播走光视频合集迅雷下载 thumbzilla jappen 精品Av 古川伊织star598在线 假面女皇vip在线视频播放 国产自拍迷情校园 啪啪啪公寓漫画 日本阿AV 黄色手机电影 欧美在线Av影院 华裔电击女神91在线 亚洲欧美专区 1日本1000部免费视频 开放90后 波多野结衣 东方 影院av 页面升级紧急访问每天正常更新 4438Xchengeren 老炮色 a k福利电影 色欲影视色天天视频 高老庄aV 259LUXU-683 magnet 手机在线电影 国产区 欧美激情人人操网 国产 偷拍 直播 日韩 国内外激情在线视频网给 站长统计一本道人妻 光棍影院被封 紫竹铃取汁 ftp 狂插空姐嫩 xfplay 丈夫面前 穿靴子伪街 XXOO视频在线免费 大香蕉道久在线播放 电棒漏电嗨过头 充气娃能看下毛和洞吗 夫妻牲交 福利云点墦 yukun瑟妃 疯狂交换女友 国产自拍26页 腐女资源 百度云 日本DVD高清无码视频 偷拍,自拍AV伦理电影 A片小视频福利站。 大奶肥婆自拍偷拍图片 交配伊甸园 超碰在线视频自拍偷拍国产 小热巴91大神 rctd 045 类似于A片 超美大奶大学生美女直播被男友操 男友问 你的衣服怎么脱掉的 亚洲女与黑人群交视频一 在线黄涩 木内美保步兵番号 鸡巴插入欧美美女的b舒服 激情在线国产自拍日韩欧美 国语福利小视频在线观看 作爱小视颍 潮喷合集丝袜无码mp4 做爱的无码高清视频 牛牛精品 伊aⅤ在线观看 savk12 哥哥搞在线播放 在线电一本道影 一级谍片 250pp亚洲情艺中心,88 欧美一本道九色在线一 wwwseavbacom色av吧 cos美女在线 欧美17,18ⅹⅹⅹ视频 自拍嫩逼 小电影在线观看网站 筱田优 贼 水电工 5358x视频 日本69式视频有码 b雪福利导航 韩国女主播19tvclub在线 操逼清晰视频 丝袜美女国产视频网址导航 水菜丽颜射房间 台湾妹中文娱乐网 风吟岛视频 口交 伦理 日本熟妇色五十路免费视频 A级片互舔 川村真矢Av在线观看 亚洲日韩av 色和尚国产自拍 sea8 mp4 aV天堂2018手机在线 免费版国产偷拍a在线播放 狠狠 婷婷 丁香 小视频福利在线观看平台 思妍白衣小仙女被邻居强上 萝莉自拍有水 4484新视觉 永久发布页 977成人影视在线观看 小清新影院在线观 小鸟酱后丝后入百度云 旋风魅影四级 香蕉影院小黄片免费看 性爱直播磁力链接 小骚逼第一色影院 性交流的视频 小雪小视频bd 小视频TV禁看视频 迷奸AV在线看 nba直播 任你在干线 汤姆影院在线视频国产 624u在线播放 成人 一级a做爰片就在线看狐狸视频 小香蕉AV视频 www182、com 腿模简小育 学生做爱视频 秘密搜查官 快播 成人福利网午夜 一级黄色夫妻录像片 直接看的gav久久播放器 国产自拍400首页 sm老爹影院 谁知道隔壁老王网址在线 综合网 123西瓜影音 米奇丁香 人人澡人人漠大学生 色久悠 夜色视频你今天寂寞了吗? 菲菲影视城美国 被抄的影院 变态另类 欧美 成人 国产偷拍自拍在线小说 不用下载安装就能看的吃男人鸡巴视频 插屄视频 大贯杏里播放 wwwhhh50 233若菜奈央 伦理片天海翼秘密搜查官 大香蕉在线万色屋视频 那种漫画小说你懂的 祥仔电影合集一区 那里可以看澳门皇冠酒店a片 色自啪 亚洲aV电影天堂 谷露影院ar toupaizaixian sexbj。com 毕业生 zaixian mianfei 朝桐光视频 成人短视频在线直接观看 陈美霖 沈阳音乐学院 导航女 www26yjjcom 1大尺度视频 开平虐女视频 菅野雪松协和影视在线视频 华人play在线视频bbb 鸡吧操屄视频 多啪啪免费视频 悠草影院 金兰策划网 (969) 橘佑金短视频 国内一极刺激自拍片 日本制服番号大全magnet 成人动漫母系 电脑怎么清理内存 黄色福利1000 dy88午夜 偷拍中学生洗澡磁力链接 花椒相机福利美女视频 站长推荐磁力下载 mp4 三洞轮流插视频 玉兔miki热舞视频 夜生活小视频 爆乳人妖小视频 国内网红主播自拍福利迅雷下载 不用app的裸裸体美女操逼视频 变态SM影片在线观看 草溜影院元气吧 - 百度 - 百度 波推全套视频 国产双飞集合ftp 日本在线AV网 笔国毛片 神马影院女主播是我的邻居 影音资源 激情乱伦电影 799pao 亚洲第一色第一影院 av视频大香蕉 老梁故事汇希斯莱杰 水中人体磁力链接 下载 大香蕉黄片免费看 济南谭崔 避开屏蔽的岛a片 草破福利 要看大鸡巴操小骚逼的人的视频 黑丝少妇影音先锋 欧美巨乳熟女磁力链接 美国黄网站色大全 伦蕉在线久播 极品女厕沟 激情五月bd韩国电影 混血美女自摸和男友激情啪啪自拍诱人呻吟福利视频 人人摸人人妻做人人看 44kknn 娸娸原网 伊人欧美 恋夜影院视频列表安卓青青 57k影院 如果电话亭 avi 插爆骚女精品自拍 青青草在线免费视频1769TV 令人惹火的邻家美眉 影音先锋 真人妹子被捅动态图 男人女人做完爱视频15 表姐合租两人共处一室晚上她竟爬上了我的床 性爱教学视频 北条麻妃bd在线播放版 国产老师和师生 magnet wwwcctv1024 女神自慰 ftp 女同性恋做激情视频 欧美大胆露阴视频 欧美无码影视 好女色在线观看 后入肥臀18p 百度影视屏福利 厕所超碰视频 强奸mp magnet 欧美妹aⅴ免费线上看 2016年妞干网视频 5手机在线福利 超在线最视频 800av:cOm magnet 欧美性爱免播放器在线播放 91大款肥汤的性感美乳90后邻家美眉趴着窗台后入啪啪 秋霞日本毛片网站 cheng ren 在线视频 上原亚衣肛门无码解禁影音先锋 美脚家庭教师在线播放 尤酷伦理片 熟女性生活视频在线观看 欧美av在线播放喷潮 194avav 凤凰AV成人 - 百度 kbb9999 AV片AV在线AV无码 爱爱视频高清免费观看 黄色男女操b视频 观看 18AV清纯视频在线播放平台 成人性爱视频久久操 女性真人生殖系统双性人视频 下身插入b射精视频 明星潜规测视频 mp4 免賛a片直播绪 国内 自己 偷拍 在线 国内真实偷拍 手机在线 国产主播户外勾在线 三桥杏奈高清无码迅雷下载 2五福电影院凸凹频频 男主拿鱼打女主,高宝宝 色哥午夜影院 川村まや痴汉 草溜影院费全过程免费 淫小弟影院在线视频 laohantuiche 啪啪啪喷潮XXOO视频 青娱乐成人国产 蓝沢润 一本道 亚洲青涩中文欧美 神马影院线理论 米娅卡莉法的av 在线福利65535 欧美粉色在线 欧美性受群交视频1在线播放 极品喷奶熟妇在线播放 变态另类无码福利影院92 天津小姐被偷拍 磁力下载 台湾三级电髟全部 丝袜美腿偷拍自拍 偷拍女生性行为图 妻子的乱伦 白虎少妇 肏婶骚屄 外国大妈会阴照片 美少女操屄图片 妹妹自慰11p 操老熟女的b 361美女人体 360电影院樱桃 爱色妹妹亚洲色图 性交卖淫姿势高清图片一级 欧美一黑对二白 大色网无毛一线天 射小妹网站 寂寞穴 西西人体模特苍井空 操的大白逼吧 骚穴让我操 拉好友干女朋友3p